source: src/Dynamics/ForceAnnealing.hpp@ 152599

ForceAnnealing_with_BondGraph_continued
Last change on this file since 152599 was 152599, checked in by Frederik Heber <frederik.heber@…>, 8 years ago

tempcommit: Removed note about stupid DoOutput copying.

  • Property mode set to 100644
File size: 23.2 KB
Line 
1/*
2 * ForceAnnealing.hpp
3 *
4 * Created on: Aug 02, 2014
5 * Author: heber
6 */
7
8#ifndef FORCEANNEALING_HPP_
9#define FORCEANNEALING_HPP_
10
11// include config.h
12#ifdef HAVE_CONFIG_H
13#include <config.h>
14#endif
15
16#include <algorithm>
17#include <functional>
18#include <iterator>
19
20#include <boost/bind.hpp>
21
22#include "Atom/atom.hpp"
23#include "Atom/AtomSet.hpp"
24#include "CodePatterns/Assert.hpp"
25#include "CodePatterns/Info.hpp"
26#include "CodePatterns/Log.hpp"
27#include "CodePatterns/Verbose.hpp"
28#include "Descriptors/AtomIdDescriptor.hpp"
29#include "Dynamics/AtomicForceManipulator.hpp"
30#include "Dynamics/BondVectors.hpp"
31#include "Fragmentation/ForceMatrix.hpp"
32#include "Graph/BoostGraphCreator.hpp"
33#include "Graph/BoostGraphHelpers.hpp"
34#include "Graph/BreadthFirstSearchGatherer.hpp"
35#include "Helpers/helpers.hpp"
36#include "Helpers/defs.hpp"
37#include "LinearAlgebra/LinearSystemOfEquations.hpp"
38#include "LinearAlgebra/MatrixContent.hpp"
39#include "LinearAlgebra/Vector.hpp"
40#include "LinearAlgebra/VectorContent.hpp"
41#include "Thermostats/ThermoStatContainer.hpp"
42#include "Thermostats/Thermostat.hpp"
43#include "World.hpp"
44
45/** This class is the essential build block for performing structural optimization.
46 *
47 * Sadly, we have to use some static instances as so far values cannot be passed
48 * between actions. Hence, we need to store the current step and the adaptive-
49 * step width (we cannot perform a line search, as we have no control over the
50 * calculation of the forces).
51 *
52 * However, we do use the bond graph, i.e. if a single atom needs to be shifted
53 * to the left, then the whole molecule left of it is shifted, too. This is
54 * controlled by the \a max_distance parameter.
55 */
56template <class T>
57class ForceAnnealing : public AtomicForceManipulator<T>
58{
59public:
60 /** Constructor of class ForceAnnealing.
61 *
62 * \note We use a fixed delta t of 1.
63 *
64 * \param _atoms set of atoms to integrate
65 * \param _Deltat time step width in atomic units
66 * \param _IsAngstroem whether length units are in angstroem or bohr radii
67 * \param _maxSteps number of optimization steps to perform
68 * \param _max_distance up to this bond order is bond graph taken into account.
69 */
70 ForceAnnealing(
71 AtomSetMixin<T> &_atoms,
72 const double _Deltat,
73 bool _IsAngstroem,
74 const size_t _maxSteps,
75 const int _max_distance,
76 const double _damping_factor) :
77 AtomicForceManipulator<T>(_atoms, _Deltat, _IsAngstroem),
78 maxSteps(_maxSteps),
79 max_distance(_max_distance),
80 damping_factor(_damping_factor)
81 {}
82
83 /** Destructor of class ForceAnnealing.
84 *
85 */
86 ~ForceAnnealing()
87 {}
88
89 /** Performs Gradient optimization.
90 *
91 * We assume that forces have just been calculated.
92 *
93 *
94 * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
95 * \param offset offset in matrix file to the first force component
96 * \todo This is not yet checked if it is correctly working with DoConstrainedMD set >0.
97 */
98 void operator()(
99 const int _CurrentTimeStep,
100 const size_t _offset,
101 const bool _UseBondgraph)
102 {
103 // make sum of forces equal zero
104 AtomicForceManipulator<T>::correctForceMatrixForFixedCenterOfMass(_offset, _CurrentTimeStep);
105
106 // are we in initial step? Then set static entities
107 Vector maxComponents(zeroVec);
108 if (currentStep == 0) {
109 currentDeltat = AtomicForceManipulator<T>::Deltat;
110 currentStep = 1;
111 LOG(2, "DEBUG: Initial step, setting values, current step is #" << currentStep);
112
113 // always use atomic annealing on first step
114 anneal(_CurrentTimeStep, _offset, maxComponents);
115 } else {
116 ++currentStep;
117 LOG(2, "DEBUG: current step is #" << currentStep);
118
119 // bond graph annealing is always followed by a normal annealing
120 if (_UseBondgraph)
121 annealWithBondGraph(_CurrentTimeStep, _offset, maxComponents);
122 // cannot store RemnantGradient in Atom's Force as it ruins BB stepwidth calculation
123 else
124 anneal(_CurrentTimeStep, _offset, maxComponents);
125 }
126
127 LOG(1, "STATUS: Largest remaining force components at step #"
128 << currentStep << " are " << maxComponents);
129
130 // are we in final step? Remember to reset static entities
131 if (currentStep == maxSteps) {
132 LOG(2, "DEBUG: Final step, resetting values");
133 reset();
134 }
135 }
136
137 /** Performs Gradient optimization on the atoms.
138 *
139 * We assume that forces have just been calculated.
140 *
141 * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
142 * \param offset offset in matrix file to the first force component
143 * \param maxComponents to be filled with maximum force component over all atoms
144 */
145 void anneal(
146 const int CurrentTimeStep,
147 const size_t offset,
148 Vector &maxComponents)
149 {
150 bool deltat_decreased = false;
151 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
152 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
153 // atom's force vector gives steepest descent direction
154 const Vector oldPosition = (*iter)->getPositionAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
155 const Vector currentPosition = (*iter)->getPosition();
156 const Vector oldGradient = (*iter)->getAtomicForceAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
157 const Vector currentGradient = (*iter)->getAtomicForce();
158 LOG(4, "DEBUG: oldPosition for atom " << **iter << " is " << oldPosition);
159 LOG(4, "DEBUG: currentPosition for atom " << **iter << " is " << currentPosition);
160 LOG(4, "DEBUG: oldGradient for atom " << **iter << " is " << oldGradient);
161 LOG(4, "DEBUG: currentGradient for atom " << **iter << " is " << currentGradient);
162// LOG(4, "DEBUG: Force for atom " << **iter << " is " << currentGradient);
163
164 // we use Barzilai-Borwein update with position reversed to get descent
165 const Vector PositionDifference = currentPosition - oldPosition;
166 const Vector GradientDifference = (currentGradient - oldGradient);
167 double stepwidth = 0.;
168 if (GradientDifference.Norm() > MYEPSILON)
169 stepwidth = fabs(PositionDifference.ScalarProduct(GradientDifference))/
170 GradientDifference.NormSquared();
171 if (fabs(stepwidth) < 1e-10) {
172 // dont' warn in first step, deltat usage normal
173 if (currentStep != 1)
174 ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
175 stepwidth = currentDeltat;
176 }
177 Vector PositionUpdate = stepwidth * currentGradient;
178 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
179
180 // extract largest components for showing progress of annealing
181 for(size_t i=0;i<NDIM;++i)
182 if (currentGradient[i] > maxComponents[i])
183 maxComponents[i] = currentGradient[i];
184
185 // steps may go back and forth again (updates are of same magnitude but
186 // have different sign: Check whether this is the case and one step with
187 // deltat to interrupt this sequence
188 if ((currentStep > 1) && (!PositionDifference.IsZero()))
189 if ((PositionUpdate.ScalarProduct(PositionDifference) < 0)
190 && (fabs(PositionUpdate.NormSquared()-PositionDifference.NormSquared()) < 1e-3)) {
191 // for convergence we want a null sequence here, too
192 if (!deltat_decreased) {
193 deltat_decreased = true;
194 currentDeltat = .5*currentDeltat;
195 }
196 LOG(2, "DEBUG: Upgrade in other direction: " << PositionUpdate
197 << " > " << PositionDifference
198 << ", using deltat: " << currentDeltat);
199 PositionUpdate = currentDeltat * currentGradient;
200 }
201
202 // finally set new values
203 (*iter)->setPosition(currentPosition + PositionUpdate);
204 }
205 }
206
207 // knowing the number of bonds in total, we can setup the storage for the
208 // projected forces
209 enum whichatom_t {
210 leftside=0,
211 rightside=1,
212 MAX_sides
213 };
214
215 /** Helper function to put bond force into a container.
216 *
217 * \param _walker atom
218 * \param _current_bond current bond of \a _walker
219 * \param _timestep time step
220 * \param _force calculated bond force
221 * \param _bv bondvectors for obtaining the correct index
222 * \param _projected_forces container
223 */
224 static void ForceStore(
225 const atom &_walker,
226 const bond::ptr &_current_bond,
227 const size_t &_timestep,
228 const double _force,
229 const BondVectors &_bv,
230 std::vector< // time step
231 std::vector< // which bond side
232 std::vector<double> > // over all bonds
233 > &_projected_forces)
234 {
235 std::vector<double> &forcelist = (&_walker == _current_bond->leftatom) ?
236 _projected_forces[_timestep][leftside] : _projected_forces[_timestep][rightside];
237 const size_t index = _bv.getIndexForBond(_current_bond);
238 ASSERT( index != (size_t)-1,
239 "ForceAnnealing() - could not find bond "+toString(*_current_bond)
240 +" in bondvectors");
241 forcelist[index] = _force;
242 }
243
244 /** Performs Gradient optimization on the bonds.
245 *
246 * We assume that forces have just been calculated. These forces are projected
247 * onto the bonds and these are annealed subsequently by moving atoms in the
248 * bond neighborhood on either side conjunctively.
249 *
250 *
251 * \param CurrentTimeStep current time step (i.e. \f$ t + \Delta t \f$ in the sense of the velocity verlet)
252 * \param offset offset in matrix file to the first force component
253 * \param maxComponents to be filled with maximum force component over all atoms
254 */
255 void annealWithBondGraph(
256 const int CurrentTimeStep,
257 const size_t offset,
258 Vector &maxComponents)
259 {
260 // get nodes on either side of selected bond via BFS discovery
261 BoostGraphCreator BGcreator;
262 BGcreator.createFromRange(
263 AtomicForceManipulator<T>::atoms.begin(),
264 AtomicForceManipulator<T>::atoms.end(),
265 AtomicForceManipulator<T>::atoms.size(),
266 BreadthFirstSearchGatherer::AlwaysTruePredicate);
267 BreadthFirstSearchGatherer NodeGatherer(BGcreator);
268
269 /// We assume that a force is local, i.e. a bond is too short yet and hence
270 /// the atom needs to be moved. However, all the adjacent (bound) atoms might
271 /// already be at the perfect distance. If we just move the atom alone, we ruin
272 /// all the other bonds. Hence, it would be sensible to move every atom found
273 /// through the bond graph in the direction of the force as well by the same
274 /// PositionUpdate. This is almost what we are going to do.
275
276 /// One issue is: If we need to shorten bond, then we use the PositionUpdate
277 /// also on the the other bond partner already. This is because it is in the
278 /// direction of the bond. Therefore, the update is actually performed twice on
279 /// each bond partner, i.e. the step size is twice as large as it should be.
280 /// This problem only occurs when bonds need to be shortened, not when they
281 /// need to be made longer (then the force vector is facing the other
282 /// direction than the bond vector).
283 /// As a remedy we need to average the force on either end of the bond and
284 /// check whether each gradient points inwards out or outwards with respect
285 /// to the bond and then shift accordingly.
286
287 /// One more issue is that the projection onto the bond directions does not
288 /// recover the gradient but may be larger as the bond directions are a
289 /// generating system and not a basis (e.g. 3 bonds on a plane where 2 would
290 /// suffice to span the plane). To this end, we need to account for the
291 /// overestimation and obtain a weighting for each bond.
292
293 // initialize helper class for bond vectors using bonds from range of atoms
294 BondVectors bv;
295 bv.setFromAtomRange< T >(
296 AtomicForceManipulator<T>::atoms.begin(),
297 AtomicForceManipulator<T>::atoms.end(),
298 currentStep);
299 const BondVectors::container_t &sorted_bonds = bv.getSorted();
300
301 std::vector< // time step
302 std::vector< // which bond side
303 std::vector<double> > // over all bonds
304 > projected_forces(2); // one for leftatoms, one for rightatoms (and for both time steps)
305 for (size_t i=0;i<2;++i) {
306 projected_forces[i].resize(MAX_sides);
307 for (size_t j=0;j<MAX_sides;++j)
308 projected_forces[i][j].resize(sorted_bonds.size(), 0.);
309 }
310
311 // for each atom we need to gather weights and then project the gradient
312 typedef std::map<atomId_t, BondVectors::weights_t > weights_per_atom_t;
313 std::vector<weights_per_atom_t> weights_per_atom(2);
314 typedef std::map<atomId_t, Vector> RemnantGradient_per_atom_t;
315 RemnantGradient_per_atom_t RemnantGradient_per_atom;
316 for (size_t timestep = 0; timestep <= 1; ++timestep) {
317 const size_t CurrentStep = CurrentTimeStep-timestep >= 0 ? CurrentTimeStep - timestep : 0;
318 LOG(2, "DEBUG: CurrentTimeStep is " << CurrentTimeStep
319 << ", timestep is " << timestep
320 << ", and CurrentStep is " << CurrentStep);
321
322 for(typename AtomSetMixin<T>::const_iterator iter = AtomicForceManipulator<T>::atoms.begin();
323 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
324 const atom &walker = *(*iter);
325 const Vector &walkerGradient = walker.getAtomicForceAtStep(CurrentStep);
326 LOG(3, "DEBUG: Gradient of atom #" << walker.getId() << ", namely "
327 << walker << " is " << walkerGradient);
328
329 const BondList& ListOfBonds = walker.getListOfBonds();
330 if (walkerGradient.Norm() > MYEPSILON) {
331
332 // gather subset of BondVectors for the current atom
333 const std::vector<Vector> BondVectors =
334 bv.getAtomsBondVectorsAtStep(walker, CurrentStep);
335
336 // go through all its bonds and calculate what magnitude is represented
337 // by the others i.e. sum of scalar products against other bonds
338 const std::pair<weights_per_atom_t::iterator, bool> inserter =
339 weights_per_atom[timestep].insert(
340 std::make_pair(walker.getId(),
341 bv.getWeightsForAtomAtStep(walker, BondVectors, CurrentStep)) );
342 ASSERT( inserter.second,
343 "ForceAnnealing::operator() - weight map for atom "+toString(walker)
344 +" and time step "+toString(timestep)+" already filled?");
345 BondVectors::weights_t &weights = inserter.first->second;
346 ASSERT( weights.size() == ListOfBonds.size(),
347 "ForceAnnealing::operator() - number of weights "
348 +toString(weights.size())+" does not match number of bonds "
349 +toString(ListOfBonds.size())+", error in calculation?");
350
351 // projected gradient over all bonds and place in one of projected_forces
352 // using the obtained weights
353 BondVectors::forcestore_t forcestoring =
354 boost::bind(&ForceAnnealing::ForceStore, _1, _2, _3, _4,
355 boost::cref(bv), boost::ref(projected_forces));
356 const Vector RemnantGradient = bv.getRemnantGradientForAtomAtStep(
357 walker, walkerGradient, BondVectors, weights, timestep, forcestoring
358 );
359 RemnantGradient_per_atom.insert( std::make_pair(walker.getId(), RemnantGradient) );
360 } else {
361 LOG(2, "DEBUG: Gradient is " << walkerGradient << " less than "
362 << MYEPSILON << " for atom " << walker);
363 // note that projected_forces is initialized to full length and filled
364 // with zeros. Hence, nothing to do here
365 }
366 }
367 }
368
369 // step through each bond and shift the atoms
370 std::map<atomId_t, Vector> GatheredUpdates; //!< gathers all updates which are applied at the end
371
372 LOG(3, "DEBUG: current step is " << currentStep << ", given time step is " << CurrentTimeStep);
373 const BondVectors::mapped_t bondvectors = bv.getBondVectorsAtStep(currentStep);
374
375 for (BondVectors::container_t::const_iterator bondsiter = sorted_bonds.begin();
376 bondsiter != sorted_bonds.end(); ++bondsiter) {
377 const bond::ptr &current_bond = *bondsiter;
378 const size_t index = bv.getIndexForBond(current_bond);
379 const atom* bondatom[MAX_sides] = {
380 current_bond->leftatom,
381 current_bond->rightatom
382 };
383
384 // remove the edge
385#ifndef NDEBUG
386 const bool status =
387#endif
388 BGcreator.removeEdge(bondatom[leftside]->getId(), bondatom[rightside]->getId());
389 ASSERT( status, "ForceAnnealing() - edge to found bond is not present?");
390
391 // gather nodes for either atom
392 BoostGraphHelpers::Nodeset_t bondside_set[MAX_sides];
393 BreadthFirstSearchGatherer::distance_map_t distance_map[MAX_sides];
394 for (size_t side=leftside;side<MAX_sides;++side) {
395 bondside_set[side] = NodeGatherer(bondatom[side]->getId(), max_distance);
396 distance_map[side] = NodeGatherer.getDistances();
397 std::sort(bondside_set[side].begin(), bondside_set[side].end());
398 }
399
400 // re-add edge
401 BGcreator.addEdge(bondatom[leftside]->getId(), bondatom[rightside]->getId());
402
403 // do for both leftatom and rightatom of bond
404 for (size_t side = leftside; side < MAX_sides; ++side) {
405 const double &bondforce = projected_forces[0][side][index];
406 const double &oldbondforce = projected_forces[1][side][index];
407 const double bondforcedifference = fabs(bondforce - oldbondforce);
408 LOG(4, "DEBUG: bondforce for " << (side == leftside ? "left" : "right")
409 << " side of bond is " << bondforce);
410 LOG(4, "DEBUG: oldbondforce for " << (side == leftside ? "left" : "right")
411 << " side of bond is " << oldbondforce);
412 // if difference or bondforce itself is zero, do nothing
413 if ((fabs(bondforce) < MYEPSILON) || (fabs(bondforcedifference) < MYEPSILON))
414 continue;
415
416 // get BondVector to bond
417 const BondVectors::mapped_t::const_iterator bviter =
418 bondvectors.find(current_bond);
419 ASSERT( bviter != bondvectors.end(),
420 "ForceAnnealing() - cannot find current_bond ?");
421 ASSERT( fabs(bviter->second.Norm() -1.) < MYEPSILON,
422 "ForceAnnealing() - norm of BondVector is not one");
423 const Vector &BondVector = bviter->second;
424
425 // calculate gradient and position differences for stepwidth
426 const Vector currentGradient = bondforce * BondVector;
427 LOG(4, "DEBUG: current projected gradient for "
428 << (side == leftside ? "left" : "right") << " side of bond is " << currentGradient);
429 const Vector &oldPosition = bondatom[side]->getPositionAtStep(CurrentTimeStep-2 >= 0 ? CurrentTimeStep - 2 : 0);
430 const Vector &currentPosition = bondatom[side]->getPositionAtStep(currentStep);
431 const Vector PositionDifference = currentPosition - oldPosition;
432 LOG(4, "DEBUG: old position is " << oldPosition);
433 LOG(4, "DEBUG: current position is " << currentPosition);
434 LOG(4, "DEBUG: difference in position is " << PositionDifference);
435 LOG(4, "DEBUG: bondvector is " << BondVector);
436 const double projected_PositionDifference = PositionDifference.ScalarProduct(BondVector);
437 LOG(4, "DEBUG: difference in position projected onto bondvector is "
438 << projected_PositionDifference);
439 LOG(4, "DEBUG: abs. difference in forces is " << bondforcedifference);
440
441 // calculate step width
442 double stepwidth =
443 fabs(projected_PositionDifference)/bondforcedifference;
444 if (fabs(stepwidth) < 1e-10) {
445 // dont' warn in first step, deltat usage normal
446 if (currentStep != 1)
447 ELOG(1, "INFO: Barzilai-Borwein stepwidth is zero, using deltat " << currentDeltat << " instead.");
448 stepwidth = currentDeltat;
449 }
450 Vector PositionUpdate = stepwidth * currentGradient;
451 LOG(3, "DEBUG: Update would be " << stepwidth << "*" << currentGradient << " = " << PositionUpdate);
452
453 // add PositionUpdate for all nodes in the bondside_set
454 for (BoostGraphHelpers::Nodeset_t::const_iterator setiter = bondside_set[side].begin();
455 setiter != bondside_set[side].end(); ++setiter) {
456 const BreadthFirstSearchGatherer::distance_map_t::const_iterator diter
457 = distance_map[side].find(*setiter);
458 ASSERT( diter != distance_map[side].end(),
459 "ForceAnnealing() - could not find distance to an atom.");
460 const double factor = pow(damping_factor, diter->second+1);
461 LOG(3, "DEBUG: Update for atom #" << *setiter << " will be "
462 << factor << "*" << PositionUpdate);
463 if (GatheredUpdates.count((*setiter))) {
464 GatheredUpdates[(*setiter)] += factor*PositionUpdate;
465 } else {
466 GatheredUpdates.insert(
467 std::make_pair(
468 (*setiter),
469 factor*PositionUpdate) );
470 }
471 }
472 }
473 }
474
475 for(typename AtomSetMixin<T>::iterator iter = AtomicForceManipulator<T>::atoms.begin();
476 iter != AtomicForceManipulator<T>::atoms.end(); ++iter) {
477 atom &walker = *(*iter);
478 // extract largest components for showing progress of annealing
479 const Vector currentGradient = walker.getAtomicForce();
480 for(size_t i=0;i<NDIM;++i)
481 if (currentGradient[i] > maxComponents[i])
482 maxComponents[i] = currentGradient[i];
483 }
484
485 // remove center of weight translation from gathered updates
486 Vector CommonTranslation;
487 for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
488 iter != GatheredUpdates.end(); ++iter) {
489 const Vector &update = iter->second;
490 CommonTranslation += update;
491 }
492 CommonTranslation *= 1./(double)GatheredUpdates.size();
493 LOG(3, "DEBUG: Subtracting common translation " << CommonTranslation
494 << " from all updates.");
495
496 // apply the gathered updates and set remnant gradients for atomic annealing
497 for (std::map<atomId_t, Vector>::const_iterator iter = GatheredUpdates.begin();
498 iter != GatheredUpdates.end(); ++iter) {
499 const atomId_t &atomid = iter->first;
500 const Vector &update = iter->second;
501 atom* const walker = World::getInstance().getAtom(AtomById(atomid));
502 ASSERT( walker != NULL,
503 "ForceAnnealing() - walker with id "+toString(atomid)+" has suddenly disappeared.");
504 LOG(3, "DEBUG: Applying update " << update << " to atom #" << atomid
505 << ", namely " << *walker);
506 walker->setPosition( walker->getPosition() + update - CommonTranslation);
507// walker->setAtomicForce( RemnantGradient_per_atom[walker->getId()] );
508 }
509 }
510
511 /** Reset function to unset static entities and artificial velocities.
512 *
513 */
514 void reset()
515 {
516 currentDeltat = 0.;
517 currentStep = 0;
518 }
519
520private:
521 //!> contains the current step in relation to maxsteps
522 static size_t currentStep;
523 //!> contains the maximum number of steps, determines initial and final step with currentStep
524 size_t maxSteps;
525 static double currentDeltat;
526 //!> minimum deltat for internal while loop (adaptive step width)
527 static double MinimumDeltat;
528 //!> contains the maximum bond graph distance up to which shifts of a single atom are spread
529 const int max_distance;
530 //!> the shifted is dampened by this factor with the power of the bond graph distance to the shift causing atom
531 const double damping_factor;
532};
533
534template <class T>
535double ForceAnnealing<T>::currentDeltat = 0.;
536template <class T>
537size_t ForceAnnealing<T>::currentStep = 0;
538template <class T>
539double ForceAnnealing<T>::MinimumDeltat = 1e-8;
540
541#endif /* FORCEANNEALING_HPP_ */
Note: See TracBrowser for help on using the repository browser.