/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
* Copyright (C) 2014 Frederik Heber. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* atom_atominfo.cpp
*
* Created on: Oct 19, 2009
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include "CodePatterns/Verbose.hpp"
#include "atom_atominfo.hpp"
#include "CodePatterns/Log.hpp"
#include "config.hpp"
#include "Element/element.hpp"
#include "Element/periodentafel.hpp"
#include "Fragmentation/ForceMatrix.hpp"
#include "World.hpp"
#include "WorldTime.hpp"
#include
/** Constructor of class AtomInfo.
*/
AtomInfo::AtomInfo() :
AtomicElement(1),
FixedIon(false),
charge(0.)
{
AtomicPosition.insert( std::make_pair(0, zeroVec) );
AtomicVelocity.insert( std::make_pair(0, zeroVec) );
AtomicForce.insert( std::make_pair(0, zeroVec) );
}
/** Copy constructor of class AtomInfo.
*/
AtomInfo::AtomInfo(const AtomInfo &_atom) :
AtomicPosition(_atom.AtomicPosition),
AtomicVelocity(_atom.AtomicVelocity),
AtomicForce(_atom.AtomicForce),
AtomicElement(_atom.AtomicElement),
FixedIon(_atom.FixedIon),
charge(_atom.charge)
{
}
AtomInfo::AtomInfo(const VectorInterface &_v) :
AtomicElement(1),
FixedIon(false),
charge(0.)
{
AtomicPosition.insert( std::make_pair(0, _v.getPosition()) );
AtomicVelocity.insert( std::make_pair(0, zeroVec) );
AtomicForce.insert( std::make_pair(0, zeroVec) );
};
/** Destructor of class AtomInfo.
*/
AtomInfo::~AtomInfo()
{
};
void AtomInfo::AppendTrajectoryStep(const unsigned int _step)
{
ASSERT (WorldTime::getTime() != _step,
"AtomInfo::AppendTrajectoryStep() - cannot append current time step.");
NOTIFY(TrajectoryChanged);
AtomicPosition.insert( std::make_pair(_step, zeroVec) );
AtomicVelocity.insert( std::make_pair(_step, zeroVec) );
AtomicForce.insert( std::make_pair(_step, zeroVec) );
LOG(5,"AtomInfo::AppendTrajectoryStep() called, size is ("
<< AtomicPosition.size() << ","
<< AtomicVelocity.size() << ","
<< AtomicForce.size() << ")");
}
void AtomInfo::removeTrajectoryStep(const unsigned int _step)
{
ASSERT (WorldTime::getTime() != _step,
"AtomInfo::removeTrajectoryStep() - cannot remove current time step.");
NOTIFY(TrajectoryChanged);
AtomicPosition.erase(_step);
AtomicVelocity.erase(_step);
AtomicForce.erase(_step);
LOG(5,"AtomInfo::removeTrajectoryStep() called, size is ("
<< AtomicPosition.size() << ","
<< AtomicVelocity.size() << ","
<< AtomicForce.size() << ")");
}
const element *AtomInfo::getType() const
{
const element *elem = World::getInstance().getPeriode()->FindElement(AtomicElement);
return elem;
}
const element &AtomInfo::getElement() const
{
const element &elem = *World::getInstance().getPeriode()->FindElement(AtomicElement);
return elem;
}
atomicNumber_t AtomInfo::getElementNo() const
{
return AtomicElement;
}
const std::string &AtomInfo::getParticleName() const
{
return particlename;
}
void AtomInfo::setParticleName(const std::string & _name)
{
particlename = _name;
}
const double& AtomInfo::operator[](size_t i) const
{
return atStep(i, WorldTime::getTime());
}
const double& AtomInfo::at(size_t i) const
{
return atStep(i, WorldTime::getTime());
}
const double& AtomInfo::atStep(size_t i, unsigned int _step) const
{
ASSERT(!AtomicPosition.empty(),
"AtomInfo::operator[]() - AtomicPosition is empty.");
VectorTrajectory_t::const_iterator iter =
AtomicPosition.lower_bound(_step);
return iter->second[i];
}
void AtomInfo::set(size_t i, const double value)
{
OBSERVE;
NOTIFY(AtomObservable::PositionChanged);
VectorTrajectory_t::iterator iter = AtomicPosition.find(WorldTime::getTime());
if (iter != AtomicPosition.end()) {
iter->second[i] = value;
} else {
Vector newPos;
newPos[i] = value;
#ifndef NDEBUG
std::pair inserter =
#endif
AtomicPosition.insert( std::make_pair(WorldTime::getTime(), newPos) );
ASSERT( inserter.second,
"AtomInfo::set() - time step "+toString(WorldTime::getTime())
+" present after all?");
}
}
/** Helps to determine whether the current step really exists or getPosition() has just
* delivered the one closest to it in the past.
*
* \param _step step to check
* \param true - step exists, false - step does not exist, getPosition() delivers closest
*/
bool AtomInfo::isStepPresent(const unsigned int _step) const
{
VectorTrajectory_t::const_iterator iter =
AtomicPosition.find(_step);
return iter != AtomicPosition.end();
}
const Vector& AtomInfo::getPosition() const
{
return getPositionAtStep(WorldTime::getTime());
}
const Vector& AtomInfo::getPositionAtStep(const unsigned int _step) const
{
ASSERT(!AtomicPosition.empty(),
"AtomInfo::operator[]() - AtomicPosition is empty.");
VectorTrajectory_t::const_iterator iter =
AtomicPosition.lower_bound(_step);
return iter->second;
}
void AtomInfo::setType(const element* _type)
{
OBSERVE;
NOTIFY(AtomObservable::ElementChanged);
AtomicElement = _type->getAtomicNumber();
}
void AtomInfo::setType(const int Z)
{
const element *elem = World::getInstance().getPeriode()->FindElement(Z);
setType(elem);
}
const Vector& AtomInfo::getAtomicVelocity() const
{
return getAtomicVelocityAtStep(WorldTime::getTime());
}
const Vector& AtomInfo::getAtomicVelocityAtStep(const unsigned int _step) const
{
ASSERT(!AtomicVelocity.empty(),
"AtomInfo::operator[]() - AtomicVelocity is empty.");
VectorTrajectory_t::const_iterator iter =
AtomicVelocity.lower_bound(_step);
// special, we only interpolate between present time steps not into the future
if (_step > AtomicVelocity.begin()->first)
return zeroVec;
else
return iter->second;
}
void AtomInfo::setAtomicVelocity(const Vector &_newvelocity)
{
setAtomicVelocityAtStep(WorldTime::getTime(), _newvelocity);
}
void AtomInfo::setAtomicVelocityAtStep(const unsigned int _step, const Vector &_newvelocity)
{
OBSERVE;
VectorTrajectory_t::iterator iter = AtomicVelocity.find(_step);
if (iter != AtomicVelocity.end()) {
iter->second = _newvelocity;
} else {
#ifndef NDEBUG
std::pair inserter =
#endif
AtomicVelocity.insert( std::make_pair(_step, _newvelocity) );
ASSERT( inserter.second,
"AtomInfo::set() - time step "+toString(_step)
+" present after all?");
}
if (WorldTime::getTime() == _step)
NOTIFY(AtomObservable::VelocityChanged);
}
const Vector& AtomInfo::getAtomicForce() const
{
return getAtomicForceAtStep(WorldTime::getTime());
}
const Vector& AtomInfo::getAtomicForceAtStep(const unsigned int _step) const
{
ASSERT(!AtomicForce.empty(),
"AtomInfo::operator[]() - AtomicForce is empty.");
VectorTrajectory_t::const_iterator iter =
AtomicForce.lower_bound(_step);
// special, we only interpolate between present time steps not into the future
if (_step > AtomicForce.begin()->first)
return zeroVec;
else
return iter->second;
}
void AtomInfo::setAtomicForce(const Vector &_newforce)
{
setAtomicForceAtStep(WorldTime::getTime(), _newforce);
}
void AtomInfo::setAtomicForceAtStep(const unsigned int _step, const Vector &_newforce)
{
OBSERVE;
VectorTrajectory_t::iterator iter = AtomicForce.find(_step);
if (iter != AtomicForce.end()) {
iter->second = _newforce;
} else {
#ifndef NDEBUG
std::pair inserter =
#endif
AtomicForce.insert( std::make_pair(_step, _newforce) );
ASSERT( inserter.second,
"AtomInfo::set() - time step "+toString(_step)
+" present after all?");
}
if (WorldTime::getTime() == _step)
NOTIFY(AtomObservable::ForceChanged);
}
bool AtomInfo::getFixedIon() const
{
return FixedIon;
}
void AtomInfo::setFixedIon(const bool _fixedion)
{
OBSERVE;
NOTIFY(AtomObservable::PropertyChanged);
FixedIon = _fixedion;
}
void AtomInfo::setPosition(const Vector& _vector)
{
setPositionAtStep(WorldTime::getTime(), _vector);
}
void AtomInfo::setPositionAtStep(unsigned int _step, const Vector& _vector)
{
OBSERVE;
VectorTrajectory_t::iterator iter = AtomicPosition.find(_step);
if (iter != AtomicPosition.end()) {
iter->second = _vector;
} else {
#ifndef NDEBUG
std::pair inserter =
#endif
AtomicPosition.insert( std::make_pair(_step, _vector) );
ASSERT( inserter.second,
"AtomInfo::set() - time step "+toString(_step)
+" present after all?");
}
if (WorldTime::getTime() == _step)
NOTIFY(AtomObservable::PositionChanged);
}
const VectorInterface& AtomInfo::operator+=(const Vector& b)
{
setPosition(getPosition()+b);
return *this;
}
const VectorInterface& AtomInfo::operator-=(const Vector& b)
{
setPosition(getPosition()-b);
return *this;
}
Vector const AtomInfo::operator+(const Vector& b) const
{
Vector a(getPosition());
a += b;
return a;
}
Vector const AtomInfo::operator-(const Vector& b) const
{
Vector a(getPosition());
a -= b;
return a;
}
double AtomInfo::distance(const Vector &point) const
{
return getPosition().distance(point);
}
double AtomInfo::DistanceSquared(const Vector &y) const
{
return getPosition().DistanceSquared(y);
}
double AtomInfo::distance(const VectorInterface &_atom) const
{
return _atom.distance(getPosition());
}
double AtomInfo::DistanceSquared(const VectorInterface &_atom) const
{
return _atom.DistanceSquared(getPosition());
}
VectorInterface &AtomInfo::operator=(const Vector& _vector)
{
setPosition(_vector);
return *this;
}
void AtomInfo::ScaleAll(const double *factor)
{
Vector temp(getPosition());
temp.ScaleAll(factor);
setPosition(temp);
}
void AtomInfo::ScaleAll(const Vector &factor)
{
Vector temp(getPosition());
temp.ScaleAll(factor);
setPosition(temp);
}
void AtomInfo::Scale(const double factor)
{
Vector temp(getPosition());
temp.Scale(factor);
setPosition(temp);
}
void AtomInfo::Zero()
{
setPosition(zeroVec);
}
void AtomInfo::One(const double one)
{
setPosition(Vector(one,one,one));
}
void AtomInfo::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
{
Vector newPos;
newPos.LinearCombinationOfVectors(x1,x2,x3,factors);
setPosition(newPos);
}
/**
* returns the kinetic energy of this atom at a given time step
*/
double AtomInfo::getKineticEnergy(const unsigned int _step) const
{
return getMass() * getAtomicVelocityAtStep(_step).NormSquared();
}
Vector AtomInfo::getMomentum(const unsigned int _step) const
{
return getMass() * getAtomicVelocityAtStep(_step);
}
/** Decrease the trajectory if given \a MaxSteps is smaller.
* Does nothing if \a MaxSteps is larger than current size.
*
* \param MaxSteps
*/
void AtomInfo::ResizeTrajectory(size_t MaxSteps)
{
// mind the reverse ordering due to std::greater, latest time steps are at beginning
VectorTrajectory_t::iterator positer = AtomicPosition.lower_bound(MaxSteps);
if (positer != AtomicPosition.begin()) {
if (positer->first == MaxSteps)
--positer;
AtomicPosition.erase(AtomicPosition.begin(), positer);
}
VectorTrajectory_t::iterator veliter = AtomicVelocity.lower_bound(MaxSteps);
if (veliter != AtomicVelocity.begin()) {
if (veliter->first == MaxSteps)
--veliter;
AtomicVelocity.erase(AtomicVelocity.begin(), veliter);
}
VectorTrajectory_t::iterator forceiter = AtomicForce.lower_bound(MaxSteps);
if (forceiter != AtomicForce.begin()) {
if (forceiter->first == MaxSteps)
--forceiter;
AtomicForce.erase(AtomicForce.begin(), forceiter);
}
}
size_t AtomInfo::getTrajectorySize() const
{
// mind greater comp for map here: first element is latest in time steps!
return AtomicPosition.begin()->first+1;
}
double AtomInfo::getMass() const
{
return getType()->getMass();
}
/** Helper function to either insert or assign, depending on the element being
* present already.
*
* \param _trajectory vector of Vectors to assign
* \param dest step to insert/assign to
* \param _newvalue new Vector value
*/
void assignTrajectoryElement(
std::map > &_trajectory,
const unsigned int dest,
const Vector &_newvalue)
{
std::pair >::iterator, bool> inserter =
_trajectory.insert( std::make_pair(dest, _newvalue) );
if (!inserter.second)
inserter.first->second = _newvalue;
}
/** Copies a given trajectory step \a src onto another \a dest
* \param dest index of destination step
* \param src index of source step
*/
void AtomInfo::CopyStepOnStep(const unsigned int dest, const unsigned int src)
{
if (dest == src) // self assignment check
return;
if (WorldTime::getTime() == dest){
NOTIFY(AtomObservable::PositionChanged);
NOTIFY(AtomObservable::VelocityChanged);
NOTIFY(AtomObservable::ForceChanged);
}
VectorTrajectory_t::iterator positer = AtomicPosition.find(src);
ASSERT( positer != AtomicPosition.end(),
"AtomInfo::CopyStepOnStep() - step "
+toString(src)+" to copy from not present in AtomicPosition.");
VectorTrajectory_t::iterator veliter = AtomicVelocity.find(src);
ASSERT( veliter != AtomicVelocity.end(),
"AtomInfo::CopyStepOnStep() - step "
+toString(src)+" to copy from not present in AtomicVelocity.");
VectorTrajectory_t::iterator forceiter = AtomicForce.find(src);
ASSERT( forceiter != AtomicForce.end(),
"AtomInfo::CopyStepOnStep() - step "
+toString(src)+" to copy from not present in AtomicForce.");
assignTrajectoryElement(AtomicPosition, dest, positer->second);
assignTrajectoryElement(AtomicVelocity, dest, veliter->second);
assignTrajectoryElement(AtomicForce, dest, forceiter->second);
};
/** Performs a velocity verlet update of the position at \a NextStep from \a LastStep information only.
*
* We calculate \f$x(t + \delta t) = x(t) + v(t)* \delta t + .5 * \delta t * \delta t * F(t)/m \f$.
*
*
* \param NextStep index of sequential step to set
* \param Deltat time step width
* \param IsAngstroem whether the force's underlying unit of length is angstroem or bohr radii
*/
void AtomInfo::VelocityVerletUpdateX(int nr, const unsigned int NextStep, double Deltat, bool IsAngstroem)
{
const unsigned int LastStep = NextStep == 0 ? 0 : NextStep-1;
LOG(2, "INFO: Particle that currently " << *this);
LOG(2, "INFO: Integrating position with mass=" << getMass() << " and Deltat="
<< Deltat << " at NextStep=" << NextStep);
// update position
{
Vector tempVector = getPositionAtStep(LastStep);
LOG(4, "INFO: initial position from last step " << setprecision(4) << tempVector);
tempVector += Deltat*(getAtomicVelocityAtStep(LastStep)); // s(t) = s(0) + v * deltat + 1/2 a * deltat^2
LOG(4, "INFO: position with velocity " << getAtomicVelocityAtStep(LastStep) << " from last step " << tempVector);
tempVector += .5*Deltat*Deltat*(getAtomicForceAtStep(LastStep))*(1./getMass()); // F = m * a and s =
LOG(4, "INFO: position with force " << getAtomicForceAtStep(LastStep) << " from last step " << tempVector);
setPositionAtStep(NextStep, tempVector);
LOG(3, "INFO: Position at step " << NextStep << " set to " << tempVector);
}
};
/** Performs a velocity verlet update of the velocity at \a NextStep.
*
* \note forces at NextStep should have been calculated based on position at NextStep prior
* to calling this function.
*
* We calculate \f$v(t) = v(t - \delta t) + \delta _t * .5 * (F(t - \delta t) + F(t))/m \f$.
*
* Parameters are according to those in configuration class.
* \param NextStep index of sequential step to set
* \param Deltat time step width
* \param IsAngstroem whether the force's underlying unit of length is angstroem or bohr radii
*/
void AtomInfo::VelocityVerletUpdateU(int nr, const unsigned int NextStep, double Deltat, bool IsAngstroem)
{
const unsigned int LastStep = NextStep == 0 ? 0 : NextStep-1;
LOG(2, "INFO: Particle that currently " << *this);
LOG(2, "INFO: Integrating velocity with mass=" << getMass() << " and Deltat="
<< Deltat << " at NextStep=" << NextStep);
// Update U
{
Vector tempVector = getAtomicVelocityAtStep(LastStep);
LOG(4, "INFO: initial velocity from last step " << tempVector);
tempVector += Deltat * .5*(getAtomicForceAtStep(LastStep)+getAtomicForceAtStep(NextStep))*(1./getMass()); // v = F/m * t
LOG(4, "INFO: Velocity with force from last " << getAtomicForceAtStep(LastStep)
<< " and present " << getAtomicForceAtStep(NextStep) << " step " << tempVector);
setAtomicVelocityAtStep(NextStep, tempVector);
LOG(3, "INFO: Velocity at step " << NextStep << " set to " << tempVector);
}
};
std::ostream & AtomInfo::operator << (std::ostream &ost) const
{
return (ost << getPosition());
}
std::ostream & operator << (std::ostream &ost, const AtomInfo &a)
{
const size_t terminalstep = a.getTrajectorySize()-1;
if (terminalstep) {
ost << "starts at "
<< a.getPositionAtStep(0) << " and ends at "
<< a.getPositionAtStep(terminalstep)
<< " at time step " << terminalstep;
} else {
ost << "is at "
<< a.getPositionAtStep(0) << " with a single time step only";
}
return ost;
}