[d74077] | 1 | /*
|
---|
| 2 | * BoundaryTriangleSet.cpp
|
---|
| 3 | *
|
---|
| 4 | * Created on: Jul 29, 2010
|
---|
| 5 | * Author: heber
|
---|
| 6 | */
|
---|
| 7 |
|
---|
| 8 | #include "BoundaryTriangleSet.hpp"
|
---|
| 9 |
|
---|
| 10 | #include <iostream>
|
---|
| 11 |
|
---|
| 12 | #include "BoundaryLineSet.hpp"
|
---|
| 13 | #include "BoundaryPointSet.hpp"
|
---|
| 14 | #include "TesselPoint.hpp"
|
---|
| 15 |
|
---|
| 16 | #include "Helpers/Assert.hpp"
|
---|
[8f4df1] | 17 | #include "Helpers/Info.hpp"
|
---|
| 18 | #include "LinearAlgebra/Line.hpp"
|
---|
| 19 | #include "Helpers/Log.hpp"
|
---|
| 20 | #include "LinearAlgebra/Plane.hpp"
|
---|
| 21 | #include "LinearAlgebra/Vector.hpp"
|
---|
| 22 | #include "Helpers/Verbose.hpp"
|
---|
[d74077] | 23 |
|
---|
| 24 | using namespace std;
|
---|
| 25 |
|
---|
| 26 | /** Constructor for BoundaryTriangleSet.
|
---|
| 27 | */
|
---|
| 28 | BoundaryTriangleSet::BoundaryTriangleSet() :
|
---|
| 29 | Nr(-1)
|
---|
| 30 | {
|
---|
| 31 | Info FunctionInfo(__func__);
|
---|
| 32 | for (int i = 0; i < 3; i++) {
|
---|
| 33 | endpoints[i] = NULL;
|
---|
| 34 | lines[i] = NULL;
|
---|
| 35 | }
|
---|
| 36 | }
|
---|
| 37 | ;
|
---|
| 38 |
|
---|
| 39 | /** Constructor for BoundaryTriangleSet with three lines.
|
---|
| 40 | * \param *line[3] lines that make up the triangle
|
---|
| 41 | * \param number number of triangle
|
---|
| 42 | */
|
---|
| 43 | BoundaryTriangleSet::BoundaryTriangleSet(class BoundaryLineSet * const line[3], const int number) :
|
---|
| 44 | Nr(number)
|
---|
| 45 | {
|
---|
| 46 | Info FunctionInfo(__func__);
|
---|
| 47 | // set number
|
---|
| 48 | // set lines
|
---|
| 49 | for (int i = 0; i < 3; i++) {
|
---|
| 50 | lines[i] = line[i];
|
---|
| 51 | lines[i]->AddTriangle(this);
|
---|
| 52 | }
|
---|
| 53 | // get ascending order of endpoints
|
---|
| 54 | PointMap OrderMap;
|
---|
| 55 | for (int i = 0; i < 3; i++) {
|
---|
| 56 | // for all three lines
|
---|
| 57 | for (int j = 0; j < 2; j++) { // for both endpoints
|
---|
| 58 | OrderMap.insert(pair<int, class BoundaryPointSet *> (line[i]->endpoints[j]->Nr, line[i]->endpoints[j]));
|
---|
| 59 | // and we don't care whether insertion fails
|
---|
| 60 | }
|
---|
| 61 | }
|
---|
| 62 | // set endpoints
|
---|
| 63 | int Counter = 0;
|
---|
| 64 | DoLog(0) && (Log() << Verbose(0) << "New triangle " << Nr << " with end points: " << endl);
|
---|
| 65 | for (PointMap::iterator runner = OrderMap.begin(); runner != OrderMap.end(); runner++) {
|
---|
| 66 | endpoints[Counter] = runner->second;
|
---|
| 67 | DoLog(0) && (Log() << Verbose(0) << " " << *endpoints[Counter] << endl);
|
---|
| 68 | Counter++;
|
---|
| 69 | }
|
---|
| 70 | ASSERT(Counter >= 3,"We have a triangle with only two distinct endpoints!");
|
---|
| 71 | };
|
---|
| 72 |
|
---|
| 73 |
|
---|
| 74 | /** Destructor of BoundaryTriangleSet.
|
---|
| 75 | * Removes itself from each of its lines' LineMap and removes them if necessary.
|
---|
| 76 | * \note When removing triangles from a class Tesselation, use RemoveTesselationTriangle()
|
---|
| 77 | */
|
---|
| 78 | BoundaryTriangleSet::~BoundaryTriangleSet()
|
---|
| 79 | {
|
---|
| 80 | Info FunctionInfo(__func__);
|
---|
| 81 | for (int i = 0; i < 3; i++) {
|
---|
| 82 | if (lines[i] != NULL) {
|
---|
| 83 | if (lines[i]->triangles.erase(Nr)) {
|
---|
| 84 | //Log() << Verbose(0) << "Triangle Nr." << Nr << " erased in line " << *lines[i] << "." << endl;
|
---|
| 85 | }
|
---|
| 86 | if (lines[i]->triangles.empty()) {
|
---|
| 87 | //Log() << Verbose(0) << *lines[i] << " is no more attached to any triangle, erasing." << endl;
|
---|
| 88 | delete (lines[i]);
|
---|
| 89 | lines[i] = NULL;
|
---|
| 90 | }
|
---|
| 91 | }
|
---|
| 92 | }
|
---|
| 93 | //Log() << Verbose(0) << "Erasing triangle Nr." << Nr << " itself." << endl;
|
---|
| 94 | }
|
---|
| 95 | ;
|
---|
| 96 |
|
---|
| 97 | /** Calculates the normal vector for this triangle.
|
---|
| 98 | * Is made unique by comparison with \a OtherVector to point in the other direction.
|
---|
| 99 | * \param &OtherVector direction vector to make normal vector unique.
|
---|
| 100 | */
|
---|
| 101 | void BoundaryTriangleSet::GetNormalVector(const Vector &OtherVector)
|
---|
| 102 | {
|
---|
| 103 | Info FunctionInfo(__func__);
|
---|
| 104 | // get normal vector
|
---|
| 105 | NormalVector = Plane((endpoints[0]->node->getPosition()),
|
---|
| 106 | (endpoints[1]->node->getPosition()),
|
---|
| 107 | (endpoints[2]->node->getPosition())).getNormal();
|
---|
| 108 |
|
---|
| 109 | // make it always point inward (any offset vector onto plane projected onto normal vector suffices)
|
---|
| 110 | if (NormalVector.ScalarProduct(OtherVector) > 0.)
|
---|
| 111 | NormalVector.Scale(-1.);
|
---|
| 112 | DoLog(1) && (Log() << Verbose(1) << "Normal Vector is " << NormalVector << "." << endl);
|
---|
| 113 | }
|
---|
| 114 | ;
|
---|
| 115 |
|
---|
| 116 | /** Finds the point on the triangle \a *BTS through which the line defined by \a *MolCenter and \a *x crosses.
|
---|
| 117 | * We call Vector::GetIntersectionWithPlane() to receive the intersection point with the plane
|
---|
| 118 | * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
|
---|
| 119 | * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
|
---|
| 120 | * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
|
---|
| 121 | * the first two basepoints) or not.
|
---|
| 122 | * \param *out output stream for debugging
|
---|
| 123 | * \param &MolCenter offset vector of line
|
---|
| 124 | * \param &x second endpoint of line, minus \a *MolCenter is directional vector of line
|
---|
| 125 | * \param &Intersection intersection on plane on return
|
---|
| 126 | * \return true - \a *Intersection contains intersection on plane defined by triangle, false - zero vector if outside of triangle.
|
---|
| 127 | */
|
---|
| 128 |
|
---|
| 129 | bool BoundaryTriangleSet::GetIntersectionInsideTriangle(const Vector & MolCenter, const Vector & x, Vector &Intersection) const
|
---|
| 130 | {
|
---|
| 131 | Info FunctionInfo(__func__);
|
---|
| 132 | Vector CrossPoint;
|
---|
| 133 | Vector helper;
|
---|
| 134 |
|
---|
| 135 | try {
|
---|
| 136 | Line centerLine = makeLineThrough(MolCenter, x);
|
---|
| 137 | Intersection = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(centerLine);
|
---|
| 138 |
|
---|
| 139 | DoLog(1) && (Log() << Verbose(1) << "INFO: Triangle is " << *this << "." << endl);
|
---|
| 140 | DoLog(1) && (Log() << Verbose(1) << "INFO: Line is from " << MolCenter << " to " << x << "." << endl);
|
---|
| 141 | DoLog(1) && (Log() << Verbose(1) << "INFO: Intersection is " << Intersection << "." << endl);
|
---|
| 142 |
|
---|
| 143 | if (Intersection.DistanceSquared(endpoints[0]->node->getPosition()) < MYEPSILON) {
|
---|
| 144 | DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with first endpoint." << endl);
|
---|
| 145 | return true;
|
---|
| 146 | } else if (Intersection.DistanceSquared(endpoints[1]->node->getPosition()) < MYEPSILON) {
|
---|
| 147 | DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with second endpoint." << endl);
|
---|
| 148 | return true;
|
---|
| 149 | } else if (Intersection.DistanceSquared(endpoints[2]->node->getPosition()) < MYEPSILON) {
|
---|
| 150 | DoLog(1) && (Log() << Verbose(1) << "Intersection coindices with third endpoint." << endl);
|
---|
| 151 | return true;
|
---|
| 152 | }
|
---|
| 153 | // Calculate cross point between one baseline and the line from the third endpoint to intersection
|
---|
| 154 | int i = 0;
|
---|
| 155 | do {
|
---|
| 156 | Line line1 = makeLineThrough((endpoints[i%3]->node->getPosition()),(endpoints[(i+1)%3]->node->getPosition()));
|
---|
| 157 | Line line2 = makeLineThrough((endpoints[(i+2)%3]->node->getPosition()),Intersection);
|
---|
| 158 | CrossPoint = line1.getIntersection(line2);
|
---|
| 159 | helper = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition());
|
---|
| 160 | CrossPoint -= (endpoints[i%3]->node->getPosition()); // cross point was returned as absolute vector
|
---|
| 161 | const double s = CrossPoint.ScalarProduct(helper)/helper.NormSquared();
|
---|
| 162 | DoLog(1) && (Log() << Verbose(1) << "INFO: Factor s is " << s << "." << endl);
|
---|
| 163 | if ((s < -MYEPSILON) || ((s-1.) > MYEPSILON)) {
|
---|
| 164 | DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << "outside of triangle." << endl);
|
---|
| 165 | return false;
|
---|
| 166 | }
|
---|
| 167 | i++;
|
---|
| 168 | } while (i < 3);
|
---|
| 169 | DoLog(1) && (Log() << Verbose(1) << "INFO: Crosspoint " << CrossPoint << " inside of triangle." << endl);
|
---|
| 170 | return true;
|
---|
| 171 | }
|
---|
| 172 | catch (MathException &excp) {
|
---|
| 173 | Log() << Verbose(1) << excp;
|
---|
| 174 | DoeLog(1) && (eLog() << Verbose(1) << "Alas! Intersection with plane failed - at least numerically - the intersection is not on the plane!" << endl);
|
---|
| 175 | return false;
|
---|
| 176 | }
|
---|
| 177 | }
|
---|
| 178 | ;
|
---|
| 179 |
|
---|
| 180 | /** Finds the point on the triangle to the point \a *x.
|
---|
| 181 | * We call Vector::GetIntersectionWithPlane() with \a * and the center of the triangle to receive an intersection point.
|
---|
| 182 | * Then we check the in-plane part (the part projected down onto plane). We check whether it crosses one of the
|
---|
| 183 | * boundary lines. If it does, we return this intersection as closest point, otherwise the projected point down.
|
---|
| 184 | * Thus we test if it's really on the plane and whether it's inside the triangle on the plane or not.
|
---|
| 185 | * The latter is done as follows: We calculate the cross point of one of the triangle's baseline with the line
|
---|
| 186 | * given by the intersection and the third basepoint. Then, we check whether it's on the baseline (i.e. between
|
---|
| 187 | * the first two basepoints) or not.
|
---|
| 188 | * \param *x point
|
---|
| 189 | * \param *ClosestPoint desired closest point inside triangle to \a *x, is absolute vector
|
---|
| 190 | * \return Distance squared between \a *x and closest point inside triangle
|
---|
| 191 | */
|
---|
| 192 | double BoundaryTriangleSet::GetClosestPointInsideTriangle(const Vector &x, Vector &ClosestPoint) const
|
---|
| 193 | {
|
---|
| 194 | Info FunctionInfo(__func__);
|
---|
| 195 | Vector Direction;
|
---|
| 196 |
|
---|
| 197 | // 1. get intersection with plane
|
---|
| 198 | DoLog(1) && (Log() << Verbose(1) << "INFO: Looking for closest point of triangle " << *this << " to " << x << "." << endl);
|
---|
| 199 | GetCenter(Direction);
|
---|
| 200 | try {
|
---|
| 201 | Line l = makeLineThrough(x, Direction);
|
---|
| 202 | ClosestPoint = Plane(NormalVector, (endpoints[0]->node->getPosition())).GetIntersection(l);
|
---|
| 203 | }
|
---|
| 204 | catch (MathException &excp) {
|
---|
| 205 | (ClosestPoint) = (x);
|
---|
| 206 | }
|
---|
| 207 |
|
---|
| 208 | // 2. Calculate in plane part of line (x, intersection)
|
---|
| 209 | Vector InPlane = (x) - (ClosestPoint); // points from plane intersection to straight-down point
|
---|
| 210 | InPlane.ProjectOntoPlane(NormalVector);
|
---|
| 211 | InPlane += ClosestPoint;
|
---|
| 212 |
|
---|
| 213 | DoLog(2) && (Log() << Verbose(2) << "INFO: Triangle is " << *this << "." << endl);
|
---|
| 214 | DoLog(2) && (Log() << Verbose(2) << "INFO: Line is from " << Direction << " to " << x << "." << endl);
|
---|
| 215 | DoLog(2) && (Log() << Verbose(2) << "INFO: In-plane part is " << InPlane << "." << endl);
|
---|
| 216 |
|
---|
| 217 | // Calculate cross point between one baseline and the desired point such that distance is shortest
|
---|
| 218 | double ShortestDistance = -1.;
|
---|
| 219 | bool InsideFlag = false;
|
---|
| 220 | Vector CrossDirection[3];
|
---|
| 221 | Vector CrossPoint[3];
|
---|
| 222 | Vector helper;
|
---|
| 223 | for (int i = 0; i < 3; i++) {
|
---|
| 224 | // treat direction of line as normal of a (cut)plane and the desired point x as the plane offset, the intersect line with point
|
---|
| 225 | Direction = (endpoints[(i+1)%3]->node->getPosition()) - (endpoints[i%3]->node->getPosition());
|
---|
| 226 | // calculate intersection, line can never be parallel to Direction (is the same vector as PlaneNormal);
|
---|
| 227 | Line l = makeLineThrough((endpoints[i%3]->node->getPosition()), (endpoints[(i+1)%3]->node->getPosition()));
|
---|
| 228 | CrossPoint[i] = Plane(Direction, InPlane).GetIntersection(l);
|
---|
| 229 | CrossDirection[i] = CrossPoint[i] - InPlane;
|
---|
| 230 | CrossPoint[i] -= (endpoints[i%3]->node->getPosition()); // cross point was returned as absolute vector
|
---|
| 231 | const double s = CrossPoint[i].ScalarProduct(Direction)/Direction.NormSquared();
|
---|
| 232 | DoLog(2) && (Log() << Verbose(2) << "INFO: Factor s is " << s << "." << endl);
|
---|
| 233 | if ((s >= -MYEPSILON) && ((s-1.) <= MYEPSILON)) {
|
---|
| 234 | CrossPoint[i] += (endpoints[i%3]->node->getPosition()); // make cross point absolute again
|
---|
| 235 | DoLog(2) && (Log() << Verbose(2) << "INFO: Crosspoint is " << CrossPoint[i] << ", intersecting BoundaryLine between " << endpoints[i % 3]->node->getPosition() << " and " << endpoints[(i + 1) % 3]->node->getPosition() << "." << endl);
|
---|
| 236 | const double distance = CrossPoint[i].DistanceSquared(x);
|
---|
| 237 | if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
|
---|
| 238 | ShortestDistance = distance;
|
---|
| 239 | (ClosestPoint) = CrossPoint[i];
|
---|
| 240 | }
|
---|
| 241 | } else
|
---|
| 242 | CrossPoint[i].Zero();
|
---|
| 243 | }
|
---|
| 244 | InsideFlag = true;
|
---|
| 245 | for (int i = 0; i < 3; i++) {
|
---|
| 246 | const double sign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 1) % 3]);
|
---|
| 247 | const double othersign = CrossDirection[i].ScalarProduct(CrossDirection[(i + 2) % 3]);
|
---|
| 248 |
|
---|
| 249 | if ((sign > -MYEPSILON) && (othersign > -MYEPSILON)) // have different sign
|
---|
| 250 | InsideFlag = false;
|
---|
| 251 | }
|
---|
| 252 | if (InsideFlag) {
|
---|
| 253 | (ClosestPoint) = InPlane;
|
---|
| 254 | ShortestDistance = InPlane.DistanceSquared(x);
|
---|
| 255 | } else { // also check endnodes
|
---|
| 256 | for (int i = 0; i < 3; i++) {
|
---|
| 257 | const double distance = x.DistanceSquared(endpoints[i]->node->getPosition());
|
---|
| 258 | if ((ShortestDistance < 0.) || (ShortestDistance > distance)) {
|
---|
| 259 | ShortestDistance = distance;
|
---|
| 260 | (ClosestPoint) = (endpoints[i]->node->getPosition());
|
---|
| 261 | }
|
---|
| 262 | }
|
---|
| 263 | }
|
---|
| 264 | DoLog(1) && (Log() << Verbose(1) << "INFO: Closest Point is " << ClosestPoint << " with shortest squared distance is " << ShortestDistance << "." << endl);
|
---|
| 265 | return ShortestDistance;
|
---|
| 266 | }
|
---|
| 267 | ;
|
---|
| 268 |
|
---|
| 269 | /** Checks whether lines is any of the three boundary lines this triangle contains.
|
---|
| 270 | * \param *line line to test
|
---|
| 271 | * \return true - line is of the triangle, false - is not
|
---|
| 272 | */
|
---|
| 273 | bool BoundaryTriangleSet::ContainsBoundaryLine(const BoundaryLineSet * const line) const
|
---|
| 274 | {
|
---|
| 275 | Info FunctionInfo(__func__);
|
---|
| 276 | for (int i = 0; i < 3; i++)
|
---|
| 277 | if (line == lines[i])
|
---|
| 278 | return true;
|
---|
| 279 | return false;
|
---|
| 280 | }
|
---|
| 281 | ;
|
---|
| 282 |
|
---|
| 283 | /** Checks whether point is any of the three endpoints this triangle contains.
|
---|
| 284 | * \param *point point to test
|
---|
| 285 | * \return true - point is of the triangle, false - is not
|
---|
| 286 | */
|
---|
| 287 | bool BoundaryTriangleSet::ContainsBoundaryPoint(const BoundaryPointSet * const point) const
|
---|
| 288 | {
|
---|
| 289 | Info FunctionInfo(__func__);
|
---|
| 290 | for (int i = 0; i < 3; i++)
|
---|
| 291 | if (point == endpoints[i])
|
---|
| 292 | return true;
|
---|
| 293 | return false;
|
---|
| 294 | }
|
---|
| 295 | ;
|
---|
| 296 |
|
---|
| 297 | /** Checks whether point is any of the three endpoints this triangle contains.
|
---|
| 298 | * \param *point TesselPoint to test
|
---|
| 299 | * \return true - point is of the triangle, false - is not
|
---|
| 300 | */
|
---|
| 301 | bool BoundaryTriangleSet::ContainsBoundaryPoint(const TesselPoint * const point) const
|
---|
| 302 | {
|
---|
| 303 | Info FunctionInfo(__func__);
|
---|
| 304 | for (int i = 0; i < 3; i++)
|
---|
| 305 | if (point == endpoints[i]->node)
|
---|
| 306 | return true;
|
---|
| 307 | return false;
|
---|
| 308 | }
|
---|
| 309 | ;
|
---|
| 310 |
|
---|
| 311 | /** Checks whether three given \a *Points coincide with triangle's endpoints.
|
---|
| 312 | * \param *Points[3] pointer to BoundaryPointSet
|
---|
| 313 | * \return true - is the very triangle, false - is not
|
---|
| 314 | */
|
---|
| 315 | bool BoundaryTriangleSet::IsPresentTupel(const BoundaryPointSet * const Points[3]) const
|
---|
| 316 | {
|
---|
| 317 | Info FunctionInfo(__func__);
|
---|
| 318 | DoLog(1) && (Log() << Verbose(1) << "INFO: Checking " << Points[0] << "," << Points[1] << "," << Points[2] << " against " << endpoints[0] << "," << endpoints[1] << "," << endpoints[2] << "." << endl);
|
---|
| 319 | return (((endpoints[0] == Points[0]) || (endpoints[0] == Points[1]) || (endpoints[0] == Points[2])) && ((endpoints[1] == Points[0]) || (endpoints[1] == Points[1]) || (endpoints[1] == Points[2])) && ((endpoints[2] == Points[0]) || (endpoints[2] == Points[1]) || (endpoints[2] == Points[2])
|
---|
| 320 |
|
---|
| 321 | ));
|
---|
| 322 | }
|
---|
| 323 | ;
|
---|
| 324 |
|
---|
| 325 | /** Checks whether three given \a *Points coincide with triangle's endpoints.
|
---|
| 326 | * \param *Points[3] pointer to BoundaryPointSet
|
---|
| 327 | * \return true - is the very triangle, false - is not
|
---|
| 328 | */
|
---|
| 329 | bool BoundaryTriangleSet::IsPresentTupel(const BoundaryTriangleSet * const T) const
|
---|
| 330 | {
|
---|
| 331 | Info FunctionInfo(__func__);
|
---|
| 332 | return (((endpoints[0] == T->endpoints[0]) || (endpoints[0] == T->endpoints[1]) || (endpoints[0] == T->endpoints[2])) && ((endpoints[1] == T->endpoints[0]) || (endpoints[1] == T->endpoints[1]) || (endpoints[1] == T->endpoints[2])) && ((endpoints[2] == T->endpoints[0]) || (endpoints[2] == T->endpoints[1]) || (endpoints[2] == T->endpoints[2])
|
---|
| 333 |
|
---|
| 334 | ));
|
---|
| 335 | }
|
---|
| 336 | ;
|
---|
| 337 |
|
---|
| 338 | /** Returns the endpoint which is not contained in the given \a *line.
|
---|
| 339 | * \param *line baseline defining two endpoints
|
---|
| 340 | * \return pointer third endpoint or NULL if line does not belong to triangle.
|
---|
| 341 | */
|
---|
| 342 | class BoundaryPointSet *BoundaryTriangleSet::GetThirdEndpoint(const BoundaryLineSet * const line) const
|
---|
| 343 | {
|
---|
| 344 | Info FunctionInfo(__func__);
|
---|
| 345 | // sanity check
|
---|
| 346 | if (!ContainsBoundaryLine(line))
|
---|
| 347 | return NULL;
|
---|
| 348 | for (int i = 0; i < 3; i++)
|
---|
| 349 | if (!line->ContainsBoundaryPoint(endpoints[i]))
|
---|
| 350 | return endpoints[i];
|
---|
| 351 | // actually, that' impossible :)
|
---|
| 352 | return NULL;
|
---|
| 353 | }
|
---|
| 354 | ;
|
---|
| 355 |
|
---|
| 356 | /** Returns the baseline which does not contain the given boundary point \a *point.
|
---|
| 357 | * \param *point endpoint which is neither endpoint of the desired line
|
---|
| 358 | * \return pointer to desired third baseline
|
---|
| 359 | */
|
---|
| 360 | class BoundaryLineSet *BoundaryTriangleSet::GetThirdLine(const BoundaryPointSet * const point) const
|
---|
| 361 | {
|
---|
| 362 | Info FunctionInfo(__func__);
|
---|
| 363 | // sanity check
|
---|
| 364 | if (!ContainsBoundaryPoint(point))
|
---|
| 365 | return NULL;
|
---|
| 366 | for (int i = 0; i < 3; i++)
|
---|
| 367 | if (!lines[i]->ContainsBoundaryPoint(point))
|
---|
| 368 | return lines[i];
|
---|
| 369 | // actually, that' impossible :)
|
---|
| 370 | return NULL;
|
---|
| 371 | }
|
---|
| 372 | ;
|
---|
| 373 |
|
---|
| 374 | /** Calculates the center point of the triangle.
|
---|
| 375 | * Is third of the sum of all endpoints.
|
---|
| 376 | * \param *center central point on return.
|
---|
| 377 | */
|
---|
| 378 | void BoundaryTriangleSet::GetCenter(Vector & center) const
|
---|
| 379 | {
|
---|
| 380 | Info FunctionInfo(__func__);
|
---|
| 381 | center.Zero();
|
---|
| 382 | for (int i = 0; i < 3; i++)
|
---|
| 383 | (center) += (endpoints[i]->node->getPosition());
|
---|
| 384 | center.Scale(1. / 3.);
|
---|
| 385 | DoLog(1) && (Log() << Verbose(1) << "INFO: Center is at " << center << "." << endl);
|
---|
| 386 | }
|
---|
| 387 |
|
---|
| 388 | /**
|
---|
| 389 | * gets the Plane defined by the three triangle Basepoints
|
---|
| 390 | */
|
---|
| 391 | Plane BoundaryTriangleSet::getPlane() const{
|
---|
| 392 | ASSERT(endpoints[0] && endpoints[1] && endpoints[2], "Triangle not fully defined");
|
---|
| 393 |
|
---|
| 394 | return Plane(endpoints[0]->node->getPosition(),
|
---|
| 395 | endpoints[1]->node->getPosition(),
|
---|
| 396 | endpoints[2]->node->getPosition());
|
---|
| 397 | }
|
---|
| 398 |
|
---|
| 399 | Vector BoundaryTriangleSet::getEndpoint(int i) const{
|
---|
| 400 | ASSERT(i>=0 && i<3,"Index of Endpoint out of Range");
|
---|
| 401 |
|
---|
| 402 | return endpoints[i]->node->getPosition();
|
---|
| 403 | }
|
---|
| 404 |
|
---|
| 405 | string BoundaryTriangleSet::getEndpointName(int i) const{
|
---|
| 406 | ASSERT(i>=0 && i<3,"Index of Endpoint out of Range");
|
---|
| 407 |
|
---|
| 408 | return endpoints[i]->node->getName();
|
---|
| 409 | }
|
---|
| 410 |
|
---|
| 411 | /** output operator for BoundaryTriangleSet.
|
---|
| 412 | * \param &ost output stream
|
---|
| 413 | * \param &a boundary triangle
|
---|
| 414 | */
|
---|
| 415 | ostream &operator <<(ostream &ost, const BoundaryTriangleSet &a)
|
---|
| 416 | {
|
---|
| 417 | ost << "[" << a.Nr << "|" << a.getEndpointName(0) << "," << a.getEndpointName(1) << "," << a.getEndpointName(2) << "]";
|
---|
| 418 | // ost << "[" << a.Nr << "|" << a.endpoints[0]->node->Name << " at " << *a.endpoints[0]->node->node << ","
|
---|
| 419 | // << a.endpoints[1]->node->Name << " at " << *a.endpoints[1]->node->node << "," << a.endpoints[2]->node->Name << " at " << *a.endpoints[2]->node->node << "]";
|
---|
| 420 | return ost;
|
---|
| 421 | }
|
---|
| 422 | ;
|
---|
| 423 |
|
---|