source: src/Dynamics/ForceAnnealing.hpp@ ac79b2

ForceAnnealing_with_BondGraph_continued
Last change on this file since ac79b2 was ac79b2, checked in by Frederik Heber <frederik.heber@…>, 8 years ago

tempcommit: Merge with 698308e2

  • Property mode set to 100644
File size: 22.8 KB
Line 
1/*
2 * ForceAnnealing.hpp
3 *
4 * Created on: Aug 02, 2014
5 * Author: heber
6 */
7
8#ifndef FORCEANNEALING_HPP_
9#define FORCEANNEALING_HPP_
10
11// include config.h
12#ifdef HAVE_CONFIG_H
13#include <config.h>
14#endif
15
16#include <algorithm>
17#include <functional>
18#include <iterator>
19
20#include <boost/bind.hpp>
21
22#include "Atom/atom.hpp"
23#include "Atom/AtomSet.hpp"
24#include "CodePatterns/Assert.hpp"
25#include "CodePatterns/Info.hpp"
26#include "CodePatterns/Log.hpp"
27#include "CodePatterns/Verbose.hpp"
28#include "Descriptors/AtomIdDescriptor.hpp"
29#include "Dynamics/AtomicForceManipulator.hpp"
30#include "Dynamics/BondVectors.hpp"
31#include "Fragmentation/ForceMatrix.hpp"
32#include "Graph/BoostGraphCreator.hpp"
33#include "Graph/BoostGraphHelpers.hpp"
34#include "Graph/BreadthFirstSearchGatherer.hpp"
35#include "Helpers/helpers.hpp"
36#include "Helpers/defs.hpp"
37#include "LinearAlgebra/LinearSystemOfEquations.hpp"
38#include "LinearAlgebra/MatrixContent.hpp"
39#include "LinearAlgebra/Vector.hpp"
40#include "LinearAlgebra/VectorContent.hpp"
41#include "Thermostats/ThermoStatContainer.hpp"
42#include "Thermostats/Thermostat.hpp"
43#include "World.hpp"
44
45/** This class is the essential build block for performing structural optimization.
46 *
47 * Sadly, we have to use some static instances as so far values cannot be passed
48 * between actions. Hence, we need to store the current step and the adaptive-
49 * step width (we cannot perform a line search, as we have no control over the
50 * calculation of the forces).
51 *
52 * However, we do use the bond graph, i.e. if a single atom needs to be shifted
53 * to the left, then the whole molecule left of it is shifted, too. This is
54 * controlled by the \a max_distance parameter.
55 */
56template <class T>
57class ForceAnnealing : public AtomicForceManipulator<T>
58{
59public:
60 /** Constructor of class ForceAnnealing.
61 *
62 * \note We use a fixed delta t of 1.
63 *
64 * \param _atoms set of atoms to integrate
65 * \param _Deltat time step width in atomic units
66 * \param _IsAngstroem whether length units are in angstroem or bohr radii
67 * \param _maxSteps number of optimization steps to perform
68 * \param _max_distance up to this bond order is bond graph taken into account.
69 */
70 ForceAnnealing(
71 AtomSetMixin<T> &_atoms,
72 const double _Deltat,
73 bool _IsAngstroem,
74 const size_t _maxSteps,
75 const int _max_distance,
76 const double _damping_factor) :
77 AtomicForceManipulator<T>(_atoms, _Deltat, _IsAngstroem),
78 maxSteps(_maxSteps),
79 max_distance(_max_distance),
80 damping_factor(_damping_factor)
81 {}
82
83 /** Destructor of class ForceAnnealing.
84 *
85 */
86 ~ForceAnnealing()
87 {}
88
89 /** Performs Gradient optimization.
90 *
91 * We assume that forces have just been calculated.
92 *
93 *
94 * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
95 * \param offset offset in matrix file to the first force component
96 * \todo This is not yet checked if it is correctly working with DoConstrainedMD set >0.
97 */
98 void operator()(
99 const int _CurrentTimeStep,
100 const size_t _offset,
101 const bool _UseBondgraph)
102 {
103 // make sum of forces equal zero
104 AtomicForceManipulator<T>::correctForceMatrixForFixedCenterOfMass(_offset, _CurrentTimeStep);
105
106 // are we in initial step? Then set static entities
107 Vector maxComponents(zeroVec);
108 if (currentStep == 0) {
109 currentDeltat = AtomicForceManipulator<T>::Deltat;
110 currentStep = 1;
111 LOG(2, "DEBUG: Initial step, setting values, current step is #" << currentStep);
112
113 // always use atomic annealing on first step
114 anneal(_CurrentTimeStep, _offset, maxComponents);
115 } else {
116 ++currentStep;
117 LOG(2, "DEBUG: current step is #" << currentStep);
118
119 // bond graph annealing is always followed by a normal annealing
120 if (_UseBondgraph)
121 annealWithBondGraph(_CurrentTimeStep, _offset, maxComponents);
122 // cannot store RemnantGradient in Atom's Force as it ruins BB stepwidth calculation
123 else
124 anneal(_CurrentTimeStep, _offset, maxComponents);
125 }
126
127 LOG(1, "STATUS: Largest remaining force components at step #"
128 << currentStep << " are " << maxComponents);
129
130 // are we in final step? Remember to reset static entities
131 if (currentStep == maxSteps) {
132 LOG(2, "DEBUG: Final step, resetting values");
133 reset();
134 }
135 }
136
137 /** Performs Gradient optimization on the atoms.
138 *
139 * We assume that forces have just been calculated.
140 *
141 * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
142 * \param offset offset in matrix file to the first force component
143 * \param maxComponents to be filled with maximum force component over all atoms
144 */
145 void anneal(
146 const int CurrentTimeStep,
147 const size_t offset,
148 Vector &maxComponents)
149 {
150 bool deltat_decreased = false;
151 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
152 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
153 // atom's force vector gives steepest descent direction
154 const Vector oldPosition = (*iter)->getPositionAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
155 const Vector currentPosition = (*iter)->getPosition();
156 const Vector oldGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
157 const Vector currentGradient = (*iter)->getAtomicForce();
158 LOG(4, "DEBUG: oldPosition for atom " << **iter << " is " << oldPosition);
159 LOG(4, "DEBUG: currentPosition for atom " << **iter << " is " << currentPosition);
160 LOG(4, "DEBUG: oldGradient for atom " << **iter << " is " << oldGradient);
161 LOG(4, "DEBUG: currentGradient for atom " << **iter << " is " << currentGradient);
162// LOG(4, "DEBUG: Force for atom " << **iter << " is " << currentGradient);
163
164 // we use Barzilai-Borwein update with position reversed to get descent
165 const Vector PositionDifference = currentPosition - oldPosition;
166 const Vector GradientDifference = (currentGradient - oldGradient);
167 double stepwidth = 0.;
168 if (GradientDifference.Norm() > MYEPSILON)
169 stepwidth = fabs(PositionDifference.ScalarProduct(GradientDifference))/
170 GradientDifference.NormSquared();
171 if (fabs(stepwidth) < 1e-10) {
172 // dont' warn in first step, deltat usage normal
173 if (currentStep != 1)
174 ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
175 stepwidth = currentDeltat;
176 }
177 Vector PositionUpdate = stepwidth * currentGradient;
178 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
179
180 // extract largest components for showing progress of annealing
181 for(size_t i=0;i<NDIM;++i)
182 if (currentGradient[i] > maxComponents[i])
183 maxComponents[i] = currentGradient[i];
184
185 // steps may go back and forth again (updates are of same magnitude but
186 // have different sign: Check whether this is the case and one step with
187 // deltat to interrupt this sequence
188 if ((currentStep > 1) && (!PositionDifference.IsZero()))
189 if ((PositionUpdate.ScalarProduct(PositionDifference) < 0)
190 && (fabs(PositionUpdate.NormSquared()-PositionDifference.NormSquared()) < 1e-3)) {
191 // for convergence we want a null sequence here, too
192 if (!deltat_decreased) {
193 deltat_decreased = true;
194 currentDeltat = .5*currentDeltat;
195 }
196 LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate
197 << " > " << PositionDifference
198 << ", using deltat: " << currentDeltat);
199 PositionUpdate = currentDeltat * currentGradient;
200 }
201
202 // finally set new values
203 (*iter)->setPosition(currentPosition + PositionUpdate);
204 }
205 }
206
207 // knowing the number of bonds in total, we can setup the storage for the
208 // projected forces
209 enum whichatom_t {
210 leftside=0,
211 rightside=1,
212 MAX_sides
213 };
214
215 /** Helper function to put bond force into a container.
216 *
217 * \param _walker atom
218 * \param _current_bond current bond of \a _walker
219 * \param _timestep time step
220 * \param _force calculated bond force
221 * \param _bv bondvectors for obtaining the correct index
222 * \param _projected_forces container
223 */
224 static void ForceStore(
225 const atom &_walker,
226 const bond::ptr &_current_bond,
227 const size_t &_timestep,
228 const double _force,
229 const BondVectors &_bv,
230 std::vector< // time step
231 std::vector< // which bond side
232 std::vector<double> > // over all bonds
233 > &_projected_forces)
234 {
235 std::vector<double> &forcelist = (&_walker == _current_bond->leftatom) ?
236 _projected_forces[_timestep][leftside] : _projected_forces[_timestep][rightside];
237 const size_t index = _bv.getIndexForBond(_current_bond);
238 ASSERT( index != (size_t)-1,
239 "ForceAnnealing() - could not find bond "+toString(*_current_bond)
240 +" in bondvectors");
241 forcelist[index] = _force;
242 }
243
244 /** Performs Gradient optimization on the bonds.
245 *
246 * We assume that forces have just been calculated. These forces are projected
247 * onto the bonds and these are annealed subsequently by moving atoms in the
248 * bond neighborhood on either side conjunctively.
249 *
250 *
251 * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
252 * \param offset offset in matrix file to the first force component
253 * \param maxComponents to be filled with maximum force component over all atoms
254 */
255 void annealWithBondGraph(
256 const int CurrentTimeStep,
257 const size_t offset,
258 Vector &maxComponents)
259 {
260 // get nodes on either side of selected bond via BFS discovery
261 BoostGraphCreator BGcreator;
262 BGcreator.createFromRange(
263 AtomicForceManipulator<T>::atoms.begin(),
264 AtomicForceManipulator<T>::atoms.end(),
265 AtomicForceManipulator<T>::atoms.size(),
266 BreadthFirstSearchGatherer::AlwaysTruePredicate);
267 BreadthFirstSearchGatherer NodeGatherer(BGcreator);
268
269 /// We assume that a force is local, i.e. a bond is too short yet and hence
270 /// the atom needs to be moved. However, all the adjacent (bound) atoms might
271 /// already be at the perfect distance. If we just move the atom alone, we ruin
272 /// all the other bonds. Hence, it would be sensible to move every atom found
273 /// through the bond graph in the direction of the force as well by the same
274 /// PositionUpdate. This is almost what we are going to do.
275
276 /// One issue is: If we need to shorten bond, then we use the PositionUpdate
277 /// also on the the other bond partner already. This is because it is in the
278 /// direction of the bond. Therefore, the update is actually performed twice on
279 /// each bond partner, i.e. the step size is twice as large as it should be.
280 /// This problem only occurs when bonds need to be shortened, not when they
281 /// need to be made longer (then the force vector is facing the other
282 /// direction than the bond vector).
283 /// As a remedy we need to average the force on either end of the bond and
284 /// check whether each gradient points inwards out or outwards with respect
285 /// to the bond and then shift accordingly.
286
287 /// One more issue is that the projection onto the bond directions does not
288 /// recover the gradient but may be larger as the bond directions are a
289 /// generating system and not a basis (e.g. 3 bonds on a plane where 2 would
290 /// suffice to span the plane). To this end, we need to account for the
291 /// overestimation and obtain a weighting for each bond.
292
293 // initialize helper class for bond vectors using bonds from range of atoms
294 BondVectors bv;
295 bv.setFromAtomRange< T >(
296 AtomicForceManipulator<T>::atoms.begin(),
297 AtomicForceManipulator<T>::atoms.end(),
298 currentStep);
299 const BondVectors::container_t &sorted_bonds = bv.getSorted();
300
301 std::vector< // time step
302 std::vector< // which bond side
303 std::vector<double> > // over all bonds
304 > projected_forces(2); // one for leftatoms, one for rightatoms (and for both time steps)
305 for (size_t i=0;i<2;++i) {
306 projected_forces[i].resize(MAX_sides);
307 for (size_t j=0;j<MAX_sides;++j)
308 projected_forces[i][j].resize(sorted_bonds.size(), 0.);
309 }
310
311 // for each atom we need to gather weights and then project the gradient
312 typedef std::map<atomId_t, BondVectors::weights_t > weights_per_atom_t;
313 std::vector<weights_per_atom_t> weights_per_atom(2);
314 typedef std::map<atomId_t, Vector> RemnantGradient_per_atom_t;
315 RemnantGradient_per_atom_t RemnantGradient_per_atom;
316 for (size_t timestep = 0; timestep <= 1; ++timestep) {
317 // TODO: We have this extra step in between because of DoOutput copying
318 // change this making the code easier to understand
319 const size_t CurrentStep = CurrentTimeStep-timestep >= 0 ? CurrentTimeStep - timestep : 0;
320 LOG(2, "DEBUG: CurrentTimeStep is " << CurrentTimeStep
321 << ", timestep is " << timestep
322 << ", and CurrentStep is " << CurrentStep);
323
324 for(typename AtomSetMixin<T>::const_iterator iter = AtomicForceManipulator<T>::atoms.begin();
325 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
326 const atom &walker = *(*iter);
327 const Vector &walkerGradient = walker.getAtomicForceAtStep(CurrentStep);
328 LOG(3, "DEBUG: Gradient of atom #" << walker.getId() << ", namely "
329 << walker << " is " << walkerGradient);
330
331 const BondList& ListOfBonds = walker.getListOfBonds();
332 if (walkerGradient.Norm() > MYEPSILON) {
333
334 // gather subset of BondVectors for the current atom
335 const std::vector<Vector> BondVectors =
336 bv.getAtomsBondVectorsAtStep(walker, CurrentStep);
337
338 // go through all its bonds and calculate what magnitude is represented
339 // by the others i.e. sum of scalar products against other bonds
340 const std::pair<weights_per_atom_t::iterator, bool> inserter =
341 weights_per_atom[timestep].insert(
342 std::make_pair(walker.getId(),
343 bv.getWeightsForAtomAtStep(walker, BondVectors, CurrentStep)) );
344 ASSERT( inserter.second,
345 "ForceAnnealing::operator() - weight map for atom "+toString(walker)
346 +" and time step "+toString(timestep)+" already filled?");
347 BondVectors::weights_t &weights = inserter.first->second;
348 ASSERT( weights.size() == ListOfBonds.size(),
349 "ForceAnnealing::operator() - number of weights "
350 +toString(weights.size())+" does not match number of bonds "
351 +toString(ListOfBonds.size())+", error in calculation?");
352
353 // projected gradient over all bonds and place in one of projected_forces
354 // using the obtained weights
355 BondVectors::forcestore_t forcestoring =
356 boost::bind(&ForceAnnealing::ForceStore, _1, _2, _3, _4,
357 boost::cref(bv), boost::ref(projected_forces));
358 const Vector RemnantGradient = bv.getRemnantGradientForAtomAtStep(
359 walker, walkerGradient, BondVectors, weights, timestep, forcestoring
360 );
361 RemnantGradient_per_atom.insert( std::make_pair(walker.getId(), RemnantGradient) );
362 } else {
363 LOG(2, "DEBUG: Gradient is " << walkerGradient << " less than "
364 << MYEPSILON << " for atom " << walker);
365 // note that projected_forces is initialized to full length and filled
366 // with zeros. Hence, nothing to do here
367 }
368 }
369 }
370
371 // step through each bond and shift the atoms
372 std::map<atomId_t, Vector> GatheredUpdates; //!< gathers all updates which are applied at the end
373
374 LOG(3, "DEBUG: current step is " << currentStep << ", given time step is " << CurrentTimeStep);
375 const BondVectors::mapped_t bondvectors = bv.getBondVectorsAtStep(currentStep);
376
377 for (BondVectors::container_t::const_iterator bondsiter = sorted_bonds.begin();
378 bondsiter != sorted_bonds.end(); ++bondsiter) {
379 const bond::ptr &current_bond = *bondsiter;
380 const size_t index = bv.getIndexForBond(current_bond);
381 const atom* bondatom[MAX_sides] = {
382 current_bond->leftatom,
383 current_bond->rightatom
384 };
385
386 // remove the edge
387#ifndef NDEBUG
388 const bool status =
389#endif
390 BGcreator.removeEdge(bondatom[leftside]->getId(), bondatom[rightside]->getId());
391 ASSERT( status, "ForceAnnealing() - edge to found bond is not present?");
392
393 // gather nodes for either atom
394 BoostGraphHelpers::Nodeset_t bondside_set[MAX_sides];
395 BreadthFirstSearchGatherer::distance_map_t distance_map[MAX_sides];
396 for (size_t side=leftside;side<MAX_sides;++side) {
397 bondside_set[side] = NodeGatherer(bondatom[side]->getId(), max_distance);
398 distance_map[side] = NodeGatherer.getDistances();
399 std::sort(bondside_set[side].begin(), bondside_set[side].end());
400 }
401
402 // re-add edge
403 BGcreator.addEdge(bondatom[leftside]->getId(), bondatom[rightside]->getId());
404
405 // do for both leftatom and rightatom of bond
406 for (size_t side = leftside; side < MAX_sides; ++side) {
407 const double &bondforce = projected_forces[0][side][index];
408 const double &oldbondforce = projected_forces[1][side][index];
409 const double bondforcedifference = fabs(bondforce - oldbondforce);
410 LOG(4, "DEBUG: bondforce for " << (side == leftside ? "left" : "right")
411 << " side of bond is " << bondforce);
412 LOG(4, "DEBUG: oldbondforce for " << (side == leftside ? "left" : "right")
413 << " side of bond is " << oldbondforce);
414 // if difference or bondforce itself is zero, do nothing
415 if ((fabs(bondforce) < MYEPSILON) || (fabs(bondforcedifference) < MYEPSILON))
416 continue;
417
418 // get BondVector to bond
419 const BondVectors::mapped_t::const_iterator bviter =
420 bondvectors.find(current_bond);
421 ASSERT( bviter != bondvectors.end(),
422 "ForceAnnealing() - cannot find current_bond ?");
423 ASSERT( fabs(bviter->second.Norm() -1.) < MYEPSILON,
424 "ForceAnnealing() - norm of BondVector is not one");
425 const Vector &BondVector = bviter->second;
426
427 // calculate gradient and position differences for stepwidth
428 const Vector currentGradient = bondforce * BondVector;
429 LOG(4, "DEBUG: current projected gradient for "
430 << (side == leftside ? "left" : "right") << " side of bond is " << currentGradient);
431 const Vector &oldPosition = bondatom[side]->getPositionAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
432 const Vector &currentPosition = bondatom[side]->getPositionAtStep(currentStep);
433 const Vector PositionDifference = currentPosition - oldPosition;
434 LOG(4, "DEBUG: old position is " << oldPosition);
435 LOG(4, "DEBUG: current position is " << currentPosition);
436 LOG(4, "DEBUG: difference in position is " << PositionDifference);
437 LOG(4, "DEBUG: bondvector is " << BondVector);
438 const double projected_PositionDifference = PositionDifference.ScalarProduct(BondVector);
439 LOG(4, "DEBUG: difference in position projected onto bondvector is "
440 << projected_PositionDifference);
441 LOG(4, "DEBUG: abs. difference in forces is " << bondforcedifference);
442
443 // calculate step width
444 double stepwidth =
445 fabs(projected_PositionDifference)/bondforcedifference;
446 if (fabs(stepwidth) < 1e-10) {
447 // dont' warn in first step, deltat usage normal
448 if (currentStep != 1)
449 ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
450 stepwidth = currentDeltat;
451 }
452 Vector PositionUpdate = stepwidth * currentGradient;
453 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
454
455 // add PositionUpdate for all nodes in the bondside_set
456 for (BoostGraphHelpers::Nodeset_t::const_iterator setiter = bondside_set[side].begin();
457 setiter != bondside_set[side].end(); ++setiter) {
458 const BreadthFirstSearchGatherer::distance_map_t::const_iterator diter
459 = distance_map[side].find(*setiter);
460 ASSERT( diter != distance_map[side].end(),
461 "ForceAnnealing() - could not find distance to an atom.");
462 const double factor = pow(damping_factor, diter->second+1);
463 LOG(3, "DEBUG: Update for atom #" << *setiter << " will be "
464 << factor << "*" << PositionUpdate);
465 if (GatheredUpdates.count((*setiter))) {
466 GatheredUpdates[(*setiter)] += factor*PositionUpdate;
467 } else {
468 GatheredUpdates.insert(
469 std::make_pair(
470 (*setiter),
471 factor*PositionUpdate) );
472 }
473 }
474 }
475 }
476
477 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
478 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
479 atom &walker = *(*iter);
480 // extract largest components for showing progress of annealing
481 const Vector currentGradient = walker.getAtomicForce();
482 for(size_t i=0;i<NDIM;++i)
483 if (currentGradient[i] > maxComponents[i])
484 maxComponents[i] = currentGradient[i];
485 }
486
487 // apply the gathered updates and set remnant gradients for atomic annealing
488 for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
489 iter != GatheredUpdates.end(); ++iter) {
490 const atomId_t &atomid = iter->first;
491 const Vector &update = iter->second;
492 atom* const walker = World::getInstance().getAtom(AtomById(atomid));
493 ASSERT( walker != NULL,
494 "ForceAnnealing() - walker with id "+toString(atomid)+" has suddenly disappeared.");
495 LOG(3, "DEBUG: Applying update " << update << " to atom #" << atomid
496 << ", namely " << *walker);
497 walker->setPosition( walker->getPosition() + update - CommonTranslation);
498// walker->setAtomicForce( RemnantGradient_per_atom[walker->getId()] );
499 }
500 }
501
502 /** Reset function to unset static entities and artificial velocities.
503 *
504 */
505 void reset()
506 {
507 currentDeltat = 0.;
508 currentStep = 0;
509 }
510
511private:
512 //!> contains the current step in relation to maxsteps
513 static size_t currentStep;
514 //!> contains the maximum number of steps, determines initial and final step with currentStep
515 size_t maxSteps;
516 static double currentDeltat;
517 //!> minimum deltat for internal while loop (adaptive step width)
518 static double MinimumDeltat;
519 //!> contains the maximum bond graph distance up to which shifts of a single atom are spread
520 const int max_distance;
521 //!> the shifted is dampened by this factor with the power of the bond graph distance to the shift causing atom
522 const double damping_factor;
523};
524
525template <class T>
526double ForceAnnealing<T>::currentDeltat = 0.;
527template <class T>
528size_t ForceAnnealing<T>::currentStep = 0;
529template <class T>
530double ForceAnnealing<T>::MinimumDeltat = 1e-8;
531
532#endif /* FORCEANNEALING_HPP_ */
Note: See TracBrowser for help on using the repository browser.