/*
* Project: MoleCuilder
* Description: creates and alters molecular systems
* Copyright (C) 2020 Frederik Heber. All rights reserved.
*
*
* This file is part of MoleCuilder.
*
* MoleCuilder is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 2 of the License, or
* (at your option) any later version.
*
* MoleCuilder is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with MoleCuilder. If not, see .
*/
/*
* BondifyAction.cpp
*
* Created on: Oct 07, 2020
* Author: heber
*/
// include config.h
#ifdef HAVE_CONFIG_H
#include
#endif
//#include "CodePatterns/MemDebug.hpp"
#include "CodePatterns/Assert.hpp"
#include "CodePatterns/Log.hpp"
#include
#include "Actions/AtomAction/BondifyAction.hpp"
#include "Actions/UndoRedoHelpers.hpp"
#include "Atom/atom.hpp"
#include "Atom/AtomicInfo.hpp"
#include "Bond/bond.hpp"
#include "Bond/BondInfo.hpp"
#include "Descriptors/AtomsWithinDistanceOfDescriptor.hpp"
#include "Graph/BondGraph.hpp"
#include "RandomNumbers/RandomNumberDistributionFactory.hpp"
#include "RandomNumbers/RandomNumberDistribution.hpp"
#include "RandomNumbers/RandomNumberGenerator.hpp"
#include "RandomNumbers/RandomNumberGeneratorFactory.hpp"
#include "World.hpp"
using namespace MoleCuilder;
// and construct the stuff
#include "BondifyAction.def"
#include "Action_impl_pre.hpp"
typedef std::vector< std::pair > candidates_t;
const double MAX_DISTANCE = 5.0;
static int getNumberOfHydrogenAtoms(
const atom *Walker)
{
int num_hydrogens = 0;
const BondList& ListOfBonds = Walker->getListOfBonds();
for (BondList::const_iterator bonditer = ListOfBonds.begin();
bonditer != ListOfBonds.end(); ++bonditer) {
num_hydrogens += (int)((*bonditer)->GetOtherAtom(Walker)->getElementNo() == 1);
}
return num_hydrogens;
}
static candidates_t getCandidatesInVicinity(
const BondGraph &BG,
const atom * const Walker)
{
const std::vector< atom *> atoms_in_vicinity = World::getInstance().getAllAtoms(
AtomsWithinDistanceOf(MAX_DISTANCE, Walker->getPosition()));
candidates_t candidates;
for (std::vector::const_iterator iter = atoms_in_vicinity.begin();
iter != atoms_in_vicinity.end(); ++iter) {
const atom *OtherWalker = *iter;
// skip hydrogens
if (OtherWalker->getElementNo() == 1)
continue;
// skip atoms that are bonded already
if (OtherWalker->IsBondedTo(Walker))
continue;
const double distance = OtherWalker->getPosition().distance(Walker->getPosition());
range typical_distance = BG.getMinMaxDistance(Walker, OtherWalker);
if (typical_distance.isInRange(distance)) {
int num_hydrogens = getNumberOfHydrogenAtoms(OtherWalker);
candidates.push_back( std::make_pair(const_cast(OtherWalker), num_hydrogens));
}
}
return candidates;
}
static int getTotalBondDegree(
const atom * Walker)
{
int num_degreed_bonds = 0;
const BondList& ListOfBonds = Walker->getListOfBonds();
for (BondList::const_iterator bonditer = ListOfBonds.begin();
bonditer != ListOfBonds.end(); ++bonditer) {
num_degreed_bonds += (*bonditer)->getDegree();
}
return num_degreed_bonds;
}
class CandidatesAtValence {
public:
typedef std::multimap num_hydrogens_atom_map_t;
typedef std::vector< std::pair > candidates_hydrogens_to_remove_t;
typedef std::vector all_candidates_t;
int max_hydrogens;
CandidatesAtValence(const int _max_hydrogens) : max_hydrogens(_max_hydrogens) {}
void setMaxHydrogens(const int _max_hydrogens) {
max_hydrogens = _max_hydrogens;
}
all_candidates_t operator()(
const int open_valence,
const num_hydrogens_atom_map_t& sorted_candidates) const
{
all_candidates_t all_candidates;
if (sorted_candidates.empty())
return all_candidates;
/* pick from beginning (i.e. smallest valence first) and gather all
* possible candidate sets.
*/
int remaining_valence = open_valence;
num_hydrogens_atom_map_t::const_iterator iter = sorted_candidates.begin();
candidates_hydrogens_to_remove_t candidate_set;
exploreCandidateSetRecursively(
iter, sorted_candidates.end(),
candidate_set, remaining_valence,
all_candidates);
for (all_candidates_t::const_iterator all_iter = all_candidates.begin();
all_iter != all_candidates.end(); ++all_iter) {
LOG(2, "DEBUG: Candidate set is " << candidateToString(*all_iter));
}
return all_candidates;
}
void exploreCandidateSetRecursively(
num_hydrogens_atom_map_t::const_iterator iter,
num_hydrogens_atom_map_t::const_iterator iter_end,
candidates_hydrogens_to_remove_t candidate_set,
int remaining_valence,
all_candidates_t& all_candidates
) const
{
const int & num_hydrogens = iter->first;
atom * const walker = iter->second;
++iter;
const int usable_valence =
std::min(
std::min(num_hydrogens, remaining_valence),
max_hydrogens
);
candidate_set.push_back(
std::make_pair(walker, 0)
);
for (int i=0;i<= usable_valence; ++i) {
candidate_set.back().second = i;
// check whether we are complete with the candidate_set
if (remaining_valence - i <= 0) {
// we have a complete set
ASSERT(remaining_valence -i == 0,
"exploreCandidateSetRecursively() - usable valence "+toString(i)
+" must always be less or equal remaining valence "+toString(remaining_valence));
all_candidates.push_back(candidate_set);
} else {
// not complete, need to recurse further if we can
if (iter != iter_end)
exploreCandidateSetRecursively(
iter,
iter_end,
candidate_set,
remaining_valence-i,
all_candidates);
}
}
}
static std::string candidateToString(
const candidates_hydrogens_to_remove_t &candidates)
{
std::stringstream output;
for (candidates_hydrogens_to_remove_t::const_iterator iter = candidates.begin();
iter != candidates.end(); ++iter)
output << "[" << *iter->first << "," << iter->second << "], ";
return output.str();
}
};
/** =========== define the function ====================== */
ActionState::ptr AtomBondifyAction::performCall() {
// ensure we have one selected atom
World &world = World::getInstance();
const BondGraph &BG = *world.getBondGraph();
// check precondition
const std::vector atoms = world.getSelectedAtoms();
if (atoms.size() != 1) {
STATUS("Exactly one atom must be selected for bondify.");
return Action::failure;
}
atom *Walker = atoms[0];
// check whether atom has unoccupied valence orbitals
const int num_valence = Walker->getType()->getNoValenceOrbitals();
// Look at all bond neighbors
const int num_degreed_bonds = getTotalBondDegree(Walker);
int open_valence = num_valence - num_degreed_bonds;
LOG(1, "INFO: We have " << open_valence << " unoccupied valence");
if (open_valence <= 0) {
STATUS("Nothing to do. Atom is saturated already, we need some unoccupied valence orbitals to have something to work on.");
return Action::success;
}
// gather all atoms in vicinity
candidates_t candidates = getCandidatesInVicinity(BG, Walker);
/** We revert the map's key and values, as we want the entries
* sorted by the number of hydrogens.
*/
std::multimap sorted_candidates;
for (candidates_t::const_iterator iter = candidates.begin();
iter != candidates.end(); ++iter) {
if (iter->second > 0) {
sorted_candidates.insert( std::make_pair(iter->second, iter->first) );
}
}
/**
* Try to find the maximum number of bonds to use instead of having to
* add hydrogens in the end.
*/
CandidatesAtValence::all_candidates_t all_candidates;
CandidatesAtValence candidateGetter(params.max_hydrogens.get());
++open_valence;
while ((all_candidates.size() == 0) && (--open_valence > 0)) {
all_candidates = candidateGetter(open_valence, sorted_candidates);
}
if (all_candidates.empty()) {
STATUS("Could not find any suitable candidate sets.");
return Action::success;
}
// pick one set at random
const std::string oldtype = RandomNumberDistributionFactory::getConstInstance().getCurrentTypeName();
RandomNumberDistributionFactory::getInstance().setCurrentType("uniform_01");
const RandomNumberGenerator& rng = RandomNumberGeneratorFactory::getConstInstance().makeRandomNumberGenerator();
int id = (int)(rng()*(all_candidates.size()-1));
RandomNumberDistributionFactory::getInstance().setCurrentType(oldtype);
CandidatesAtValence::candidates_hydrogens_to_remove_t &picked_set = all_candidates[id];
LOG(1, "INFO: Picked candidate set is " << CandidatesAtValence::candidateToString(picked_set));
// execute that
std::vector removedHydrogens;
std::vector addedBonds;
int removed_hydrogens = 0;
int added_bonds = 0;
for (CandidatesAtValence::candidates_hydrogens_to_remove_t::iterator iter = picked_set.begin();
iter != picked_set.end(); ++iter) {
atom * const other_walker = iter->first;
const int &num_hydrogens = iter->second;
// remove the hydrogens closest to Walker
typedef std::map closest_map_t;
closest_map_t closest_map;
const BondList& ListOfBonds = other_walker->getListOfBonds();
for (BondList::const_iterator bonditer = ListOfBonds.begin();
bonditer != ListOfBonds.end(); ++bonditer) {
atom * const hydrogen = (*bonditer)->GetOtherAtom(other_walker);
if (hydrogen->getElementNo() != 1)
continue;
closest_map.insert(
std::make_pair(
Walker->getPosition().distance(hydrogen->getPosition()),
hydrogen
)
);
}
ASSERT( closest_map.size() >= (size_t)num_hydrogens,
"AtomBondifyAction::performCall() - Atom "+toString(*other_walker)
+" has less hydrogens "+toString(closest_map.size())
+" than expected "+toString(num_hydrogens));
closest_map_t::iterator removeiter = closest_map.begin();
for (int i=0;ifirst
<< " to Walker at " << Walker->getPosition());
removedHydrogens.push_back(AtomicInfo(*removeiter->second));
world.destroyAtom(removeiter->second);
removeiter->second = NULL;
++removeiter;
++removed_hydrogens;
}
// add the bond
bond::ptr new_bond = Walker->addBond(other_walker);
addedBonds.push_back(BondInfo(new_bond));
new_bond->setDegree(num_hydrogens);
++added_bonds;
LOG(2, "DEBUG: Added new bond " << *new_bond);
}
ASSERT( removed_hydrogens == open_valence,
"AtomBondifyAction::performCall() - candidate set has not the number of hydrogens "
+toString(removed_hydrogens)+" to match the unoccupied valence "+toString(open_valence));
LOG(1, "INFO: Removed " << removed_hydrogens << " hydrogen atoms and added "
<< added_bonds << " new bonds.");
return ActionState::ptr(new AtomBondifyState(removedHydrogens, addedBonds, params));
}
ActionState::ptr AtomBondifyAction::performUndo(ActionState::ptr _state) {
AtomBondifyState *state = assert_cast(_state.get());
AddAtomsFromAtomicInfo(state->removedHydrogens);
RemoveBondsFromBondInfo(state->addedBonds);
return ActionState::ptr(_state);
}
ActionState::ptr AtomBondifyAction::performRedo(ActionState::ptr _state){
AtomBondifyState *state = assert_cast(_state.get());
RemoveAtomsFromAtomicInfo(state->removedHydrogens);
AddBondsFromBondInfo(state->addedBonds);
return ActionState::ptr(_state);
}
bool AtomBondifyAction::canUndo() {
return true;
}
bool AtomBondifyAction::shouldUndo() {
return true;
}
/** =========== end of function ====================== */