source: src/Dynamics/ForceAnnealing.hpp@ 5bbaca

ForceAnnealing_with_BondGraph_continued
Last change on this file since 5bbaca was 5bbaca, checked in by Frederik Heber <frederik.heber@…>, 8 years ago

tempcommit: Gradient is printed with magnitude.

  • Property mode set to 100644
File size: 27.9 KB
Line 
1/*
2 * ForceAnnealing.hpp
3 *
4 * Created on: Aug 02, 2014
5 * Author: heber
6 */
7
8#ifndef FORCEANNEALING_HPP_
9#define FORCEANNEALING_HPP_
10
11// include config.h
12#ifdef HAVE_CONFIG_H
13#include <config.h>
14#endif
15
16#include <algorithm>
17#include <functional>
18#include <iterator>
19
20#include <boost/bind.hpp>
21
22#include "Atom/atom.hpp"
23#include "Atom/AtomSet.hpp"
24#include "CodePatterns/Assert.hpp"
25#include "CodePatterns/Info.hpp"
26#include "CodePatterns/Log.hpp"
27#include "CodePatterns/Verbose.hpp"
28#include "Descriptors/AtomIdDescriptor.hpp"
29#include "Dynamics/AtomicForceManipulator.hpp"
30#include "Dynamics/BondVectors.hpp"
31#include "Fragmentation/ForceMatrix.hpp"
32#include "Graph/BoostGraphCreator.hpp"
33#include "Graph/BoostGraphHelpers.hpp"
34#include "Graph/BreadthFirstSearchGatherer.hpp"
35#include "Helpers/helpers.hpp"
36#include "Helpers/defs.hpp"
37#include "LinearAlgebra/LinearSystemOfEquations.hpp"
38#include "LinearAlgebra/MatrixContent.hpp"
39#include "LinearAlgebra/Vector.hpp"
40#include "LinearAlgebra/VectorContent.hpp"
41#include "Thermostats/ThermoStatContainer.hpp"
42#include "Thermostats/Thermostat.hpp"
43#include "World.hpp"
44
45/** This class is the essential build block for performing structural optimization.
46 *
47 * Sadly, we have to use some static instances as so far values cannot be passed
48 * between actions. Hence, we need to store the current step and the adaptive-
49 * step width (we cannot perform a line search, as we have no control over the
50 * calculation of the forces).
51 *
52 * However, we do use the bond graph, i.e. if a single atom needs to be shifted
53 * to the left, then the whole molecule left of it is shifted, too. This is
54 * controlled by the \a max_distance parameter.
55 */
56template <class T>
57class ForceAnnealing : public AtomicForceManipulator<T>
58{
59public:
60 /** Constructor of class ForceAnnealing.
61 *
62 * \note We use a fixed delta t of 1.
63 *
64 * \param _atoms set of atoms to integrate
65 * \param _Deltat time step width in atomic units
66 * \param _IsAngstroem whether length units are in angstroem or bohr radii
67 * \param _maxSteps number of optimization steps to perform
68 * \param _max_distance up to this bond order is bond graph taken into account.
69 */
70 ForceAnnealing(
71 AtomSetMixin<T> &_atoms,
72 const double _Deltat,
73 bool _IsAngstroem,
74 const size_t _maxSteps,
75 const int _max_distance,
76 const double _damping_factor) :
77 AtomicForceManipulator<T>(_atoms, _Deltat, _IsAngstroem),
78 maxSteps(_maxSteps),
79 max_distance(_max_distance),
80 damping_factor(_damping_factor)
81 {}
82
83 /** Destructor of class ForceAnnealing.
84 *
85 */
86 ~ForceAnnealing()
87 {}
88
89 /** Performs Gradient optimization.
90 *
91 * We assume that forces have just been calculated.
92 *
93 *
94 * \param _TimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
95 * \param offset offset in matrix file to the first force component
96 * \todo This is not yet checked if it is correctly working with DoConstrainedMD set >0.
97 */
98 void operator()(
99 const int _TimeStep,
100 const size_t _offset,
101 const bool _UseBondgraph)
102 {
103 const int CurrentTimeStep = _TimeStep-1;
104 ASSERT( CurrentTimeStep >= 0,
105 "ForceAnnealing::operator() - a new time step (upon which we work) must already have been copied.");
106
107 // make sum of forces equal zero
108 AtomicForceManipulator<T>::correctForceMatrixForFixedCenterOfMass(
109 _offset,
110 CurrentTimeStep);
111
112 // are we in initial step? Then set static entities
113 Vector maxComponents(zeroVec);
114 if (currentStep == 0) {
115 currentDeltat = AtomicForceManipulator<T>::Deltat;
116 currentStep = 1;
117 LOG(2, "DEBUG: Initial step, setting values, current step is #" << currentStep);
118
119 // always use atomic annealing on first step
120 maxComponents = anneal(_TimeStep);
121 } else {
122 ++currentStep;
123 LOG(2, "DEBUG: current step is #" << currentStep);
124
125 // bond graph annealing is always followed by a normal annealing
126 if (_UseBondgraph)
127 maxComponents = annealWithBondGraph_BarzilaiBorwein(_TimeStep);
128 // cannot store RemnantGradient in Atom's Force as it ruins BB stepwidth calculation
129 else
130 maxComponents = anneal_BarzilaiBorwein(_TimeStep);
131 }
132
133 LOG(1, "STATUS: Largest remaining force components at step #"
134 << currentStep << " are " << maxComponents);
135
136 // are we in final step? Remember to reset static entities
137 if (currentStep == maxSteps) {
138 LOG(2, "DEBUG: Final step, resetting values");
139 reset();
140 }
141 }
142
143 /** Performs Gradient optimization on the atoms.
144 *
145 * We assume that forces have just been calculated.
146 *
147 * \param _TimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
148 * \return to be filled with maximum force component over all atoms
149 */
150 Vector anneal(
151 const int _TimeStep)
152 {
153 const int CurrentTimeStep = _TimeStep-1;
154 ASSERT( CurrentTimeStep >= 0,
155 "ForceAnnealing::anneal() - a new time step (upon which we work) must already have been copied.");
156
157 LOG(1, "STATUS: performing simple anneal with default stepwidth " << currentDeltat << " at step #" << currentStep);
158
159 Vector maxComponents;
160 bool deltat_decreased = false;
161 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
162 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
163 // atom's force vector gives steepest descent direction
164 const Vector currentPosition = (*iter)->getPositionAtStep(CurrentTimeStep);
165 const Vector currentGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
166 LOG(4, "DEBUG: currentPosition for atom #" << (*iter)->getId() << " is " << currentPosition);
167 LOG(4, "DEBUG: currentGradient for atom #" << (*iter)->getId() << " is " << currentGradient);
168// LOG(4, "DEBUG: Force for atom " << **iter << " is " << currentGradient);
169
170 // we use Barzilai-Borwein update with position reversed to get descent
171 double stepwidth = currentDeltat;
172 Vector PositionUpdate = stepwidth * currentGradient;
173 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
174
175 // extract largest components for showing progress of annealing
176 for(size_t i=0;i<NDIM;++i)
177 maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
178
179 // steps may go back and forth again (updates are of same magnitude but
180 // have different sign: Check whether this is the case and one step with
181 // deltat to interrupt this sequence
182 if (currentStep > 1) {
183 const int OldTimeStep = _TimeStep-2;
184 ASSERT( OldTimeStep >= 0,
185 "ForceAnnealing::anneal() - if currentStep is "+toString(currentStep)
186 +", then there should be at least three time steps.");
187 const Vector oldPosition = (*iter)->getPositionAtStep(OldTimeStep);
188 const Vector PositionDifference = currentPosition - oldPosition;
189 LOG(4, "DEBUG: oldPosition for atom #" << (*iter)->getId() << " is " << oldPosition);
190 LOG(4, "DEBUG: PositionDifference for atom #" << (*iter)->getId() << " is " << PositionDifference);
191 if ((PositionUpdate.ScalarProduct(PositionDifference) < 0)
192 && (fabs(PositionUpdate.NormSquared()-PositionDifference.NormSquared()) < 1e-3)) {
193 // for convergence we want a null sequence here, too
194 if (!deltat_decreased) {
195 deltat_decreased = true;
196 currentDeltat = .5*currentDeltat;
197 }
198 LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate
199 << " > " << PositionDifference
200 << ", using deltat: " << currentDeltat);
201 PositionUpdate = currentDeltat * currentGradient;
202 }
203 }
204
205 // finally set new values
206 (*iter)->setPositionAtStep(_TimeStep, currentPosition + PositionUpdate);
207 }
208
209 return maxComponents;
210 }
211
212 /** Performs Gradient optimization on the atoms using BarzilaiBorwein step width.
213 *
214 * \note this can only be called when there are at least two optimization
215 * time steps present, i.e. this must be preceeded by a simple anneal().
216 *
217 * We assume that forces have just been calculated.
218 *
219 * \param _TimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
220 * \return to be filled with maximum force component over all atoms
221 */
222 Vector anneal_BarzilaiBorwein(
223 const int _TimeStep)
224 {
225 const int OldTimeStep = _TimeStep-2;
226 const int CurrentTimeStep = _TimeStep-1;
227 ASSERT( OldTimeStep >= 0,
228 "ForceAnnealing::anneal_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth.");
229 ASSERT(currentStep > 1,
230 "ForceAnnealing::anneal_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth.");
231
232 LOG(1, "STATUS: performing BarzilaiBorwein anneal at step #" << currentStep);
233
234 Vector maxComponents;
235 bool deltat_decreased = false;
236 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
237 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
238 // atom's force vector gives steepest descent direction
239 const Vector oldPosition = (*iter)->getPositionAtStep(OldTimeStep);
240 const Vector currentPosition = (*iter)->getPositionAtStep(CurrentTimeStep);
241 const Vector oldGradient = (*iter)->getAtomicForceAtStep(OldTimeStep);
242 const Vector currentGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep);
243 LOG(4, "DEBUG: oldPosition for atom #" << (*iter)->getId() << " is " << oldPosition);
244 LOG(4, "DEBUG: currentPosition for atom #" << (*iter)->getId() << " is " << currentPosition);
245 LOG(4, "DEBUG: oldGradient for atom #" << (*iter)->getId() << " is " << oldGradient);
246 LOG(4, "DEBUG: currentGradient for atom #" << (*iter)->getId() << " is " << currentGradient);
247// LOG(4, "DEBUG: Force for atom #" << (*iter)->getId() << " is " << currentGradient);
248
249 // we use Barzilai-Borwein update with position reversed to get descent
250 const Vector PositionDifference = currentPosition - oldPosition;
251 const Vector GradientDifference = (currentGradient - oldGradient);
252 double stepwidth = 0.;
253 if (GradientDifference.Norm() > MYEPSILON)
254 stepwidth = fabs(PositionDifference.ScalarProduct(GradientDifference))/
255 GradientDifference.NormSquared();
256 if (fabs(stepwidth) < 1e-10) {
257 // dont' warn in first step, deltat usage normal
258 if (currentStep != 1)
259 ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
260 stepwidth = currentDeltat;
261 }
262 Vector PositionUpdate = stepwidth * currentGradient;
263 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
264
265 // extract largest components for showing progress of annealing
266 for(size_t i=0;i<NDIM;++i)
267 maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
268
269 // steps may go back and forth again (updates are of same magnitude but
270 // have different sign: Check whether this is the case and one step with
271 // deltat to interrupt this sequence
272 if (!PositionDifference.IsZero())
273 if ((PositionUpdate.ScalarProduct(PositionDifference) < 0)
274 && (fabs(PositionUpdate.NormSquared()-PositionDifference.NormSquared()) < 1e-3)) {
275 // for convergence we want a null sequence here, too
276 if (!deltat_decreased) {
277 deltat_decreased = true;
278 currentDeltat = .5*currentDeltat;
279 }
280 LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate
281 << " > " << PositionDifference
282 << ", using deltat: " << currentDeltat);
283 PositionUpdate = currentDeltat * currentGradient;
284 }
285
286 // finally set new values
287 (*iter)->setPositionAtStep(_TimeStep, currentPosition + PositionUpdate);
288 }
289
290 return maxComponents;
291 }
292
293 // knowing the number of bonds in total, we can setup the storage for the
294 // projected forces
295 enum whichatom_t {
296 leftside=0,
297 rightside=1,
298 MAX_sides
299 };
300
301 /** Helper function to put bond force into a container.
302 *
303 * \param _walker atom
304 * \param _current_bond current bond of \a _walker
305 * \param _timestep time step
306 * \param _force calculated bond force
307 * \param _bv bondvectors for obtaining the correct index
308 * \param _projected_forces container
309 */
310 static void ForceStore(
311 const atom &_walker,
312 const bond::ptr &_current_bond,
313 const size_t &_timestep,
314 const double _force,
315 const BondVectors &_bv,
316 std::vector< // time step
317 std::vector< // which bond side
318 std::vector<double> > // over all bonds
319 > &_projected_forces)
320 {
321 std::vector<double> &forcelist = (&_walker == _current_bond->leftatom) ?
322 _projected_forces[_timestep][leftside] : _projected_forces[_timestep][rightside];
323 const size_t index = _bv.getIndexForBond(_current_bond);
324 ASSERT( index != (size_t)-1,
325 "ForceAnnealing() - could not find bond "+toString(*_current_bond)
326 +" in bondvectors");
327 forcelist[index] = _force;
328 }
329
330 /** Performs Gradient optimization on the bonds with BarzilaiBorwein stepwdith.
331 *
332 * \note this can only be called when there are at least two optimization
333 * time steps present, i.e. this must be preceeded by a simple anneal().
334 *
335 * We assume that forces have just been calculated. These forces are projected
336 * onto the bonds and these are annealed subsequently by moving atoms in the
337 * bond neighborhood on either side conjunctively.
338 *
339 *
340 * \param _TimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
341 * \param maxComponents to be filled with maximum force component over all atoms
342 */
343 Vector annealWithBondGraph_BarzilaiBorwein(
344 const int _TimeStep)
345 {
346 const int OldTimeStep = _TimeStep-2;
347 const int CurrentTimeStep = _TimeStep-1;
348 ASSERT(currentStep > 1,
349 "annealWithBondGraph_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth.");
350 ASSERT(OldTimeStep >= 0,
351 "annealWithBondGraph_BarzilaiBorwein() - we need two present optimization steps to compute stepwidth, and the new one to update on already present.");
352
353 LOG(1, "STATUS: performing BarzilaiBorwein anneal on bonds at step #" << currentStep);
354
355 Vector maxComponents;
356
357 // get nodes on either side of selected bond via BFS discovery
358 BoostGraphCreator BGcreator;
359 BGcreator.createFromRange(
360 AtomicForceManipulator<T>::atoms.begin(),
361 AtomicForceManipulator<T>::atoms.end(),
362 AtomicForceManipulator<T>::atoms.size(),
363 BreadthFirstSearchGatherer::AlwaysTruePredicate);
364 BreadthFirstSearchGatherer NodeGatherer(BGcreator);
365
366 /// We assume that a force is local, i.e. a bond is too short yet and hence
367 /// the atom needs to be moved. However, all the adjacent (bound) atoms might
368 /// already be at the perfect distance. If we just move the atom alone, we ruin
369 /// all the other bonds. Hence, it would be sensible to move every atom found
370 /// through the bond graph in the direction of the force as well by the same
371 /// PositionUpdate. This is almost what we are going to do.
372
373 /// One issue is: If we need to shorten bond, then we use the PositionUpdate
374 /// also on the the other bond partner already. This is because it is in the
375 /// direction of the bond. Therefore, the update is actually performed twice on
376 /// each bond partner, i.e. the step size is twice as large as it should be.
377 /// This problem only occurs when bonds need to be shortened, not when they
378 /// need to be made longer (then the force vector is facing the other
379 /// direction than the bond vector).
380 /// As a remedy we need to average the force on either end of the bond and
381 /// check whether each gradient points inwards out or outwards with respect
382 /// to the bond and then shift accordingly.
383
384 /// One more issue is that the projection onto the bond directions does not
385 /// recover the gradient but may be larger as the bond directions are a
386 /// generating system and not a basis (e.g. 3 bonds on a plane where 2 would
387 /// suffice to span the plane). To this end, we need to account for the
388 /// overestimation and obtain a weighting for each bond.
389
390 // initialize helper class for bond vectors using bonds from range of atoms
391 BondVectors bv;
392 bv.setFromAtomRange< T >(
393 AtomicForceManipulator<T>::atoms.begin(),
394 AtomicForceManipulator<T>::atoms.end(),
395 _TimeStep);
396 const BondVectors::container_t &sorted_bonds = bv.getSorted();
397
398 std::vector< // time step
399 std::vector< // which bond side
400 std::vector<double> > // over all bonds
401 > projected_forces(2); // one for leftatoms, one for rightatoms (and for both time steps)
402 for (size_t i=0;i<2;++i) {
403 projected_forces[i].resize(MAX_sides);
404 for (size_t j=0;j<MAX_sides;++j)
405 projected_forces[i][j].resize(sorted_bonds.size(), 0.);
406 }
407
408 // for each atom we need to gather weights and then project the gradient
409 typedef std::map<atomId_t, BondVectors::weights_t > weights_per_atom_t;
410 std::vector<weights_per_atom_t> weights_per_atom(2);
411 typedef std::map<atomId_t, Vector> RemnantGradient_per_atom_t;
412 RemnantGradient_per_atom_t RemnantGradient_per_atom;
413 for (size_t timestep = 0; timestep <= 1; ++timestep) {
414 const size_t ReferenceTimeStep = _TimeStep-timestep-1;
415 LOG(2, "DEBUG: given time step is " << _TimeStep
416 << ", timestep is " << timestep
417 << ", and ReferenceTimeStep is " << ReferenceTimeStep);
418
419 for(typename AtomSetMixin<T>::const_iterator iter = AtomicForceManipulator<T>::atoms.begin();
420 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
421 const atom &walker = *(*iter);
422 const Vector &walkerGradient = walker.getAtomicForceAtStep(ReferenceTimeStep);
423 LOG(3, "DEBUG: Gradient of atom #" << walker.getId() << ", namely "
424 << walker << " is " << walkerGradient << " with magnitude of "
425 << walkerGradient.Norm());
426
427 const BondList& ListOfBonds = walker.getListOfBonds();
428 if (walkerGradient.Norm() > MYEPSILON) {
429
430 // gather subset of BondVectors for the current atom
431 const std::vector<Vector> BondVectors =
432 bv.getAtomsBondVectorsAtStep(walker, ReferenceTimeStep);
433
434 // go through all its bonds and calculate what magnitude is represented
435 // by the others i.e. sum of scalar products against other bonds
436 const std::pair<weights_per_atom_t::iterator, bool> inserter =
437 weights_per_atom[timestep].insert(
438 std::make_pair(walker.getId(),
439 bv.getWeightsForAtomAtStep(walker, BondVectors, ReferenceTimeStep)) );
440 ASSERT( inserter.second,
441 "ForceAnnealing::operator() - weight map for atom "+toString(walker)
442 +" and time step "+toString(timestep)+" already filled?");
443 BondVectors::weights_t &weights = inserter.first->second;
444 ASSERT( weights.size() == ListOfBonds.size(),
445 "ForceAnnealing::operator() - number of weights "
446 +toString(weights.size())+" does not match number of bonds "
447 +toString(ListOfBonds.size())+", error in calculation?");
448
449 // projected gradient over all bonds and place in one of projected_forces
450 // using the obtained weights
451 BondVectors::forcestore_t forcestoring =
452 boost::bind(&ForceAnnealing::ForceStore, _1, _2, _3, _4,
453 boost::cref(bv), boost::ref(projected_forces));
454 const Vector RemnantGradient = bv.getRemnantGradientForAtomAtStep(
455 walker, walkerGradient, BondVectors, weights, timestep, forcestoring
456 );
457 RemnantGradient_per_atom.insert( std::make_pair(walker.getId(), RemnantGradient) );
458 } else {
459 LOG(2, "DEBUG: Gradient is " << walkerGradient << " less than "
460 << MYEPSILON << " for atom " << walker);
461 // note that projected_forces is initialized to full length and filled
462 // with zeros. Hence, nothing to do here
463 }
464 }
465 }
466
467 // step through each bond and shift the atoms
468 std::map<atomId_t, Vector> GatheredUpdates; //!< gathers all updates which are applied at the end
469
470 LOG(3, "DEBUG: current step is " << currentStep << ", given time step is " << CurrentTimeStep);
471 const BondVectors::mapped_t bondvectors = bv.getBondVectorsAtStep(CurrentTimeStep);
472
473 for (BondVectors::container_t::const_iterator bondsiter = sorted_bonds.begin();
474 bondsiter != sorted_bonds.end(); ++bondsiter) {
475 const bond::ptr &current_bond = *bondsiter;
476 const size_t index = bv.getIndexForBond(current_bond);
477 const atom* bondatom[MAX_sides] = {
478 current_bond->leftatom,
479 current_bond->rightatom
480 };
481
482 // remove the edge
483#ifndef NDEBUG
484 const bool status =
485#endif
486 BGcreator.removeEdge(bondatom[leftside]->getId(), bondatom[rightside]->getId());
487 ASSERT( status, "ForceAnnealing() - edge to found bond is not present?");
488
489 // gather nodes for either atom
490 BoostGraphHelpers::Nodeset_t bondside_set[MAX_sides];
491 BreadthFirstSearchGatherer::distance_map_t distance_map[MAX_sides];
492 for (size_t side=leftside;side<MAX_sides;++side) {
493 bondside_set[side] = NodeGatherer(bondatom[side]->getId(), max_distance);
494 distance_map[side] = NodeGatherer.getDistances();
495 std::sort(bondside_set[side].begin(), bondside_set[side].end());
496 }
497
498 // re-add edge
499 BGcreator.addEdge(bondatom[leftside]->getId(), bondatom[rightside]->getId());
500
501 // do for both leftatom and rightatom of bond
502 for (size_t side = leftside; side < MAX_sides; ++side) {
503 const double &bondforce = projected_forces[0][side][index];
504 const double &oldbondforce = projected_forces[1][side][index];
505 const double bondforcedifference = fabs(bondforce - oldbondforce);
506 LOG(4, "DEBUG: bondforce for " << (side == leftside ? "left" : "right")
507 << " side of bond is " << bondforce);
508 LOG(4, "DEBUG: oldbondforce for " << (side == leftside ? "left" : "right")
509 << " side of bond is " << oldbondforce);
510 // if difference or bondforce itself is zero, do nothing
511 if ((fabs(bondforce) < MYEPSILON) || (fabs(bondforcedifference) < MYEPSILON))
512 continue;
513
514 // get BondVector to bond
515 const BondVectors::mapped_t::const_iterator bviter =
516 bondvectors.find(current_bond);
517 ASSERT( bviter != bondvectors.end(),
518 "ForceAnnealing() - cannot find current_bond ?");
519 ASSERT( fabs(bviter->second.Norm() -1.) < MYEPSILON,
520 "ForceAnnealing() - norm of BondVector is not one");
521 const Vector &BondVector = bviter->second;
522
523 // calculate gradient and position differences for stepwidth
524 const Vector currentGradient = bondforce * BondVector;
525 LOG(4, "DEBUG: current projected gradient for "
526 << (side == leftside ? "left" : "right") << " side of bond is " << currentGradient);
527 const Vector &oldPosition = bondatom[side]->getPositionAtStep(OldTimeStep);
528 const Vector &currentPosition = bondatom[side]->getPositionAtStep(CurrentTimeStep);
529 const Vector PositionDifference = currentPosition - oldPosition;
530 LOG(4, "DEBUG: old position is " << oldPosition);
531 LOG(4, "DEBUG: current position is " << currentPosition);
532 LOG(4, "DEBUG: difference in position is " << PositionDifference);
533 LOG(4, "DEBUG: bondvector is " << BondVector);
534 const double projected_PositionDifference = PositionDifference.ScalarProduct(BondVector);
535 LOG(4, "DEBUG: difference in position projected onto bondvector is "
536 << projected_PositionDifference);
537 LOG(4, "DEBUG: abs. difference in forces is " << bondforcedifference);
538
539 // calculate step width
540 double stepwidth =
541 fabs(projected_PositionDifference)/bondforcedifference;
542 if (fabs(stepwidth) < 1e-10) {
543 // dont' warn in first step, deltat usage normal
544 if (currentStep != 1)
545 ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
546 stepwidth = currentDeltat;
547 }
548 Vector PositionUpdate = stepwidth * currentGradient;
549 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
550
551 // add PositionUpdate for all nodes in the bondside_set
552 for (BoostGraphHelpers::Nodeset_t::const_iterator setiter = bondside_set[side].begin();
553 setiter != bondside_set[side].end(); ++setiter) {
554 const BreadthFirstSearchGatherer::distance_map_t::const_iterator diter
555 = distance_map[side].find(*setiter);
556 ASSERT( diter != distance_map[side].end(),
557 "ForceAnnealing() - could not find distance to an atom.");
558 const double factor = pow(damping_factor, diter->second+1);
559 LOG(3, "DEBUG: Update for atom #" << *setiter << " will be "
560 << factor << "*" << PositionUpdate);
561 if (GatheredUpdates.count((*setiter))) {
562 GatheredUpdates[(*setiter)] += factor*PositionUpdate;
563 } else {
564 GatheredUpdates.insert(
565 std::make_pair(
566 (*setiter),
567 factor*PositionUpdate) );
568 }
569 }
570 }
571 }
572
573 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
574 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
575 atom &walker = *(*iter);
576 // extract largest components for showing progress of annealing
577 const Vector currentGradient = walker.getAtomicForceAtStep(CurrentTimeStep);
578 for(size_t i=0;i<NDIM;++i)
579 maxComponents[i] = std::max(maxComponents[i], fabs(currentGradient[i]));
580 }
581
582 // remove center of weight translation from gathered updates
583 Vector CommonTranslation;
584 for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
585 iter != GatheredUpdates.end(); ++iter) {
586 const Vector &update = iter->second;
587 CommonTranslation += update;
588 }
589 CommonTranslation *= 1./(double)GatheredUpdates.size();
590 LOG(3, "DEBUG: Subtracting common translation " << CommonTranslation
591 << " from all updates.");
592
593 // apply the gathered updates and set remnant gradients for atomic annealing
594 for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
595 iter != GatheredUpdates.end(); ++iter) {
596 const atomId_t &atomid = iter->first;
597 const Vector &update = iter->second;
598 atom* const walker = World::getInstance().getAtom(AtomById(atomid));
599 ASSERT( walker != NULL,
600 "ForceAnnealing() - walker with id "+toString(atomid)+" has suddenly disappeared.");
601 LOG(3, "DEBUG: Applying update " << update << " to atom #" << atomid
602 << ", namely " << *walker);
603 walker->setPositionAtStep(_TimeStep,
604 walker->getPositionAtStep(CurrentTimeStep) + update - CommonTranslation);
605// walker->setAtomicForce( RemnantGradient_per_atom[walker->getId()] );
606 }
607
608 return maxComponents;
609 }
610
611 /** Reset function to unset static entities and artificial velocities.
612 *
613 */
614 void reset()
615 {
616 currentDeltat = 0.;
617 currentStep = 0;
618 }
619
620private:
621 //!> contains the current step in relation to maxsteps
622 static size_t currentStep;
623 //!> contains the maximum number of steps, determines initial and final step with currentStep
624 size_t maxSteps;
625 static double currentDeltat;
626 //!> minimum deltat for internal while loop (adaptive step width)
627 static double MinimumDeltat;
628 //!> contains the maximum bond graph distance up to which shifts of a single atom are spread
629 const int max_distance;
630 //!> the shifted is dampened by this factor with the power of the bond graph distance to the shift causing atom
631 const double damping_factor;
632};
633
634template <class T>
635double ForceAnnealing<T>::currentDeltat = 0.;
636template <class T>
637size_t ForceAnnealing<T>::currentStep = 0;
638template <class T>
639double ForceAnnealing<T>::MinimumDeltat = 1e-8;
640
641#endif /* FORCEANNEALING_HPP_ */
Note: See TracBrowser for help on using the repository browser.