/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2010-2012 University of Bonn. All rights reserved.
* Copyright (C) 2013 Frederik Heber. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* analysis.cpp
*
* Created on: Oct 13, 2009
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
#include "CodePatterns/MemDebug.hpp"
#include
#include
#include
#include
#include "Atom/atom.hpp"
#include "Bond/bond.hpp"
#include "Tesselation/BoundaryTriangleSet.hpp"
#include "Box.hpp"
#include "Element/element.hpp"
#include "CodePatterns/Info.hpp"
#include "CodePatterns/Log.hpp"
#include "CodePatterns/Verbose.hpp"
#include "Descriptors/AtomOfMoleculeSelectionDescriptor.hpp"
#include "Descriptors/MoleculeFormulaDescriptor.hpp"
#include "Descriptors/MoleculeOfAtomSelectionDescriptor.hpp"
#include "Formula.hpp"
#include "LinearAlgebra/Vector.hpp"
#include "LinearAlgebra/RealSpaceMatrix.hpp"
#include "LinkedCell/LinkedCell_View.hpp"
#include "molecule.hpp"
#include "Tesselation/tesselation.hpp"
#include "Tesselation/tesselationhelpers.hpp"
#include "Tesselation/triangleintersectionlist.hpp"
#include "World.hpp"
#include "WorldTime.hpp"
#include "analysis_correlation.hpp"
/** Calculates the dipole vector of a given atomSet.
*
* Note that we use the following procedure as rule of thumb:
* -# go through every bond of the atom
* -# calculate the difference of electronegativities \f$\Delta\mathrm{EN}\f$
* -# if \f$\Delta\mathrm{EN} > 0.5\f$, we align the bond vector in direction of the more negative element
* -# sum up all vectors
* -# finally, divide by the number of summed vectors
*
* @param atomsbegin begin iterator of atomSet
* @param atomsend end iterator of atomset
* @return dipole vector
*/
Vector getDipole(molecule::const_iterator atomsbegin, molecule::const_iterator atomsend)
{
Vector DipoleVector;
size_t SumOfVectors = 0;
Box &domain = World::getInstance().getDomain();
// go through all atoms
for (molecule::const_iterator atomiter = atomsbegin;
atomiter != atomsend;
++atomiter) {
// go through all bonds
const BondList& ListOfBonds = (*atomiter)->getListOfBonds();
ASSERT(ListOfBonds.begin() != ListOfBonds.end(),
"getDipole() - no bonds in molecule!");
for (BondList::const_iterator bonditer = ListOfBonds.begin();
bonditer != ListOfBonds.end();
++bonditer) {
const atom * Otheratom = (*bonditer)->GetOtherAtom(*atomiter);
if (Otheratom->getId() > (*atomiter)->getId()) {
const double DeltaEN = (*atomiter)->getType()->getElectronegativity()
-Otheratom->getType()->getElectronegativity();
// get distance and correct for boundary conditions
Vector BondDipoleVector = domain.periodicDistanceVector(
(*atomiter)->getPosition(),
Otheratom->getPosition());
// DeltaEN is always positive, gives correct orientation of vector
BondDipoleVector.Normalize();
BondDipoleVector *= DeltaEN;
LOG(3,"INFO: Dipole vector from bond " << **bonditer << " is " << BondDipoleVector);
DipoleVector += BondDipoleVector;
SumOfVectors++;
}
}
}
LOG(3,"INFO: Sum over all bond dipole vectors is "
<< DipoleVector << " with " << SumOfVectors << " in total.");
if (SumOfVectors != 0)
DipoleVector *= 1./(double)SumOfVectors;
LOG(2, "INFO: Resulting dipole vector is " << DipoleVector);
return DipoleVector;
};
/** Calculate minimum and maximum amount of trajectory steps by going through given atomic trajectories.
* \param vector of atoms whose trajectories to check for [min,max]
* \return range with [min, max]
*/
range getMaximumTrajectoryBounds(const std::vector &atoms)
{
// get highest trajectory size
LOG(0,"STATUS: Retrieving maximum amount of time steps ...");
if (atoms.size() == 0)
return range(0,0);
size_t max_timesteps = std::numeric_limits::min();
size_t min_timesteps = std::numeric_limits::max();
BOOST_FOREACH(atom *_atom, atoms) {
if (_atom->getTrajectorySize() > max_timesteps)
max_timesteps = _atom->getTrajectorySize();
if (_atom->getTrajectorySize() < min_timesteps)
min_timesteps = _atom->getTrajectorySize();
}
LOG(1,"INFO: Minimum number of time steps found is " << min_timesteps);
LOG(1,"INFO: Maximum number of time steps found is " << max_timesteps);
return range(min_timesteps, max_timesteps);
}
/** Calculates the angular dipole zero orientation from current time step.
* \param molecules vector of molecules to calculate dipoles of
* \return map with orientation vector for each atomic id given in \a atoms.
*/
std::map CalculateZeroAngularDipole(const std::vector &molecules)
{
// get zero orientation for each molecule.
LOG(0,"STATUS: Calculating dipoles for current time step ...");
std::map ZeroVector;
BOOST_FOREACH(molecule *_mol, molecules) {
const Vector Dipole = getDipole(_mol->begin(), _mol->end());
for(molecule::const_iterator iter = _mol->begin(); iter != _mol->end(); ++iter)
ZeroVector[(*iter)->getId()] = Dipole;
LOG(2,"INFO: Zero alignment for molecule " << _mol->getId() << " is " << Dipole);
}
LOG(1,"INFO: We calculated zero orientation for a total of " << molecules.size() << " molecule(s).");
return ZeroVector;
}
/** Calculates the dipole angular correlation for given molecule type.
* Calculate the change of the dipole orientation angle over time.
* Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
* Angles are given in degrees.
* \param &atoms list of atoms of the molecules taking part (Note: molecules may
* change over time as bond structure is recalculated, hence we need the atoms)
* \param timestep time step to calculate angular correlation for (relative to
* \a ZeroVector)
* \param ZeroVector map with Zero orientation vector for each atom in \a atoms.
* \param DontResetTime don't reset time to old value (triggers re-creation of bond system)
* \return Map of doubles with values the pair of the two atoms.
*/
DipoleAngularCorrelationMap *DipoleAngularCorrelation(
const Formula &DipoleFormula,
const size_t timestep,
const std::map &ZeroVector,
const enum ResetWorldTime DoTimeReset
)
{
Info FunctionInfo(__func__);
DipoleAngularCorrelationMap *outmap = new DipoleAngularCorrelationMap;
unsigned int oldtime = 0;
if (DoTimeReset == DoResetTime) {
// store original time step
oldtime = WorldTime::getTime();
}
// set time step
LOG(0,"STATUS: Stepping onto to time step " << timestep << ".");
World::getInstance().setTime(timestep);
// get all molecules for this time step
World::getInstance().clearMoleculeSelection();
World::getInstance().selectAllMolecules(MoleculeByFormula(DipoleFormula));
std::vector molecules = World::getInstance().getSelectedMolecules();
LOG(1,"INFO: There are " << molecules.size() << " molecules for time step " << timestep << ".");
// calculate dipoles for each
LOG(0,"STATUS: Calculating dipoles for time step " << timestep << " ...");
size_t i=0;
size_t Counter_rejections = 0;
BOOST_FOREACH(molecule *_mol, molecules) {
const Vector Dipole = getDipole(_mol->begin(), _mol->end());
LOG(3,"INFO: Dipole vector at time step " << timestep << " for for molecule "
<< _mol->getId() << " is " << Dipole);
// check that all atoms are valid (zeroVector known)
molecule::const_iterator iter = _mol->begin();
for(; iter != _mol->end(); ++iter) {
if (!ZeroVector.count((*iter)->getId()))
break;
}
if (iter != _mol->end()) {
ELOG(2, "Skipping molecule " << _mol->getName() << " as not all atoms have a valid zeroVector.");
++Counter_rejections;
continue;
} else
iter = _mol->begin();
std::map::const_iterator zeroValue = ZeroVector.find((*iter)->getId()); //due to iter is const
double angle = 0.;
LOG(2, "INFO: ZeroVector of first atom " << **iter << " is "
<< zeroValue->second << ".");
LOG(4, "INFO: Squared norm of difference vector is "
<< (zeroValue->second - Dipole).NormSquared() << ".");
if ((zeroValue->second - Dipole).NormSquared() > MYEPSILON)
angle = Dipole.Angle(zeroValue->second) * (180./M_PI);
else
LOG(2, "INFO: Both vectors (almost) coincide, numerically unstable, angle set to zero.");
// we print six digits, hence round up to six digit precision
const double precision = 1e-6;
angle = precision*floor(angle/precision);
LOG(1,"INFO: Resulting relative angle for molecule " << _mol->getName()
<< " is " << angle << ".");
outmap->insert ( std::make_pair (angle, *iter ) );
++i;
}
ASSERT(Counter_rejections <= molecules.size(),
"DipoleAngularCorrelation() - more rejections ("+toString(Counter_rejections)
+") than there are molecules ("+toString(molecules.size())+").");
LOG(1,"INFO: " << Counter_rejections << " molecules have been rejected in time step " << timestep << ".");
LOG(0,"STATUS: Done with calculating dipoles.");
if (DoTimeReset == DoResetTime) {
// re-set to original time step again
World::getInstance().setTime(oldtime);
}
// and return results
return outmap;
};
/** Calculates the dipole correlation for given molecule type.
* I.e. we calculate how the angle between any two given dipoles in the
* systems behaves. Sort of pair correlation but distance is replaced by
* the orientation distance, i.e. an angle.
* Note given element order is unimportant (i.e. g(Si, O) === g(O, Si))
* Angles are given in degrees.
* \param *molecules vector of molecules
* \return Map of doubles with values the pair of the two atoms.
*/
DipoleCorrelationMap *DipoleCorrelation(std::vector &molecules)
{
Info FunctionInfo(__func__);
DipoleCorrelationMap *outmap = new DipoleCorrelationMap;
// double distance = 0.;
// Box &domain = World::getInstance().getDomain();
//
if (molecules.empty()) {
ELOG(1, "No molecule given.");
return outmap;
}
for (std::vector::const_iterator MolWalker = molecules.begin();
MolWalker != molecules.end(); ++MolWalker) {
LOG(2, "INFO: Current molecule is " << (*MolWalker)->getId() << ".");
const Vector Dipole = getDipole((*MolWalker)->begin(), (*MolWalker)->end());
std::vector::const_iterator MolOtherWalker = MolWalker;
for (++MolOtherWalker;
MolOtherWalker != molecules.end();
++MolOtherWalker) {
LOG(2, "INFO: Current other molecule is " << (*MolOtherWalker)->getId() << ".");
const Vector OtherDipole = getDipole((*MolOtherWalker)->begin(), (*MolOtherWalker)->end());
const double angle = Dipole.Angle(OtherDipole) * (180./M_PI);
LOG(1, "Angle is " << angle << ".");
outmap->insert ( make_pair (angle, make_pair ((*MolWalker), (*MolOtherWalker)) ) );
}
}
return outmap;
};
/** Calculates the pair correlation between given atom sets.
*
* Note we correlate each of the \a &atomsfirst with each of the second set
* \a &atoms_second. However, we are aware of double counting. If an atom is
* in either set, the pair is counted only once.
*
* \param &atoms_first vector of atoms
* \param &atoms_second vector of atoms
* \param max_distance maximum distance for the correlation
* \return Map of doubles with values the pair of the two atoms.
*/
PairCorrelationMap *PairCorrelation(
const World::AtomComposite &atoms_first,
const World::AtomComposite &atoms_second,
const double max_distance)
{
Info FunctionInfo(__func__);
PairCorrelationMap *outmap = new PairCorrelationMap;
//double distance = 0.;
Box &domain = World::getInstance().getDomain();
if (atoms_first.empty() || atoms_second.empty()) {
ELOG(1, "No atoms given.");
return outmap;
}
//!> typedef for an unsorted container, (output) compatible with STL algorithms
typedef std::vector LinkedVector;
// create intersection (to know when to check for double-counting)
LinkedVector intersected_atoms(atoms_second.size(), NULL);
LinkedVector::iterator intersected_atoms_end =
std::set_intersection(
atoms_first.begin(),atoms_first.end(),
atoms_second.begin(), atoms_second.end(),
intersected_atoms.begin());
const LinkedCell::LinkedList intersected_atoms_set(intersected_atoms.begin(), intersected_atoms_end);
// get linked cell view
LinkedCell::LinkedCell_View LC = World::getInstance().getLinkedCell(max_distance);
// convert second to _sorted_ set
LinkedCell::LinkedList atoms_second_set(atoms_second.begin(), atoms_second.end());
LOG(2, "INFO: first set has " << atoms_first.size()
<< " and second set has " << atoms_second_set.size() << " atoms.");
// fill map
for (World::AtomComposite::const_iterator iter = atoms_first.begin();
iter != atoms_first.end();
++iter) {
const TesselPoint * const Walker = *iter;
LOG(3, "INFO: Current point is " << Walker->getName() << ".");
// obtain all possible neighbors (that is a sorted set)
LinkedCell::LinkedList ListOfNeighbors = LC.getPointsInsideSphere(
max_distance,
Walker->getPosition());
LOG(2, "INFO: There are " << ListOfNeighbors.size() << " neighbors.");
// create intersection with second set
// NOTE: STL algorithms do mostly not work on sorted container because reassignment
// of a value may also require changing its position.
LinkedVector intersected_set(atoms_second.size(), NULL);
LinkedVector::iterator intersected_end =
std::set_intersection(
ListOfNeighbors.begin(),ListOfNeighbors.end(),
atoms_second_set.begin(), atoms_second_set.end(),
intersected_set.begin());
// count remaining elements
LOG(2, "INFO: Intersection with second set has " << int(intersected_end - intersected_set.begin()) << " elements.");
// we have some possible candidates, go through each
for (LinkedVector::const_iterator neighboriter = intersected_set.begin();
neighboriter != intersected_end;
++neighboriter) {
const TesselPoint * const OtherWalker = (*neighboriter);
LinkedCell::LinkedList::const_iterator equaliter = intersected_atoms_set.find(OtherWalker);
if ((equaliter != intersected_atoms_set.end()) && (OtherWalker <= Walker)) {
// present in both sets, assure that we are larger
continue;
}
LOG(3, "INFO: Current other point is " << *OtherWalker << ".");
const double distance = domain.periodicDistance(OtherWalker->getPosition(),Walker->getPosition());
LOG(3, "INFO: Resulting distance is " << distance << ".");
outmap->insert (
std::pair > (
distance,
std::make_pair (Walker, OtherWalker)
)
);
}
}
// and return
return outmap;
};
/** Calculates the distance (pair) correlation between a given element and a point.
* \param *molecules list of molecules structure
* \param &elements vector of elements to correlate with point
* \param *point vector to the correlation point
* \return Map of dobules with values as pairs of atom and the vector
*/
CorrelationToPointMap *CorrelationToPoint(std::vector &molecules, const std::vector &elements, const Vector *point )
{
Info FunctionInfo(__func__);
CorrelationToPointMap *outmap = new CorrelationToPointMap;
double distance = 0.;
Box &domain = World::getInstance().getDomain();
if (molecules.empty()) {
LOG(1, "No molecule given.");
return outmap;
}
for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
LOG(2, "Current molecule is " << *MolWalker << ".");
for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
LOG(3, "Current atom is " << **iter << ".");
for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type)
if ((*type == NULL) || ((*iter)->getType() == *type)) {
distance = domain.periodicDistance((*iter)->getPosition(),*point);
LOG(4, "Current distance is " << distance << ".");
outmap->insert (
std::pair >(
distance,
std::pair (
(*iter),
point)
)
);
}
}
}
return outmap;
};
/** Calculates the distance (pair) correlation between a given element, all its periodic images and a point.
* \param *molecules list of molecules structure
* \param &elements vector of elements to correlate to point
* \param *point vector to the correlation point
* \param ranges[NDIM] interval boundaries for the periodic images to scan also
* \return Map of dobules with values as pairs of atom and the vector
*/
CorrelationToPointMap *PeriodicCorrelationToPoint(std::vector &molecules, const std::vector &elements, const Vector *point, const int ranges[NDIM] )
{
Info FunctionInfo(__func__);
CorrelationToPointMap *outmap = new CorrelationToPointMap;
double distance = 0.;
int n[NDIM];
Vector periodicX;
Vector checkX;
if (molecules.empty()) {
LOG(1, "No molecule given.");
return outmap;
}
for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
LOG(2, "Current molecule is " << *MolWalker << ".");
for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
LOG(3, "Current atom is " << **iter << ".");
for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type)
if ((*type == NULL) || ((*iter)->getType() == *type)) {
periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
// go through every range in xyz and get distance
for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
distance = checkX.distance(*point);
LOG(4, "Current distance is " << distance << ".");
outmap->insert (
std::pair >(
distance,
std::pair (
*iter,
point)
)
);
}
}
}
}
return outmap;
};
/** Calculates the distance (pair) correlation between a given element and a surface.
* \param *molecules list of molecules structure
* \param &elements vector of elements to correlate to surface
* \param *Surface pointer to Tesselation class surface
* \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
* \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
*/
CorrelationToSurfaceMap *CorrelationToSurface(std::vector &molecules, const std::vector &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC )
{
Info FunctionInfo(__func__);
CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
double distance = 0;
class BoundaryTriangleSet *triangle = NULL;
Vector centroid;
if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
ELOG(1, "No Tesselation, no LinkedCell or no molecule given.");
return outmap;
}
for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
LOG(2, "Current molecule is " << (*MolWalker)->name << ".");
if ((*MolWalker)->empty())
LOG(2, "\t is empty.");
for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
LOG(3, "\tCurrent atom is " << *(*iter) << ".");
for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type)
if ((*type == NULL) || ((*iter)->getType() == *type)) {
TriangleIntersectionList Intersections((*iter)->getPosition(),Surface,LC);
distance = Intersections.GetSmallestDistance();
triangle = Intersections.GetClosestTriangle();
outmap->insert (
std::pair >(
distance,
std::pair (
(*iter),
triangle)
)
);
}
}
}
return outmap;
};
/** Calculates the distance (pair) correlation between a given element, all its periodic images and and a surface.
* Note that we also put all periodic images found in the cells given by [ -ranges[i], ranges[i] ] and i=0,...,NDIM-1.
* I.e. We multiply the atom::node with the inverse of the domain matrix, i.e. transform it to \f$[0,0^3\f$, then add per
* axis an integer from [ -ranges[i], ranges[i] ] onto it and multiply with the domain matrix to bring it back into
* the real space. Then, we Tesselation::FindClosestTriangleToPoint() and DistanceToTrianglePlane().
* \param *molecules list of molecules structure
* \param &elements vector of elements to correlate to surface
* \param *Surface pointer to Tesselation class surface
* \param *LC LinkedCell_deprecated structure to quickly find neighbouring atoms
* \param ranges[NDIM] interval boundaries for the periodic images to scan also
* \return Map of doubles with values as pairs of atom and the BoundaryTriangleSet that's closest
*/
CorrelationToSurfaceMap *PeriodicCorrelationToSurface(std::vector &molecules, const std::vector &elements, const Tesselation * const Surface, const LinkedCell_deprecated *LC, const int ranges[NDIM] )
{
Info FunctionInfo(__func__);
CorrelationToSurfaceMap *outmap = new CorrelationToSurfaceMap;
double distance = 0;
class BoundaryTriangleSet *triangle = NULL;
Vector centroid;
int n[NDIM];
Vector periodicX;
Vector checkX;
if ((Surface == NULL) || (LC == NULL) || (molecules.empty())) {
LOG(1, "No Tesselation, no LinkedCell or no molecule given.");
return outmap;
}
double ShortestDistance = 0.;
BoundaryTriangleSet *ShortestTriangle = NULL;
for (std::vector::const_iterator MolWalker = molecules.begin(); MolWalker != molecules.end(); MolWalker++) {
RealSpaceMatrix FullMatrix = World::getInstance().getDomain().getM();
RealSpaceMatrix FullInverseMatrix = World::getInstance().getDomain().getMinv();
LOG(2, "Current molecule is " << *MolWalker << ".");
for (molecule::const_iterator iter = (*MolWalker)->begin(); iter != (*MolWalker)->end(); ++iter) {
LOG(3, "Current atom is " << **iter << ".");
for (vector::const_iterator type = elements.begin(); type != elements.end(); ++type)
if ((*type == NULL) || ((*iter)->getType() == *type)) {
periodicX = FullInverseMatrix * ((*iter)->getPosition()); // x now in [0,1)^3
// go through every range in xyz and get distance
ShortestDistance = -1.;
for (n[0]=-ranges[0]; n[0] <= ranges[0]; n[0]++)
for (n[1]=-ranges[1]; n[1] <= ranges[1]; n[1]++)
for (n[2]=-ranges[2]; n[2] <= ranges[2]; n[2]++) {
checkX = FullMatrix * (Vector(n[0], n[1], n[2]) + periodicX);
TriangleIntersectionList Intersections(checkX,Surface,LC);
distance = Intersections.GetSmallestDistance();
triangle = Intersections.GetClosestTriangle();
if ((ShortestDistance == -1.) || (distance < ShortestDistance)) {
ShortestDistance = distance;
ShortestTriangle = triangle;
}
}
// insert
outmap->insert (
std::pair >(
ShortestDistance,
std::pair (
*iter,
ShortestTriangle)
)
);
//LOG(1, "INFO: Inserting " << Walker << " with distance " << ShortestDistance << " to " << *ShortestTriangle << ".");
}
}
}
return outmap;
};
/** Returns the index of the bin for a given value.
* \param value value whose bin to look for
* \param BinWidth width of bin
* \param BinStart first bin
*/
int GetBin ( const double value, const double BinWidth, const double BinStart )
{
//Info FunctionInfo(__func__);
int bin =(int) (floor((value - BinStart)/BinWidth));
return (bin);
};
/** Adds header part that is unique to BinPairMap.
*
* @param file stream to print to
*/
void OutputCorrelation_Header( ofstream * const file )
{
*file << "\tCount";
};
/** Prints values stored in BinPairMap iterator.
*
* @param file stream to print to
* @param runner iterator pointing at values to print
*/
void OutputCorrelation_Value( ofstream * const file, BinPairMap::const_iterator &runner )
{
*file << runner->second;
};
/** Adds header part that is unique to DipoleAngularCorrelationMap.
*
* @param file stream to print to
*/
void OutputDipoleAngularCorrelation_Header( ofstream * const file )
{
*file << "\tFirstAtomOfMolecule";
};
/** Prints values stored in DipoleCorrelationMap iterator.
*
* @param file stream to print to
* @param runner iterator pointing at values to print
*/
void OutputDipoleAngularCorrelation_Value( ofstream * const file, DipoleAngularCorrelationMap::const_iterator &runner )
{
*file << *(runner->second);
};
/** Adds header part that is unique to DipoleAngularCorrelationMap.
*
* @param file stream to print to
*/
void OutputDipoleCorrelation_Header( ofstream * const file )
{
*file << "\tMolecule";
};
/** Prints values stored in DipoleCorrelationMap iterator.
*
* @param file stream to print to
* @param runner iterator pointing at values to print
*/
void OutputDipoleCorrelation_Value( ofstream * const file, DipoleCorrelationMap::const_iterator &runner )
{
*file << runner->second.first->getId() << "\t" << runner->second.second->getId();
};
/** Adds header part that is unique to PairCorrelationMap.
*
* @param file stream to print to
*/
void OutputPairCorrelation_Header( ofstream * const file )
{
*file << "\tAtom1\tAtom2";
};
/** Prints values stored in PairCorrelationMap iterator.
*
* @param file stream to print to
* @param runner iterator pointing at values to print
*/
void OutputPairCorrelation_Value( ofstream * const file, PairCorrelationMap::const_iterator &runner )
{
*file << *(runner->second.first) << "\t" << *(runner->second.second);
};
/** Adds header part that is unique to CorrelationToPointMap.
*
* @param file stream to print to
*/
void OutputCorrelationToPoint_Header( ofstream * const file )
{
*file << "\tAtom::x[i]-point.x[i]";
};
/** Prints values stored in CorrelationToPointMap iterator.
*
* @param file stream to print to
* @param runner iterator pointing at values to print
*/
void OutputCorrelationToPoint_Value( ofstream * const file, CorrelationToPointMap::const_iterator &runner )
{
for (int i=0;isecond.first->at(i) - runner->second.second->at(i));
};
/** Adds header part that is unique to CorrelationToSurfaceMap.
*
* @param file stream to print to
*/
void OutputCorrelationToSurface_Header( ofstream * const file )
{
*file << "\tTriangle";
};
/** Prints values stored in CorrelationToSurfaceMap iterator.
*
* @param file stream to print to
* @param runner iterator pointing at values to print
*/
void OutputCorrelationToSurface_Value( ofstream * const file, CorrelationToSurfaceMap::const_iterator &runner )
{
*file << *(runner->second.first) << "\t" << *(runner->second.second);
};