/* * Project: MoleCuilder * Description: creates and alters molecular systems * Copyright (C) 2010-2012 University of Bonn. All rights reserved. * * * This file is part of MoleCuilder. * * MoleCuilder is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 2 of the License, or * (at your option) any later version. * * MoleCuilder is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with MoleCuilder. If not, see . */ /* * analysis.cpp * * Created on: Oct 13, 2009 * Author: heber */ // include config.h #ifdef HAVE_CONFIG_H #include #endif #include "CodePatterns/MemDebug.hpp" #include #include #include #include #include "Atom/atom.hpp" #include "Bond/bond.hpp" #include "Tesselation/BoundaryTriangleSet.hpp" #include "Box.hpp" #include "Element/element.hpp" #include "CodePatterns/Info.hpp" #include "CodePatterns/Log.hpp" #include "CodePatterns/Verbose.hpp" #include "Descriptors/AtomOfMoleculeSelectionDescriptor.hpp" #include "Descriptors/MoleculeFormulaDescriptor.hpp" #include "Descriptors/MoleculeOfAtomSelectionDescriptor.hpp" #include "Formula.hpp" #include "LinearAlgebra/Vector.hpp" #include "LinearAlgebra/RealSpaceMatrix.hpp" #include "LinkedCell/LinkedCell_View.hpp" #include "molecule.hpp" #include "Tesselation/tesselation.hpp" #include "Tesselation/tesselationhelpers.hpp" #include "Tesselation/triangleintersectionlist.hpp" #include "World.hpp" #include "WorldTime.hpp" #include "analysis_correlation.hpp" /** Calculates the dipole vector of a given atomSet. * * Note that we use the following procedure as rule of thumb: * -# go through every bond of the atom * -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$ * -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element * -# sum up all vectors * -# finally, divide by the number of summed vectors * * @param atomsbegin begin iterator of atomSet * @param atomsend end iterator of atomset * @return dipole vector */ Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend) { Vector DipoleVector; size_t SumOfVectors = 0; Box &domain = World::getInstance().getDomain(); // go through all atoms for (molecule::const_iterator atomiter = atomsbegin; atomiter != atomsend; ++atomiter) { // go through all bonds const BondList& ListOfBonds = (*atomiter)->getListOfBonds(); ASSERT(ListOfBonds.begin() != ListOfBonds.end(), "getDipole() - no bonds in molecule!"); for (BondList::const_iterator bonditer = ListOfBonds.begin(); bonditer != ListOfBonds.end(); ++bonditer) { const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter); if (Otheratom->getId() > (*atomiter)->getId()) { const double DeltaEN = (*atomiter)->getType()->getElectronegativity() -Otheratom->getType()->getElectronegativity(); // get distance and correct for boundary conditions Vector BondDipoleVector = domain.periodicDistanceVector( (*atomiter)->getPosition(), Otheratom->getPosition()); // DeltaEN is always positive, gives correct orientation of vector BondDipoleVector.Normalize(); BondDipoleVector *= DeltaEN; LOG(3,"INFO: Dipole vector from bond " << **bonditer << " is " << BondDipoleVector); DipoleVector += BondDipoleVector; SumOfVectors++; } } } LOG(3,"INFO: Sum over all bond dipole vectors is " << DipoleVector << " with " << SumOfVectors << " in total."); if (SumOfVectors != 0) DipoleVector *= 1./(double)SumOfVectors; LOG(2, "INFO: Resulting dipole vector is " << DipoleVector); return DipoleVector; }; /** Calculate minimum and maximum amount of trajectory steps by going through given atomic trajectories. * \param vector of atoms whose trajectories to check for [min,max] * \return range with [min, max] */ range getMaximumTrajectoryBounds(const std::vector &atoms) { // get highest trajectory size LOG(0,"STATUS: Retrieving maximum amount of time steps ..."); if (atoms.size() == 0) return range(0,0); size_t max_timesteps = std::numeric_limits::min(); size_t min_timesteps = std::numeric_limits::max(); BOOST_FOREACH(atom *_atom, atoms) { if (_atom->getTrajectorySize() > max_timesteps) max_timesteps = _atom->getTrajectorySize(); if (_atom->getTrajectorySize() < min_timesteps) min_timesteps = _atom->getTrajectorySize(); } LOG(1,"INFO: Minimum number of time steps found is " << min_timesteps); LOG(1,"INFO: Maximum number of time steps found is " << max_timesteps); return range(min_timesteps, max_timesteps); } /** Calculates the angular dipole zero orientation from current time step. * \param molecules vector of molecules to calculate dipoles of * \return map with orientation vector for each atomic id given in \a atoms. */ std::map CalculateZeroAngularDipole(const std::vector &molecules) { // get zero orientation for each molecule. LOG(0,"STATUS: Calculating dipoles for current time step ..."); std::map ZeroVector; BOOST_FOREACH(molecule *_mol, molecules) { const Vector Dipole = getDipole(_mol->begin(), _mol->end()); for(molecule::const_iterator iter = _mol->begin(); iter != _mol->end(); ++iter) ZeroVector[(*iter)->getId()] = Dipole; LOG(2,"INFO: Zero alignment for molecule " << _mol->getId() << " is " << Dipole); } LOG(1,"INFO: We calculated zero orientation for a total of " << molecules.size() << " molecule(s)."); return ZeroVector; } /** Calculates the dipole angular correlation for given molecule type. * Calculate the change of the dipole orientation angle over time. * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si)) * Angles are given in degrees. * \param &atoms list of atoms of the molecules taking part (Note: molecules may * change over time as bond structure is recalculated, hence we need the atoms) * \param timestep time step to calculate angular correlation for (relative to * \a ZeroVector) * \param ZeroVector map with Zero orientation vector for each atom in \a atoms. * \param DontResetTime don't reset time to old value (triggers re-creation of bond system) * \return Map of doubles with values the pair of the two atoms. */ DipoleAngularCorrelationMap *DipoleAngularCorrelation( const Formula &DipoleFormula, const size_t timestep, const std::map &ZeroVector, const enum ResetWorldTime DoTimeReset ) { Info FunctionInfo(__func__); DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap; unsigned int oldtime = 0; if (DoTimeReset == DoResetTime) { // store original time step oldtime = WorldTime::getTime(); } // set time step LOG(0,"STATUS: Stepping onto to time step " << timestep << "."); World::getInstance().setTime(timestep); // get all molecules for this time step World::getInstance().clearMoleculeSelection(); World::getInstance().selectAllMolecules(MoleculeByFormula(DipoleFormula)); std::vector molecules = World::getInstance().getSelectedMolecules(); LOG(1,"INFO: There are " << molecules.size() << " molecules for time step " << timestep << "."); // calculate dipoles for each LOG(0,"STATUS: Calculating dipoles for time step " << timestep << " ..."); size_t i=0; size_t Counter_rejections = 0; BOOST_FOREACH(molecule *_mol, molecules) { const Vector Dipole = getDipole(_mol->begin(), _mol->end()); LOG(3,"INFO: Dipole vector at time step " << timestep << " for for molecule " << _mol->getId() << " is " << Dipole); // check that all atoms are valid (zeroVector known) molecule::const_iterator iter = _mol->begin(); for(; iter != _mol->end(); ++iter) { if (!ZeroVector.count((*iter)->getId())) break; } if (iter != _mol->end()) { ELOG(2, "Skipping molecule " << _mol->getName() << " as not all atoms have a valid zeroVector."); ++Counter_rejections; continue; } else iter = _mol->begin(); std::map::const_iterator zeroValue = ZeroVector.find((*iter)->getId()); //due to iter is const double angle = 0.; LOG(2, "INFO: ZeroVector of first atom " << **iter << " is " << zeroValue->second << "."); LOG(4, "INFO: Squared norm of difference vector is " << (zeroValue->second - Dipole).NormSquared() << "."); if ((zeroValue->second - Dipole).NormSquared() > MYEPSILON) angle = Dipole.Angle(zeroValue->second) * (180./M_PI); else LOG(2, "INFO: Both vectors (almost) coincide, numerically unstable, angle set to zero."); LOG(1,"INFO: Resulting relative angle for molecule " << _mol->getName() << " is " << angle << "."); outmap->insert ( std::make_pair (angle, *iter ) ); ++i; } ASSERT(Counter_rejections <= molecules.size(), "DipoleAngularCorrelation() - more rejections ("+toString(Counter_rejections) +") than there are molecules ("+toString(molecules.size())+")."); LOG(1,"INFO: " << Counter_rejections << " molecules have been rejected in time step " << timestep << "."); LOG(0,"STATUS: Done with calculating dipoles."); if (DoTimeReset == DoResetTime) { // re-set to original time step again World::getInstance().setTime(oldtime); } // and return results return outmap; }; /** Calculates the dipole correlation for given molecule type. * I.e. we calculate how the angle between any two given dipoles in the * systems behaves. Sort of pair correlation but distance is replaced by * the orientation distance, i.e. an angle. * Note given element order is unimportant (i.e. g(Si, O) === g(O, Si)) * Angles are given in degrees. * \param *molecules vector of molecules * \return Map of doubles with values the pair of the two atoms. */ DipoleCorrelationMap *DipoleCorrelation(std::vector &molecules) { Info FunctionInfo(__func__); DipoleCorrelationMap *outmap = new DipoleCorrelationMap; // double distance = 0.; // Box &domain = World::getInstance().getDomain(); // if (molecules.empty()) { ELOG(1, "No molecule given."); return outmap; } for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); ++MolWalker) { LOG(2, "INFO: Current molecule is " << (*MolWalker)->getId() << "."); const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end()); std::vector::const_iterator MolOtherWalker = MolWalker; for (++MolOtherWalker; MolOtherWalker != molecules.end(); ++MolOtherWalker) { LOG(2, "INFO: Current other molecule is " << (*MolOtherWalker)->getId() << "."); const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end()); const double angle = Dipole.Angle(OtherDipole) * (180./M_PI); LOG(1, "Angle is " << angle << "."); outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) ); } } return outmap; }; /** Calculates the pair correlation between given atom sets. * * Note we correlate each of the \a &atomsfirst with each of the second set * \a &atoms_second. However, we are aware of double counting. If an atom is * in either set, the pair is counted only once. * * \param &atoms_first vector of atoms * \param &atoms_second vector of atoms * \param max_distance maximum distance for the correlation * \return Map of doubles with values the pair of the two atoms. */ PairCorrelationMap *PairCorrelation( const World::AtomComposite &atoms_first, const World::AtomComposite &atoms_second, const double max_distance) { Info FunctionInfo(__func__); PairCorrelationMap *outmap = new PairCorrelationMap; //double distance = 0.; Box &domain = World::getInstance().getDomain(); if (atoms_first.empty() || atoms_second.empty()) { ELOG(1, "No atoms given."); return outmap; } //!> typedef for an unsorted container, (output) compatible with STL algorithms typedef std::vector LinkedVector; // create intersection (to know when to check for double-counting) LinkedVector intersected_atoms(atoms_second.size(), NULL); LinkedVector::iterator intersected_atoms_end = std::set_intersection( atoms_first.begin(),atoms_first.end(), atoms_second.begin(), atoms_second.end(), intersected_atoms.begin()); const LinkedCell::LinkedList intersected_atoms_set(intersected_atoms.begin(), intersected_atoms.end()); // create map outmap = new PairCorrelationMap; // get linked cell view LinkedCell::LinkedCell_View LC = World::getInstance().getLinkedCell(max_distance); // convert second to _sorted_ set LinkedCell::LinkedList atoms_second_set(atoms_second.begin(), atoms_second.end()); LOG(2, "INFO: first set has " << atoms_first.size() << " and second set has " << atoms_second_set.size() << " atoms."); // fill map for (World::AtomComposite::const_iterator iter = atoms_first.begin(); iter != atoms_first.end(); ++iter) { const TesselPoint * const Walker = *iter; LOG(3, "INFO: Current point is " << Walker->getName() << "."); // obtain all possible neighbors (that is a sorted set) LinkedCell::LinkedList ListOfNeighbors = LC.getPointsInsideSphere( max_distance, Walker->getPosition()); LOG(2, "INFO: There are " << ListOfNeighbors.size() << " neighbors."); // create intersection with second set // NOTE: STL algorithms do mostly not work on sorted container because reassignment // of a value may also require changing its position. LinkedVector intersected_set(atoms_second.size(), NULL); LinkedVector::iterator intersected_end = std::set_intersection( ListOfNeighbors.begin(),ListOfNeighbors.end(), atoms_second_set.begin(), atoms_second_set.end(), intersected_set.begin()); // count remaining elements LOG(2, "INFO: Intersection with second set has " << int(intersected_end - intersected_set.begin()) << " elements."); // we have some possible candidates, go through each for (LinkedVector::const_iterator neighboriter = intersected_set.begin(); neighboriter != intersected_end; ++neighboriter) { const TesselPoint * const OtherWalker = (*neighboriter); LinkedCell::LinkedList::const_iterator equaliter = intersected_atoms_set.find(OtherWalker); if ((equaliter != intersected_atoms_set.end()) && (OtherWalker <= Walker)) { // present in both sets, assure that we are larger continue; } LOG(3, "INFO: Current other point is " << *OtherWalker << "."); const double distance = domain.periodicDistance(OtherWalker->getPosition(),Walker->getPosition()); LOG(3, "INFO: Resulting distance is " << distance << "."); outmap->insert ( std::pair > ( distance, std::make_pair (Walker, OtherWalker) ) ); } } // and return return outmap; }; /** Calculates the distance (pair) correlation between a given element and a point. * \param *molecules list of molecules structure * \param &elements vector of elements to correlate with point * \param *point vector to the correlation point * \return Map of dobules with values as pairs of atom and the vector */ CorrelationToPointMap *CorrelationToPoint(std::vector &molecules, const std::vector &elements, const Vector *point ) { Info FunctionInfo(__func__); CorrelationToPointMap *outmap = new CorrelationToPointMap; double distance = 0.; Box &domain = World::getInstance().getDomain(); if (molecules.empty()) { LOG(1, "No molecule given."); return outmap; } outmap = new CorrelationToPointMap; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) { LOG(2, "Current molecule is " << *MolWalker << "."); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { LOG(3, "Current atom is " << **iter << "."); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->getType() == *type)) { distance = domain.periodicDistance((*iter)->getPosition(),*point); LOG(4, "Current distance is " << distance << "."); outmap->insert ( std::pair >( distance, std::pair ( (*iter), point) ) ); } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element, all its periodic images and a point. * \param *molecules list of molecules structure * \param &elements vector of elements to correlate to point * \param *point vector to the correlation point * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of dobules with values as pairs of atom and the vector */ CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector &molecules, const std::vector &elements, const Vector *point, const int ranges[NDIM] ) { Info FunctionInfo(__func__); CorrelationToPointMap *outmap = new CorrelationToPointMap; double distance = 0.; int n[NDIM]; Vector periodicX; Vector checkX; if (molecules.empty()) { LOG(1, "No molecule given."); return outmap; } outmap = new CorrelationToPointMap; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) { RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM(); RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv(); LOG(2, "Current molecule is " << *MolWalker << "."); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { LOG(3, "Current atom is " << **iter << "."); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->getType() == *type)) { periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3 // go through every range in xyz and get distance for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX); distance = checkX.distance(*point); LOG(4, "Current distance is " << distance << "."); outmap->insert ( std::pair >( distance, std::pair ( *iter, point) ) ); } } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element and a surface. * \param *molecules list of molecules structure * \param &elements vector of elements to correlate to surface * \param *Surface pointer to Tesselation class surface * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest */ CorrelationToSurfaceMap *CorrelationToSurface(std::vector &molecules, const std::vector &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC ) { Info FunctionInfo(__func__); CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap; double distance = 0; class BoundaryTriangleSet *triangle = NULL; Vector centroid; if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) { ELOG(1, "No Tesselation, no LinkedCell or no molecule given."); return outmap; } outmap = new CorrelationToSurfaceMap; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) { LOG(2, "Current molecule is " << (*MolWalker)->name << "."); if ((*MolWalker)->empty()) LOG(2, "\t is empty."); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { LOG(3, "\tCurrent atom is " << *(*iter) << "."); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->getType() == *type)) { TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC); distance = Intersections.GetSmallestDistance(); triangle = Intersections.GetClosestTriangle(); outmap->insert ( std::pair >( distance, std::pair ( (*iter), triangle) ) ); } } } return outmap; }; /** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface. * Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1. * I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per * axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into * the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane(). * \param *molecules list of molecules structure * \param &elements vector of elements to correlate to surface * \param *Surface pointer to Tesselation class surface * \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms * \param ranges[NDIM] interval boundaries for the periodic images to scan also * \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest */ CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector &molecules, const std::vector &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC, const int ranges[NDIM] ) { Info FunctionInfo(__func__); CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap; double distance = 0; class BoundaryTriangleSet *triangle = NULL; Vector centroid; int n[NDIM]; Vector periodicX; Vector checkX; if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) { LOG(1, "No Tesselation, no LinkedCell or no molecule given."); return outmap; } outmap = new CorrelationToSurfaceMap; double ShortestDistance = 0.; BoundaryTriangleSet *ShortestTriangle = NULL; for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) { RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM(); RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv(); LOG(2, "Current molecule is " << *MolWalker << "."); for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) { LOG(3, "Current atom is " << **iter << "."); for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type) if ((*type == NULL) || ((*iter)->getType() == *type)) { periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3 // go through every range in xyz and get distance ShortestDistance = -1.; for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++) for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++) for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) { checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX); TriangleIntersectionList Intersections(checkX,Surface,LC); distance = Intersections.GetSmallestDistance(); triangle = Intersections.GetClosestTriangle(); if ((ShortestDistance == -1.) || (distance < ShortestDistance)) { ShortestDistance = distance; ShortestTriangle = triangle; } } // insert outmap->insert ( std::pair >( ShortestDistance, std::pair ( *iter, ShortestTriangle) ) ); //LOG(1, "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << "."); } } } return outmap; }; /** Returns the index of the bin for a given value. * \param value value whose bin to look for * \param BinWidth width of bin * \param BinStart first bin */ int GetBin ( const double value, const double BinWidth, const double BinStart ) { //Info FunctionInfo(__func__); int bin =(int) (floor((value - BinStart)/BinWidth)); return (bin); }; /** Adds header part that is unique to BinPairMap. * * @param file stream to print to */ void OutputCorrelation_Header( ofstream * const file ) { *file << "\tCount"; }; /** Prints values stored in BinPairMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner ) { *file << runner->second; }; /** Adds header part that is unique to DipoleAngularCorrelationMap. * * @param file stream to print to */ void OutputDipoleAngularCorrelation_Header( ofstream * const file ) { *file << "\tFirstAtomOfMolecule"; }; /** Prints values stored in DipoleCorrelationMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner ) { *file << *(runner->second); }; /** Adds header part that is unique to DipoleAngularCorrelationMap. * * @param file stream to print to */ void OutputDipoleCorrelation_Header( ofstream * const file ) { *file << "\tMolecule"; }; /** Prints values stored in DipoleCorrelationMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputDipoleCorrelation_Value( ofstream * const file, DipoleCorrelationMap::const_iterator &runner ) { *file << runner->second.first->getId() << "\t" << runner->second.second->getId(); }; /** Adds header part that is unique to PairCorrelationMap. * * @param file stream to print to */ void OutputPairCorrelation_Header( ofstream * const file ) { *file << "\tAtom1\tAtom2"; }; /** Prints values stored in PairCorrelationMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner ) { *file << *(runner->second.first) << "\t" << *(runner->second.second); }; /** Adds header part that is unique to CorrelationToPointMap. * * @param file stream to print to */ void OutputCorrelationToPoint_Header( ofstream * const file ) { *file << "\tAtom::x[i]-point.x[i]"; }; /** Prints values stored in CorrelationToPointMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner ) { for (int i=0;isecond.first->at(i) - runner->second.second->at(i)); }; /** Adds header part that is unique to CorrelationToSurfaceMap. * * @param file stream to print to */ void OutputCorrelationToSurface_Header( ofstream * const file ) { *file << "\tTriangle"; }; /** Prints values stored in CorrelationToSurfaceMap iterator. * * @param file stream to print to * @param runner iterator pointing at values to print */ void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner ) { *file << *(runner->second.first) << "\t" << *(runner->second.second); };