source: src/Analysis/analysis_correlation.cpp@ 4b8630

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 4b8630 was 4b8630, checked in by Frederik Heber <heber@…>, 13 years ago

World::setTime() now updates bond structure of system and related changes to DipoleAngularCorrelation.

  • extended regression test Analysis/DipoleAngularCorrelation with xyz example whose bond structure is updated per time step.
  • FIX: DepthFirstSearchAnalysis::operator() did not reset bonds to unused.
  • FIX: DipoleAngularCorrelationAction has to work on atoms not molecules as the latter are subject to changes due to changing bond structure.
  • FIX: DipoleAngularCorrelation() re-calculates current set of molecules from the select atoms and stores first atom in values file, not molecule name.
  • Property mode set to 100644
File size: 30.2 KB
Line 
1/*
2 * Project: MoleCuilder
3 * Description: creates and alters molecular systems
4 * Copyright (C) 2010 University of Bonn. All rights reserved.
5 * Please see the LICENSE file or "Copyright notice" in builder.cpp for details.
6 */
7
8/*
9 * analysis.cpp
10 *
11 * Created on: Oct 13, 2009
12 * Author: heber
13 */
14
15// include config.h
16#ifdef HAVE_CONFIG_H
17#include <config.h>
18#endif
19
20#include "CodePatterns/MemDebug.hpp"
21
22#include <iostream>
23#include <iomanip>
24
25#include "atom.hpp"
26#include "Bond/bond.hpp"
27#include "Tesselation/BoundaryTriangleSet.hpp"
28#include "Box.hpp"
29#include "Element/element.hpp"
30#include "CodePatterns/Info.hpp"
31#include "CodePatterns/Log.hpp"
32#include "CodePatterns/Verbose.hpp"
33#include "Descriptors/MoleculeOfAtomSelectionDescriptor.hpp"
34#include "Formula.hpp"
35#include "LinearAlgebra/Vector.hpp"
36#include "LinearAlgebra/RealSpaceMatrix.hpp"
37#include "molecule.hpp"
38#include "Tesselation/tesselation.hpp"
39#include "Tesselation/tesselationhelpers.hpp"
40#include "Tesselation/triangleintersectionlist.hpp"
41#include "World.hpp"
42#include "WorldTime.hpp"
43
44#include "analysis_correlation.hpp"
45
46/** Calculates the dipole vector of a given atomSet.
47 *
48 * Note that we use the following procedure as rule of thumb:
49 * -# go through every bond of the atom
50 * -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$
51 * -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
52 * -# sum up all vectors
53 * -# finally, divide by the number of summed vectors
54 *
55 * @param atomsbegin begin iterator of atomSet
56 * @param atomsend end iterator of atomset
57 * @return dipole vector
58 */
59Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
60{
61 Vector DipoleVector;
62 size_t SumOfVectors = 0;
63 // go through all atoms
64 for (molecule::const_iterator atomiter = atomsbegin;
65 atomiter != atomsend;
66 ++atomiter) {
67 // go through all bonds
68 const BondList& ListOfBonds = (*atomiter)->getListOfBonds();
69 ASSERT(ListOfBonds.begin() != ListOfBonds.end(),
70 "getDipole() - no bonds in molecule!");
71 for (BondList::const_iterator bonditer = ListOfBonds.begin();
72 bonditer != ListOfBonds.end();
73 ++bonditer) {
74 const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
75 if (Otheratom->getId() > (*atomiter)->getId()) {
76 const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
77 -Otheratom->getType()->getElectronegativity();
78 Vector BondDipoleVector = (*atomiter)->getPosition() - Otheratom->getPosition();
79 // DeltaEN is always positive, gives correct orientation of vector
80 BondDipoleVector.Normalize();
81 BondDipoleVector *= DeltaEN;
82 LOG(3,"INFO: Dipole vector from bond " << **bonditer << " is " << BondDipoleVector);
83 DipoleVector += BondDipoleVector;
84 SumOfVectors++;
85 }
86 }
87 }
88 LOG(3,"INFO: Sum over all bond dipole vectors is "
89 << DipoleVector << " with " << SumOfVectors << " in total.");
90 if (SumOfVectors != 0)
91 DipoleVector *= 1./(double)SumOfVectors;
92 DoLog(1) && (Log() << Verbose(1) << "Resulting dipole vector is " << DipoleVector << std::endl);
93
94 return DipoleVector;
95};
96
97/** Calculates the dipole angular correlation for given molecule type.
98 * Calculate the change of the dipole orientation angle over time.
99 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
100 * Angles are given in degrees.
101 * \param &atoms list of atoms of the molecules taking part (Note: molecules may
102 * change over time as bond structure is recalculated, hence we need the atoms)
103 * \return Map of doubles with values the pair of the two atoms.
104 */
105DipoleAngularCorrelationMap *DipoleAngularCorrelation(std::vector<atom *> &atoms)
106{
107 Info FunctionInfo(__func__);
108 DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
109 std::set<molecule *> molecules;
110
111 // store original time step
112 const unsigned int oldtime = WorldTime::getTime();
113 World::getInstance().setTime(0);
114 // calculate molecules for this time step
115 BOOST_FOREACH(atom *_atom, atoms)
116 molecules.insert(_atom->getMolecule());
117
118 BOOST_FOREACH(atom *_atom, World::getInstance().getAllAtoms())
119 LOG(2, "INFO: Atom " << _atom->getId() << " "
120 << *dynamic_cast<AtomInfo *>(_atom) <<".");
121
122 // get highest trajectory size
123 LOG(0,"STATUS: Retrieving maximum amount of time steps ...");
124 size_t max_timesteps = 0;
125 size_t min_timesteps = -1;
126 BOOST_FOREACH(molecule *_mol, molecules) {
127 for(molecule::const_iterator iter = _mol->begin();
128 iter != _mol->end();
129 ++iter) {
130 if ((*iter)->getTrajectorySize() > max_timesteps)
131 max_timesteps = (*iter)->getTrajectorySize();
132 if (((*iter)->getTrajectorySize() <= max_timesteps) && (min_timesteps == (size_t)-1))
133 min_timesteps = (*iter)->getTrajectorySize();
134 }
135 }
136 LOG(1,"INFO: Minimum number of time steps found is " << min_timesteps);
137 LOG(1,"INFO: Maximum number of time steps found is " << max_timesteps);
138
139 // get zero orientation for each molecule.
140 LOG(0,"STATUS: Calculating dipoles for first time step ...");
141 std::vector<Vector> ZeroVector;
142 ZeroVector.resize(molecules.size(), zeroVec);
143 size_t i=0;
144 BOOST_FOREACH(molecule *_mol, molecules) {
145 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
146 ZeroVector[i] = Dipole;
147 LOG(2,"INFO: Zero alignment for molecule " << _mol->getId() << " is " << ZeroVector[i]);
148 ++i;
149 }
150 LOG(1,"INFO: There is a total of " << i << " molecules.");
151
152 // go through every time step
153 LOG(0,"STATUS: Calculating dipoles of following time steps ...");
154 for (size_t step = 1; step < max_timesteps; ++step) {
155 World::getInstance().setTime(step);
156 // recalculate molecules for this time step
157 molecules.clear();
158 BOOST_FOREACH(atom *_atom, atoms)
159 molecules.insert(_atom->getMolecule());
160 size_t i=0;
161 BOOST_FOREACH(molecule *_mol, molecules) {
162 const Vector Dipole = getDipole(_mol->begin(), _mol->end());
163 LOG(2,"INFO: Dipole vector at time step " << step << " for for molecule " << _mol->getId() << " is " << Dipole);
164 const double angle = Dipole.Angle(ZeroVector[i]) * (180./M_PI);
165 LOG(1,"INFO: Resulting relative angle for molecule " << _mol->getId() << " is " << angle << ".");
166 outmap->insert ( make_pair (angle, *_mol->begin() ) );
167 ++i;
168 }
169 }
170
171
172 // set original time step again
173 World::getInstance().setTime(oldtime);
174 LOG(0,"STATUS: Done.");
175
176 // and return results
177 return outmap;
178};
179
180/** Calculates the dipole correlation for given molecule type.
181 * I.e. we calculate how the angle between any two given dipoles in the
182 * systems behaves. Sort of pair correlation but distance is replaced by
183 * the orientation distance, i.e. an angle.
184 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
185 * Angles are given in degrees.
186 * \param *molecules vector of molecules
187 * \return Map of doubles with values the pair of the two atoms.
188 */
189DipoleCorrelationMap *DipoleCorrelation(std::vector<molecule *> &molecules)
190{
191 Info FunctionInfo(__func__);
192 DipoleCorrelationMap *outmap = new DipoleCorrelationMap;
193// double distance = 0.;
194// Box &domain = World::getInstance().getDomain();
195//
196 if (molecules.empty()) {
197 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
198 return outmap;
199 }
200
201 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin();
202 MolWalker != molecules.end(); ++MolWalker) {
203 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is "
204 << (*MolWalker)->getId() << "." << endl);
205 const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
206 std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker;
207 for (++MolOtherWalker;
208 MolOtherWalker != molecules.end();
209 ++MolOtherWalker) {
210 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is "
211 << (*MolOtherWalker)->getId() << "." << endl);
212 const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
213 const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
214 DoLog(1) && (Log() << Verbose(1) << "Angle is " << angle << "." << endl);
215 outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
216 }
217 }
218 return outmap;
219};
220
221
222/** Calculates the pair correlation between given elements.
223 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
224 * \param *molecules vector of molecules
225 * \param &elements vector of elements to correlate
226 * \return Map of doubles with values the pair of the two atoms.
227 */
228PairCorrelationMap *PairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements)
229{
230 Info FunctionInfo(__func__);
231 PairCorrelationMap *outmap = new PairCorrelationMap;
232 double distance = 0.;
233 Box &domain = World::getInstance().getDomain();
234
235 if (molecules.empty()) {
236 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
237 return outmap;
238 }
239 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
240 (*MolWalker)->doCountAtoms();
241
242 // create all possible pairs of elements
243 set <pair<const element *,const element *> > PairsOfElements;
244 if (elements.size() >= 2) {
245 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
246 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
247 if (type1 != type2) {
248 PairsOfElements.insert( make_pair(*type1,*type2) );
249 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
250 }
251 } else if (elements.size() == 1) { // one to all are valid
252 const element *elemental = *elements.begin();
253 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
254 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
255 } else { // all elements valid
256 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
257 }
258
259 outmap = new PairCorrelationMap;
260 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
261 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
262 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
263 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
264 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
265 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
266 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
267 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
268 if ((*iter)->getId() < (*runner)->getId()){
269 for (set <pair<const element *, const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
270 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
271 distance = domain.periodicDistance((*iter)->getPosition(),(*runner)->getPosition());
272 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
273 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
274 }
275 }
276 }
277 }
278 }
279 }
280 return outmap;
281};
282
283/** Calculates the pair correlation between given elements.
284 * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
285 * \param *molecules list of molecules structure
286 * \param &elements vector of elements to correlate
287 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
288 * \return Map of doubles with values the pair of the two atoms.
289 */
290PairCorrelationMap *PeriodicPairCorrelation(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const int ranges[NDIM] )
291{
292 Info FunctionInfo(__func__);
293 PairCorrelationMap *outmap = new PairCorrelationMap;
294 double distance = 0.;
295 int n[NDIM];
296 Vector checkX;
297 Vector periodicX;
298 int Othern[NDIM];
299 Vector checkOtherX;
300 Vector periodicOtherX;
301
302 if (molecules.empty()) {
303 DoeLog(1) && (eLog()<< Verbose(1) <<"No molecule given." << endl);
304 return outmap;
305 }
306 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
307 (*MolWalker)->doCountAtoms();
308
309 // create all possible pairs of elements
310 set <pair<const element *,const element *> > PairsOfElements;
311 if (elements.size() >= 2) {
312 for (vector<const element *>::const_iterator type1 = elements.begin(); type1 != elements.end(); ++type1)
313 for (vector<const element *>::const_iterator type2 = elements.begin(); type2 != elements.end(); ++type2)
314 if (type1 != type2) {
315 PairsOfElements.insert( make_pair(*type1,*type2) );
316 DoLog(1) && (Log() << Verbose(1) << "Creating element pair " << *(*type1) << " and " << *(*type2) << "." << endl);
317 }
318 } else if (elements.size() == 1) { // one to all are valid
319 const element *elemental = *elements.begin();
320 PairsOfElements.insert( pair<const element *,const element*>(elemental,0) );
321 PairsOfElements.insert( pair<const element *,const element*>(0,elemental) );
322 } else { // all elements valid
323 PairsOfElements.insert( pair<element *, element*>((element *)NULL, (element *)NULL) );
324 }
325
326 outmap = new PairCorrelationMap;
327 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++){
328 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
329 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
330 DoLog(2) && (Log()<< Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
331 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
332 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
333 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
334 // go through every range in xyz and get distance
335 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
336 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
337 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
338 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
339 for (std::vector<molecule *>::const_iterator MolOtherWalker = MolWalker; MolOtherWalker != molecules.end(); MolOtherWalker++){
340 DoLog(2) && (Log() << Verbose(2) << "Current other molecule is " << *MolOtherWalker << "." << endl);
341 for (molecule::const_iterator runner = (*MolOtherWalker)->begin(); runner != (*MolOtherWalker)->end(); ++runner) {
342 DoLog(3) && (Log() << Verbose(3) << "Current otheratom is " << **runner << "." << endl);
343 if ((*iter)->getId() < (*runner)->getId()){
344 for (set <pair<const element *,const element *> >::iterator PairRunner = PairsOfElements.begin(); PairRunner != PairsOfElements.end(); ++PairRunner)
345 if ((PairRunner->first == (**iter).getType()) && (PairRunner->second == (**runner).getType())) {
346 periodicOtherX = FullInverseMatrix * ((*runner)->getPosition()); // x now in [0,1)^3
347 // go through every range in xyz and get distance
348 for (Othern[0]=-ranges[0]; Othern[0] <= ranges[0]; Othern[0]++)
349 for (Othern[1]=-ranges[1]; Othern[1] <= ranges[1]; Othern[1]++)
350 for (Othern[2]=-ranges[2]; Othern[2] <= ranges[2]; Othern[2]++) {
351 checkOtherX = FullMatrix * (Vector(Othern[0], Othern[1], Othern[2]) + periodicOtherX);
352 distance = checkX.distance(checkOtherX);
353 //Log() << Verbose(1) <<"Inserting " << *(*iter) << " and " << *(*runner) << endl;
354 outmap->insert ( pair<double, pair <atom *, atom*> > (distance, pair<atom *, atom*> ((*iter), (*runner)) ) );
355 }
356 }
357 }
358 }
359 }
360 }
361 }
362 }
363
364 return outmap;
365};
366
367/** Calculates the distance (pair) correlation between a given element and a point.
368 * \param *molecules list of molecules structure
369 * \param &elements vector of elements to correlate with point
370 * \param *point vector to the correlation point
371 * \return Map of dobules with values as pairs of atom and the vector
372 */
373CorrelationToPointMap *CorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point )
374{
375 Info FunctionInfo(__func__);
376 CorrelationToPointMap *outmap = new CorrelationToPointMap;
377 double distance = 0.;
378 Box &domain = World::getInstance().getDomain();
379
380 if (molecules.empty()) {
381 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
382 return outmap;
383 }
384 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
385 (*MolWalker)->doCountAtoms();
386 outmap = new CorrelationToPointMap;
387 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
388 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
389 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
390 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
391 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
392 if ((*type == NULL) || ((*iter)->getType() == *type)) {
393 distance = domain.periodicDistance((*iter)->getPosition(),*point);
394 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
395 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> ((*iter), point) ) );
396 }
397 }
398 }
399
400 return outmap;
401};
402
403/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
404 * \param *molecules list of molecules structure
405 * \param &elements vector of elements to correlate to point
406 * \param *point vector to the correlation point
407 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
408 * \return Map of dobules with values as pairs of atom and the vector
409 */
410CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Vector *point, const int ranges[NDIM] )
411{
412 Info FunctionInfo(__func__);
413 CorrelationToPointMap *outmap = new CorrelationToPointMap;
414 double distance = 0.;
415 int n[NDIM];
416 Vector periodicX;
417 Vector checkX;
418
419 if (molecules.empty()) {
420 DoLog(1) && (Log() << Verbose(1) <<"No molecule given." << endl);
421 return outmap;
422 }
423 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
424 (*MolWalker)->doCountAtoms();
425 outmap = new CorrelationToPointMap;
426 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
427 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
428 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
429 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
430 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
431 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
432 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
433 if ((*type == NULL) || ((*iter)->getType() == *type)) {
434 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
435 // go through every range in xyz and get distance
436 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
437 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
438 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
439 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
440 distance = checkX.distance(*point);
441 DoLog(4) && (Log() << Verbose(4) << "Current distance is " << distance << "." << endl);
442 outmap->insert ( pair<double, pair<atom *, const Vector*> >(distance, pair<atom *, const Vector*> (*iter, point) ) );
443 }
444 }
445 }
446 }
447
448 return outmap;
449};
450
451/** Calculates the distance (pair) correlation between a given element and a surface.
452 * \param *molecules list of molecules structure
453 * \param &elements vector of elements to correlate to surface
454 * \param *Surface pointer to Tesselation class surface
455 * \param *LC LinkedCell structure to quickly find neighbouring atoms
456 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
457 */
458CorrelationToSurfaceMap *CorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC )
459{
460 Info FunctionInfo(__func__);
461 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
462 double distance = 0;
463 class BoundaryTriangleSet *triangle = NULL;
464 Vector centroid;
465
466 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
467 DoeLog(1) && (eLog()<< Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
468 return outmap;
469 }
470 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
471 (*MolWalker)->doCountAtoms();
472 outmap = new CorrelationToSurfaceMap;
473 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
474 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << (*MolWalker)->name << "." << endl);
475 if ((*MolWalker)->empty())
476 DoLog(2) && (2) && (Log() << Verbose(2) << "\t is empty." << endl);
477 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
478 DoLog(3) && (Log() << Verbose(3) << "\tCurrent atom is " << *(*iter) << "." << endl);
479 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
480 if ((*type == NULL) || ((*iter)->getType() == *type)) {
481 TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
482 distance = Intersections.GetSmallestDistance();
483 triangle = Intersections.GetClosestTriangle();
484 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(distance, pair<atom *, BoundaryTriangleSet*> ((*iter), triangle) ) );
485 }
486 }
487 }
488
489 return outmap;
490};
491
492/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
493 * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
494 * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
495 * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
496 * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
497 * \param *molecules list of molecules structure
498 * \param &elements vector of elements to correlate to surface
499 * \param *Surface pointer to Tesselation class surface
500 * \param *LC LinkedCell structure to quickly find neighbouring atoms
501 * \param ranges[NDIM] interval boundaries for the periodic images to scan also
502 * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
503 */
504CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector<molecule *> &molecules, const std::vector<const element *> &elements, const Tesselation * const Surface, const LinkedCell *LC, const int ranges[NDIM] )
505{
506 Info FunctionInfo(__func__);
507 CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
508 double distance = 0;
509 class BoundaryTriangleSet *triangle = NULL;
510 Vector centroid;
511 int n[NDIM];
512 Vector periodicX;
513 Vector checkX;
514
515 if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
516 DoLog(1) && (Log() << Verbose(1) <<"No Tesselation, no LinkedCell or no molecule given." << endl);
517 return outmap;
518 }
519 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++)
520 (*MolWalker)->doCountAtoms();
521 outmap = new CorrelationToSurfaceMap;
522 double ShortestDistance = 0.;
523 BoundaryTriangleSet *ShortestTriangle = NULL;
524 for (std::vector<molecule *>::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
525 RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
526 RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
527 DoLog(2) && (Log() << Verbose(2) << "Current molecule is " << *MolWalker << "." << endl);
528 for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
529 DoLog(3) && (Log() << Verbose(3) << "Current atom is " << **iter << "." << endl);
530 for (vector<const element *>::const_iterator type = elements.begin(); type != elements.end(); ++type)
531 if ((*type == NULL) || ((*iter)->getType() == *type)) {
532 periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
533 // go through every range in xyz and get distance
534 ShortestDistance = -1.;
535 for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
536 for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
537 for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
538 checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
539 TriangleIntersectionList Intersections(checkX,Surface,LC);
540 distance = Intersections.GetSmallestDistance();
541 triangle = Intersections.GetClosestTriangle();
542 if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
543 ShortestDistance = distance;
544 ShortestTriangle = triangle;
545 }
546 }
547 // insert
548 outmap->insert ( pair<double, pair<atom *, BoundaryTriangleSet*> >(ShortestDistance, pair<atom *, BoundaryTriangleSet*> (*iter, ShortestTriangle) ) );
549 //Log() << Verbose(1) << "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << "." << endl;
550 }
551 }
552 }
553
554 return outmap;
555};
556
557/** Returns the index of the bin for a given value.
558 * \param value value whose bin to look for
559 * \param BinWidth width of bin
560 * \param BinStart first bin
561 */
562int GetBin ( const double value, const double BinWidth, const double BinStart )
563{
564 //Info FunctionInfo(__func__);
565 int bin =(int) (floor((value - BinStart)/BinWidth));
566 return (bin);
567};
568
569
570/** Adds header part that is unique to BinPairMap.
571 *
572 * @param file stream to print to
573 */
574void OutputCorrelation_Header( ofstream * const file )
575{
576 *file << "\tCount";
577};
578
579/** Prints values stored in BinPairMap iterator.
580 *
581 * @param file stream to print to
582 * @param runner iterator pointing at values to print
583 */
584void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner )
585{
586 *file << runner->second;
587};
588
589
590/** Adds header part that is unique to DipoleAngularCorrelationMap.
591 *
592 * @param file stream to print to
593 */
594void OutputDipoleAngularCorrelation_Header( ofstream * const file )
595{
596 *file << "\tFirstAtomOfMolecule";
597};
598
599/** Prints values stored in DipoleCorrelationMap iterator.
600 *
601 * @param file stream to print to
602 * @param runner iterator pointing at values to print
603 */
604void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner )
605{
606 *file << runner->second->getName();
607};
608
609
610/** Adds header part that is unique to DipoleAngularCorrelationMap.
611 *
612 * @param file stream to print to
613 */
614void OutputDipoleCorrelation_Header( ofstream * const file )
615{
616 *file << "\tMolecule";
617};
618
619/** Prints values stored in DipoleCorrelationMap iterator.
620 *
621 * @param file stream to print to
622 * @param runner iterator pointing at values to print
623 */
624void OutputDipoleCorrelation_Value( ofstream * const file, DipoleCorrelationMap::const_iterator &runner )
625{
626 *file << runner->second.first->getId() << "\t" << runner->second.second->getId();
627};
628
629
630/** Adds header part that is unique to PairCorrelationMap.
631 *
632 * @param file stream to print to
633 */
634void OutputPairCorrelation_Header( ofstream * const file )
635{
636 *file << "\tAtom1\tAtom2";
637};
638
639/** Prints values stored in PairCorrelationMap iterator.
640 *
641 * @param file stream to print to
642 * @param runner iterator pointing at values to print
643 */
644void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner )
645{
646 *file << *(runner->second.first) << "\t" << *(runner->second.second);
647};
648
649
650/** Adds header part that is unique to CorrelationToPointMap.
651 *
652 * @param file stream to print to
653 */
654void OutputCorrelationToPoint_Header( ofstream * const file )
655{
656 *file << "\tAtom::x[i]-point.x[i]";
657};
658
659/** Prints values stored in CorrelationToPointMap iterator.
660 *
661 * @param file stream to print to
662 * @param runner iterator pointing at values to print
663 */
664void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner )
665{
666 for (int i=0;i<NDIM;i++)
667 *file << "\t" << setprecision(8) << (runner->second.first->at(i) - runner->second.second->at(i));
668};
669
670
671/** Adds header part that is unique to CorrelationToSurfaceMap.
672 *
673 * @param file stream to print to
674 */
675void OutputCorrelationToSurface_Header( ofstream * const file )
676{
677 *file << "\tTriangle";
678};
679
680/** Prints values stored in CorrelationToSurfaceMap iterator.
681 *
682 * @param file stream to print to
683 * @param runner iterator pointing at values to print
684 */
685void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner )
686{
687 *file << *(runner->second.first) << "\t" << *(runner->second.second);
688};
Note: See TracBrowser for help on using the repository browser.