1 | /** \file wannier.c
|
---|
2 | * Maximally Localized Wannier Functions.
|
---|
3 | *
|
---|
4 | * Contains the on function that minimises the spread of all orbitals in one rush in a parallel
|
---|
5 | * Jacobi-Diagonalization implementation, ComputeMLWF(), and one routine CalculateSpread() to
|
---|
6 | * calculate the spread of a specific orbital, which may be useful in checking on the change of
|
---|
7 | * spread during other calculations. convertComplex() helps in typecasting fftw_complex to gsl_complex.
|
---|
8 | *
|
---|
9 | Project: ParallelCarParrinello
|
---|
10 | \author Frederik Heber
|
---|
11 | \date 2006
|
---|
12 |
|
---|
13 | File: wannier.c
|
---|
14 | $Id: wannier.c,v 1.63 2007-02-13 14:15:29 foo Exp $
|
---|
15 | */
|
---|
16 |
|
---|
17 | #include <math.h>
|
---|
18 | #include <gsl/gsl_math.h>
|
---|
19 | #include <gsl/gsl_eigen.h>
|
---|
20 | #include <gsl/gsl_matrix.h>
|
---|
21 | #include <gsl/gsl_vector.h>
|
---|
22 | #include <gsl/gsl_complex.h>
|
---|
23 | #include <gsl/gsl_complex_math.h>
|
---|
24 | #include <gsl/gsl_sort_vector.h>
|
---|
25 | #include <gsl/gsl_heapsort.h>
|
---|
26 | #include <gsl/gsl_blas.h>
|
---|
27 | #include <string.h>
|
---|
28 |
|
---|
29 | #include "data.h"
|
---|
30 | #include "density.h"
|
---|
31 | #include "errors.h"
|
---|
32 | #include "helpers.h"
|
---|
33 | #include "init.h"
|
---|
34 | #include "myfft.h"
|
---|
35 | #include "mymath.h"
|
---|
36 | #include "output.h"
|
---|
37 | #include "wannier.h"
|
---|
38 |
|
---|
39 |
|
---|
40 | #define max_operators NDIM*2 //!< number of chosen self-adjoint operators when evaluating the spread
|
---|
41 |
|
---|
42 |
|
---|
43 | /** Converts type fftw_complex to gsl_complex.
|
---|
44 | * \param a complex number
|
---|
45 | * \return b complex number
|
---|
46 | */
|
---|
47 | gsl_complex convertComplex (fftw_complex a) {
|
---|
48 | return gsl_complex_rect(c_re(a),c_im(a));
|
---|
49 | }
|
---|
50 |
|
---|
51 | /** "merry go round" implementation for parallel index ordering.
|
---|
52 | * Given two arrays, one for the upper/left matrix columns, one for the lower/right ones, one step of an index generation is
|
---|
53 | * performed which generates once each possible pairing.
|
---|
54 | * \param *top index array 1
|
---|
55 | * \param *bot index array 2
|
---|
56 | * \param m N/2, where N is the matrix row/column dimension
|
---|
57 | * \note taken from [Golub, Matrix computations, 1989, p451]
|
---|
58 | */
|
---|
59 | void music(int *top, int *bot, int m)
|
---|
60 | {
|
---|
61 | int *old_top, *old_bot;
|
---|
62 | int k;
|
---|
63 | old_top = (int *) Malloc(sizeof(int)*m, "music: old_top");
|
---|
64 | old_bot = (int *) Malloc(sizeof(int)*m, "music: old_bot");
|
---|
65 | /* fprintf(stderr,"oldtop\t");
|
---|
66 | for (k=0;k<m;k++)
|
---|
67 | fprintf(stderr,"%i\t", top[k]);
|
---|
68 | fprintf(stderr,"\n");
|
---|
69 | fprintf(stderr,"oldbot\t");
|
---|
70 | for (k=0;k<m;k++)
|
---|
71 | fprintf(stderr,"%i\t", bot[k]);
|
---|
72 | fprintf(stderr,"\n");*/
|
---|
73 | // first copy arrays
|
---|
74 | for (k=0;k<m;k++) {
|
---|
75 | old_top[k] = top[k];
|
---|
76 | old_bot[k] = bot[k];
|
---|
77 | }
|
---|
78 | // then let the music play
|
---|
79 | for (k=0;k<m;k++) {
|
---|
80 | if (k==1)
|
---|
81 | top[k] = old_bot[0];
|
---|
82 | else if (k > 1)
|
---|
83 | top[k] = old_top[k-1];
|
---|
84 | if (k==m-1)
|
---|
85 | bot[k] = old_top[k];
|
---|
86 | else
|
---|
87 | bot[k] = old_bot[k+1];
|
---|
88 | }
|
---|
89 | /* fprintf(stderr,"top\t");
|
---|
90 | for (k=0;k<m;k++)
|
---|
91 | fprintf(stderr,"%i\t", top[k]);
|
---|
92 | fprintf(stderr,"\n");
|
---|
93 | fprintf(stderr,"bot\t");
|
---|
94 | for (k=0;k<m;k++)
|
---|
95 | fprintf(stderr,"%i\t", bot[k]);
|
---|
96 | fprintf(stderr,"\n");*/
|
---|
97 | // and finito
|
---|
98 | Free(old_top, "bla");
|
---|
99 | Free(old_bot, "bla");
|
---|
100 | }
|
---|
101 |
|
---|
102 | /** merry-go-round for matrix columns.
|
---|
103 | * The trick here is that we must be aware of multiple rotations per process, thus only some of the
|
---|
104 | * whole lot of local columns get sent/received, most of them are just shifted via exchanging the various
|
---|
105 | * pointers to the matrix columns within the local array.
|
---|
106 | * \param comm communicator for circulation
|
---|
107 | * \param *Aloc local array of columns
|
---|
108 | * \param Num entries per column
|
---|
109 | * \param max_rounds number of column pairs in \a *Around
|
---|
110 | * \param k offset for tag
|
---|
111 | * \param tagS0 MPI tag for sending left column
|
---|
112 | * \param tagS1 MPI tag for sending right column
|
---|
113 | * \param tagR0 MPI tag for receiving left column
|
---|
114 | * \param tagR1 MPI tag for receiving right column
|
---|
115 | */
|
---|
116 | void shiftcolumns(MPI_Comm comm, double **Aloc, int Num, int max_rounds, int k, int tagS0, int tagS1, int tagR0, int tagR1) {
|
---|
117 | //double *A_locS1, *A_locS2; // local columns of A[k]
|
---|
118 | //double *A_locR1, *A_locR2; // local columns of A[k]
|
---|
119 | MPI_Request requestS0, requestS1, requestR0, requestR1;
|
---|
120 | MPI_Status status;
|
---|
121 | int ProcRank, ProcNum;
|
---|
122 | int l;
|
---|
123 | MPI_Comm_size (comm, &ProcNum);
|
---|
124 | MPI_Comm_rank (comm, &ProcRank);
|
---|
125 | double *Abuffer1, *Abuffer2; // mark the columns that are circulated
|
---|
126 |
|
---|
127 | //fprintf(stderr,"shifting...");
|
---|
128 | if (ProcRank == 0) {
|
---|
129 | if (max_rounds > 1) {
|
---|
130 | // get last left column
|
---|
131 | Abuffer1 = Aloc[2*(max_rounds-1)]; // note down the free column
|
---|
132 | MPI_Isend(Abuffer1, Num, MPI_DOUBLE, ProcRank+1, WannierALTag+2*k, comm, &requestS0);
|
---|
133 | } else {
|
---|
134 | // get right column
|
---|
135 | Abuffer1 = Aloc[1]; // note down the free column
|
---|
136 | MPI_Isend(Abuffer1, Num, MPI_DOUBLE, ProcRank+1, tagS1+2*k, comm, &requestS0);
|
---|
137 | }
|
---|
138 |
|
---|
139 | //fprintf(stderr,"...left columns...");
|
---|
140 | for(l=2*max_rounds-2;l>2;l-=2) // left columns become shifted one place to the right
|
---|
141 | Aloc[l] = Aloc[l-2];
|
---|
142 |
|
---|
143 | if (max_rounds > 1) {
|
---|
144 | //fprintf(stderr,"...first right...");
|
---|
145 | Aloc[2] = Aloc[1]; // get first right column
|
---|
146 | }
|
---|
147 |
|
---|
148 | //fprintf(stderr,"...right columns...");
|
---|
149 | for(l=1;l<2*max_rounds-1;l+=2) // right columns become shifted one place to the left
|
---|
150 | Aloc[l] = Aloc[l+2];
|
---|
151 |
|
---|
152 | //fprintf(stderr,"...last right...");
|
---|
153 | Aloc[(2*max_rounds-1)] = Abuffer1;
|
---|
154 | MPI_Irecv(Abuffer1, Num, MPI_DOUBLE, ProcRank+1, WannierARTag+2*k, comm, &requestR1);
|
---|
155 |
|
---|
156 | } else if (ProcRank == ProcNum-1) {
|
---|
157 | //fprintf(stderr,"...first right...");
|
---|
158 | // get first right column
|
---|
159 | Abuffer2 = Aloc[1]; // note down the free column
|
---|
160 | MPI_Isend(Abuffer2, Num, MPI_DOUBLE, ProcRank-1, WannierARTag+2*k, comm, &requestS1);
|
---|
161 |
|
---|
162 | //fprintf(stderr,"...right columns...");
|
---|
163 | for(l=1;l<2*max_rounds-1;l+=2) // right columns become shifted one place to the left
|
---|
164 | Aloc[(l)] = Aloc[(l+2)];
|
---|
165 |
|
---|
166 | //fprintf(stderr,"...last right...");
|
---|
167 | Aloc[(2*max_rounds-1)] = Aloc[2*(max_rounds-1)]; // Put last left into last right column
|
---|
168 |
|
---|
169 | //fprintf(stderr,"...left columns...");
|
---|
170 | for(l=2*(max_rounds-1);l>0;l-=2) // left columns become shifted one place to the right
|
---|
171 | Aloc[(l)] = Aloc[(l-2)];
|
---|
172 |
|
---|
173 | //fprintf(stderr,"...first left...");
|
---|
174 | // if (max_rounds > 1)
|
---|
175 | Aloc[0] = Abuffer2; // get first left column
|
---|
176 | MPI_Irecv(Abuffer2, Num, MPI_DOUBLE, ProcRank-1, WannierALTag+2*k, comm, &requestR0);
|
---|
177 |
|
---|
178 | } else {
|
---|
179 | // get last left column
|
---|
180 | MPI_Isend(Aloc[2*(max_rounds-1)], Num, MPI_DOUBLE, ProcRank+1, WannierALTag+2*k, comm, &requestS0);
|
---|
181 | Abuffer1 = Aloc[2*(max_rounds-1)]; // note down the free column
|
---|
182 |
|
---|
183 | //fprintf(stderr,"...first right...");
|
---|
184 | // get first right column
|
---|
185 | MPI_Isend(Aloc[1], Num, MPI_DOUBLE, ProcRank-1, WannierARTag+2*k, comm, &requestS1);
|
---|
186 | Abuffer2 = Aloc[1]; // note down the free column
|
---|
187 |
|
---|
188 | //fprintf(stderr,"...left columns...");
|
---|
189 | for(l=2*(max_rounds-1);l>0;l-=2) // left columns become shifted one place to the right
|
---|
190 | Aloc[(l)] = Aloc[(l-2)];
|
---|
191 |
|
---|
192 | //fprintf(stderr,"...right columns...");
|
---|
193 | for(l=1;l<2*max_rounds-1;l+=2) // right columns become shifted one place to the left
|
---|
194 | Aloc[(l)] = Aloc[(l+2)];
|
---|
195 |
|
---|
196 | //fprintf(stderr,"...first left...");
|
---|
197 | Aloc[0] = Abuffer1; // get first left column
|
---|
198 | MPI_Irecv(Aloc[0], Num, MPI_DOUBLE, ProcRank-1, WannierALTag+2*k, comm, &requestR0);
|
---|
199 |
|
---|
200 | //fprintf(stderr,"...last right...");
|
---|
201 | Aloc[(2*max_rounds-1)] = Abuffer2;
|
---|
202 | MPI_Irecv(Aloc[(2*max_rounds-1)], Num, MPI_DOUBLE, ProcRank+1, WannierARTag+2*k, comm, &requestR1);
|
---|
203 | }
|
---|
204 |
|
---|
205 | //fprintf(stderr,"...waiting...");
|
---|
206 | if (ProcRank != ProcNum-1)
|
---|
207 | MPI_Wait(&requestS0, &status);
|
---|
208 | if (ProcRank != 0) // first left column
|
---|
209 | MPI_Wait(&requestR0, &status);
|
---|
210 | if (ProcRank != 0)
|
---|
211 | MPI_Wait(&requestS1, &status);
|
---|
212 | if (ProcRank != ProcNum-1)
|
---|
213 | MPI_Wait(&requestR1, &status);
|
---|
214 | //fprintf(stderr,"...done\n");
|
---|
215 | }
|
---|
216 |
|
---|
217 | /** Computation of Maximally Localized Wannier Functions.
|
---|
218 | * Maximally localized functions are prime when evulating a Hamiltonian with
|
---|
219 | * magnetic fields under periodic boundary conditions, as the common position
|
---|
220 | * operator is no longer valid. These can be obtained by orbital rotations, which
|
---|
221 | * are looked for iteratively and gathered in one transformation matrix, to be
|
---|
222 | * later applied to the set of orbital wave functions.
|
---|
223 | *
|
---|
224 | * In order to obtain these, the following algorithm is applied:
|
---|
225 | * -# Initialize U (identity) as the sought-for transformation matrix
|
---|
226 | * -# Compute the real symmetric (due to Gamma point symmetry!) matrix elements
|
---|
227 | * \f$A^{(k)}_{ij} = \langle \phi_i | A^{(k)} | \phi_j \rangle\f$ for the six operators
|
---|
228 | * \f$A^{(k)}\f$
|
---|
229 | * -# For each pair of indices (i,j) (i<j) do the following:
|
---|
230 | * -# Compute the 2x2 matrix \f$G = \Re \Bigl ( \sum_k h^H(A^{(k)}) h(A^{(k)}) \Bigr)\f$
|
---|
231 | * where \f$h(A) = [a_{ii} - a_{jj}, a_{ij} + a_{ji}]\f$
|
---|
232 | * -# Obtain eigenvalues and eigenvectors of G. Set \f$[x,y]^T\f$ to the eigenvector of G
|
---|
233 | * corresponding to the greatest eigenvalue, such that \f$x\geq0\f$
|
---|
234 | * -# Compute the rotation matrix R elements (ii,ij,ji,jj) \f$[c,s,-s,c]\f$ different from the
|
---|
235 | * identity matrix by \f$r=\sqrt{x^2+y^2}\f$, \f$c = \sqrt{\frac{x+r}{2r}}\f$
|
---|
236 | * \f$s=\frac{y}{\sqrt{2r(x+r)}}\f$
|
---|
237 | * -# Perform the similarity operation \f$A^{(k)} \rightarrow R A^{(k)} R\f$
|
---|
238 | * -# Gather the rotations in \f$U = U R\f$
|
---|
239 | * -# Compute the total spread \f$\sigma^2_{A^{(k)}}\f$
|
---|
240 | * -# Compare the change in spread to a desired minimum RunStruct#EpsWannier, if still greater go to step 3.
|
---|
241 | * -# Apply transformations to the orbital wavefunctions \f$ | \phi_i \rangle = \sum_j U_{ij} | \phi_j \rangle\f$
|
---|
242 | * -# Compute the position of the Wannier centers from diagonal elements of \f$A^{(k)}\f$, store in
|
---|
243 | * OnePsiElementAddData#WannierCentre
|
---|
244 | *
|
---|
245 | * Afterwards, the routine applies the found unitary rotation to the unperturbed group of wave functions.
|
---|
246 | * Note that hereby additional memory is needed as old and transformed wave functions must be present at the same
|
---|
247 | * time.
|
---|
248 | *
|
---|
249 | * The routine uses parallelization if possible. A parallel Jacobi-Diagonalization is implemented using the index
|
---|
250 | * generation in music() and shift-columns() such that the evaluated position operator eigenvalue matrices
|
---|
251 | * may be diagonalized simultaneously and parallely. We use the implementation explained in
|
---|
252 | * [Golub, Matrix computations, 1989, p451].
|
---|
253 | *
|
---|
254 | * \param *P Problem at hand
|
---|
255 | */
|
---|
256 | void ComputeMLWF(struct Problem *P) {
|
---|
257 | // variables and allocation
|
---|
258 | struct FileData *F = &P->Files;
|
---|
259 | struct Lattice *Lat = &P->Lat;
|
---|
260 | struct RunStruct *R = &P->R;
|
---|
261 | struct Psis *Psi = &Lat->Psi;
|
---|
262 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
263 | struct LatticeLevel *LevS = R->LevS;
|
---|
264 | struct Density *Dens0 = Lev0->Dens;
|
---|
265 | struct fft_plan_3d *plan = Lat->plan;
|
---|
266 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
267 | fftw_real *PsiCR = (fftw_real *)PsiC;
|
---|
268 | fftw_complex *work = Dens0->DensityCArray[Temp2Density];
|
---|
269 | fftw_real **HGcR = &Dens0->DensityArray[HGDensity]; // use HGDensity, 4x Gap..Density, TempDensity as a storage array
|
---|
270 | fftw_complex **HGcRC = (fftw_complex**)HGcR;
|
---|
271 | fftw_complex **HGcR2C = &Dens0->DensityCArray[HGcDensity]; // use HGcDensity, 4x Gap..Density, TempDensity as an array
|
---|
272 | fftw_real **HGcR2 = (fftw_real**)HGcR2C;
|
---|
273 | MPI_Status status;
|
---|
274 | struct OnePsiElement *OnePsiB, *OnePsiA, *LOnePsiB;
|
---|
275 | int ElementSize = (sizeof(fftw_complex) / sizeof(double)), RecvSource;
|
---|
276 | fftw_complex *LPsiDatA=NULL, *LPsiDatB=NULL;
|
---|
277 | int n[NDIM],n0,i0,iS, Index;
|
---|
278 | int N0;
|
---|
279 | int N[NDIM];
|
---|
280 | const int NUpx = LevS->NUp[0];
|
---|
281 | const int NUpy = LevS->NUp[1];
|
---|
282 | const int NUpz = LevS->NUp[2];
|
---|
283 | int e,i,j,k,l,m,u,p,g;
|
---|
284 | int Num = Psi->NoOfPsis; // is number of occupied plus unoccupied states for rows
|
---|
285 | double x,y,r;
|
---|
286 | double q[NDIM];
|
---|
287 | double *c,*s;
|
---|
288 | int index;
|
---|
289 | double spread = 0., old_spread=0., Spread=0.;
|
---|
290 | double WannierCentre[Num][NDIM];
|
---|
291 | double WannierSpread[Num];
|
---|
292 | double tmp,tmp2;
|
---|
293 | double a_ij = 0, b_ij = 0, A_ij = 0, B_ij = 0;
|
---|
294 | double **cos_lookup,**sin_lookup;
|
---|
295 | gsl_matrix *G;
|
---|
296 | gsl_vector *h;
|
---|
297 | gsl_vector *eval;
|
---|
298 | gsl_matrix *evec;
|
---|
299 | gsl_eigen_symmv_workspace *w;
|
---|
300 | int ProcNum, ProcRank, set;
|
---|
301 | int it_steps; // iteration step counter
|
---|
302 | int *top, *bot;
|
---|
303 | int Lsend, Rsend, Lrecv, Rrecv; // where left(right) column is sent to or where it originates from
|
---|
304 | int left, right; // left or right neighbour for process
|
---|
305 | double **Aloc[max_operators+1], **Uloc; // local columns for one step of A[k]
|
---|
306 | double *Around[max_operators+1], *Uround; // all local columns for one round of A[k]
|
---|
307 | double *Atotal[max_operators+1], *Utotal; // all local columns for one round of A[k]
|
---|
308 | double a_i, a_j;
|
---|
309 | int tagR0, tagR1, tagS0, tagS1;
|
---|
310 | int iloc, jloc;
|
---|
311 | double *s_all, *c_all;
|
---|
312 | int round, max_rounds;
|
---|
313 | int start;
|
---|
314 | int *rcounts, *rdispls;
|
---|
315 | int AllocNum = ceil((double)Num / 2. ) *2;
|
---|
316 | int totalflag, flag;
|
---|
317 | int *marker, **group;
|
---|
318 | int partner[Num];
|
---|
319 | int type = Occupied;
|
---|
320 | MPI_Comm *comm;
|
---|
321 | char spin[12], suffix[18];
|
---|
322 |
|
---|
323 | N0 = LevS->Plan0.plan->local_nx;
|
---|
324 | N[0] = LevS->Plan0.plan->N[0];
|
---|
325 | N[1] = LevS->Plan0.plan->N[1];
|
---|
326 | N[2] = LevS->Plan0.plan->N[2];
|
---|
327 |
|
---|
328 | comm = &P->Par.comm_ST;
|
---|
329 |
|
---|
330 | fprintf(stderr,"(%i) Comparing groups - AllocNum %i --- All %i\t Psi %i\t PsiT %i\n",P->Par.me, AllocNum, P->Par.Max_me_comm_ST, P->Par.Max_me_comm_ST_Psi, P->Par.Max_my_color_comm_ST_Psi);
|
---|
331 | if (AllocNum % (P->Par.Max_me_comm_ST*2) == 0) { // all parallel
|
---|
332 | comm = &P->Par.comm_ST;
|
---|
333 | fprintf(stderr,"(%i) Jacobi is done parallely by all\n", P->Par.me);
|
---|
334 | } else if (P->Par.Max_me_comm_ST_Psi >= P->Par.Max_my_color_comm_ST_Psi) { // always the bigger group comes first
|
---|
335 | if (AllocNum % (P->Par.Max_me_comm_ST_Psi*2) == 0) { // coefficients parallel
|
---|
336 | comm = &P->Par.comm_ST_Psi;
|
---|
337 | fprintf(stderr,"(%i) Jacobi is done parallely by Psi\n", P->Par.me);
|
---|
338 | } else if (AllocNum % (P->Par.Max_my_color_comm_ST_Psi*2) == 0) { // Psis parallel
|
---|
339 | comm = &P->Par.comm_ST_PsiT;
|
---|
340 | fprintf(stderr,"(%i) Jacobi is done parallely by PsiT\n", P->Par.me);
|
---|
341 | }
|
---|
342 | } else {
|
---|
343 | if (AllocNum % (P->Par.Max_my_color_comm_ST_Psi*2) == 0) { // Psis parallel
|
---|
344 | comm = &P->Par.comm_ST_PsiT;
|
---|
345 | fprintf(stderr,"(%i) Jacobi is done parallely by PsiT\n", P->Par.me);
|
---|
346 | } else if (AllocNum % (P->Par.Max_me_comm_ST_Psi*2) == 0) { // coefficients parallel
|
---|
347 | comm = &P->Par.comm_ST_Psi;
|
---|
348 | fprintf(stderr,"(%i) Jacobi is done parallely by Psi\n", P->Par.me);
|
---|
349 | }
|
---|
350 | }
|
---|
351 |
|
---|
352 | MPI_Comm_size (*comm, &ProcNum);
|
---|
353 | MPI_Comm_rank (*comm, &ProcRank);
|
---|
354 |
|
---|
355 | if(P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Beginning localization of orbitals ...\n",P->Par.me);
|
---|
356 |
|
---|
357 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 2\n",P->Par.me);
|
---|
358 |
|
---|
359 | // STEP 2: Calculate A[k]_ij = V/N \sum_{G1,G2} C^\ast_{l,G1} c_{m,G2} \sum_R A^{(k)}(R) exp(iR(G2-G1))
|
---|
360 | gsl_matrix *A[max_operators+1]; // one extra for B matrix
|
---|
361 | for (u=0;u<=max_operators;u++)
|
---|
362 | A[u] = gsl_matrix_calloc (AllocNum,AllocNum); // allocate matrix
|
---|
363 |
|
---|
364 | // create lookup table for sin/cos values
|
---|
365 | cos_lookup = (double **) Malloc(sizeof(double *)*NDIM, "ComputeMLWF: *cos_lookup");
|
---|
366 | sin_lookup = (double **) Malloc(sizeof(double *)*NDIM, "ComputeMLWF: *sin_lookup");
|
---|
367 | for (i=0;i<NDIM;i++) {
|
---|
368 | // allocate memory
|
---|
369 | cos_lookup[i] = (double *) Malloc(sizeof(double)*LevS->Plan0.plan->N[i], "ComputeMLWF: cos_lookup");
|
---|
370 | sin_lookup[i] = (double *) Malloc(sizeof(double)*LevS->Plan0.plan->N[i], "ComputeMLWF: sin_lookup");
|
---|
371 | // reset arrays
|
---|
372 | SetArrayToDouble0(cos_lookup[i],LevS->Plan0.plan->N[i]);
|
---|
373 | SetArrayToDouble0(sin_lookup[i],LevS->Plan0.plan->N[i]);
|
---|
374 | // create lookup values
|
---|
375 | for (j=0;j<LevS->Plan0.plan->N[i];j++) {
|
---|
376 | tmp = 2*PI/(double)LevS->Plan0.plan->N[i]*(double)j;
|
---|
377 | cos_lookup[i][j] = cos(tmp);
|
---|
378 | sin_lookup[i][j] = sin(tmp);
|
---|
379 | }
|
---|
380 | }
|
---|
381 | l=-1; // to access U matrix element (0..Num-1)
|
---|
382 | // fill the matrices
|
---|
383 | for (i=0; i < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; i++) { // go through all wave functions
|
---|
384 | OnePsiA = &Psi->AllPsiStatus[i]; // grab OnePsiA
|
---|
385 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
386 | l++; // increase l if it is non-extra wave function
|
---|
387 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
388 | LPsiDatA=LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo];
|
---|
389 | else
|
---|
390 | LPsiDatA = NULL; // otherwise processes won't enter second loop, though they're supposed to send coefficients!
|
---|
391 |
|
---|
392 | //fprintf(stderr,"(%i),(%i,%i): fft'd, A[..] and B, back-fft'd acting on \\phi_A\n",P->Par.me,l,0);
|
---|
393 | if (LPsiDatA != NULL) {
|
---|
394 | CalculateOneDensityR(Lat, LevS, Dens0, LPsiDatA, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 1);
|
---|
395 | // note: factor is not used when storing result in DensityCArray[ActualPsiDensity] in CalculateOneDensityR()!
|
---|
396 | for (n0=0;n0<N0;n0++)
|
---|
397 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
398 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
399 | i0 = n[2]*NUpz+N[2]*NUpz*(n[1]*NUpy+N[1]*NUpy*n0*NUpx);
|
---|
400 | iS = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
401 | n[0] = n0 + LevS->Plan0.plan->start_nx;
|
---|
402 | for (k=0;k<max_operators;k+=2) {
|
---|
403 | e = k/2;
|
---|
404 | tmp = 2*PI/(double)(N[e])*(double)(n[e]);
|
---|
405 | tmp2 = PsiCR[i0] /LevS->MaxN;
|
---|
406 | // check lookup
|
---|
407 | if (!l) // perform check on first wave function only
|
---|
408 | if ((fabs(cos(tmp) - cos_lookup[e][n[e]]) > MYEPSILON) || (fabs(sin(tmp) - sin_lookup[e][n[e]]) > MYEPSILON)) {
|
---|
409 | Error(SomeError, "Lookup table does not match real value!");
|
---|
410 | }
|
---|
411 | HGcR[k][iS] = cos_lookup[e][n[e]] * tmp2; /* Matrix Vector Mult */
|
---|
412 | HGcR2[k][iS] = cos_lookup[e][n[e]] * HGcR[k][iS]; /* Matrix Vector Mult */
|
---|
413 | HGcR[k+1][iS] = sin_lookup[e][n[e]] * tmp2; /* Matrix Vector Mult */
|
---|
414 | HGcR2[k+1][iS] = sin_lookup[e][n[e]] * HGcR[k+1][iS]; /* Matrix Vector Mult */
|
---|
415 | }
|
---|
416 | }
|
---|
417 | for (u=0;u<max_operators;u++) {
|
---|
418 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcRC[u], work);
|
---|
419 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcR2C[u], work);
|
---|
420 | }
|
---|
421 | }
|
---|
422 | m = -1; // to access U matrix element (0..Num-1)
|
---|
423 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
424 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
425 | if (OnePsiB->PsiType == type) { // drop all but occupied ones
|
---|
426 | m++; // increase m if it is non-extra wave function
|
---|
427 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
428 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
429 | else
|
---|
430 | LOnePsiB = NULL;
|
---|
431 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
432 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
433 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, WannierTag2, P->Par.comm_ST_PsiT, &status );
|
---|
434 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
435 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
436 | for (p=0;p<P->Par.Max_me_comm_ST_PsiT;p++)
|
---|
437 | if (p != OnePsiB->my_color_comm_ST_Psi)
|
---|
438 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, p, WannierTag2, P->Par.comm_ST_PsiT);
|
---|
439 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
440 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
441 |
|
---|
442 | for (u=0;u<max_operators;u++) {
|
---|
443 | a_ij = 0;
|
---|
444 | b_ij = 0;
|
---|
445 | if (LPsiDatA != NULL) { // calculate, reduce and send to all ...
|
---|
446 | //fprintf(stderr,"(%i),(%i,%i): A[%i]: multiplying with \\phi_B\n",P->Par.me, l,m,u);
|
---|
447 | g=0;
|
---|
448 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
449 | Index = LevS->GArray[g].Index;
|
---|
450 | a_ij = (LPsiDatB[0].re*HGcRC[u][Index].re + LPsiDatB[0].im*HGcRC[u][Index].im);
|
---|
451 | b_ij = (LPsiDatB[0].re*HGcR2C[u][Index].re + LPsiDatB[0].im*HGcR2C[u][Index].im);
|
---|
452 | g++;
|
---|
453 | }
|
---|
454 | for (; g < LevS->MaxG; g++) {
|
---|
455 | Index = LevS->GArray[g].Index;
|
---|
456 | a_ij += 2*(LPsiDatB[g].re*HGcRC[u][Index].re + LPsiDatB[g].im*HGcRC[u][Index].im);
|
---|
457 | b_ij += 2*(LPsiDatB[g].re*HGcR2C[u][Index].re + LPsiDatB[g].im*HGcR2C[u][Index].im);
|
---|
458 | } // due to the symmetry the resulting matrix element is real and symmetric in (i,j) ! (complex multiplication simplifies ...)
|
---|
459 | // sum up elements from all coefficients sharing processes
|
---|
460 | MPI_Allreduce ( &a_ij, &A_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
461 | MPI_Allreduce ( &b_ij, &B_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
462 | a_ij = A_ij;
|
---|
463 | b_ij = B_ij;
|
---|
464 | // send element to all Psi-sharing who don't have l local (MPI_Send is a lot slower than AllReduce!)
|
---|
465 | MPI_Allreduce ( &a_ij, &A_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);
|
---|
466 | MPI_Allreduce ( &b_ij, &B_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);
|
---|
467 | } else { // receive ...
|
---|
468 | MPI_Allreduce ( &a_ij, &A_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);
|
---|
469 | MPI_Allreduce ( &b_ij, &B_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);
|
---|
470 | }
|
---|
471 | // ... and store
|
---|
472 | //fprintf(stderr,"(%i),(%i,%i): A[%i]: setting component (local: %lg, total: %lg)\n",P->Par.me, l,m,u,a_ij,A_ij);
|
---|
473 | //fprintf(stderr,"(%i),(%i,%i): B: adding upon component (local: %lg, total: %lg)\n",P->Par.me, l,m,b_ij,B_ij);
|
---|
474 | gsl_matrix_set(A[u], l, m, A_ij);
|
---|
475 | gsl_matrix_set(A[max_operators], l, m, B_ij + gsl_matrix_get(A[max_operators],l,m));
|
---|
476 | }
|
---|
477 | }
|
---|
478 | }
|
---|
479 | }
|
---|
480 | }
|
---|
481 | // reset extra entries
|
---|
482 | for (u=0;u<=max_operators;u++) {
|
---|
483 | for (i=Num;i<AllocNum;i++)
|
---|
484 | for (j=0;j<AllocNum;j++)
|
---|
485 | gsl_matrix_set(A[u], i,j, 0.);
|
---|
486 | for (i=Num;i<AllocNum;i++)
|
---|
487 | for (j=0;j<AllocNum;j++)
|
---|
488 | gsl_matrix_set(A[u], j,i, 0.);
|
---|
489 | }
|
---|
490 | // free lookups
|
---|
491 | for (i=0;i<NDIM;i++) {
|
---|
492 | Free(cos_lookup[i], "bla");
|
---|
493 | Free(sin_lookup[i], "bla");
|
---|
494 | }
|
---|
495 | Free(cos_lookup, "bla");
|
---|
496 | Free(sin_lookup, "bla");
|
---|
497 |
|
---|
498 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 1\n",P->Par.me);
|
---|
499 | // STEP 1: Initialize U = 1
|
---|
500 | gsl_matrix *U = gsl_matrix_alloc (AllocNum,AllocNum);
|
---|
501 | gsl_matrix_set_identity(U);
|
---|
502 |
|
---|
503 | // init merry-go-round array
|
---|
504 | top = (int *) Malloc(sizeof(int)*AllocNum/2, "ComputeMLWF: top");
|
---|
505 | bot = (int *) Malloc(sizeof(int)*AllocNum/2, "ComputeMLWF: bot");
|
---|
506 | //debug(P,"init merry-go-round array");
|
---|
507 | for (i=0;i<AllocNum/2;i++) {
|
---|
508 | top[i] = 2*i;
|
---|
509 | bot[i] = 2*i+1;
|
---|
510 | }
|
---|
511 |
|
---|
512 | /*// print A matrices for debug
|
---|
513 | if (P->Par.me == 0)
|
---|
514 | for (u=0;u<max_operators+1;u++) {
|
---|
515 | fprintf(stderr, "A[%i] = \n",u);
|
---|
516 | for (i=0;i<Num;i++) {
|
---|
517 | for (j=0;j<Num;j++)
|
---|
518 | fprintf(stderr, "%e\t",gsl_matrix_get(A[u],i,j));
|
---|
519 | fprintf(stderr, "\n");
|
---|
520 | }
|
---|
521 | }
|
---|
522 | */
|
---|
523 | if (Num != 1) {
|
---|
524 | // one- or multi-process case?
|
---|
525 | if (((AllocNum % 2) == 0) && (ProcNum != 1) && ((AllocNum / 2) % ProcNum == 0)) {
|
---|
526 | max_rounds = (AllocNum / 2)/ProcNum; // each process must perform multiple rotations per step of a set
|
---|
527 | //fprintf(stderr,"(%i) start %i\tstep %i\tmax.rounds %i\n",P->Par.me, ProcRank, ProcNum, max_rounds);
|
---|
528 | // allocate column vectors for interchange of columns
|
---|
529 | //debug(P,"allocate column vectors for interchange of columns");
|
---|
530 | c = (double *) Malloc(sizeof(double)*max_rounds, "ComputeMLWF: c");
|
---|
531 | s = (double *) Malloc(sizeof(double)*max_rounds, "ComputeMLWF: s");
|
---|
532 | c_all = (double *) Malloc(sizeof(double)*AllocNum/2, "ComputeMLWF: c_all");
|
---|
533 | s_all = (double *) Malloc(sizeof(double)*AllocNum/2, "ComputeMLWF: s_all");
|
---|
534 | rcounts = (int *) Malloc(sizeof(int)*ProcNum, "ComputeMLWF: rcounts");
|
---|
535 | rdispls = (int *) Malloc(sizeof(int)*ProcNum, "ComputeMLWF: rdispls");
|
---|
536 | /* // print starting values of index generation tables top and bot
|
---|
537 | fprintf(stderr,"top\t");
|
---|
538 | for (k=0;k<AllocNum/2;k++)
|
---|
539 | fprintf(stderr,"%i\t", top[k]);
|
---|
540 | fprintf(stderr,"\n");
|
---|
541 | fprintf(stderr,"bot\t");
|
---|
542 | for (k=0;k<AllocNum/2;k++)
|
---|
543 | fprintf(stderr,"%i\t", bot[k]);
|
---|
544 | fprintf(stderr,"\n");*/
|
---|
545 | // establish communication partners
|
---|
546 | //debug(P,"establish communication partners");
|
---|
547 | if (ProcRank == 0) {
|
---|
548 | tagS0 = WannierALTag; // left p0 always remains left p0
|
---|
549 | } else {
|
---|
550 | tagS0 = ProcRank == ProcNum - 1 ? WannierARTag : WannierALTag; // left p_last becomes right p_last
|
---|
551 | }
|
---|
552 | tagS1 = ProcRank == 0 ? WannierALTag : WannierARTag; // right p0 always goes into left p1
|
---|
553 | tagR0 = WannierALTag; //
|
---|
554 | tagR1 = WannierARTag; // first process
|
---|
555 | if (ProcRank == 0) {
|
---|
556 | left = ProcNum-1;
|
---|
557 | right = 1;
|
---|
558 | Lsend = 0;
|
---|
559 | Rsend = 1;
|
---|
560 | Lrecv = 0;
|
---|
561 | Rrecv = 1;
|
---|
562 | } else if (ProcRank == ProcNum - 1) {
|
---|
563 | left = ProcRank - 1;
|
---|
564 | right = 0;
|
---|
565 | Lsend = ProcRank;
|
---|
566 | Rsend = ProcRank - 1;
|
---|
567 | Lrecv = ProcRank - 1;
|
---|
568 | Rrecv = ProcRank;
|
---|
569 | } else {
|
---|
570 | left = ProcRank - 1;
|
---|
571 | right = ProcRank + 1;
|
---|
572 | Lsend = ProcRank+1;
|
---|
573 | Rsend = ProcRank - 1;
|
---|
574 | Lrecv = ProcRank - 1;
|
---|
575 | Rrecv = ProcRank+1;
|
---|
576 | }
|
---|
577 | //fprintf(stderr,"(%i) left %i\t right %i --- Lsend %i\tRsend%i\tLrecv %i\tRrecv%i\n",P->Par.me, left, right, Lsend, Rsend, Lrecv, Rrecv);
|
---|
578 | // allocate eigenvector stuff
|
---|
579 | //debug(P,"allocate eigenvector stuff");
|
---|
580 | G = gsl_matrix_calloc (2,2);
|
---|
581 | h = gsl_vector_alloc (2);
|
---|
582 | eval = gsl_vector_alloc (2);
|
---|
583 | evec = gsl_matrix_alloc (2,2);
|
---|
584 | w = gsl_eigen_symmv_alloc(2);
|
---|
585 | // initialise A_loc
|
---|
586 | //debug(P,"initialise A_loc");
|
---|
587 | for (k=0;k<max_operators+1;k++) {
|
---|
588 | //Aloc[k] = (double *) Malloc(sizeof(double)*AllocNum*2, "ComputeMLWF: Aloc[k]");
|
---|
589 | Around[k] = (double *) Malloc(sizeof(double)*AllocNum*2*max_rounds, "ComputeMLWF: Around[k]");
|
---|
590 | Atotal[k] = (double *) Malloc(sizeof(double)*AllocNum*AllocNum, "ComputeMLWF: Atotal[k]");
|
---|
591 | Aloc[k] = (double **) Malloc(sizeof(double *)*2*max_rounds, "ComputeMLWF: Aloc[k]");
|
---|
592 | //Around[k] = &Atotal[k][ProcRank*AllocNum*2*max_rounds];
|
---|
593 |
|
---|
594 | for (round=0;round<max_rounds;round++) {
|
---|
595 | Aloc[k][2*round] = &Around[k][AllocNum*(2*round)];
|
---|
596 | Aloc[k][2*round+1] = &Around[k][AllocNum*(2*round+1)];
|
---|
597 | for (l=0;l<AllocNum;l++) {
|
---|
598 | Aloc[k][2*round][l] = gsl_matrix_get(A[k],l,2*(ProcRank*max_rounds+round));
|
---|
599 | Aloc[k][2*round+1][l] = gsl_matrix_get(A[k],l,2*(ProcRank*max_rounds+round)+1);
|
---|
600 | //fprintf(stderr,"(%i) (%i, 0/1) A_loc1 %e\tA_loc2 %e\n",P->Par.me, l, Aloc[k][l],Aloc[k][l+AllocNum]);
|
---|
601 | }
|
---|
602 | }
|
---|
603 | }
|
---|
604 | // initialise U_loc
|
---|
605 | //debug(P,"initialise U_loc");
|
---|
606 | //Uloc = (double *) Malloc(sizeof(double)*AllocNum*2, "ComputeMLWF: Uloc");
|
---|
607 | Uround = (double *) Malloc(sizeof(double)*AllocNum*2*max_rounds, "ComputeMLWF: Uround");
|
---|
608 | Utotal = (double *) Malloc(sizeof(double)*AllocNum*AllocNum, "ComputeMLWF: Utotal");
|
---|
609 | Uloc = (double **) Malloc(sizeof(double *)*2*max_rounds, "ComputeMLWF: Uloc");
|
---|
610 | //Uround = &Utotal[ProcRank*AllocNum*2*max_rounds];
|
---|
611 | for (round=0;round<max_rounds;round++) {
|
---|
612 | Uloc[2*round] = &Uround[AllocNum*(2*round)];
|
---|
613 | Uloc[2*round+1] = &Uround[AllocNum*(2*round+1)];
|
---|
614 | for (l=0;l<AllocNum;l++) {
|
---|
615 | Uloc[2*round][l] = gsl_matrix_get(U,l,2*(ProcRank*max_rounds+round));
|
---|
616 | Uloc[2*round+1][l] = gsl_matrix_get(U,l,2*(ProcRank*max_rounds+round)+1);
|
---|
617 | //fprintf(stderr,"(%i) (%i, 0/1) U_loc1 %e\tU_loc2 %e\n",P->Par.me, l, Uloc[l+AllocNum*0],Uloc[l+AllocNum*1]);
|
---|
618 | }
|
---|
619 | }
|
---|
620 | // now comes the iteration loop
|
---|
621 | //debug(P,"now comes the iteration loop");
|
---|
622 | it_steps = 0;
|
---|
623 | do {
|
---|
624 | it_steps++;
|
---|
625 | fprintf(stderr,"(%i) Beginning parallel iteration %i ... ",P->Par.me,it_steps);
|
---|
626 | for (set=0; set < AllocNum-1; set++) { // one column less due to column 0 stating at its place all the time
|
---|
627 | //fprintf(stderr,"(%i) Beginning rotation set %i ...\n",P->Par.me,set);
|
---|
628 | for (round = 0; round < max_rounds;round++) {
|
---|
629 | start = ProcRank * max_rounds + round;
|
---|
630 | // get indices
|
---|
631 | i = top[start] < bot[start] ? top[start] : bot[start]; // minimum of the two indices
|
---|
632 | iloc = top[start] < bot[start] ? 0 : 1;
|
---|
633 | j = top[start] > bot[start] ? top[start] : bot[start]; // maximum of the two indices: thus j > i
|
---|
634 | jloc = top[start] > bot[start] ? 0 : 1;
|
---|
635 | //fprintf(stderr,"(%i) my (%i,%i), loc(%i,%i)\n",P->Par.me, i,j, iloc, jloc);
|
---|
636 |
|
---|
637 | // calculate rotation angle, i.e. c and s
|
---|
638 | //fprintf(stderr,"(%i),(%i,%i) calculate rotation angle\n",P->Par.me,i,j);
|
---|
639 | gsl_matrix_set_zero(G);
|
---|
640 | for (k=0;k<max_operators;k++) { // go through all operators ...
|
---|
641 | // Calculate vector h(a) = [a_ii - a_jj, a_ij + a_ji, i(a_ji - a_ij)]
|
---|
642 | //fprintf(stderr,"(%i) k%i [a_ii - a_jj] = %e - %e = %e\n",P->Par.me, k,Aloc[k][2*round+iloc][i], Aloc[k][2*round+jloc][j],Aloc[k][2*round+iloc][i] - Aloc[k][2*round+jloc][j]);
|
---|
643 | //fprintf(stderr,"(%i) k%i [a_ij + a_ji] = %e - %e = %e\n",P->Par.me, k,Aloc[k][2*round+jloc][i], Aloc[k][2*round+iloc][j],Aloc[k][2*round+jloc][i] + Aloc[k][2*round+iloc][j]);
|
---|
644 | gsl_vector_set(h, 0, Aloc[k][2*round+iloc][i] - Aloc[k][2*round+jloc][j]);
|
---|
645 | gsl_vector_set(h, 1, Aloc[k][2*round+jloc][i] + Aloc[k][2*round+iloc][j]);
|
---|
646 |
|
---|
647 | // Calculate G = Re[ \sum_k h^H (A^{(k)}) h(A^{(k)}) ]
|
---|
648 | for (l=0;l<2;l++)
|
---|
649 | for (m=0;m<2;m++)
|
---|
650 | gsl_matrix_set(G,l,m, gsl_vector_get(h,l) * gsl_vector_get(h,m) + gsl_matrix_get(G,l,m));
|
---|
651 | }
|
---|
652 | //fprintf(stderr,"(%i),(%i,%i) STEP 3b\n",P->Par.me,i,j);
|
---|
653 | // STEP 3b: retrieve eigenvector which belongs to greatest eigenvalue of G
|
---|
654 | gsl_eigen_symmv(G, eval, evec, w); // calculates eigenvalues and eigenvectors of G
|
---|
655 | index = gsl_vector_max_index (eval); // get biggest eigenvalue
|
---|
656 | x = gsl_matrix_get(evec, 0, index);
|
---|
657 | y = gsl_matrix_get(evec, 1, index) * x/fabs(x);
|
---|
658 | x = fabs(x); // ensure x>=0 so that rotation angles remain smaller Pi/4
|
---|
659 | //fprintf(stderr,"(%i),(%i,%i) STEP 3c\n",P->Par.me,i,j);
|
---|
660 | // STEP 3c: calculate R = [[c,s^\ast],[-s,c^\ast]]
|
---|
661 | r = sqrt(x*x + y*y);
|
---|
662 | c[round] = sqrt((x + r) / (2*r));
|
---|
663 | s[round] = y / sqrt(2*r*(x+r));
|
---|
664 | // [[c,s],[-s,c]]= V_small
|
---|
665 | //fprintf(stderr,"(%i),(%i,%i) COS %e\t SIN %e\n",P->Par.me,i,j,c[round],s[round]);
|
---|
666 |
|
---|
667 | //fprintf(stderr,"(%i),(%i,%i) STEP 3e\n",P->Par.me,i,j);
|
---|
668 | // V_loc = V_loc * V_small
|
---|
669 | //debug(P,"apply rotation to local U");
|
---|
670 | for (l=0;l<AllocNum;l++) {
|
---|
671 | a_i = Uloc[2*round+iloc][l];
|
---|
672 | a_j = Uloc[2*round+jloc][l];
|
---|
673 | Uloc[2*round+iloc][l] = c[round] * a_i + s[round] * a_j;
|
---|
674 | Uloc[2*round+jloc][l] = -s[round] * a_i + c[round] * a_j;
|
---|
675 | }
|
---|
676 | } // end of round
|
---|
677 | // circulate the rotation angles
|
---|
678 | //debug(P,"circulate the rotation angles");
|
---|
679 | MPI_Allgather(c, max_rounds, MPI_DOUBLE, c_all, max_rounds, MPI_DOUBLE, *comm); // MPI_Allgather is waaaaay faster than ring circulation
|
---|
680 | MPI_Allgather(s, max_rounds, MPI_DOUBLE, s_all, max_rounds, MPI_DOUBLE, *comm);
|
---|
681 | //m = start;
|
---|
682 | for (l=0;l<AllocNum/2;l++) { // for each process
|
---|
683 | // we have V_small from process k
|
---|
684 | //debug(P,"Apply V_small from other process");
|
---|
685 | i = top[l] < bot[l] ? top[l] : bot[l]; // minimum of the two indices
|
---|
686 | j = top[l] > bot[l] ? top[l] : bot[l]; // maximum of the two indices: thus j > i
|
---|
687 | iloc = top[l] < bot[l] ? 0 : 1;
|
---|
688 | jloc = top[l] > bot[l] ? 0 : 1;
|
---|
689 | for (m=0;m<max_rounds;m++) {
|
---|
690 | //fprintf(stderr,"(%i) %i processes' (%i,%i)\n",P->Par.me, m,i,j);
|
---|
691 | // apply row rotation to each A[k]
|
---|
692 | for (k=0;k<max_operators+1;k++) {// one extra for B matrix !
|
---|
693 | //fprintf(stderr,"(%i) A:(k%i) a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, i, Aloc[k][2*m+iloc][i],j,Aloc[k][2*m+iloc][j]);
|
---|
694 | //fprintf(stderr,"(%i) A:(k%i) a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, i, Aloc[k][2*m+jloc][i],j,Aloc[k][2*m+jloc][j]);
|
---|
695 | a_i = Aloc[k][2*m+iloc][i];
|
---|
696 | a_j = Aloc[k][2*m+iloc][j];
|
---|
697 | Aloc[k][2*m+iloc][i] = c_all[l] * a_i + s_all[l] * a_j;
|
---|
698 | Aloc[k][2*m+iloc][j] = -s_all[l] * a_i + c_all[l] * a_j;
|
---|
699 | a_i = Aloc[k][2*m+jloc][i];
|
---|
700 | a_j = Aloc[k][2*m+jloc][j];
|
---|
701 | Aloc[k][2*m+jloc][i] = c_all[l] * a_i + s_all[l] * a_j;
|
---|
702 | Aloc[k][2*m+jloc][j] = -s_all[l] * a_i + c_all[l] * a_j;
|
---|
703 | //fprintf(stderr,"(%i) A^%i: a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, i, Aloc[k][2*m+iloc][i],j,Aloc[k][2*m+iloc][j]);
|
---|
704 | //fprintf(stderr,"(%i) A^%i: a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, i, Aloc[k][2*m+jloc][i],j,Aloc[k][2*m+jloc][j]);
|
---|
705 | }
|
---|
706 | }
|
---|
707 | }
|
---|
708 | // apply rotation to local operator matrices
|
---|
709 | // A_loc = A_loc * V_small
|
---|
710 | //debug(P,"apply rotation to local operator matrices A[k]");
|
---|
711 | for (m=0;m<max_rounds;m++) {
|
---|
712 | start = ProcRank * max_rounds + m;
|
---|
713 | iloc = top[start] < bot[start] ? 0 : 1;
|
---|
714 | jloc = top[start] > bot[start] ? 0 : 1;
|
---|
715 | for (k=0;k<max_operators+1;k++) {// one extra for B matrix !
|
---|
716 | for (l=0;l<AllocNum;l++) {
|
---|
717 | // Columns, i and j belong to this process only!
|
---|
718 | a_i = Aloc[k][2*m+iloc][l];
|
---|
719 | a_j = Aloc[k][2*m+jloc][l];
|
---|
720 | Aloc[k][2*m+iloc][l] = c[m] * a_i + s[m] * a_j;
|
---|
721 | Aloc[k][2*m+jloc][l] = -s[m] * a_i + c[m] * a_j;
|
---|
722 | //fprintf(stderr,"(%i) A:(k%i) a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, l, Aloc[k][2*m+iloc][l],l,Aloc[k][2*m+jloc][l]);
|
---|
723 | }
|
---|
724 | }
|
---|
725 | }
|
---|
726 | // Shuffling of these round's columns to prepare next rotation set
|
---|
727 | for (k=0;k<max_operators+1;k++) {// one extra for B matrix !
|
---|
728 | // extract columns from A
|
---|
729 | //debug(P,"extract columns from A");
|
---|
730 | shiftcolumns(*comm, Aloc[k], AllocNum, max_rounds, k, tagS0, tagS1, tagR0, tagR1);
|
---|
731 |
|
---|
732 | }
|
---|
733 | // and also for V ...
|
---|
734 | //debug(P,"extract columns from U");
|
---|
735 | shiftcolumns(*comm, Uloc, AllocNum, max_rounds, 0, tagS0, tagS1, tagR0, tagR1);
|
---|
736 |
|
---|
737 |
|
---|
738 | // and merry-go-round for the indices too
|
---|
739 | //debug(P,"and merry-go-round for the indices too");
|
---|
740 | music(top, bot, AllocNum/2);
|
---|
741 | }
|
---|
742 |
|
---|
743 | //fprintf(stderr,"(%i) STEP 4\n",P->Par.me);
|
---|
744 | // STEP 4: calculate new variance: \sum_{ik} (A^{(k)}_ii)^2
|
---|
745 | old_spread = Spread;
|
---|
746 | spread = 0.;
|
---|
747 | for(k=0;k<max_operators;k++) { // go through all self-adjoint operators
|
---|
748 | for (i=0; i < 2*max_rounds; i++) { // go through all wave functions
|
---|
749 | spread += Aloc[k][i][i+ProcRank*2*max_rounds]*Aloc[k][i][i+ProcRank*2*max_rounds];
|
---|
750 | //spread += gsl_matrix_get(A[k],i,i)*gsl_matrix_get(A[k],i,i);
|
---|
751 | }
|
---|
752 | }
|
---|
753 | MPI_Allreduce(&spread, &Spread, 1, MPI_DOUBLE, MPI_SUM, *comm);
|
---|
754 | //Spread = spread;
|
---|
755 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 5: %2.9e - %2.9e <= %lg ?\n",P->Par.me,old_spread,Spread,R->EpsWannier);
|
---|
756 | else fprintf(stderr,"%2.9e\n",Spread);
|
---|
757 | // STEP 5: check change of variance
|
---|
758 | } while (fabs(old_spread-Spread) >= R->EpsWannier);
|
---|
759 | // end of iterative diagonalization loop: We have found our final orthogonal U!
|
---|
760 |
|
---|
761 | for (l=0;l<ProcNum;l++)
|
---|
762 | rcounts[l] = AllocNum;
|
---|
763 | //debug(P,"allgather U");
|
---|
764 | for (round=0;round<2*max_rounds;round++) {
|
---|
765 | for (l=0;l<ProcNum;l++)
|
---|
766 | rdispls[l] = (l*2*max_rounds + round)*AllocNum;
|
---|
767 | MPI_Allgatherv(Uloc[round], AllocNum, MPI_DOUBLE, Utotal, rcounts, rdispls, MPI_DOUBLE, *comm);
|
---|
768 | }
|
---|
769 | for (k=0;k<AllocNum;k++) {
|
---|
770 | for(l=0;l<AllocNum;l++) {
|
---|
771 | gsl_matrix_set(U,k,l, Utotal[l+k*AllocNum]);
|
---|
772 | }
|
---|
773 | }
|
---|
774 |
|
---|
775 |
|
---|
776 | // after one set, gather A[k] from all and calculate spread
|
---|
777 | for (l=0;l<ProcNum;l++)
|
---|
778 | rcounts[l] = AllocNum;
|
---|
779 | //debug(P,"gather A[k] for spread");
|
---|
780 | for (u=0;u<max_operators+1;u++) {// one extra for B matrix !
|
---|
781 | //debug(P,"A[k] all gather");
|
---|
782 | for (round=0;round<2*max_rounds;round++) {
|
---|
783 | for (l=0;l<ProcNum;l++)
|
---|
784 | rdispls[l] = (l*2*max_rounds + round)*AllocNum;
|
---|
785 | MPI_Allgatherv(Aloc[u][round], AllocNum, MPI_DOUBLE, Atotal[u], rcounts, rdispls, MPI_DOUBLE, *comm);
|
---|
786 | }
|
---|
787 | for (k=0;k<AllocNum;k++) {
|
---|
788 | for(l=0;l<AllocNum;l++) {
|
---|
789 | gsl_matrix_set(A[u],k,l, Atotal[u][l+k*AllocNum]);
|
---|
790 | }
|
---|
791 | }
|
---|
792 | }
|
---|
793 |
|
---|
794 | // free eigenvector stuff
|
---|
795 | gsl_vector_free(h);
|
---|
796 | gsl_matrix_free(G);
|
---|
797 | gsl_eigen_symmv_free(w);
|
---|
798 | gsl_vector_free(eval);
|
---|
799 | gsl_matrix_free(evec);
|
---|
800 | // Free column vectors
|
---|
801 | for (k=0;k<max_operators+1;k++) {
|
---|
802 | Free(Atotal[k], "bla");
|
---|
803 | Free(Around[k], "bla");
|
---|
804 | }
|
---|
805 | Free(Uround, "bla");
|
---|
806 | Free(Utotal, "bla");
|
---|
807 | Free(c_all, "bla");
|
---|
808 | Free(s_all, "bla");
|
---|
809 | Free(c, "bla");
|
---|
810 | Free(s, "bla");
|
---|
811 | Free(rcounts, "bla");
|
---|
812 | Free(rdispls, "bla");
|
---|
813 |
|
---|
814 | } else {
|
---|
815 |
|
---|
816 | c = (double *) Malloc(sizeof(double), "ComputeMLWF: c");
|
---|
817 | s = (double *) Malloc(sizeof(double), "ComputeMLWF: s");
|
---|
818 | G = gsl_matrix_calloc (2,2);
|
---|
819 | h = gsl_vector_alloc (2);
|
---|
820 | eval = gsl_vector_alloc (2);
|
---|
821 | evec = gsl_matrix_alloc (2,2);
|
---|
822 | w = gsl_eigen_symmv_alloc(2);
|
---|
823 | //debug(P,"now comes the iteration loop");
|
---|
824 | it_steps=0;
|
---|
825 | do {
|
---|
826 | it_steps++;
|
---|
827 | //if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 3: Iteratively maximize negative spread part\n",P->Par.me);
|
---|
828 | fprintf(stderr,"(%i) Beginning iteration %i ... ",P->Par.me,it_steps);
|
---|
829 | for (set=0; set < AllocNum-1; set++) { // one column less due to column 0 stating at its place all the time
|
---|
830 | //fprintf(stderr,"(%i) Beginning rotation set %i ...\n",P->Par.me,set);
|
---|
831 | // STEP 3: for all index pairs 0<= i<j <AllocNum
|
---|
832 | for (ProcRank=0;ProcRank<AllocNum/2;ProcRank++) {
|
---|
833 | // get indices
|
---|
834 | i = top[ProcRank] < bot[ProcRank] ? top[ProcRank] : bot[ProcRank]; // minimum of the two indices
|
---|
835 | j = top[ProcRank] > bot[ProcRank] ? top[ProcRank] : bot[ProcRank]; // maximum of the two indices: thus j > i
|
---|
836 | //fprintf(stderr,"(%i),(%i,%i) STEP 3a\n",P->Par.me,i,j);
|
---|
837 | // STEP 3a: Calculate G
|
---|
838 | gsl_matrix_set_zero(G);
|
---|
839 |
|
---|
840 | for (k=0;k<max_operators;k++) { // go through all operators ...
|
---|
841 | // Calculate vector h(a) = [a_ii - a_jj, a_ij + a_ji, i(a_ji - a_ij)]
|
---|
842 | //fprintf(stderr,"(%i) k%i [a_ii - a_ij] = %e - %e = %e\n",P->Par.me, k,gsl_matrix_get(A[k],i,i), gsl_matrix_get(A[k],j,j),gsl_matrix_get(A[k],i,i) - gsl_matrix_get(A[k],j,j));
|
---|
843 | //fprintf(stderr,"(%i) k%i [a_ij + a_jij] = %e - %e = %e\n",P->Par.me, k,gsl_matrix_get(A[k],i,j), gsl_matrix_get(A[k],j,i),gsl_matrix_get(A[k],i,j) + gsl_matrix_get(A[k],j,i));
|
---|
844 | gsl_vector_set(h, 0, gsl_matrix_get(A[k],i,i) - gsl_matrix_get(A[k],j,j));
|
---|
845 | gsl_vector_set(h, 1, gsl_matrix_get(A[k],i,j) + gsl_matrix_get(A[k],j,i));
|
---|
846 | //gsl_vector_complex_set(h, 2, gsl_complex_mul_imag(gsl_complex_add(gsl_matrix_complex_get(A[k],j,i), gsl_matrix_complex_get(A[k],i,j)),1));
|
---|
847 |
|
---|
848 | // Calculate G = Re[ \sum_k h^H (A^{(k)}) h(A^{(k)}) ]
|
---|
849 | for (l=0;l<2;l++)
|
---|
850 | for (m=0;m<2;m++)
|
---|
851 | gsl_matrix_set(G,l,m, gsl_vector_get(h,l) * gsl_vector_get(h,m) + gsl_matrix_get(G,l,m));
|
---|
852 | }
|
---|
853 |
|
---|
854 | //fprintf(stderr,"(%i),(%i,%i) STEP 3b\n",P->Par.me,i,j);
|
---|
855 | // STEP 3b: retrieve eigenvector which belongs to greatest eigenvalue of G
|
---|
856 | gsl_eigen_symmv(G, eval, evec, w); // calculates eigenvalues and eigenvectors of G
|
---|
857 |
|
---|
858 | index = gsl_vector_max_index (eval); // get biggest eigenvalue
|
---|
859 | x = gsl_matrix_get(evec, 0, index);
|
---|
860 | y = gsl_matrix_get(evec, 1, index) * x/fabs(x);
|
---|
861 | //z = gsl_matrix_get(evec, 2, index) * x/fabs(x);
|
---|
862 | x = fabs(x); // ensure x>=0 so that rotation angles remain smaller Pi/4
|
---|
863 |
|
---|
864 | //fprintf(stderr,"(%i),(%i,%i) STEP 3c\n",P->Par.me,i,j);
|
---|
865 | // STEP 3c: calculate R = [[c,s^\ast],[-s,c^\ast]]
|
---|
866 | r = sqrt(x*x + y*y); // + z*z);
|
---|
867 | c[0] = sqrt((x + r) / (2*r));
|
---|
868 | s[0] = y / sqrt(2*r*(x+r)); //, -z / sqrt(2*r*(x+r)));
|
---|
869 | //fprintf(stderr,"(%i),(%i,%i) COS %e\t SIN %e\n",P->Par.me,i,j,c[0],s[0]);
|
---|
870 |
|
---|
871 | //fprintf(stderr,"(%i),(%i,%i) STEP 3d\n",P->Par.me,i,j);
|
---|
872 | // STEP 3d: apply rotation R to rows and columns of A^{(k)}
|
---|
873 | for (k=0;k<max_operators+1;k++) {// one extra for B matrix !
|
---|
874 | for (l=0;l<AllocNum;l++) {
|
---|
875 | // Rows
|
---|
876 | a_i = gsl_matrix_get(A[k],i,l);
|
---|
877 | a_j = gsl_matrix_get(A[k],j,l);
|
---|
878 | gsl_matrix_set(A[k], i, l, c[0] * a_i + s[0] * a_j);
|
---|
879 | gsl_matrix_set(A[k], j, l, -s[0] * a_i + c[0] * a_j);
|
---|
880 | }
|
---|
881 | for (l=0;l<AllocNum;l++) {
|
---|
882 | // Columns
|
---|
883 | a_i = gsl_matrix_get(A[k],l,i);
|
---|
884 | a_j = gsl_matrix_get(A[k],l,j);
|
---|
885 | gsl_matrix_set(A[k], l, i, c[0] * a_i + s[0] * a_j);
|
---|
886 | gsl_matrix_set(A[k], l, j, -s[0] * a_i + c[0] * a_j);
|
---|
887 | }
|
---|
888 | }
|
---|
889 | //fprintf(stderr,"(%i),(%i,%i) STEP 3e\n",P->Par.me,i,j);
|
---|
890 | // STEP 3e: apply U = R*U
|
---|
891 | for (l=0;l<AllocNum;l++) {
|
---|
892 | a_i = gsl_matrix_get(U,i,l);
|
---|
893 | a_j = gsl_matrix_get(U,j,l);
|
---|
894 | gsl_matrix_set(U, i, l, c[0] * a_i + s[0] * a_j);
|
---|
895 | gsl_matrix_set(U, j, l, -s[0] * a_i + c[0] * a_j);
|
---|
896 | }
|
---|
897 | }
|
---|
898 | // and merry-go-round for the indices too
|
---|
899 | //debug(P,"and merry-go-round for the indices too");
|
---|
900 | if (AllocNum > 2) music(top, bot, AllocNum/2);
|
---|
901 | }
|
---|
902 |
|
---|
903 | //if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 4\n",P->Par.me);
|
---|
904 | // STEP 4: calculate new variance: \sum_{ik} (A^{(k)}_ii)^2
|
---|
905 | old_spread = spread;
|
---|
906 | spread = 0;
|
---|
907 | for(k=0;k<max_operators;k++) { // go through all self-adjoint operators
|
---|
908 | for (i=0; i < AllocNum; i++) { // go through all wave functions
|
---|
909 | spread += pow(gsl_matrix_get(A[k],i,i),2);
|
---|
910 | }
|
---|
911 | }
|
---|
912 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 5: %2.9e - %2.9e <= %lg ?\n",P->Par.me,old_spread,spread,R->EpsWannier);
|
---|
913 | else fprintf(stderr,"%2.9e\n",spread);
|
---|
914 | // STEP 5: check change of variance
|
---|
915 | } while (fabs(old_spread-spread) >= R->EpsWannier);
|
---|
916 | // end of iterative diagonalization loop: We have found our final orthogonal U!
|
---|
917 | gsl_vector_free(h);
|
---|
918 | gsl_matrix_free(G);
|
---|
919 | gsl_eigen_symmv_free(w);
|
---|
920 | gsl_vector_free(eval);
|
---|
921 | gsl_matrix_free(evec);
|
---|
922 | Free(c, "bla");
|
---|
923 | Free(s, "bla");
|
---|
924 | }
|
---|
925 |
|
---|
926 | if(P->Call.out[ReadOut]) {// && P->Par.me == 0) {
|
---|
927 | //debug(P,"output total U");
|
---|
928 | fprintf(stderr,"(%i) U_tot = \n",P->Par.me);
|
---|
929 | for (k=0;k<Num;k++) {
|
---|
930 | for (l=0;l<Num;l++)
|
---|
931 | fprintf(stderr,"%e\t",gsl_matrix_get(U,l,k));
|
---|
932 | fprintf(stderr,"\n");
|
---|
933 | }
|
---|
934 | }
|
---|
935 | }
|
---|
936 | Free(top, "bla");
|
---|
937 | Free(bot, "bla");
|
---|
938 |
|
---|
939 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 6: Allocating buffer mem\n",P->Par.me);
|
---|
940 | // STEP 6: apply transformation U to all wave functions \sum_i^Num U_ji | \phi_i \rangle = | \phi_j^\ast \rangle
|
---|
941 | Num = Psi->TypeStartIndex[type+1] - Psi->TypeStartIndex[type]; // recalc Num as we can only work with local Psis from here
|
---|
942 | fftw_complex **coeffs_buffer = Malloc(sizeof(fftw_complex *)*Num, "ComputeMLWF: **coeffs_buffer");
|
---|
943 | for (l=0;l<Num;l++) // allocate for each local wave function
|
---|
944 | coeffs_buffer[l] = LevS->LPsi->OldLocalPsi[l];
|
---|
945 |
|
---|
946 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 6: Transformation ...\n",P->Par.me);
|
---|
947 | l=-1; // to access U matrix element (0..Num-1)
|
---|
948 | k=-1; // to access the above swap coeffs_buffer (0..LocalNo-1)
|
---|
949 | for (i=0; i < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; i++) { // go through all wave functions
|
---|
950 | OnePsiA = &Psi->AllPsiStatus[i]; // grab OnePsiA
|
---|
951 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
952 | l++; // increase l if it is occupied wave function
|
---|
953 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) { // local?
|
---|
954 | k++; // increase k only if it is a local, non-extra orbital wave function
|
---|
955 | LPsiDatA = (fftw_complex *) coeffs_buffer[k]; // new coeffs first go to copy buffer, old ones must not be overwritten yet
|
---|
956 | SetArrayToDouble0((double *)LPsiDatA, 2*LevS->MaxG); // zero buffer part
|
---|
957 | } else
|
---|
958 | LPsiDatA = NULL; // otherwise processes won't enter second loop, though they're supposed to send coefficients!
|
---|
959 |
|
---|
960 | m = -1; // to access U matrix element (0..Num-1)
|
---|
961 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
962 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
963 | if (OnePsiB->PsiType == type) { // drop all but occupied ones
|
---|
964 | m++; // increase m if it is occupied wave function
|
---|
965 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
966 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
967 | else
|
---|
968 | LOnePsiB = NULL;
|
---|
969 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
970 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
971 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, WannierTag2, P->Par.comm_ST_PsiT, &status );
|
---|
972 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
973 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
974 | for (p=0;p<P->Par.Max_me_comm_ST_PsiT;p++)
|
---|
975 | if (p != OnePsiB->my_color_comm_ST_Psi)
|
---|
976 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, p, WannierTag2, P->Par.comm_ST_PsiT);
|
---|
977 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
978 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
979 |
|
---|
980 | if (LPsiDatA != NULL) {
|
---|
981 | double tmp = gsl_matrix_get(U,l,m);
|
---|
982 | g=0;
|
---|
983 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
984 | LPsiDatA[g].re += LPsiDatB[g].re * tmp;
|
---|
985 | LPsiDatA[g].im += LPsiDatB[g].im * tmp;
|
---|
986 | g++;
|
---|
987 | }
|
---|
988 | for (; g < LevS->MaxG; g++) {
|
---|
989 | LPsiDatA[g].re += LPsiDatB[g].re * tmp;
|
---|
990 | LPsiDatA[g].im += LPsiDatB[g].im * tmp;
|
---|
991 | }
|
---|
992 | }
|
---|
993 | }
|
---|
994 | }
|
---|
995 | }
|
---|
996 | }
|
---|
997 | gsl_matrix_free(U);
|
---|
998 |
|
---|
999 | if(P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) STEP 6: Swapping buffer mem\n",P->Par.me);
|
---|
1000 | // now, as all wave functions are updated, swap the buffer
|
---|
1001 | l = -1;
|
---|
1002 | for (k=0;k<Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT;k++) { // go through each local occupied wave function
|
---|
1003 | if (Psi->AllPsiStatus[k].PsiType == type && Psi->AllPsiStatus[k].my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) {
|
---|
1004 | l++;
|
---|
1005 | if(P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) (k:%i,l:%i) LocalNo = (%i,%i)\t AllPsiNo = (%i,%i)\n", P->Par.me, k,l,Psi->LocalPsiStatus[l].MyLocalNo, Psi->LocalPsiStatus[l].MyGlobalNo, Psi->AllPsiStatus[k].MyLocalNo, Psi->AllPsiStatus[k].MyGlobalNo);
|
---|
1006 | LPsiDatA = (fftw_complex *)coeffs_buffer[l];
|
---|
1007 | LPsiDatB = LevS->LPsi->LocalPsi[l];
|
---|
1008 | for (g=0;g<LevS->MaxG;g++) {
|
---|
1009 | LPsiDatB[g].re = LPsiDatA[g].re;
|
---|
1010 | LPsiDatB[g].im = LPsiDatA[g].im;
|
---|
1011 | }
|
---|
1012 | // recalculating non-local form factors which are coefficient dependent!
|
---|
1013 | CalculateNonLocalEnergyNoRT(P, Psi->LocalPsiStatus[l].MyLocalNo);
|
---|
1014 | }
|
---|
1015 | }
|
---|
1016 | // and free allocated buffer memory
|
---|
1017 | Free(coeffs_buffer, "bla");
|
---|
1018 |
|
---|
1019 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 7\n",P->Par.me);
|
---|
1020 | // STEP 7: Compute Wannier centers, spread and printout
|
---|
1021 | // the spread for x,y,z resides in the respective diagonal element of A_.. for each orbital
|
---|
1022 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) Spread printout\n", P->Par.me);
|
---|
1023 |
|
---|
1024 | switch (Lat->Psi.PsiST) {
|
---|
1025 | case SpinDouble:
|
---|
1026 | strncpy(suffix,".spread.csv",18);
|
---|
1027 | strncat(spin,"SpinDouble",12);
|
---|
1028 | break;
|
---|
1029 | case SpinUp:
|
---|
1030 | strncpy(suffix,".spread_up.csv",18);
|
---|
1031 | strncat(spin,"SpinUp",12);
|
---|
1032 | break;
|
---|
1033 | case SpinDown:
|
---|
1034 | strncpy(suffix,".spread_down.csv",18);
|
---|
1035 | strncat(spin,"SpinDown",12);
|
---|
1036 | break;
|
---|
1037 | }
|
---|
1038 | if (P->Par.me_comm_ST == 0) {
|
---|
1039 | if (R->LevSNo == Lat->MaxLevel-1) // open freshly if first level
|
---|
1040 | OpenFile(P, &F->SpreadFile, suffix, "w", P->Call.out[ReadOut]); // only open on starting level
|
---|
1041 | else if (F->SpreadFile == NULL) // re-open if not first level and not opened yet (or closed from ParseWannierFile)
|
---|
1042 | OpenFile(P, &F->SpreadFile, suffix, "a", P->Call.out[ReadOut]); // only open on starting level
|
---|
1043 | if (F->SpreadFile == NULL) {
|
---|
1044 | Error(SomeError,"ComputeMLWF: Error opening Wannier File!\n");
|
---|
1045 | } else {
|
---|
1046 | fprintf(F->SpreadFile,"#===== W A N N I E R C E N T R E S for Level %d of type %s ========================\n", R->LevSNo, spin);
|
---|
1047 | fprintf(F->SpreadFile,"# Orbital+Level\tx\ty\tz\tSpread\n");
|
---|
1048 | }
|
---|
1049 | }
|
---|
1050 | old_spread = 0;
|
---|
1051 | spread = 0;
|
---|
1052 | i=-1;
|
---|
1053 | for (l=0; l < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; l++) { // go through all wave functions
|
---|
1054 | OnePsiA = &Psi->AllPsiStatus[l]; // grab OnePsiA
|
---|
1055 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
1056 | i++; // increase l if it is occupied wave function
|
---|
1057 | //fprintf(stderr,"(%i) Wannier for %i\n", P->Par.me, i);
|
---|
1058 |
|
---|
1059 | // calculate Wannier Centre
|
---|
1060 | for (j=0;j<NDIM;j++) {
|
---|
1061 | WannierCentre[i][j] = Lat->RealBasisQ[j]/(2*PI) * GSL_IMAG( gsl_complex_log( gsl_complex_rect(gsl_matrix_get(A[j*2],i,i),gsl_matrix_get(A[j*2+1],i,i))));
|
---|
1062 | if (WannierCentre[i][j] < 0) // change wrap around of above operator to smooth 0...Lat->RealBasisSQ
|
---|
1063 | WannierCentre[i][j] = Lat->RealBasisQ[j] + WannierCentre[i][j];
|
---|
1064 | }
|
---|
1065 |
|
---|
1066 | // store orbital spread and centre in file
|
---|
1067 | tmp = - pow(gsl_matrix_get(A[0],i,i),2) - pow(gsl_matrix_get(A[1],i,i),2)
|
---|
1068 | - pow(gsl_matrix_get(A[2],i,i),2) - pow(gsl_matrix_get(A[3],i,i),2)
|
---|
1069 | - pow(gsl_matrix_get(A[4],i,i),2) - pow(gsl_matrix_get(A[5],i,i),2);
|
---|
1070 | WannierSpread[i] = gsl_matrix_get(A[max_operators],i,i) + tmp;
|
---|
1071 | //fprintf(stderr,"(%i) WannierSpread[%i] = %e\n", P->Par.me, i, WannierSpread[i]);
|
---|
1072 | //if (P->Par.me == 0) fprintf(F->SpreadFile,"Orbital %d:\t Wannier center (x,y,z)=(%lg,%lg,%lg)\t Spread sigma^2 = %lg - %lg = %lg\n",
|
---|
1073 | //Psi->AllPsiStatus[i].MyGlobalNo, WannierCentre[i][0], WannierCentre[i][1], WannierCentre[i][2], gsl_matrix_get(A[max_operators],i,i), -tmp, WannierSpread[i]);
|
---|
1074 | //if (P->Par.me == 0) fprintf(F->SpreadFile,"%e\t%e\t%e\n",
|
---|
1075 | //WannierCentre[i][0], WannierCentre[i][1], WannierCentre[i][2]);
|
---|
1076 |
|
---|
1077 | // gather all spreads
|
---|
1078 | old_spread += gsl_matrix_get(A[max_operators],i,i); // tr(U^H B U)
|
---|
1079 | for (k=0;k<max_operators;k++)
|
---|
1080 | spread += pow(gsl_matrix_get(A[k],i,i),2);
|
---|
1081 |
|
---|
1082 | // store calculated Wannier centre
|
---|
1083 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // is this local?
|
---|
1084 | for (j=0;j<NDIM;j++)
|
---|
1085 | Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[j] = WannierCentre[i][j];
|
---|
1086 | }
|
---|
1087 | }
|
---|
1088 |
|
---|
1089 | // join Wannier orbital to groups with common centres under certain conditions
|
---|
1090 | switch (R->CommonWannier) {
|
---|
1091 | case 4:
|
---|
1092 | debug(P,"Shifting each Wannier centers to cell center");
|
---|
1093 | for (i=0; i < Num; i++) { // go through all occupied wave functions
|
---|
1094 | for (j=0;j<NDIM;j++)
|
---|
1095 | WannierCentre[i][j] = Lat->RealBasisQ[j]/2.;
|
---|
1096 | }
|
---|
1097 | break;
|
---|
1098 | case 3:
|
---|
1099 | debug(P,"Shifting Wannier centers individually to nearest grid point");
|
---|
1100 | for (i=0;i < Num; i++) { // go through all wave functions
|
---|
1101 | for (j=0;j<NDIM;j++) {
|
---|
1102 | tmp = WannierCentre[i][j]/Lat->RealBasisQ[j]*(double)N[j];
|
---|
1103 | //fprintf(stderr,"(%i) N[%i]: %i\t tmp %e\t floor %e\t ceil %e\n",P->Par.me, j, N[j], tmp, floor(tmp), ceil(tmp));
|
---|
1104 | if (fabs((double)floor(tmp) - tmp) < fabs((double)ceil(tmp) - tmp))
|
---|
1105 | WannierCentre[i][j] = (double)floor(tmp)/(double)N[j]*Lat->RealBasisQ[j];
|
---|
1106 | else
|
---|
1107 | WannierCentre[i][j] = (double)ceil(tmp)/(double)N[j]*Lat->RealBasisQ[j];
|
---|
1108 | }
|
---|
1109 | }
|
---|
1110 | break;
|
---|
1111 | case 2:
|
---|
1112 | debug(P,"Combining individual orbitals according to spread.");
|
---|
1113 | //fprintf(stderr,"(%i) Finding multiple bindings and Reweighting Wannier centres\n",P->Par.me);
|
---|
1114 | //debug(P,"finding partners");
|
---|
1115 | marker = (int*) Malloc(sizeof(int)*(Num+1),"ComputeMLWF: marker");
|
---|
1116 | group = (int**) Malloc(sizeof(int *)*Num,"ComputeMLWF: group");
|
---|
1117 | for (l=0;l<Num;l++) {
|
---|
1118 | group[l] = (int*) Malloc(sizeof(int)*(Num+1),"ComputeMLWF: group[l]"); // each must group must have one more as end marker
|
---|
1119 | for (k=0;k<=Num;k++)
|
---|
1120 | group[l][k] = -1; // reset partner group
|
---|
1121 | }
|
---|
1122 | for (k=0;k<Num;k++)
|
---|
1123 | partner[k] = 0;
|
---|
1124 | //debug(P,"mem allocated");
|
---|
1125 | // go for each orbital through every other, check distance against the sum of both spreads
|
---|
1126 | // if smaller add to group of this orbital
|
---|
1127 | for (l=0;l<Num;l++) {
|
---|
1128 | j=0; // index for partner group
|
---|
1129 | for (k=0;k<Num;k++) { // check this against l
|
---|
1130 | Spread = 0.;
|
---|
1131 | for (i=0;i<NDIM;i++) {
|
---|
1132 | //fprintf(stderr,"(%i) Spread += (%e - %e)^2 \n", P->Par.me, WannierCentre[l][i], WannierCentre[k][i]);
|
---|
1133 | Spread += (WannierCentre[l][i] - WannierCentre[k][i])*(WannierCentre[l][i] - WannierCentre[k][i]);
|
---|
1134 | }
|
---|
1135 | Spread = sqrt(Spread); // distance in Spread
|
---|
1136 | //fprintf(stderr,"(%i) %i to %i: distance %e, SpreadSum = %e + %e = %e \n", P->Par.me, l, k, Spread, WannierSpread[l], WannierSpread[k], WannierSpread[l]+WannierSpread[k]);
|
---|
1137 | if (Spread < 1.5*(WannierSpread[l]+WannierSpread[k])) {// if distance smaller than sum of spread
|
---|
1138 | group[l][j++] = k; // add k to group of l
|
---|
1139 | partner[l]++;
|
---|
1140 | //fprintf(stderr,"(%i) %i added as %i-th member to %i's group.\n", P->Par.me, k, j, l);
|
---|
1141 | }
|
---|
1142 | }
|
---|
1143 | }
|
---|
1144 |
|
---|
1145 | // consistency, for each orbital check if this orbital is also in the group of each referred orbital
|
---|
1146 | //debug(P,"checking consistency");
|
---|
1147 | totalflag = 1;
|
---|
1148 | for (l=0;l<Num;l++) // checking l's group
|
---|
1149 | for (k=0;k<Num;k++) { // k is partner index
|
---|
1150 | if (group[l][k] != -1) { // if current index k is a partner
|
---|
1151 | flag = 0;
|
---|
1152 | for(j=0;j<Num;j++) { // go through each entry in l partner's partner group if l exists
|
---|
1153 | if ((group[ group[l][k] ][j] == l))
|
---|
1154 | flag = 1;
|
---|
1155 | }
|
---|
1156 | //if (flag == 0) fprintf(stderr, "(%i) in %i's group %i is referred as a partner, but not the other way round!\n", P->Par.me, l, group[l][k]);
|
---|
1157 | if (totalflag == 1) totalflag = flag;
|
---|
1158 | }
|
---|
1159 | }
|
---|
1160 | // for each orbital group (marker group) weight each center to a total and put this into the local WannierCentres
|
---|
1161 | //debug(P,"weight and calculate new centers for partner groups");
|
---|
1162 | for (l=0;l<=Num;l++)
|
---|
1163 | marker[l] = 1;
|
---|
1164 | if (totalflag) {
|
---|
1165 | for (l=0;l<Num;l++) { // go through each orbital
|
---|
1166 | if (marker[l] != 0) { // if it hasn't been reweighted
|
---|
1167 | marker[l] = 0;
|
---|
1168 | for (i=0;i<NDIM;i++)
|
---|
1169 | q[i] = 0.;
|
---|
1170 | j = 0;
|
---|
1171 | while (group[l][j] != -1) {
|
---|
1172 | marker[group[l][j]] = 0;
|
---|
1173 | for (i=0;i<NDIM;i++) {
|
---|
1174 | //fprintf(stderr,"(%i) Adding to %i's group, %i entry of %i: %e\n", P->Par.me, l, i, group[l][j], WannierCentre[ group[l][j] ][i]);
|
---|
1175 | q[i] += WannierCentre[ group[l][j] ][i];
|
---|
1176 | }
|
---|
1177 | j++;
|
---|
1178 | }
|
---|
1179 | //fprintf(stderr,"(%i) %i's group: (%e,%e,%e)/%i = (%e,%e,%e)\n", P->Par.me, l, q[0], q[1], q[2], j, q[0]/(double)j, q[1]/(double)j, q[2]/(double)j);
|
---|
1180 | for (i=0;i<NDIM;i++) {// weight by number of elements in partner group
|
---|
1181 | q[i] /= (double)(j);
|
---|
1182 | }
|
---|
1183 |
|
---|
1184 | // put WannierCentre into own and all partners'
|
---|
1185 | for (i=0;i<NDIM;i++)
|
---|
1186 | WannierCentre[l][i] = q[i];
|
---|
1187 | j = 0;
|
---|
1188 | while (group[l][j] != -1) {
|
---|
1189 | for (i=0;i<NDIM;i++)
|
---|
1190 | WannierCentre[group[l][j]][i] = q[i];
|
---|
1191 | j++;
|
---|
1192 | }
|
---|
1193 | }
|
---|
1194 | }
|
---|
1195 | }
|
---|
1196 | if (P->Call.out[StepLeaderOut]) {
|
---|
1197 | fprintf(stderr,"Summary:\n");
|
---|
1198 | fprintf(stderr,"========\n");
|
---|
1199 | for (i=0;i<Num;i++)
|
---|
1200 | fprintf(stderr,"%i belongs to a %i-ple binding.\n",i,partner[i]);
|
---|
1201 | }
|
---|
1202 | //debug(P,"done");
|
---|
1203 |
|
---|
1204 | Free(marker, "bla");
|
---|
1205 | for (l=0;l<Num;l++)
|
---|
1206 | Free(group[l], "bla");
|
---|
1207 | Free(group, "bla");
|
---|
1208 | break;
|
---|
1209 | case 1:
|
---|
1210 | debug(P,"Individual orbitals are changed to center of all.");
|
---|
1211 | for (i=0;i<NDIM;i++) // zero center of weight
|
---|
1212 | q[i] = 0.;
|
---|
1213 | for (k=0;k<Num;k++)
|
---|
1214 | for (i=0;i<NDIM;i++) { // sum up all orbitals each component
|
---|
1215 | q[i] += WannierCentre[k][i];
|
---|
1216 | }
|
---|
1217 | for (i=0;i<NDIM;i++) // divide by number
|
---|
1218 | q[i] /= Num;
|
---|
1219 | for (k=0;k<Num;k++)
|
---|
1220 | for (i=0;i<NDIM;i++) { // put into this function's array
|
---|
1221 | WannierCentre[k][i] = q[i];
|
---|
1222 | }
|
---|
1223 | break;
|
---|
1224 | case 0:
|
---|
1225 | default:
|
---|
1226 | break;
|
---|
1227 | }
|
---|
1228 |
|
---|
1229 | // put (new) WannierCentres into local ones and into file
|
---|
1230 | i=-1;
|
---|
1231 | for (l=0; l < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; l++) { // go through all wave functions
|
---|
1232 | OnePsiA = &Psi->AllPsiStatus[l]; // grab OnePsiA
|
---|
1233 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
1234 | i++; // increase l if it is occupied wave function
|
---|
1235 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) {// is this local?
|
---|
1236 | for (j=0;j<NDIM;j++)
|
---|
1237 | Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[j] = WannierCentre[i][j];
|
---|
1238 | }
|
---|
1239 | if (P->Par.me_comm_ST == 0)
|
---|
1240 | fprintf(F->SpreadFile,"Psi%d_Lev%d\t%lg\t%lg\t%lg\t%lg\n", Psi->AllPsiStatus[i].MyGlobalNo, R->LevSNo, WannierCentre[i][0], WannierCentre[i][1], WannierCentre[i][2], WannierSpread[i]);
|
---|
1241 | }
|
---|
1242 | }
|
---|
1243 | if (P->Par.me_comm_ST == 0) {
|
---|
1244 | fprintf(F->SpreadFile,"\n#Matrix traces\tB_ii\tA_ii^2\tTotal (B_ii - A_ii^2)\n");
|
---|
1245 | fprintf(F->SpreadFile,"TotalSpread_L%d\t%lg\t%lg\t%lg\n\n",R->LevSNo, old_spread, spread, old_spread - spread);
|
---|
1246 | }
|
---|
1247 | fflush(F->SpreadFile);
|
---|
1248 |
|
---|
1249 | // and the spread was calculated in the loop above
|
---|
1250 | /*
|
---|
1251 | i=-1;
|
---|
1252 | for (l=0;l<Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT;l++)
|
---|
1253 | if (Psi->AllPsiStatus[l].PsiType == type) {
|
---|
1254 | i++;
|
---|
1255 | spread = CalculateSpread(P,l);
|
---|
1256 | tmp = gsl_matrix_get(A[max_operators],i,i) - pow(gsl_matrix_get(A[0],i,i),2) - pow(gsl_matrix_get(A[1],i,i),2)
|
---|
1257 | - pow(gsl_matrix_get(A[2],i,i),2) - pow(gsl_matrix_get(A[3],i,i),2)
|
---|
1258 | - pow(gsl_matrix_get(A[4],i,i),2) - pow(gsl_matrix_get(A[5],i,i),2);
|
---|
1259 | if(P->Call.out[ValueOut]) fprintf(stderr, "(%i) Check of spread of %ith wave function: %lg against %lg\n",P->Par.me, i, Psi->AddData[i].WannierSpread, tmp);
|
---|
1260 | }*/
|
---|
1261 | // free all remaining memory
|
---|
1262 | for (k=0;k<max_operators+1;k++)
|
---|
1263 | gsl_matrix_free(A[k]);
|
---|
1264 | }
|
---|
1265 |
|
---|
1266 | /** Parses the spread file and puts values into OnePsiElementAddData#WannierCentre.
|
---|
1267 | * \param *P Problem at hand
|
---|
1268 | * \return 1 - success, 0 - failure
|
---|
1269 | */
|
---|
1270 | int ParseWannierFile(struct Problem *P)
|
---|
1271 | {
|
---|
1272 | struct Lattice *Lat = &P->Lat;
|
---|
1273 | struct RunStruct *R = &P->R;
|
---|
1274 | struct Psis *Psi = &Lat->Psi;
|
---|
1275 | struct OnePsiElement *OnePsiA;
|
---|
1276 | int i,l,j, msglen;
|
---|
1277 | FILE *SpreadFile;
|
---|
1278 | char tagname[255];
|
---|
1279 | char suffix[18];
|
---|
1280 | double WannierCentre[NDIM+1]; // combined centre and spread
|
---|
1281 | MPI_Status status;
|
---|
1282 | enum PsiTypeTag type = Occupied;
|
---|
1283 | int signal = 0; // 1 - ok, 0 - error
|
---|
1284 |
|
---|
1285 | switch (Lat->Psi.PsiST) {
|
---|
1286 | case SpinDouble:
|
---|
1287 | strncpy(suffix,".spread.csv",18);
|
---|
1288 | break;
|
---|
1289 | case SpinUp:
|
---|
1290 | strncpy(suffix,".spread_up.csv",18);
|
---|
1291 | break;
|
---|
1292 | case SpinDown:
|
---|
1293 | strncpy(suffix,".spread_down.csv",18);
|
---|
1294 | break;
|
---|
1295 | }
|
---|
1296 |
|
---|
1297 | if (P->Par.me_comm_ST == 0) {
|
---|
1298 | if(!OpenFile(P, &SpreadFile, suffix, "r", P->Call.out[ReadOut])) { // check if file exists
|
---|
1299 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
1300 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
1301 | return 0;
|
---|
1302 | //Error(SomeError,"ParseWannierFile: Opening failed\n");
|
---|
1303 | }
|
---|
1304 | signal = 1;
|
---|
1305 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
1306 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
1307 | } else {
|
---|
1308 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
1309 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
1310 | if (signal == 0)
|
---|
1311 | return 0;
|
---|
1312 | }
|
---|
1313 | i=-1;
|
---|
1314 | for (l=0; l < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; l++) { // go through all wave functions
|
---|
1315 | OnePsiA = &Psi->AllPsiStatus[l]; // grab OnePsiA
|
---|
1316 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
1317 | i++; // increase l if it is occupied wave function
|
---|
1318 | if (P->Par.me_comm_ST == 0) { // only process 0 may access the spread file
|
---|
1319 | sprintf(tagname,"Psi%d_Lev%d",i,R->LevSNo);
|
---|
1320 | signal = 0;
|
---|
1321 | if (!ParseForParameter(0,SpreadFile,tagname,0,3,1,row_double,WannierCentre,1,optional)) {
|
---|
1322 | //Error(SomeError,"ParseWannierFile: Parsing WannierCentre failed");
|
---|
1323 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
1324 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
1325 | return 0;
|
---|
1326 | }
|
---|
1327 | if (!ParseForParameter(0,SpreadFile,tagname,0,4,1,double_type,&WannierCentre[NDIM],1,optional)) {
|
---|
1328 | //Error(SomeError,"ParseWannierFile: Parsing WannierSpread failed");
|
---|
1329 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
1330 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
1331 | return 0;
|
---|
1332 | }
|
---|
1333 | signal = 1;
|
---|
1334 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
1335 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
1336 | } else {
|
---|
1337 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
1338 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
1339 | if (signal == 0)
|
---|
1340 | return 0;
|
---|
1341 | }
|
---|
1342 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) { // is this Psi local?
|
---|
1343 | if ((P->Par.me_comm_ST != 0) && (P->Par.me_comm_ST_Psi == 0)) { // if they don't belong to process 0 and we are a leader of a Psi group, receive 'em
|
---|
1344 | if (MPI_Recv(WannierCentre, NDIM+1, MPI_DOUBLE, 0, ParseWannierTag, P->Par.comm_ST_PsiT, &status) != MPI_SUCCESS)
|
---|
1345 | Error(SomeError,"ParseWannierFile: MPI_Recv of WannierCentre/Spread from process 0 failed");
|
---|
1346 | //return 0;
|
---|
1347 | MPI_Get_count(&status, MPI_DOUBLE, &msglen);
|
---|
1348 | if (msglen != NDIM+1)
|
---|
1349 | Error(SomeError,"ParseWannierFile: MPI_Recv of WannierCentre/Spread from process 0 failed due to wrong item count");
|
---|
1350 | //return 0;
|
---|
1351 | }
|
---|
1352 | if (MPI_Bcast(WannierCentre, NDIM+1, MPI_DOUBLE, 0, P->Par.comm_ST_Psi) != MPI_SUCCESS) // Bcast to all processes of the Psi group from leader
|
---|
1353 | Error(SomeError,"ParseWannierFile: MPI_Bcast of WannierCentre/Spread to sub process in Psi group failed");
|
---|
1354 | //return 0;
|
---|
1355 | // and store 'em (for all who have this Psi local)
|
---|
1356 | fprintf(stderr,"(%i) Psi %i, L %i: (x,y,z) = (%lg, %lg, %lg), Spread %lg\n",P->Par.me,i, R->LevSNo, WannierCentre[0], WannierCentre[1], WannierCentre[2], WannierCentre[NDIM]);
|
---|
1357 | for (j=0;j<NDIM;j++) Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[j] = WannierCentre[j];
|
---|
1358 | Psi->AddData[OnePsiA->MyLocalNo].WannierSpread = WannierCentre[NDIM];
|
---|
1359 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) %s\t%lg\t%lg\t%lg\t\t%lg\n",P->Par.me, tagname,Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[0],Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[1],Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[2],Psi->AddData[OnePsiA->MyLocalNo].WannierSpread);
|
---|
1360 | } else if (P->Par.me_comm_ST == 0) { // if they are not local, yet we are process 0, send 'em to leader of its Psi group
|
---|
1361 | if (MPI_Send(WannierCentre, NDIM+1, MPI_DOUBLE, OnePsiA->my_color_comm_ST_Psi, ParseWannierTag, P->Par.comm_ST_PsiT) != MPI_SUCCESS)
|
---|
1362 | Error(SomeError,"ParseWannierFile: MPI_Send of WannierCentre/Spread to process 0 of owning Psi group failed");
|
---|
1363 | //return 0;
|
---|
1364 | }
|
---|
1365 | }
|
---|
1366 | }
|
---|
1367 | if ((SpreadFile != NULL) && (P->Par.me_comm_ST == 0))
|
---|
1368 | fclose(SpreadFile);
|
---|
1369 | fprintf(stderr,"(%i) Parsing Wannier files succeeded!\n", P->Par.me);
|
---|
1370 | return 1;
|
---|
1371 | }
|
---|
1372 |
|
---|
1373 | /** Calculates the spread of orbital \a i.
|
---|
1374 | * Stored in OnePsiElementAddData#WannierSpread.
|
---|
1375 | * \param *P Problem at hand
|
---|
1376 | * \param i i-th wave function (note "extra" ones are not counted!)
|
---|
1377 | * \return spread \f$\sigma^2_{A^{(k)}}\f$
|
---|
1378 | */
|
---|
1379 | double CalculateSpread(struct Problem *P, int i) {
|
---|
1380 | struct Lattice *Lat = &P->Lat;
|
---|
1381 | struct RunStruct *R = &P->R;
|
---|
1382 | struct Psis *Psi = &Lat->Psi;
|
---|
1383 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
1384 | struct LatticeLevel *LevS = R->LevS;
|
---|
1385 | struct Density *Dens0 = Lev0->Dens;
|
---|
1386 | struct fft_plan_3d *plan = Lat->plan;
|
---|
1387 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
1388 | fftw_real *PsiCR = (fftw_real *)PsiC;
|
---|
1389 | fftw_complex *work = Dens0->DensityCArray[Temp2Density];
|
---|
1390 | fftw_real **HGcR = &Dens0->DensityArray[HGcDensity]; // use HGcDensity, 4x Gap..Density, TempDensity as a storage array
|
---|
1391 | fftw_complex **HGcRC = (fftw_complex**)HGcR;
|
---|
1392 | fftw_complex **HGcR2C = &Dens0->DensityCArray[HGcDensity]; // use HGcDensity, 4x Gap..Density, TempDensity as an array
|
---|
1393 | fftw_real **HGcR2 = (fftw_real**)HGcR2C;
|
---|
1394 | MPI_Status status;
|
---|
1395 | struct OnePsiElement *OnePsiA, *LOnePsiA;
|
---|
1396 | int ElementSize = (sizeof(fftw_complex) / sizeof(double)), RecvSource;
|
---|
1397 | fftw_complex *LPsiDatA=NULL;
|
---|
1398 | int k,n[NDIM],n0, *N,N0, g, p, iS, i0, Index;
|
---|
1399 | N0 = LevS->Plan0.plan->local_nx;
|
---|
1400 | N = LevS->Plan0.plan->N;
|
---|
1401 | const int NUpx = LevS->NUp[0];
|
---|
1402 | const int NUpy = LevS->NUp[1];
|
---|
1403 | const int NUpz = LevS->NUp[2];
|
---|
1404 | double a_ij, b_ij, A_ij, B_ij;
|
---|
1405 | double tmp, tmp2, spread = 0;
|
---|
1406 | double **cos_lookup, **sin_lookup;
|
---|
1407 |
|
---|
1408 | b_ij = 0;
|
---|
1409 |
|
---|
1410 | // create lookup table for sin/cos values
|
---|
1411 | cos_lookup = (double **) Malloc(sizeof(double *)*NDIM, "ComputeMLWF: *cos_lookup");
|
---|
1412 | sin_lookup = (double **) Malloc(sizeof(double *)*NDIM, "ComputeMLWF: *sin_lookup");
|
---|
1413 | for (k=0;k<NDIM;k++) {
|
---|
1414 | // allocate memory
|
---|
1415 | cos_lookup[k] = (double *) Malloc(sizeof(double)*LevS->Plan0.plan->N[k], "ComputeMLWF: cos_lookup");
|
---|
1416 | sin_lookup[k] = (double *) Malloc(sizeof(double)*LevS->Plan0.plan->N[k], "ComputeMLWF: sin_lookup");
|
---|
1417 | // reset arrays
|
---|
1418 | SetArrayToDouble0(cos_lookup[k],LevS->Plan0.plan->N[k]);
|
---|
1419 | SetArrayToDouble0(sin_lookup[k],LevS->Plan0.plan->N[k]);
|
---|
1420 | // create lookup values
|
---|
1421 | for (g=0;g<LevS->Plan0.plan->N[k];g++) {
|
---|
1422 | tmp = 2*PI/(double)LevS->Plan0.plan->N[k]*(double)g;
|
---|
1423 | cos_lookup[k][g] = cos(tmp);
|
---|
1424 | sin_lookup[k][g] = sin(tmp);
|
---|
1425 | }
|
---|
1426 | }
|
---|
1427 | // fill matrices
|
---|
1428 | OnePsiA = &Psi->AllPsiStatus[i]; // grab the desired OnePsiA
|
---|
1429 | if (OnePsiA->PsiType != Extra) { // drop if extra one
|
---|
1430 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
1431 | LOnePsiA = &Psi->LocalPsiStatus[OnePsiA->MyLocalNo];
|
---|
1432 | else
|
---|
1433 | LOnePsiA = NULL;
|
---|
1434 | if (LOnePsiA == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
1435 | RecvSource = OnePsiA->my_color_comm_ST_Psi;
|
---|
1436 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, WannierTag1, P->Par.comm_ST_PsiT, &status );
|
---|
1437 | LPsiDatA=LevS->LPsi->TempPsi;
|
---|
1438 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
1439 | for (p=0;p<P->Par.Max_me_comm_ST_PsiT;p++)
|
---|
1440 | if (p != OnePsiA->my_color_comm_ST_Psi)
|
---|
1441 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, p, WannierTag1, P->Par.comm_ST_PsiT);
|
---|
1442 | LPsiDatA=LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo];
|
---|
1443 | } // LPsiDatA is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
1444 |
|
---|
1445 | CalculateOneDensityR(Lat, LevS, Dens0, LPsiDatA, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 1);
|
---|
1446 | // note: factor is not used when storing result in DensityCArray[ActualPsiDensity] in CalculateOneDensityR()!
|
---|
1447 | for (n0=0;n0<N0;n0++)
|
---|
1448 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
1449 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
1450 | i0 = n[2]*NUpz+N[2]*NUpz*(n[1]*NUpy+N[1]*NUpy*n0*NUpx);
|
---|
1451 | iS = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
1452 | n[0] = n0 + LevS->Plan0.plan->start_nx;
|
---|
1453 | for (k=0;k<max_operators;k+=2) {
|
---|
1454 | tmp = 2*PI/(double)(N[k/2])*(double)(n[k/2]);
|
---|
1455 | tmp2 = PsiCR[i0] /LevS->MaxN;
|
---|
1456 | // check lookup
|
---|
1457 | if ((fabs(cos(tmp) - cos_lookup[k/2][n[k/2]]) > MYEPSILON) || (fabs(sin(tmp) - sin_lookup[k/2][n[k/2]]) > MYEPSILON)) {
|
---|
1458 | fprintf(stderr,"(%i) (cos) %2.15e against (lookup) %2.15e,\t(sin) %2.15e against (lookup) %2.15e\n", P->Par.me, cos(tmp), cos_lookup[k/2][n[k/2]],sin(tmp),sin_lookup[k/2][n[k/2]]);
|
---|
1459 | Error(SomeError, "Lookup table does not match real value!");
|
---|
1460 | }
|
---|
1461 | // HGcR[k][iS] = cos_lookup[k/2][n[k/2]] * tmp2; /* Matrix Vector Mult */
|
---|
1462 | // HGcR2[k][iS] = cos_lookup[k/2][n[k/2]] * HGcR[k][iS]; /* Matrix Vector Mult */
|
---|
1463 | // HGcR[k+1][iS] = sin_lookup[k/2][n[k/2]] * tmp2; /* Matrix Vector Mult */
|
---|
1464 | // HGcR2[k+1][iS] = sin_lookup[k/2][n[k/2]] * HGcR[k+1][iS]; /* Matrix Vector Mult */
|
---|
1465 | HGcR[k][iS] = cos(tmp) * tmp2; /* Matrix Vector Mult */
|
---|
1466 | HGcR2[k][iS] = pow(cos(tmp),2) * tmp2; /* Matrix Vector Mult */
|
---|
1467 | HGcR[k+1][iS] = sin(tmp) * tmp2; /* Matrix Vector Mult */
|
---|
1468 | HGcR2[k+1][iS] = pow(sin(tmp),2) * tmp2; /* Matrix Vector Mult */
|
---|
1469 | }
|
---|
1470 | }
|
---|
1471 | for (k=0;k<max_operators;k++) {
|
---|
1472 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcRC[k], work);
|
---|
1473 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcR2C[k], work);
|
---|
1474 | }
|
---|
1475 |
|
---|
1476 |
|
---|
1477 | for (k=0;k<max_operators;k++) {
|
---|
1478 | a_ij = 0;
|
---|
1479 | //fprintf(stderr,"(%i),(%i,%i): A[%i]: multiplying with \\phi_B\n",P->Par.me, l,m,k);
|
---|
1480 | // sum directly in a_ij and b_ij the two desired terms
|
---|
1481 | g=0;
|
---|
1482 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
1483 | Index = LevS->GArray[g].Index;
|
---|
1484 | a_ij += (LPsiDatA[0].re*HGcRC[k][Index].re + LPsiDatA[0].im*HGcRC[k][Index].im);
|
---|
1485 | b_ij += (LPsiDatA[0].re*HGcR2C[k][Index].re + LPsiDatA[0].im*HGcR2C[k][Index].im);
|
---|
1486 | g++;
|
---|
1487 | }
|
---|
1488 | for (; g < LevS->MaxG; g++) {
|
---|
1489 | Index = LevS->GArray[g].Index;
|
---|
1490 | a_ij += 2*(LPsiDatA[g].re*HGcRC[k][Index].re + LPsiDatA[g].im*HGcRC[k][Index].im);
|
---|
1491 | b_ij += 2*(LPsiDatA[g].re*HGcR2C[k][Index].re + LPsiDatA[g].im*HGcR2C[k][Index].im);
|
---|
1492 | } // due to the symmetry the resulting matrix element is real and symmetric in (i,i) ! (complex multiplication simplifies ...)
|
---|
1493 | MPI_Allreduce ( &a_ij, &A_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
1494 | spread += pow(A_ij,2);
|
---|
1495 | }
|
---|
1496 | }
|
---|
1497 | MPI_Allreduce ( &b_ij, &B_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
1498 |
|
---|
1499 | // store spread in OnePsiElementAdd
|
---|
1500 | Psi->AddData[i].WannierSpread = B_ij - spread;
|
---|
1501 | // free lookups
|
---|
1502 | for (k=0;k<NDIM;k++) {
|
---|
1503 | Free(cos_lookup[k], "bla");
|
---|
1504 | Free(sin_lookup[k], "bla");
|
---|
1505 | }
|
---|
1506 | Free(cos_lookup, "bla");
|
---|
1507 | Free(sin_lookup, "bla");
|
---|
1508 |
|
---|
1509 | return (B_ij - spread);
|
---|
1510 | }
|
---|