1 | /*
|
---|
2 | * BoundaryTriangleSet.cpp
|
---|
3 | *
|
---|
4 | * Created on: Jul 29, 2010
|
---|
5 | * Author: heber
|
---|
6 | */
|
---|
7 |
|
---|
8 | #include "BoundaryTriangleSet.hpp"
|
---|
9 |
|
---|
10 | #include <iostream>
|
---|
11 |
|
---|
12 | #include "BoundaryLineSet.hpp"
|
---|
13 | #include "BoundaryPointSet.hpp"
|
---|
14 | #include "TesselPoint.hpp"
|
---|
15 |
|
---|
16 | #include "Helpers/Assert.hpp"
|
---|
17 | #include "Helpers/Info.hpp"
|
---|
18 | #include "LinearAlgebra/Line.hpp"
|
---|
19 | #include "Helpers/Log.hpp"
|
---|
20 | #include "LinearAlgebra/Plane.hpp"
|
---|
21 | #include "LinearAlgebra/Vector.hpp"
|
---|
22 | #include "Helpers/Verbose.hpp"
|
---|
23 |
|
---|
24 | using namespace std;
|
---|
25 |
|
---|
26 | /** Constructor for BoundaryTriangleSet.
|
---|
27 | */
|
---|
28 | BoundaryTriangleSet::BoundaryTriangleSet() :
|
---|
29 | Nr(-1)
|
---|
30 | {
|
---|
31 | Info FunctionInfo(__func__);
|
---|
32 | for (int i = 0; i < 3; i++) {
|
---|
33 | endpoints[i] = NULL;
|
---|
34 | lines[i] = NULL;
|
---|
35 | }
|
---|
36 | }
|
---|
37 | ;
|
---|
38 |
|
---|
39 | /** Constructor for BoundaryTriangleSet with three lines.
|
---|
40 | * \param *line[3] lines that make up the triangle
|
---|
41 | * \param number number of triangle
|
---|
42 | */
|
---|
43 | BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) :
|
---|
44 | Nr(number)
|
---|
45 | {
|
---|
46 | Info FunctionInfo(__func__);
|
---|
47 | // set number
|
---|
48 | // set lines
|
---|
49 | for (int i = 0; i < 3; i++) {
|
---|
50 | lines[i] = line[i];
|
---|
51 | lines[i]->AddTriangle(this);
|
---|
52 | }
|
---|
53 | // get ascending order of endpoints
|
---|
54 | PointMap OrderMap;
|
---|
55 | for (int i = 0; i < 3; i++) {
|
---|
56 | // for all three lines
|
---|
57 | for (int j = 0; j < 2; j++) { // for both endpoints
|
---|
58 | OrderMap.insert(pair<int, class BoundaryPointSet *> (line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
|
---|
59 | // and we don't care whether insertion fails
|
---|
60 | }
|
---|
61 | }
|
---|
62 | // set endpoints
|
---|
63 | int Counter = 0;
|
---|
64 | DoLog(0) && (Log() << Verbose(0) << "New triangle " << Nr << " with end points: " << endl);
|
---|
65 | for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
|
---|
66 | endpoints[Counter] = runner->second;
|
---|
67 | DoLog(0) && (Log() << Verbose(0) << " " << *endpoints[Counter] << endl);
|
---|
68 | Counter++;
|
---|
69 | }
|
---|
70 | ASSERT(Counter >= 3,"We have a triangle with only two distinct endpoints!");
|
---|
71 | };
|
---|
72 |
|
---|
73 |
|
---|
74 | /** Destructor of BoundaryTriangleSet.
|
---|
75 | * Removes itself from each of its lines' LineMap and removes them if necessary.
|
---|
76 | * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
|
---|
77 | */
|
---|
78 | BoundaryTriangleSet::~BoundaryTriangleSet()
|
---|
79 | {
|
---|
80 | Info FunctionInfo(__func__);
|
---|
81 | for (int i = 0; i < 3; i++) {
|
---|
82 | if (lines[i] != NULL) {
|
---|
83 | if (lines[i]->triangles.erase(Nr)) {
|
---|
84 | //Log() << Verbose(0) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
|
---|
85 | }
|
---|
86 | if (lines[i]->triangles.empty()) {
|
---|
87 | //Log() << Verbose(0) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
|
---|
88 | delete (lines[i]);
|
---|
89 | lines[i] = NULL;
|
---|
90 | }
|
---|
91 | }
|
---|
92 | }
|
---|
93 | //Log() << Verbose(0) << "Erasing triangle Nr." << Nr << " itself." << endl;
|
---|
94 | }
|
---|
95 | ;
|
---|
96 |
|
---|
97 | /** Calculates the normal vector for this triangle.
|
---|
98 | * Is made unique by comparison with \a OtherVector to point in the other direction.
|
---|
99 | * \param &OtherVector direction vector to make normal vector unique.
|
---|
100 | */
|
---|
101 | void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector)
|
---|
102 | {
|
---|
103 | Info FunctionInfo(__func__);
|
---|
104 | // get normal vector
|
---|
105 | NormalVector = Plane((endpoints[0]->node->getPosition()),
|
---|
106 | (endpoints[1]->node->getPosition()),
|
---|
107 | (endpoints[2]->node->getPosition())).getNormal();
|
---|
108 |
|
---|
109 | // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
|
---|
110 | if (NormalVector.ScalarProduct(OtherVector) > 0.)
|
---|
111 | NormalVector.Scale(-1.);
|
---|
112 | DoLog(1) && (Log() << Verbose(1) << "Normal Vector is " << NormalVector << "." << endl);
|
---|
113 | }
|
---|
114 | ;
|
---|
115 |
|
---|
116 | /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.
|
---|
117 | * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
|
---|
118 | * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
|
---|
119 | * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
|
---|
120 | * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
|
---|
121 | * the first two basepoints) or not.
|
---|
122 | * \param *out output stream for debugging
|
---|
123 | * \param &MolCenter offset vector of line
|
---|
124 | * \param &x second endpoint of line, minus \a *MolCenter is directional vector of line
|
---|
125 | * \param &Intersection intersection on plane on return
|
---|
126 | * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
|
---|
127 | */
|
---|
128 |
|
---|
129 | bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector & MolCenter, const Vector & x, Vector &Intersection) const
|
---|
130 | {
|
---|
131 | Info FunctionInfo(__func__);
|
---|
132 | Vector CrossPoint;
|
---|
133 | Vector helper;
|
---|
134 |
|
---|
135 | try {
|
---|
136 | Line centerLine = makeLineThrough(MolCenter, x);
|
---|
137 | Intersection = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(centerLine);
|
---|
138 |
|
---|
139 | DoLog(1) && (Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl);
|
---|
140 | DoLog(1) && (Log() << Verbose(1) << "INFO: Line is from " << MolCenter << " to " << x << "." << endl);
|
---|
141 | DoLog(1) && (Log() << Verbose(1) << "INFO: Intersection is " << Intersection << "." << endl);
|
---|
142 |
|
---|
143 | if (Intersection.DistanceSquared(endpoints[0]->node->getPosition()) < MYEPSILON) {
|
---|
144 | DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl);
|
---|
145 | return true;
|
---|
146 | } else if (Intersection.DistanceSquared(endpoints[1]->node->getPosition()) < MYEPSILON) {
|
---|
147 | DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl);
|
---|
148 | return true;
|
---|
149 | } else if (Intersection.DistanceSquared(endpoints[2]->node->getPosition()) < MYEPSILON) {
|
---|
150 | DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl);
|
---|
151 | return true;
|
---|
152 | }
|
---|
153 | // Calculate cross point between one baseline and the line from the third endpoint to intersection
|
---|
154 | int i = 0;
|
---|
155 | do {
|
---|
156 | Line line1 = makeLineThrough((endpoints[i%3]->node->getPosition()),(endpoints[(i+1)%3]->node->getPosition()));
|
---|
157 | Line line2 = makeLineThrough((endpoints[(i+2)%3]->node->getPosition()),Intersection);
|
---|
158 | CrossPoint = line1.getIntersection(line2);
|
---|
159 | helper = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition());
|
---|
160 | CrossPoint -= (endpoints[i%3]->node->getPosition()); // cross point was returned as absolute vector
|
---|
161 | const double s = CrossPoint.ScalarProduct(helper)/helper.NormSquared();
|
---|
162 | DoLog(1) && (Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl);
|
---|
163 | if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) {
|
---|
164 | DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl);
|
---|
165 | return false;
|
---|
166 | }
|
---|
167 | i++;
|
---|
168 | } while (i < 3);
|
---|
169 | DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl);
|
---|
170 | return true;
|
---|
171 | }
|
---|
172 | catch (MathException &excp) {
|
---|
173 | Log() << Verbose(1) << excp;
|
---|
174 | DoeLog(1) && (eLog() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl);
|
---|
175 | return false;
|
---|
176 | }
|
---|
177 | }
|
---|
178 | ;
|
---|
179 |
|
---|
180 | /** Finds the point on the triangle to the point \a *x.
|
---|
181 | * We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point.
|
---|
182 | * Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the
|
---|
183 | * boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down.
|
---|
184 | * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
|
---|
185 | * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
|
---|
186 | * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
|
---|
187 | * the first two basepoints) or not.
|
---|
188 | * \param *x point
|
---|
189 | * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector
|
---|
190 | * \return Distance squared between \a *x and closest point inside triangle
|
---|
191 | */
|
---|
192 | double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector &x, Vector &ClosestPoint) const
|
---|
193 | {
|
---|
194 | Info FunctionInfo(__func__);
|
---|
195 | Vector Direction;
|
---|
196 |
|
---|
197 | // 1. get intersection with plane
|
---|
198 | DoLog(1) && (Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << x << "." << endl);
|
---|
199 | GetCenter(Direction);
|
---|
200 | try {
|
---|
201 | Line l = makeLineThrough(x, Direction);
|
---|
202 | ClosestPoint = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(l);
|
---|
203 | }
|
---|
204 | catch (MathException &excp) {
|
---|
205 | (ClosestPoint) = (x);
|
---|
206 | }
|
---|
207 |
|
---|
208 | // 2. Calculate in plane part of line (x, intersection)
|
---|
209 | Vector InPlane = (x) - (ClosestPoint); // points from plane intersection to straight-down point
|
---|
210 | InPlane.ProjectOntoPlane(NormalVector);
|
---|
211 | InPlane += ClosestPoint;
|
---|
212 |
|
---|
213 | DoLog(2) && (Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl);
|
---|
214 | DoLog(2) && (Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << x << "." << endl);
|
---|
215 | DoLog(2) && (Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl);
|
---|
216 |
|
---|
217 | // Calculate cross point between one baseline and the desired point such that distance is shortest
|
---|
218 | double ShortestDistance = -1.;
|
---|
219 | bool InsideFlag = false;
|
---|
220 | Vector CrossDirection[3];
|
---|
221 | Vector CrossPoint[3];
|
---|
222 | Vector helper;
|
---|
223 | for (int i = 0; i < 3; i++) {
|
---|
224 | // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point
|
---|
225 | Direction = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition());
|
---|
226 | // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal);
|
---|
227 | Line l = makeLineThrough((endpoints[i%3]->node->getPosition()), (endpoints[(i+1)%3]->node->getPosition()));
|
---|
228 | CrossPoint[i] = Plane(Direction, InPlane).GetIntersection(l);
|
---|
229 | CrossDirection[i] = CrossPoint[i] - InPlane;
|
---|
230 | CrossPoint[i] -= (endpoints[i%3]->node->getPosition()); // cross point was returned as absolute vector
|
---|
231 | const double s = CrossPoint[i].ScalarProduct(Direction)/Direction.NormSquared();
|
---|
232 | DoLog(2) && (Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl);
|
---|
233 | if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) {
|
---|
234 | CrossPoint[i] += (endpoints[i%3]->node->getPosition()); // make cross point absolute again
|
---|
235 | DoLog(2) && (Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << endpoints[i % 3]->node->getPosition() << " and " << endpoints[(i + 1) % 3]->node->getPosition() << "." << endl);
|
---|
236 | const double distance = CrossPoint[i].DistanceSquared(x);
|
---|
237 | if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
|
---|
238 | ShortestDistance = distance;
|
---|
239 | (ClosestPoint) = CrossPoint[i];
|
---|
240 | }
|
---|
241 | } else
|
---|
242 | CrossPoint[i].Zero();
|
---|
243 | }
|
---|
244 | InsideFlag = true;
|
---|
245 | for (int i = 0; i < 3; i++) {
|
---|
246 | const double sign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 1) % 3]);
|
---|
247 | const double othersign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 2) % 3]);
|
---|
248 |
|
---|
249 | if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign
|
---|
250 | InsideFlag = false;
|
---|
251 | }
|
---|
252 | if (InsideFlag) {
|
---|
253 | (ClosestPoint) = InPlane;
|
---|
254 | ShortestDistance = InPlane.DistanceSquared(x);
|
---|
255 | } else { // also check endnodes
|
---|
256 | for (int i = 0; i < 3; i++) {
|
---|
257 | const double distance = x.DistanceSquared(endpoints[i]->node->getPosition());
|
---|
258 | if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
|
---|
259 | ShortestDistance = distance;
|
---|
260 | (ClosestPoint) = (endpoints[i]->node->getPosition());
|
---|
261 | }
|
---|
262 | }
|
---|
263 | }
|
---|
264 | DoLog(1) && (Log() << Verbose(1) << "INFO: Closest Point is " << ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl);
|
---|
265 | return ShortestDistance;
|
---|
266 | }
|
---|
267 | ;
|
---|
268 |
|
---|
269 | /** Checks whether lines is any of the three boundary lines this triangle contains.
|
---|
270 | * \param *line line to test
|
---|
271 | * \return true - line is of the triangle, false - is not
|
---|
272 | */
|
---|
273 | bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
|
---|
274 | {
|
---|
275 | Info FunctionInfo(__func__);
|
---|
276 | for (int i = 0; i < 3; i++)
|
---|
277 | if (line == lines[i])
|
---|
278 | return true;
|
---|
279 | return false;
|
---|
280 | }
|
---|
281 | ;
|
---|
282 |
|
---|
283 | /** Checks whether point is any of the three endpoints this triangle contains.
|
---|
284 | * \param *point point to test
|
---|
285 | * \return true - point is of the triangle, false - is not
|
---|
286 | */
|
---|
287 | bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
|
---|
288 | {
|
---|
289 | Info FunctionInfo(__func__);
|
---|
290 | for (int i = 0; i < 3; i++)
|
---|
291 | if (point == endpoints[i])
|
---|
292 | return true;
|
---|
293 | return false;
|
---|
294 | }
|
---|
295 | ;
|
---|
296 |
|
---|
297 | /** Checks whether point is any of the three endpoints this triangle contains.
|
---|
298 | * \param *point TesselPoint to test
|
---|
299 | * \return true - point is of the triangle, false - is not
|
---|
300 | */
|
---|
301 | bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const
|
---|
302 | {
|
---|
303 | Info FunctionInfo(__func__);
|
---|
304 | for (int i = 0; i < 3; i++)
|
---|
305 | if (point == endpoints[i]->node)
|
---|
306 | return true;
|
---|
307 | return false;
|
---|
308 | }
|
---|
309 | ;
|
---|
310 |
|
---|
311 | /** Checks whether three given \a *Points coincide with triangle's endpoints.
|
---|
312 | * \param *Points[3] pointer to BoundaryPointSet
|
---|
313 | * \return true - is the very triangle, false - is not
|
---|
314 | */
|
---|
315 | bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const
|
---|
316 | {
|
---|
317 | Info FunctionInfo(__func__);
|
---|
318 | DoLog(1) && (Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl);
|
---|
319 | return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2])) && ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2])) && ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2])
|
---|
320 |
|
---|
321 | ));
|
---|
322 | }
|
---|
323 | ;
|
---|
324 |
|
---|
325 | /** Checks whether three given \a *Points coincide with triangle's endpoints.
|
---|
326 | * \param *Points[3] pointer to BoundaryPointSet
|
---|
327 | * \return true - is the very triangle, false - is not
|
---|
328 | */
|
---|
329 | bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const
|
---|
330 | {
|
---|
331 | Info FunctionInfo(__func__);
|
---|
332 | return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2])
|
---|
333 |
|
---|
334 | ));
|
---|
335 | }
|
---|
336 | ;
|
---|
337 |
|
---|
338 | /** Returns the endpoint which is not contained in the given \a *line.
|
---|
339 | * \param *line baseline defining two endpoints
|
---|
340 | * \return pointer third endpoint or NULL if line does not belong to triangle.
|
---|
341 | */
|
---|
342 | class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const
|
---|
343 | {
|
---|
344 | Info FunctionInfo(__func__);
|
---|
345 | // sanity check
|
---|
346 | if (!ContainsBoundaryLine(line))
|
---|
347 | return NULL;
|
---|
348 | for (int i = 0; i < 3; i++)
|
---|
349 | if (!line->ContainsBoundaryPoint(endpoints[i]))
|
---|
350 | return endpoints[i];
|
---|
351 | // actually, that' impossible :)
|
---|
352 | return NULL;
|
---|
353 | }
|
---|
354 | ;
|
---|
355 |
|
---|
356 | /** Returns the baseline which does not contain the given boundary point \a *point.
|
---|
357 | * \param *point endpoint which is neither endpoint of the desired line
|
---|
358 | * \return pointer to desired third baseline
|
---|
359 | */
|
---|
360 | class BoundaryLineSet *BoundaryTriangleSet::GetThirdLine(const BoundaryPointSet * const point) const
|
---|
361 | {
|
---|
362 | Info FunctionInfo(__func__);
|
---|
363 | // sanity check
|
---|
364 | if (!ContainsBoundaryPoint(point))
|
---|
365 | return NULL;
|
---|
366 | for (int i = 0; i < 3; i++)
|
---|
367 | if (!lines[i]->ContainsBoundaryPoint(point))
|
---|
368 | return lines[i];
|
---|
369 | // actually, that' impossible :)
|
---|
370 | return NULL;
|
---|
371 | }
|
---|
372 | ;
|
---|
373 |
|
---|
374 | /** Calculates the center point of the triangle.
|
---|
375 | * Is third of the sum of all endpoints.
|
---|
376 | * \param *center central point on return.
|
---|
377 | */
|
---|
378 | void BoundaryTriangleSet::GetCenter(Vector & center) const
|
---|
379 | {
|
---|
380 | Info FunctionInfo(__func__);
|
---|
381 | center.Zero();
|
---|
382 | for (int i = 0; i < 3; i++)
|
---|
383 | (center) += (endpoints[i]->node->getPosition());
|
---|
384 | center.Scale(1. / 3.);
|
---|
385 | DoLog(1) && (Log() << Verbose(1) << "INFO: Center is at " << center << "." << endl);
|
---|
386 | }
|
---|
387 |
|
---|
388 | /**
|
---|
389 | * gets the Plane defined by the three triangle Basepoints
|
---|
390 | */
|
---|
391 | Plane BoundaryTriangleSet::getPlane() const{
|
---|
392 | ASSERT(endpoints[0] && endpoints[1] && endpoints[2], "Triangle not fully defined");
|
---|
393 |
|
---|
394 | return Plane(endpoints[0]->node->getPosition(),
|
---|
395 | endpoints[1]->node->getPosition(),
|
---|
396 | endpoints[2]->node->getPosition());
|
---|
397 | }
|
---|
398 |
|
---|
399 | Vector BoundaryTriangleSet::getEndpoint(int i) const{
|
---|
400 | ASSERT(i>=0 && i<3,"Index of Endpoint out of Range");
|
---|
401 |
|
---|
402 | return endpoints[i]->node->getPosition();
|
---|
403 | }
|
---|
404 |
|
---|
405 | string BoundaryTriangleSet::getEndpointName(int i) const{
|
---|
406 | ASSERT(i>=0 && i<3,"Index of Endpoint out of Range");
|
---|
407 |
|
---|
408 | return endpoints[i]->node->getName();
|
---|
409 | }
|
---|
410 |
|
---|
411 | /** output operator for BoundaryTriangleSet.
|
---|
412 | * \param &ost output stream
|
---|
413 | * \param &a boundary triangle
|
---|
414 | */
|
---|
415 | ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a)
|
---|
416 | {
|
---|
417 | ost << "[" << a.Nr << "|" << a.getEndpointName(0) << "," << a.getEndpointName(1) << "," << a.getEndpointName(2) << "]";
|
---|
418 | // ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","
|
---|
419 | // << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";
|
---|
420 | return ost;
|
---|
421 | }
|
---|
422 | ;
|
---|
423 |
|
---|