source: src/Analysis/analysis_correlation.cpp@ 936a02

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 936a02 was 47d041, checked in by Frederik Heber <heber@…>, 13 years ago

HUGE: Removed all calls to Log(), eLog(), replaced by LOG() and ELOG().

  • Replaced DoLog(.) && (Log() << Verbose(.) << ... << std::endl) by Log(., ...).
  • Replaced Log() << Verbose(.) << .. << by Log(., ...)
  • on multiline used stringstream to generate and message which was finally used in LOG(., output.str())
  • there should be no more occurence of Log(). LOG() and ELOG() must be used instead.
  • Eventually, this will allow for storing all errors and re-printing them on program exit which would be very helpful to ascertain error-free runs for the user.
  • Property mode set to 100644
File size: 31.5 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * analysis.cpp
10 *
11 * Created on: Oct 13, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <iostream>
23#include <iomanip>
24#include <limits>
25
26#include "atom.hpp"
27#include "Bond/bond.hpp"
28#include "Tesselation/BoundaryTriangleSet.hpp"
29#include "Box.hpp"
30#include "Element/element.hpp"
31#include "CodePatterns/Info.hpp"
32#include "CodePatterns/Log.hpp"
33#include "CodePatterns/Verbose.hpp"
34#include "Descriptors/AtomOfMoleculeSelectionDescriptor.hpp"
35#include "Descriptors/MoleculeFormulaDescriptor.hpp"
36#include "Descriptors/MoleculeOfAtomSelectionDescriptor.hpp"
37#include "Formula.hpp"
38#include "LinearAlgebra/Vector.hpp"
39#include "LinearAlgebra/RealSpaceMatrix.hpp"
40#include "molecule.hpp"
41#include "Tesselation/tesselation.hpp"
42#include "Tesselation/tesselationhelpers.hpp"
43#include "Tesselation/triangleintersectionlist.hpp"
44#include "World.hpp"
45#include "WorldTime.hpp"
46
47#include "analysis_correlation.hpp"
48
49/** Calculates the dipole vector of a given atomSet.
50 *
51 * Note that we use the following procedure as rule of thumb:
52 * -# go through every bond of the atom
53 * -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$
54 * -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
55 * -# sum up all vectors
56 * -# finally, divide by the number of summed vectors
57 *
58 * @param atomsbegin begin iterator of atomSet
59 * @param atomsend end iterator of atomset
60 * @return dipole vector
61 */
62Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
63{
64 Vector DipoleVector;
65 size_t SumOfVectors = 0;
66 // go through all atoms
67 for (molecule::const_iterator atomiter = atomsbegin;
68 atomiter != atomsend;
69 ++atomiter) {
70 // go through all bonds
71 const BondList& ListOfBonds = (*atomiter)->getListOfBonds();
72 ASSERT(ListOfBonds.begin() != ListOfBonds.end(),
73 "getDipole() - no bonds in molecule!");
74 for (BondList::const_iterator bonditer = ListOfBonds.begin();
75 bonditer != ListOfBonds.end();
76 ++bonditer) {
77 const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
78 if (Otheratom->getId() > (*atomiter)->getId()) {
79 const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
80 -Otheratom->getType()->getElectronegativity();
81 Vector BondDipoleVector = (*atomiter)->getPosition() - Otheratom->getPosition();
82 // DeltaEN is always positive, gives correct orientation of vector
83 BondDipoleVector.Normalize();
84 BondDipoleVector *= DeltaEN;
85 LOG(3,"INFO: Dipole vector from bond " << **bonditer << " is " << BondDipoleVector);
86 DipoleVector += BondDipoleVector;
87 SumOfVectors++;
88 }
89 }
90 }
91 LOG(3,"INFO: Sum over all bond dipole vectors is "
92 << DipoleVector << " with " << SumOfVectors << " in total.");
93 if (SumOfVectors != 0)
94 DipoleVector *= 1./(double)SumOfVectors;
95 LOG(1, "Resulting dipole vector is " << DipoleVector);
96
97 return DipoleVector;
98};
99
100/** Calculate minimum and maximum amount of trajectory steps by going through given atomic trajectories.
101 * \param vector of atoms whose trajectories to check for [min,max]
102 * \return range with [min, max]
103 */
104range<size_t> getMaximumTrajectoryBounds(const std::vector<atom *> &atoms)
105{
106 // get highest trajectory size
107 LOG(0,"STATUS: Retrieving maximum amount of time steps ...");
108 if (atoms.size() == 0)
109 return range<size_t>(0,0);
110 size_t max_timesteps = std::numeric_limits<size_t>::min();
111 size_t min_timesteps = std::numeric_limits<size_t>::max();
112 BOOST_FOREACH(atom *_atom, atoms) {
113 if (_atom->getTrajectorySize() > max_timesteps)
114 max_timesteps = _atom->getTrajectorySize();
115 if (_atom->getTrajectorySize() < min_timesteps)
116 min_timesteps = _atom->getTrajectorySize();
117 }
118 LOG(1,"INFO: Minimum number of time steps found is " << min_timesteps);
119 LOG(1,"INFO: Maximum number of time steps found is " << max_timesteps);
120
121 return range<size_t>(min_timesteps, max_timesteps);
122}
123
124/** Calculates the angular dipole zero orientation from current time step.
125 * \param molecules vector of molecules to calculate dipoles of
126 * \return map with orientation vector for each atomic id given in \a atoms.
127 */
128std::map<atomId_t, Vector> CalculateZeroAngularDipole(const std::vector<molecule *> &molecules)
129{
130 // get zero orientation for each molecule.
131 LOG(0,"STATUS: Calculating dipoles for current time step ...");
132 std::map<atomId_t, Vector> ZeroVector;
133 BOOST_FOREACH(molecule *_mol, molecules) {
134 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
135 for(molecule::const_iterator iter = _mol->begin(); iter != _mol->end(); ++iter)
136 ZeroVector[(*iter)->getId()] = Dipole;
137 LOG(2,"INFO: Zero alignment for molecule " << _mol->getId() << " is " << Dipole);
138 }
139 LOG(1,"INFO: We calculated zero orientation for a total of " << molecules.size() << " molecule(s).");
140
141 return ZeroVector;
142}
143
144/** Calculates the dipole angular correlation for given molecule type.
145 * Calculate the change of the dipole orientation angle over time.
146 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
147 * Angles are given in degrees.
148 * \param &atoms list of atoms of the molecules taking part (Note: molecules may
149 * change over time as bond structure is recalculated, hence we need the atoms)
150 * \param timestep time step to calculate angular correlation for (relative to
151 * \a ZeroVector)
152 * \param ZeroVector map with Zero orientation vector for each atom in \a atoms.
153 * \param DontResetTime don't reset time to old value (triggers re-creation of bond system)
154 * \return Map of doubles with values the pair of the two atoms.
155 */
156DipoleAngularCorrelationMap *DipoleAngularCorrelation(
157 const Formula &DipoleFormula,
158 const size_t timestep,
159 const std::map<atomId_t, Vector> &ZeroVector,
160 const enum ResetWorldTime DoTimeReset
161 )
162{
163 Info FunctionInfo(__func__);
164 DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
165
166 unsigned int oldtime = 0;
167 if (DoTimeReset == DoResetTime) {
168 // store original time step
169 oldtime = WorldTime::getTime();
170 }
171
172 // set time step
173 LOG(0,"STATUS: Stepping onto to time step " << timestep << ".");
174 World::getInstance().setTime(timestep);
175
176 // get all molecules for this time step
177 World::getInstance().clearMoleculeSelection();
178 World::getInstance().selectAllMolecules(MoleculeByFormula(DipoleFormula));
179 std::vector<molecule *> molecules = World::getInstance().getSelectedMolecules();
180 LOG(1,"INFO: There are " << molecules.size() << " molecules for time step " << timestep << ".");
181
182 // calculate dipoles for each
183 LOG(0,"STATUS: Calculating dipoles for time step " << timestep << " ...");
184 size_t i=0;
185 size_t Counter_rejections = 0;
186 BOOST_FOREACH(molecule *_mol, molecules) {
187 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
188 LOG(3,"INFO: Dipole vector at time step " << timestep << " for for molecule "
189 << _mol->getId() << " is " << Dipole);
190 // check that all atoms are valid (zeroVector known)
191 molecule::const_iterator iter = _mol->begin();
192 for(; iter != _mol->end(); ++iter) {
193 if (!ZeroVector.count((*iter)->getId()))
194 break;
195 }
196 if (iter != _mol->end()) {
197 ELOG(2, "Skipping molecule " << _mol->getName() << " as not all atoms have a valid zeroVector.");
198 ++Counter_rejections;
199 continue;
200 } else
201 iter = _mol->begin();
202 std::map<atomId_t, Vector>::const_iterator zeroValue = ZeroVector.find((*iter)->getId()); //due to iter is const
203 double angle = 0.;
204 LOG(2, "INFO: ZeroVector of first atom " << **iter << " is "
205 << zeroValue->second << ".");
206 LOG(4, "INFO: Squared norm of difference vector is "
207 << (zeroValue->second - Dipole).NormSquared() << ".");
208 if ((zeroValue->second - Dipole).NormSquared() > MYEPSILON)
209 angle = Dipole.Angle(zeroValue->second) * (180./M_PI);
210 else
211 LOG(2, "INFO: Both vectors (almost) coincide, numerically unstable, angle set to zero.");
212 LOG(1,"INFO: Resulting relative angle for molecule " << _mol->getName()
213 << " is " << angle << ".");
214 outmap->insert ( make_pair (angle, *iter ) );
215 ++i;
216 }
217 ASSERT(Counter_rejections <= molecules.size(),
218 "DipoleAngularCorrelation() - more rejections ("+toString(Counter_rejections)
219 +") than there are molecules ("+toString(molecules.size())+").");
220 LOG(1,"INFO: " << Counter_rejections << " molecules have been rejected in time step " << timestep << ".");
221
222 LOG(0,"STATUS: Done with calculating dipoles.");
223
224 if (DoTimeReset == DoResetTime) {
225 // re-set to original time step again
226 World::getInstance().setTime(oldtime);
227 }
228
229 // and return results
230 return outmap;
231};
232
233/** Calculates the dipole correlation for given molecule type.
234 * I.e. we calculate how the angle between any two given dipoles in the
235 * systems behaves. Sort of pair correlation but distance is replaced by
236 * the orientation distance, i.e. an angle.
237 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
238 * Angles are given in degrees.
239 * \param *molecules vector of molecules
240 * \return Map of doubles with values the pair of the two atoms.
241 */
242DipoleCorrelationMap *DipoleCorrelation(std::vector<molecule *> &molecules)
243{
244 Info FunctionInfo(__func__);
245 DipoleCorrelationMap *outmap = new DipoleCorrelationMap;
246// double distance = 0.;
247// Box &domain = World::getInstance().getDomain();
248//
249 if (molecules.empty()) {
250 ELOG(1, "No molecule given.");
251 return outmap;
252 }
253
254 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin();
255 MolWalker != molecules.end(); ++MolWalker) {
256 LOG(2, "INFO: Current molecule is " << (*MolWalker)->getId() << ".");
257 const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
258 std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker;
259 for (++MolOtherWalker;
260 MolOtherWalker != molecules.end();
261 ++MolOtherWalker) {
262 LOG(2, "INFO: Current other molecule is " << (*MolOtherWalker)->getId() << ".");
263 const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
264 const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
265 LOG(1, "Angle is " << angle << ".");
266 outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
267 }
268 }
269 return outmap;
270};
271
272
273/** Calculates the pair correlation between given elements.
274 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
275 * \param *molecules vector of molecules
276 * \param &elements vector of elements to correlate
277 * \return Map of doubles with values the pair of the two atoms.
278 */
279PairCorrelationMap *PairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements)
280{
281 Info FunctionInfo(__func__);
282 PairCorrelationMap *outmap = new PairCorrelationMap;
283 double distance = 0.;
284 Box &domain = World::getInstance().getDomain();
285
286 if (molecules.empty()) {
287 ELOG(1, "No molecule given.");
288 return outmap;
289 }
290 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
291 (*MolWalker)->doCountAtoms();
292
293 // create all possible pairs of elements
294 set <pair<const element *,const element *> > PairsOfElements;
295 if (elements.size() >= 2) {
296 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
297 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
298 if (type1 != type2) {
299 PairsOfElements.insert( make_pair(*type1,*type2) );
300 LOG(1, "Creating element pair " << *(*type1) << " and " << *(*type2) << ".");
301 }
302 } else if (elements.size() == 1) { // one to all are valid
303 const element *elemental = *elements.begin();
304 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
305 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
306 } else { // all elements valid
307 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
308 }
309
310 outmap = new PairCorrelationMap;
311 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
312 LOG(2, "Current molecule is " << (*MolWalker)->getName() << ".");
313 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
314 LOG(3, "Current atom is " << **iter << ".");
315 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
316 LOG(2, "Current other molecule is " << (*MolOtherWalker)->getName() << ".");
317 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
318 LOG(3, "Current otheratom is " << **runner << ".");
319 if ((*iter)->getId() < (*runner)->getId()){
320 for (set <pair<const element *, const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
321 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
322 distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition());
323 //LOG(1, "Inserting " << *(*iter) << " and " << *(*runner));
324 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
325 }
326 }
327 }
328 }
329 }
330 }
331 return outmap;
332};
333
334/** Calculates the pair correlation between given elements.
335 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
336 * \param *molecules list of molecules structure
337 * \param &elements vector of elements to correlate
338 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
339 * \return Map of doubles with values the pair of the two atoms.
340 */
341PairCorrelationMap *PeriodicPairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const int ranges[NDIM] )
342{
343 Info FunctionInfo(__func__);
344 PairCorrelationMap *outmap = new PairCorrelationMap;
345 double distance = 0.;
346 int n[NDIM];
347 Vector checkX;
348 Vector periodicX;
349 int Othern[NDIM];
350 Vector checkOtherX;
351 Vector periodicOtherX;
352
353 if (molecules.empty()) {
354 ELOG(1, "No molecule given.");
355 return outmap;
356 }
357 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
358 (*MolWalker)->doCountAtoms();
359
360 // create all possible pairs of elements
361 set <pair<const element *,const element *> > PairsOfElements;
362 if (elements.size() >= 2) {
363 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
364 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
365 if (type1 != type2) {
366 PairsOfElements.insert( make_pair(*type1,*type2) );
367 LOG(1, "Creating element pair " << *(*type1) << " and " << *(*type2) << ".");
368 }
369 } else if (elements.size() == 1) { // one to all are valid
370 const element *elemental = *elements.begin();
371 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
372 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
373 } else { // all elements valid
374 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
375 }
376
377 outmap = new PairCorrelationMap;
378 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
379 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
380 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
381 LOG(2, "Current molecule is " << *MolWalker << ".");
382 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
383 LOG(3, "Current atom is " << **iter << ".");
384 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
385 // go through every range in xyz and get distance
386 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
387 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
388 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
389 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
390 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
391 LOG(2, "Current other molecule is " << *MolOtherWalker << ".");
392 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
393 LOG(3, "Current otheratom is " << **runner << ".");
394 if ((*iter)->getId() < (*runner)->getId()){
395 for (set <pair<const element *,const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
396 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
397 periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3
398 // go through every range in xyz and get distance
399 for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++)
400 for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++)
401 for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) {
402 checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX);
403 distance = checkX.distance(checkOtherX);
404 //LOG(1, "Inserting " << *(*iter) << " and " << *(*runner));
405 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
406 }
407 }
408 }
409 }
410 }
411 }
412 }
413 }
414
415 return outmap;
416};
417
418/** Calculates the distance (pair) correlation between a given element and a point.
419 * \param *molecules list of molecules structure
420 * \param &elements vector of elements to correlate with point
421 * \param *point vector to the correlation point
422 * \return Map of dobules with values as pairs of atom and the vector
423 */
424CorrelationToPointMap *CorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point )
425{
426 Info FunctionInfo(__func__);
427 CorrelationToPointMap *outmap = new CorrelationToPointMap;
428 double distance = 0.;
429 Box &domain = World::getInstance().getDomain();
430
431 if (molecules.empty()) {
432 LOG(1, "No molecule given.");
433 return outmap;
434 }
435 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
436 (*MolWalker)->doCountAtoms();
437 outmap = new CorrelationToPointMap;
438 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
439 LOG(2, "Current molecule is " << *MolWalker << ".");
440 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
441 LOG(3, "Current atom is " << **iter << ".");
442 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
443 if ((*type == NULL) || ((*iter)->getType() == *type)) {
444 distance = domain.periodicDistance((*iter)->getPosition(),*point);
445 LOG(4, "Current distance is " << distance << ".");
446 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> ((*iter), point) ) );
447 }
448 }
449 }
450
451 return outmap;
452};
453
454/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
455 * \param *molecules list of molecules structure
456 * \param &elements vector of elements to correlate to point
457 * \param *point vector to the correlation point
458 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
459 * \return Map of dobules with values as pairs of atom and the vector
460 */
461CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point, const int ranges[NDIM] )
462{
463 Info FunctionInfo(__func__);
464 CorrelationToPointMap *outmap = new CorrelationToPointMap;
465 double distance = 0.;
466 int n[NDIM];
467 Vector periodicX;
468 Vector checkX;
469
470 if (molecules.empty()) {
471 LOG(1, "No molecule given.");
472 return outmap;
473 }
474 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
475 (*MolWalker)->doCountAtoms();
476 outmap = new CorrelationToPointMap;
477 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
478 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
479 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
480 LOG(2, "Current molecule is " << *MolWalker << ".");
481 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
482 LOG(3, "Current atom is " << **iter << ".");
483 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
484 if ((*type == NULL) || ((*iter)->getType() == *type)) {
485 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
486 // go through every range in xyz and get distance
487 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
488 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
489 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
490 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
491 distance = checkX.distance(*point);
492 LOG(4, "Current distance is " << distance << ".");
493 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> (*iter, point) ) );
494 }
495 }
496 }
497 }
498
499 return outmap;
500};
501
502/** Calculates the distance (pair) correlation between a given element and a surface.
503 * \param *molecules list of molecules structure
504 * \param &elements vector of elements to correlate to surface
505 * \param *Surface pointer to Tesselation class surface
506 * \param *LC LinkedCell structure to quickly find neighbouring atoms
507 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
508 */
509CorrelationToSurfaceMap *CorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC )
510{
511 Info FunctionInfo(__func__);
512 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
513 double distance = 0;
514 class BoundaryTriangleSet *triangle = NULL;
515 Vector centroid;
516
517 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
518 ELOG(1, "No Tesselation, no LinkedCell or no molecule given.");
519 return outmap;
520 }
521 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
522 (*MolWalker)->doCountAtoms();
523 outmap = new CorrelationToSurfaceMap;
524 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
525 LOG(2, "Current molecule is " << (*MolWalker)->name << ".");
526 if ((*MolWalker)->empty())
527 LOG(2, "\t is empty.");
528 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
529 LOG(3, "\tCurrent atom is " << *(*iter) << ".");
530 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
531 if ((*type == NULL) || ((*iter)->getType() == *type)) {
532 TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
533 distance = Intersections.GetSmallestDistance();
534 triangle = Intersections.GetClosestTriangle();
535 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(distance, pair<atom *, BoundaryTriangleSet*> ((*iter), triangle) ) );
536 }
537 }
538 }
539
540 return outmap;
541};
542
543/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
544 * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
545 * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
546 * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
547 * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
548 * \param *molecules list of molecules structure
549 * \param &elements vector of elements to correlate to surface
550 * \param *Surface pointer to Tesselation class surface
551 * \param *LC LinkedCell structure to quickly find neighbouring atoms
552 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
553 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
554 */
555CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC, const int ranges[NDIM] )
556{
557 Info FunctionInfo(__func__);
558 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
559 double distance = 0;
560 class BoundaryTriangleSet *triangle = NULL;
561 Vector centroid;
562 int n[NDIM];
563 Vector periodicX;
564 Vector checkX;
565
566 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
567 LOG(1, "No Tesselation, no LinkedCell or no molecule given.");
568 return outmap;
569 }
570 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
571 (*MolWalker)->doCountAtoms();
572 outmap = new CorrelationToSurfaceMap;
573 double ShortestDistance = 0.;
574 BoundaryTriangleSet *ShortestTriangle = NULL;
575 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
576 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
577 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
578 LOG(2, "Current molecule is " << *MolWalker << ".");
579 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
580 LOG(3, "Current atom is " << **iter << ".");
581 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
582 if ((*type == NULL) || ((*iter)->getType() == *type)) {
583 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
584 // go through every range in xyz and get distance
585 ShortestDistance = -1.;
586 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
587 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
588 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
589 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
590 TriangleIntersectionList Intersections(checkX,Surface,LC);
591 distance = Intersections.GetSmallestDistance();
592 triangle = Intersections.GetClosestTriangle();
593 if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
594 ShortestDistance = distance;
595 ShortestTriangle = triangle;
596 }
597 }
598 // insert
599 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(ShortestDistance, pair<atom *, BoundaryTriangleSet*> (*iter, ShortestTriangle) ) );
600 //LOG(1, "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << ".");
601 }
602 }
603 }
604
605 return outmap;
606};
607
608/** Returns the index of the bin for a given value.
609 * \param value value whose bin to look for
610 * \param BinWidth width of bin
611 * \param BinStart first bin
612 */
613int GetBin ( const double value, const double BinWidth, const double BinStart )
614{
615 //Info FunctionInfo(__func__);
616 int bin =(int) (floor((value - BinStart)/BinWidth));
617 return (bin);
618};
619
620
621/** Adds header part that is unique to BinPairMap.
622 *
623 * @param file stream to print to
624 */
625void OutputCorrelation_Header( ofstream * const file )
626{
627 *file << "\tCount";
628};
629
630/** Prints values stored in BinPairMap iterator.
631 *
632 * @param file stream to print to
633 * @param runner iterator pointing at values to print
634 */
635void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner )
636{
637 *file << runner->second;
638};
639
640
641/** Adds header part that is unique to DipoleAngularCorrelationMap.
642 *
643 * @param file stream to print to
644 */
645void OutputDipoleAngularCorrelation_Header( ofstream * const file )
646{
647 *file << "\tFirstAtomOfMolecule";
648};
649
650/** Prints values stored in DipoleCorrelationMap iterator.
651 *
652 * @param file stream to print to
653 * @param runner iterator pointing at values to print
654 */
655void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner )
656{
657 *file << *(runner->second);
658};
659
660
661/** Adds header part that is unique to DipoleAngularCorrelationMap.
662 *
663 * @param file stream to print to
664 */
665void OutputDipoleCorrelation_Header( ofstream * const file )
666{
667 *file << "\tMolecule";
668};
669
670/** Prints values stored in DipoleCorrelationMap iterator.
671 *
672 * @param file stream to print to
673 * @param runner iterator pointing at values to print
674 */
675void OutputDipoleCorrelation_Value( ofstream * const file, DipoleCorrelationMap::const_iterator &runner )
676{
677 *file << runner->second.first->getId() << "\t" << runner->second.second->getId();
678};
679
680
681/** Adds header part that is unique to PairCorrelationMap.
682 *
683 * @param file stream to print to
684 */
685void OutputPairCorrelation_Header( ofstream * const file )
686{
687 *file << "\tAtom1\tAtom2";
688};
689
690/** Prints values stored in PairCorrelationMap iterator.
691 *
692 * @param file stream to print to
693 * @param runner iterator pointing at values to print
694 */
695void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner )
696{
697 *file << *(runner->second.first) << "\t" << *(runner->second.second);
698};
699
700
701/** Adds header part that is unique to CorrelationToPointMap.
702 *
703 * @param file stream to print to
704 */
705void OutputCorrelationToPoint_Header( ofstream * const file )
706{
707 *file << "\tAtom::x[i]-point.x[i]";
708};
709
710/** Prints values stored in CorrelationToPointMap iterator.
711 *
712 * @param file stream to print to
713 * @param runner iterator pointing at values to print
714 */
715void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner )
716{
717 for (int i=0;i<NDIM;i++)
718 *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
719};
720
721
722/** Adds header part that is unique to CorrelationToSurfaceMap.
723 *
724 * @param file stream to print to
725 */
726void OutputCorrelationToSurface_Header( ofstream * const file )
727{
728 *file << "\tTriangle";
729};
730
731/** Prints values stored in CorrelationToSurfaceMap iterator.
732 *
733 * @param file stream to print to
734 * @param runner iterator pointing at values to print
735 */
736void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner )
737{
738 *file << *(runner->second.first) << "\t" << *(runner->second.second);
739};
Note: See TracBrowser for help on using the repository browser.