source: src/Atom/atom_atominfo.cpp@ efd020

AutomationFragmentation_failures Candidate_v1.6.1 ChemicalSpaceEvaluator Enhanced_StructuralOptimization_continued Exclude_Hydrogens_annealWithBondGraph ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_contraction-expansion Gui_displays_atomic_force_velocity PythonUI_with_named_parameters StoppableMakroAction TremoloParser_IncreasedPrecision
Last change on this file since efd020 was 95b64f, checked in by Frederik Heber <frederik.heber@…>, 8 years ago

Implemented missing AtomInfo::setAtStep().

  • Property mode set to 100644
File size: 18.0 KB
RevLine 
[bcf653]1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
[0aa122]4 * Copyright (C) 2010-2012 University of Bonn. All rights reserved.
[8cc22f]5 * Copyright (C) 2014 Frederik Heber. All rights reserved.
[94d5ac6]6 *
7 *
8 * This file is part of MoleCuilder.
9 *
10 * MoleCuilder is free software: you can redistribute it and/or modify
11 * it under the terms of the GNU General Public License as published by
12 * the Free Software Foundation, either version 2 of the License, or
13 * (at your option) any later version.
14 *
15 * MoleCuilder is distributed in the hope that it will be useful,
16 * but WITHOUT ANY WARRANTY; without even the implied warranty of
17 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
18 * GNU General Public License for more details.
19 *
20 * You should have received a copy of the GNU General Public License
21 * along with MoleCuilder. If not, see <http://www.gnu.org/licenses/>.
[bcf653]22 */
23
[6b919f8]24/*
25 * atom_atominfo.cpp
26 *
27 * Created on: Oct 19, 2009
28 * Author: heber
29 */
30
[bf3817]31// include config.h
32#ifdef HAVE_CONFIG_H
33#include <config.h>
34#endif
35
[9eb71b3]36//#include "CodePatterns/MemDebug.hpp"
[112b09]37
[6625c3]38#include "CodePatterns/Verbose.hpp"
[08a0f52]39
40#include "atom_atominfo.hpp"
41#include "CodePatterns/Log.hpp"
[6625c3]42#include "config.hpp"
[3bdb6d]43#include "Element/element.hpp"
44#include "Element/periodentafel.hpp"
[a9b86d]45#include "Fragmentation/ForceMatrix.hpp"
[f16a4b]46#include "World.hpp"
[1b558c]47#include "WorldTime.hpp"
[6b919f8]48
[435065]49#include <iomanip>
50
[6b919f8]51/** Constructor of class AtomInfo.
52 */
[97b825]53AtomInfo::AtomInfo() :
[606c24]54 AtomicElement(1),
[2034f3]55 FixedIon(false),
56 charge(0.)
[54b42e]57{
[8cc22f]58 AtomicPosition.insert( std::make_pair(0, zeroVec) );
59 AtomicVelocity.insert( std::make_pair(0, zeroVec) );
60 AtomicForce.insert( std::make_pair(0, zeroVec) );
61}
[d74077]62
63/** Copy constructor of class AtomInfo.
64 */
[97b825]65AtomInfo::AtomInfo(const AtomInfo &_atom) :
66 AtomicPosition(_atom.AtomicPosition),
[8cc22f]67 AtomicVelocity(_atom.AtomicVelocity),
68 AtomicForce(_atom.AtomicForce),
[6625c3]69 AtomicElement(_atom.AtomicElement),
[2034f3]70 FixedIon(_atom.FixedIon),
71 charge(_atom.charge)
[6625c3]72{
[8cc22f]73}
[d74077]74
[97b825]75AtomInfo::AtomInfo(const VectorInterface &_v) :
[606c24]76 AtomicElement(1),
[2034f3]77 FixedIon(false),
78 charge(0.)
[54b42e]79{
[8cc22f]80 AtomicPosition.insert( std::make_pair(0, _v.getPosition()) );
81 AtomicVelocity.insert( std::make_pair(0, zeroVec) );
82 AtomicForce.insert( std::make_pair(0, zeroVec) );
[54b42e]83};
[6b919f8]84
85/** Destructor of class AtomInfo.
86 */
87AtomInfo::~AtomInfo()
88{
89};
90
[8cc22f]91void AtomInfo::AppendTrajectoryStep(const unsigned int _step)
[e2373df]92{
[fe0ddf]93 NOTIFY(TrajectoryChanged);
[8cc22f]94 AtomicPosition.insert( std::make_pair(_step, zeroVec) );
95 AtomicVelocity.insert( std::make_pair(_step, zeroVec) );
96 AtomicForce.insert( std::make_pair(_step, zeroVec) );
[fb9eba]97 LOG(5,"AtomInfo::AppendTrajectoryStep() called, size is ("
98 << AtomicPosition.size() << ","
99 << AtomicVelocity.size() << ","
100 << AtomicForce.size() << ")");
[e2373df]101}
102
[8cc22f]103void AtomInfo::removeTrajectoryStep(const unsigned int _step)
[7e51e1]104{
[fe0ddf]105 NOTIFY(TrajectoryChanged);
[8cc22f]106 AtomicPosition.erase(_step);
107 AtomicVelocity.erase(_step);
108 AtomicForce.erase(_step);
[7e51e1]109 LOG(5,"AtomInfo::removeTrajectoryStep() called, size is ("
110 << AtomicPosition.size() << ","
111 << AtomicVelocity.size() << ","
112 << AtomicForce.size() << ")");
113}
114
[d74077]115const element *AtomInfo::getType() const
116{
[35a25a]117 const element *elem = World::getInstance().getPeriode()->FindElement(AtomicElement);
118 return elem;
[d74077]119}
120
[08a0f52]121const element &AtomInfo::getElement() const
122{
123 const element &elem = *World::getInstance().getPeriode()->FindElement(AtomicElement);
124 return elem;
125}
126
127atomicNumber_t AtomInfo::getElementNo() const
128{
129 return AtomicElement;
130}
131
[843590]132const std::string &AtomInfo::getParticleName() const
133{
134 return particlename;
135}
136
137void AtomInfo::setParticleName(const std::string & _name)
138{
139 particlename = _name;
140}
141
[d74077]142const double& AtomInfo::operator[](size_t i) const
143{
[8cc22f]144 return atStep(i, WorldTime::getTime());
[d74077]145}
146
147const double& AtomInfo::at(size_t i) const
148{
[8cc22f]149 return atStep(i, WorldTime::getTime());
[d74077]150}
151
[6b020f]152const double& AtomInfo::atStep(size_t i, unsigned int _step) const
[056e70]153{
[8cc22f]154 ASSERT(!AtomicPosition.empty(),
155 "AtomInfo::operator[]() - AtomicPosition is empty.");
156 VectorTrajectory_t::const_iterator iter =
157 AtomicPosition.lower_bound(_step);
158 return iter->second[i];
[056e70]159}
160
[d74077]161void AtomInfo::set(size_t i, const double value)
162{
[7188b1]163 OBSERVE;
164 NOTIFY(AtomObservable::PositionChanged);
[8cc22f]165 VectorTrajectory_t::iterator iter = AtomicPosition.find(WorldTime::getTime());
166 if (iter != AtomicPosition.end()) {
167 iter->second[i] = value;
168 } else {
169 Vector newPos;
170 newPos[i] = value;
171#ifndef NDEBUG
172 std::pair<VectorTrajectory_t::iterator, bool> inserter =
173#endif
174 AtomicPosition.insert( std::make_pair(WorldTime::getTime(), newPos) );
175 ASSERT( inserter.second,
176 "AtomInfo::set() - time step "+toString(WorldTime::getTime())
177 +" present after all?");
178 }
179}
180
[95b64f]181void AtomInfo::setAtStep(size_t i, unsigned int _step, const double value)
182{
183 OBSERVE;
184 NOTIFY(AtomObservable::PositionChanged);
185 VectorTrajectory_t::iterator iter = AtomicPosition.find(_step);
186 if (iter != AtomicPosition.end()) {
187 iter->second[i] = value;
188 } else {
189 Vector newPos;
190 newPos[i] = value;
191#ifndef NDEBUG
192 std::pair<VectorTrajectory_t::iterator, bool> inserter =
193#endif
194 AtomicPosition.insert( std::make_pair(_step, newPos) );
195 ASSERT( inserter.second,
196 "AtomInfo::setAtStep() - time step "+toString(_step)
197 +" present after all?");
198 }
199}
200
[8cc22f]201/** Helps to determine whether the current step really exists or getPosition() has just
202 * delivered the one closest to it in the past.
203 *
204 * \param _step step to check
205 * \param true - step exists, false - step does not exist, getPosition() delivers closest
206 */
207bool AtomInfo::isStepPresent(const unsigned int _step) const
208{
209 VectorTrajectory_t::const_iterator iter =
210 AtomicPosition.find(_step);
211 return iter != AtomicPosition.end();
[d74077]212}
213
214const Vector& AtomInfo::getPosition() const
215{
[8cc22f]216 return getPositionAtStep(WorldTime::getTime());
[f16a4b]217}
218
[6b020f]219const Vector& AtomInfo::getPositionAtStep(const unsigned int _step) const
[6625c3]220{
[8cc22f]221 ASSERT(!AtomicPosition.empty(),
222 "AtomInfo::operator[]() - AtomicPosition is empty.");
223 VectorTrajectory_t::const_iterator iter =
224 AtomicPosition.lower_bound(_step);
225 return iter->second;
[6625c3]226}
227
[7188b1]228void AtomInfo::setType(const element* _type)
229{
[fe0ddf]230 OBSERVE;
231 NOTIFY(AtomObservable::ElementChanged);
232 AtomicElement = _type->getAtomicNumber();
[f16a4b]233}
234
[7188b1]235void AtomInfo::setType(const int Z)
236{
[ead4e6]237 const element *elem = World::getInstance().getPeriode()->FindElement(Z);
[8cc22f]238 setType(elem);
[f16a4b]239}
[d74077]240
[bce72c]241const Vector& AtomInfo::getAtomicVelocity() const
242{
[8cc22f]243 return getAtomicVelocityAtStep(WorldTime::getTime());
[bce72c]244}
245
[6b020f]246const Vector& AtomInfo::getAtomicVelocityAtStep(const unsigned int _step) const
[6625c3]247{
[8cc22f]248 ASSERT(!AtomicVelocity.empty(),
249 "AtomInfo::operator[]() - AtomicVelocity is empty.");
250 VectorTrajectory_t::const_iterator iter =
251 AtomicVelocity.lower_bound(_step);
252 // special, we only interpolate between present time steps not into the future
253 if (_step > AtomicVelocity.begin()->first)
254 return zeroVec;
255 else
256 return iter->second;
[6625c3]257}
258
[bce72c]259void AtomInfo::setAtomicVelocity(const Vector &_newvelocity)
260{
[8cc22f]261 setAtomicVelocityAtStep(WorldTime::getTime(), _newvelocity);
[bce72c]262}
263
[6b020f]264void AtomInfo::setAtomicVelocityAtStep(const unsigned int _step, const Vector &_newvelocity)
[6625c3]265{
[7188b1]266 OBSERVE;
[8cc22f]267 VectorTrajectory_t::iterator iter = AtomicVelocity.find(_step);
268 if (iter != AtomicVelocity.end()) {
269 iter->second = _newvelocity;
270 } else {
271#ifndef NDEBUG
272 std::pair<VectorTrajectory_t::iterator, bool> inserter =
273#endif
274 AtomicVelocity.insert( std::make_pair(_step, _newvelocity) );
275 ASSERT( inserter.second,
276 "AtomInfo::set() - time step "+toString(_step)
277 +" present after all?");
278 }
[7188b1]279 if (WorldTime::getTime() == _step)
280 NOTIFY(AtomObservable::VelocityChanged);
[6625c3]281}
282
[bce72c]283const Vector& AtomInfo::getAtomicForce() const
284{
[8cc22f]285 return getAtomicForceAtStep(WorldTime::getTime());
[bce72c]286}
287
[6b020f]288const Vector& AtomInfo::getAtomicForceAtStep(const unsigned int _step) const
[6625c3]289{
[8cc22f]290 ASSERT(!AtomicForce.empty(),
291 "AtomInfo::operator[]() - AtomicForce is empty.");
292 VectorTrajectory_t::const_iterator iter =
293 AtomicForce.lower_bound(_step);
294 // special, we only interpolate between present time steps not into the future
295 if (_step > AtomicForce.begin()->first)
296 return zeroVec;
297 else
298 return iter->second;
[6625c3]299}
300
[bce72c]301void AtomInfo::setAtomicForce(const Vector &_newforce)
302{
[8cc22f]303 setAtomicForceAtStep(WorldTime::getTime(), _newforce);
[bce72c]304}
305
[6b020f]306void AtomInfo::setAtomicForceAtStep(const unsigned int _step, const Vector &_newforce)
[6625c3]307{
[7188b1]308 OBSERVE;
[8cc22f]309 VectorTrajectory_t::iterator iter = AtomicForce.find(_step);
310 if (iter != AtomicForce.end()) {
311 iter->second = _newforce;
312 } else {
313#ifndef NDEBUG
314 std::pair<VectorTrajectory_t::iterator, bool> inserter =
315#endif
316 AtomicForce.insert( std::make_pair(_step, _newforce) );
317 ASSERT( inserter.second,
318 "AtomInfo::set() - time step "+toString(_step)
319 +" present after all?");
320 }
[7188b1]321 if (WorldTime::getTime() == _step)
[bcb593]322 NOTIFY(AtomObservable::ForceChanged);
[6625c3]323}
324
325bool AtomInfo::getFixedIon() const
326{
327 return FixedIon;
328}
329
330void AtomInfo::setFixedIon(const bool _fixedion)
331{
[7188b1]332 OBSERVE;
333 NOTIFY(AtomObservable::PropertyChanged);
[6625c3]334 FixedIon = _fixedion;
335}
336
[d74077]337void AtomInfo::setPosition(const Vector& _vector)
338{
[8cc22f]339 setPositionAtStep(WorldTime::getTime(), _vector);
[d74077]340}
341
[6b020f]342void AtomInfo::setPositionAtStep(unsigned int _step, const Vector& _vector)
[6625c3]343{
[7188b1]344 OBSERVE;
[8cc22f]345 VectorTrajectory_t::iterator iter = AtomicPosition.find(_step);
346 if (iter != AtomicPosition.end()) {
347 iter->second = _vector;
348 } else {
349#ifndef NDEBUG
350 std::pair<VectorTrajectory_t::iterator, bool> inserter =
351#endif
352 AtomicPosition.insert( std::make_pair(_step, _vector) );
353 ASSERT( inserter.second,
354 "AtomInfo::set() - time step "+toString(_step)
355 +" present after all?");
356 }
[7188b1]357 if (WorldTime::getTime() == _step)
358 NOTIFY(AtomObservable::PositionChanged);
[6625c3]359}
360
[d74077]361const VectorInterface& AtomInfo::operator+=(const Vector& b)
362{
[8cc22f]363 setPosition(getPosition()+b);
[d74077]364 return *this;
365}
366
367const VectorInterface& AtomInfo::operator-=(const Vector& b)
368{
[8cc22f]369 setPosition(getPosition()-b);
[d74077]370 return *this;
371}
372
373Vector const AtomInfo::operator+(const Vector& b) const
374{
[8cc22f]375 Vector a(getPosition());
[d74077]376 a += b;
377 return a;
378}
379
380Vector const AtomInfo::operator-(const Vector& b) const
381{
[8cc22f]382 Vector a(getPosition());
[d74077]383 a -= b;
384 return a;
385}
386
387double AtomInfo::distance(const Vector &point) const
388{
[8cc22f]389 return getPosition().distance(point);
[d74077]390}
391
392double AtomInfo::DistanceSquared(const Vector &y) const
393{
[8cc22f]394 return getPosition().DistanceSquared(y);
[d74077]395}
396
397double AtomInfo::distance(const VectorInterface &_atom) const
398{
[8cc22f]399 return _atom.distance(getPosition());
[d74077]400}
401
402double AtomInfo::DistanceSquared(const VectorInterface &_atom) const
403{
[8cc22f]404 return _atom.DistanceSquared(getPosition());
[d74077]405}
406
407VectorInterface &AtomInfo::operator=(const Vector& _vector)
408{
[8cc22f]409 setPosition(_vector);
[d74077]410 return *this;
411}
412
413void AtomInfo::ScaleAll(const double *factor)
414{
[8cc22f]415 Vector temp(getPosition());
416 temp.ScaleAll(factor);
417 setPosition(temp);
[d74077]418}
419
420void AtomInfo::ScaleAll(const Vector &factor)
421{
[8cc22f]422 Vector temp(getPosition());
423 temp.ScaleAll(factor);
424 setPosition(temp);
[d74077]425}
426
427void AtomInfo::Scale(const double factor)
428{
[8cc22f]429 Vector temp(getPosition());
430 temp.Scale(factor);
431 setPosition(temp);
[d74077]432}
433
434void AtomInfo::Zero()
435{
[8cc22f]436 setPosition(zeroVec);
[d74077]437}
438
439void AtomInfo::One(const double one)
440{
[8cc22f]441 setPosition(Vector(one,one,one));
[d74077]442}
443
444void AtomInfo::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
445{
[8cc22f]446 Vector newPos;
447 newPos.LinearCombinationOfVectors(x1,x2,x3,factors);
448 setPosition(newPos);
[d74077]449}
450
[6625c3]451/**
452 * returns the kinetic energy of this atom at a given time step
453 */
[7188b1]454double AtomInfo::getKineticEnergy(const unsigned int _step) const
455{
[8cc22f]456 return getMass() * getAtomicVelocityAtStep(_step).NormSquared();
[6625c3]457}
458
[7188b1]459Vector AtomInfo::getMomentum(const unsigned int _step) const
460{
[8cc22f]461 return getMass() * getAtomicVelocityAtStep(_step);
[6625c3]462}
463
[8cc22f]464/** Decrease the trajectory if given \a MaxSteps is smaller.
465 * Does nothing if \a MaxSteps is larger than current size.
466 *
[6625c3]467 * \param MaxSteps
468 */
469void AtomInfo::ResizeTrajectory(size_t MaxSteps)
470{
[8cc22f]471 // mind the reverse ordering due to std::greater, latest time steps are at beginning
472 VectorTrajectory_t::iterator positer = AtomicPosition.lower_bound(MaxSteps);
473 if (positer != AtomicPosition.begin()) {
474 if (positer->first == MaxSteps)
475 --positer;
476 AtomicPosition.erase(AtomicPosition.begin(), positer);
477 }
478 VectorTrajectory_t::iterator veliter = AtomicVelocity.lower_bound(MaxSteps);
479 if (veliter != AtomicVelocity.begin()) {
480 if (veliter->first == MaxSteps)
481 --veliter;
482 AtomicVelocity.erase(AtomicVelocity.begin(), veliter);
483 }
484 VectorTrajectory_t::iterator forceiter = AtomicForce.lower_bound(MaxSteps);
485 if (forceiter != AtomicForce.begin()) {
486 if (forceiter->first == MaxSteps)
487 --forceiter;
488 AtomicForce.erase(AtomicForce.begin(), forceiter);
489 }
[e2373df]490}
[6625c3]491
492size_t AtomInfo::getTrajectorySize() const
493{
[8cc22f]494 // mind greater comp for map here: first element is latest in time steps!
495 return AtomicPosition.begin()->first+1;
[6625c3]496}
497
[35a25a]498double AtomInfo::getMass() const
499{
500 return getType()->getMass();
[6625c3]501}
502
[8cc22f]503/** Helper function to either insert or assign, depending on the element being
504 * present already.
505 *
506 * \param _trajectory vector of Vectors to assign
507 * \param dest step to insert/assign to
508 * \param _newvalue new Vector value
509 */
510void assignTrajectoryElement(
511 std::map<unsigned int, Vector, std::greater<unsigned int> > &_trajectory,
512 const unsigned int dest,
513 const Vector &_newvalue)
514{
515 std::pair<std::map<unsigned int, Vector, std::greater<unsigned int> >::iterator, bool> inserter =
516 _trajectory.insert( std::make_pair(dest, _newvalue) );
517 if (!inserter.second)
518 inserter.first->second = _newvalue;
519}
520
[6625c3]521/** Copies a given trajectory step \a src onto another \a dest
522 * \param dest index of destination step
523 * \param src index of source step
524 */
[6b020f]525void AtomInfo::CopyStepOnStep(const unsigned int dest, const unsigned int src)
[6625c3]526{
527 if (dest == src) // self assignment check
528 return;
529
[7188b1]530 if (WorldTime::getTime() == dest){
531 NOTIFY(AtomObservable::PositionChanged);
532 NOTIFY(AtomObservable::VelocityChanged);
533 NOTIFY(AtomObservable::ForceChanged);
534 }
535
[8cc22f]536 VectorTrajectory_t::iterator positer = AtomicPosition.find(src);
537 ASSERT( positer != AtomicPosition.end(),
538 "AtomInfo::CopyStepOnStep() - step "
539 +toString(src)+" to copy from not present in AtomicPosition.");
[f946b2]540 assignTrajectoryElement(AtomicPosition, dest, positer->second);
[8cc22f]541 VectorTrajectory_t::iterator veliter = AtomicVelocity.find(src);
[f946b2]542 if (veliter != AtomicVelocity.end())
543 assignTrajectoryElement(AtomicVelocity, dest, veliter->second);
[8cc22f]544 VectorTrajectory_t::iterator forceiter = AtomicForce.find(src);
[f946b2]545 if (forceiter != AtomicForce.end())
546 assignTrajectoryElement(AtomicForce, dest, forceiter->second);
[6625c3]547};
548
[bcb593]549/** Performs a velocity verlet update of the position at \a NextStep from \a LastStep information only.
550 *
551 * We calculate \f$x(t + \delta t) = x(t) + v(t)* \delta t + .5 * \delta t * \delta t * F(t)/m \f$.
552 *
553 *
[6625c3]554 * \param NextStep index of sequential step to set
[435065]555 * \param Deltat time step width
556 * \param IsAngstroem whether the force's underlying unit of length is angstroem or bohr radii
[6625c3]557 */
[bcb593]558void AtomInfo::VelocityVerletUpdateX(int nr, const unsigned int NextStep, double Deltat, bool IsAngstroem)
[6625c3]559{
[4882d5]560 const unsigned int LastStep = NextStep == 0 ? 0 : NextStep-1;
561
[435065]562 LOG(2, "INFO: Particle that currently " << *this);
[bcb593]563 LOG(2, "INFO: Integrating position with mass=" << getMass() << " and Deltat="
[435065]564 << Deltat << " at NextStep=" << NextStep);
[056e70]565
566 // update position
[4882d5]567 {
568 Vector tempVector = getPositionAtStep(LastStep);
569 LOG(4, "INFO: initial position from last step " << setprecision(4) << tempVector);
570 tempVector += Deltat*(getAtomicVelocityAtStep(LastStep)); // s(t) = s(0) + v * deltat + 1/2 a * deltat^2
571 LOG(4, "INFO: position with velocity " << getAtomicVelocityAtStep(LastStep) << " from last step " << tempVector);
572 tempVector += .5*Deltat*Deltat*(getAtomicForceAtStep(LastStep))*(1./getMass()); // F = m * a and s =
[bcb593]573 LOG(4, "INFO: position with force " << getAtomicForceAtStep(LastStep) << " from last step " << tempVector);
[4882d5]574 setPositionAtStep(NextStep, tempVector);
575 LOG(3, "INFO: Position at step " << NextStep << " set to " << tempVector);
576 }
[bcb593]577};
578
579/** Performs a velocity verlet update of the velocity at \a NextStep.
580 *
581 * \note forces at NextStep should have been calculated based on position at NextStep prior
582 * to calling this function.
583 *
584 * We calculate \f$v(t) = v(t - \delta t) + \delta _t * .5 * (F(t - \delta t) + F(t))/m \f$.
585 *
586 * Parameters are according to those in configuration class.
587 * \param NextStep index of sequential step to set
588 * \param Deltat time step width
589 * \param IsAngstroem whether the force's underlying unit of length is angstroem or bohr radii
590 */
591void AtomInfo::VelocityVerletUpdateU(int nr, const unsigned int NextStep, double Deltat, bool IsAngstroem)
592{
593 const unsigned int LastStep = NextStep == 0 ? 0 : NextStep-1;
594
595 LOG(2, "INFO: Particle that currently " << *this);
596 LOG(2, "INFO: Integrating velocity with mass=" << getMass() << " and Deltat="
597 << Deltat << " at NextStep=" << NextStep);
[056e70]598
[6625c3]599 // Update U
[4882d5]600 {
601 Vector tempVector = getAtomicVelocityAtStep(LastStep);
602 LOG(4, "INFO: initial velocity from last step " << tempVector);
603 tempVector += Deltat * .5*(getAtomicForceAtStep(LastStep)+getAtomicForceAtStep(NextStep))*(1./getMass()); // v = F/m * t
604 LOG(4, "INFO: Velocity with force from last " << getAtomicForceAtStep(LastStep)
605 << " and present " << getAtomicForceAtStep(NextStep) << " step " << tempVector);
606 setAtomicVelocityAtStep(NextStep, tempVector);
607 LOG(3, "INFO: Velocity at step " << NextStep << " set to " << tempVector);
608 }
[6625c3]609};
610
[d74077]611std::ostream & AtomInfo::operator << (std::ostream &ost) const
612{
613 return (ost << getPosition());
614}
615
616std::ostream & operator << (std::ostream &ost, const AtomInfo &a)
617{
[b1a5d9]618 const size_t terminalstep = a.getTrajectorySize()-1;
[e34254]619 if (terminalstep) {
620 ost << "starts at "
621 << a.getPositionAtStep(0) << " and ends at "
622 << a.getPositionAtStep(terminalstep)
623 << " at time step " << terminalstep;
624 } else {
625 ost << "is at "
626 << a.getPositionAtStep(0) << " with a single time step only";
627 }
[d74077]628 return ost;
629}
630
Note: See TracBrowser for help on using the repository browser.