[a0bcf1] | 1 | /** \file wannier.c
|
---|
| 2 | * Maximally Localized Wannier Functions.
|
---|
| 3 | *
|
---|
| 4 | * Contains the on function that minimises the spread of all orbitals in one rush in a parallel
|
---|
| 5 | * Jacobi-Diagonalization implementation, ComputeMLWF(), and one routine CalculateSpread() to
|
---|
| 6 | * calculate the spread of a specific orbital, which may be useful in checking on the change of
|
---|
| 7 | * spread during other calculations. convertComplex() helps in typecasting fftw_complex to gsl_complex.
|
---|
| 8 | *
|
---|
| 9 | Project: ParallelCarParrinello
|
---|
| 10 | \author Frederik Heber
|
---|
| 11 | \date 2006
|
---|
| 12 |
|
---|
| 13 | File: wannier.c
|
---|
| 14 | $Id: wannier.c,v 1.63 2007-02-13 14:15:29 foo Exp $
|
---|
| 15 | */
|
---|
| 16 |
|
---|
| 17 | #include <math.h>
|
---|
| 18 | #include <gsl/gsl_math.h>
|
---|
| 19 | #include <gsl/gsl_eigen.h>
|
---|
| 20 | #include <gsl/gsl_matrix.h>
|
---|
| 21 | #include <gsl/gsl_vector.h>
|
---|
| 22 | #include <gsl/gsl_complex.h>
|
---|
| 23 | #include <gsl/gsl_complex_math.h>
|
---|
| 24 | #include <gsl/gsl_sort_vector.h>
|
---|
| 25 | #include <gsl/gsl_heapsort.h>
|
---|
| 26 | #include <gsl/gsl_blas.h>
|
---|
| 27 | #include <string.h>
|
---|
| 28 |
|
---|
| 29 | #include "data.h"
|
---|
| 30 | #include "density.h"
|
---|
| 31 | #include "errors.h"
|
---|
| 32 | #include "helpers.h"
|
---|
| 33 | #include "init.h"
|
---|
| 34 | #include "myfft.h"
|
---|
| 35 | #include "mymath.h"
|
---|
| 36 | #include "output.h"
|
---|
| 37 | #include "wannier.h"
|
---|
| 38 |
|
---|
| 39 |
|
---|
| 40 | #define max_operators NDIM*2 //!< number of chosen self-adjoint operators when evaluating the spread
|
---|
| 41 |
|
---|
| 42 |
|
---|
| 43 | /** Converts type fftw_complex to gsl_complex.
|
---|
| 44 | * \param a complex number
|
---|
| 45 | * \return b complex number
|
---|
| 46 | */
|
---|
| 47 | gsl_complex convertComplex (fftw_complex a) {
|
---|
| 48 | return gsl_complex_rect(c_re(a),c_im(a));
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | /** "merry go round" implementation for parallel index ordering.
|
---|
| 52 | * Given two arrays, one for the upper/left matrix columns, one for the lower/right ones, one step of an index generation is
|
---|
| 53 | * performed which generates once each possible pairing.
|
---|
| 54 | * \param *top index array 1
|
---|
| 55 | * \param *bot index array 2
|
---|
| 56 | * \param m N/2, where N is the matrix row/column dimension
|
---|
| 57 | * \note taken from [Golub, Matrix computations, 1989, p451]
|
---|
| 58 | */
|
---|
| 59 | void music(int *top, int *bot, int m)
|
---|
| 60 | {
|
---|
| 61 | int *old_top, *old_bot;
|
---|
| 62 | int k;
|
---|
| 63 | old_top = (int *) Malloc(sizeof(int)*m, "music: old_top");
|
---|
| 64 | old_bot = (int *) Malloc(sizeof(int)*m, "music: old_bot");
|
---|
| 65 | /* fprintf(stderr,"oldtop\t");
|
---|
| 66 | for (k=0;k<m;k++)
|
---|
| 67 | fprintf(stderr,"%i\t", top[k]);
|
---|
| 68 | fprintf(stderr,"\n");
|
---|
| 69 | fprintf(stderr,"oldbot\t");
|
---|
| 70 | for (k=0;k<m;k++)
|
---|
| 71 | fprintf(stderr,"%i\t", bot[k]);
|
---|
| 72 | fprintf(stderr,"\n");*/
|
---|
| 73 | // first copy arrays
|
---|
| 74 | for (k=0;k<m;k++) {
|
---|
| 75 | old_top[k] = top[k];
|
---|
| 76 | old_bot[k] = bot[k];
|
---|
| 77 | }
|
---|
| 78 | // then let the music play
|
---|
| 79 | for (k=0;k<m;k++) {
|
---|
| 80 | if (k==1)
|
---|
| 81 | top[k] = old_bot[0];
|
---|
| 82 | else if (k > 1)
|
---|
| 83 | top[k] = old_top[k-1];
|
---|
| 84 | if (k==m-1)
|
---|
| 85 | bot[k] = old_top[k];
|
---|
| 86 | else
|
---|
| 87 | bot[k] = old_bot[k+1];
|
---|
| 88 | }
|
---|
| 89 | /* fprintf(stderr,"top\t");
|
---|
| 90 | for (k=0;k<m;k++)
|
---|
| 91 | fprintf(stderr,"%i\t", top[k]);
|
---|
| 92 | fprintf(stderr,"\n");
|
---|
| 93 | fprintf(stderr,"bot\t");
|
---|
| 94 | for (k=0;k<m;k++)
|
---|
| 95 | fprintf(stderr,"%i\t", bot[k]);
|
---|
| 96 | fprintf(stderr,"\n");*/
|
---|
| 97 | // and finito
|
---|
| 98 | Free(old_top);
|
---|
| 99 | Free(old_bot);
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | /** merry-go-round for matrix columns.
|
---|
| 103 | * The trick here is that we must be aware of multiple rotations per process, thus only some of the
|
---|
| 104 | * whole lot of local columns get sent/received, most of them are just shifted via exchanging the various
|
---|
| 105 | * pointers to the matrix columns within the local array.
|
---|
| 106 | * \param comm communicator for circulation
|
---|
| 107 | * \param *Aloc local array of columns
|
---|
| 108 | * \param Num entries per column
|
---|
| 109 | * \param max_rounds number of column pairs in \a *Around
|
---|
| 110 | * \param k offset for tag
|
---|
| 111 | * \param tagS0 MPI tag for sending left column
|
---|
| 112 | * \param tagS1 MPI tag for sending right column
|
---|
| 113 | * \param tagR0 MPI tag for receiving left column
|
---|
| 114 | * \param tagR1 MPI tag for receiving right column
|
---|
| 115 | */
|
---|
| 116 | void shiftcolumns(MPI_Comm comm, double **Aloc, int Num, int max_rounds, int k, int tagS0, int tagS1, int tagR0, int tagR1) {
|
---|
| 117 | //double *A_locS1, *A_locS2; // local columns of A[k]
|
---|
| 118 | //double *A_locR1, *A_locR2; // local columns of A[k]
|
---|
| 119 | MPI_Request requestS0, requestS1, requestR0, requestR1;
|
---|
| 120 | MPI_Status status;
|
---|
| 121 | int ProcRank, ProcNum;
|
---|
| 122 | int l;
|
---|
| 123 | MPI_Comm_size (comm, &ProcNum);
|
---|
| 124 | MPI_Comm_rank (comm, &ProcRank);
|
---|
| 125 | double *Abuffer1, *Abuffer2; // mark the columns that are circulated
|
---|
| 126 |
|
---|
| 127 | //fprintf(stderr,"shifting...");
|
---|
| 128 | if (ProcRank == 0) {
|
---|
| 129 | if (max_rounds > 1) {
|
---|
| 130 | // get last left column
|
---|
| 131 | Abuffer1 = Aloc[2*(max_rounds-1)]; // note down the free column
|
---|
| 132 | MPI_Isend(Abuffer1, Num, MPI_DOUBLE, ProcRank+1, WannierALTag+2*k, comm, &requestS0);
|
---|
| 133 | } else {
|
---|
| 134 | // get right column
|
---|
| 135 | Abuffer1 = Aloc[1]; // note down the free column
|
---|
| 136 | MPI_Isend(Abuffer1, Num, MPI_DOUBLE, ProcRank+1, tagS1+2*k, comm, &requestS0);
|
---|
| 137 | }
|
---|
| 138 |
|
---|
| 139 | //fprintf(stderr,"...left columns...");
|
---|
| 140 | for(l=2*max_rounds-2;l>2;l-=2) // left columns become shifted one place to the right
|
---|
| 141 | Aloc[l] = Aloc[l-2];
|
---|
| 142 |
|
---|
| 143 | if (max_rounds > 1) {
|
---|
| 144 | //fprintf(stderr,"...first right...");
|
---|
| 145 | Aloc[2] = Aloc[1]; // get first right column
|
---|
| 146 | }
|
---|
| 147 |
|
---|
| 148 | //fprintf(stderr,"...right columns...");
|
---|
| 149 | for(l=1;l<2*max_rounds-1;l+=2) // right columns become shifted one place to the left
|
---|
| 150 | Aloc[l] = Aloc[l+2];
|
---|
| 151 |
|
---|
| 152 | //fprintf(stderr,"...last right...");
|
---|
| 153 | Aloc[(2*max_rounds-1)] = Abuffer1;
|
---|
| 154 | MPI_Irecv(Abuffer1, Num, MPI_DOUBLE, ProcRank+1, WannierARTag+2*k, comm, &requestR1);
|
---|
| 155 |
|
---|
| 156 | } else if (ProcRank == ProcNum-1) {
|
---|
| 157 | //fprintf(stderr,"...first right...");
|
---|
| 158 | // get first right column
|
---|
| 159 | Abuffer2 = Aloc[1]; // note down the free column
|
---|
| 160 | MPI_Isend(Abuffer2, Num, MPI_DOUBLE, ProcRank-1, WannierARTag+2*k, comm, &requestS1);
|
---|
| 161 |
|
---|
| 162 | //fprintf(stderr,"...right columns...");
|
---|
| 163 | for(l=1;l<2*max_rounds-1;l+=2) // right columns become shifted one place to the left
|
---|
| 164 | Aloc[(l)] = Aloc[(l+2)];
|
---|
| 165 |
|
---|
| 166 | //fprintf(stderr,"...last right...");
|
---|
| 167 | Aloc[(2*max_rounds-1)] = Aloc[2*(max_rounds-1)]; // Put last left into last right column
|
---|
| 168 |
|
---|
| 169 | //fprintf(stderr,"...left columns...");
|
---|
| 170 | for(l=2*(max_rounds-1);l>0;l-=2) // left columns become shifted one place to the right
|
---|
| 171 | Aloc[(l)] = Aloc[(l-2)];
|
---|
| 172 |
|
---|
| 173 | //fprintf(stderr,"...first left...");
|
---|
| 174 | // if (max_rounds > 1)
|
---|
| 175 | Aloc[0] = Abuffer2; // get first left column
|
---|
| 176 | MPI_Irecv(Abuffer2, Num, MPI_DOUBLE, ProcRank-1, WannierALTag+2*k, comm, &requestR0);
|
---|
| 177 |
|
---|
| 178 | } else {
|
---|
| 179 | // get last left column
|
---|
| 180 | MPI_Isend(Aloc[2*(max_rounds-1)], Num, MPI_DOUBLE, ProcRank+1, WannierALTag+2*k, comm, &requestS0);
|
---|
| 181 | Abuffer1 = Aloc[2*(max_rounds-1)]; // note down the free column
|
---|
| 182 |
|
---|
| 183 | //fprintf(stderr,"...first right...");
|
---|
| 184 | // get first right column
|
---|
| 185 | MPI_Isend(Aloc[1], Num, MPI_DOUBLE, ProcRank-1, WannierARTag+2*k, comm, &requestS1);
|
---|
| 186 | Abuffer2 = Aloc[1]; // note down the free column
|
---|
| 187 |
|
---|
| 188 | //fprintf(stderr,"...left columns...");
|
---|
| 189 | for(l=2*(max_rounds-1);l>0;l-=2) // left columns become shifted one place to the right
|
---|
| 190 | Aloc[(l)] = Aloc[(l-2)];
|
---|
| 191 |
|
---|
| 192 | //fprintf(stderr,"...right columns...");
|
---|
| 193 | for(l=1;l<2*max_rounds-1;l+=2) // right columns become shifted one place to the left
|
---|
| 194 | Aloc[(l)] = Aloc[(l+2)];
|
---|
| 195 |
|
---|
| 196 | //fprintf(stderr,"...first left...");
|
---|
| 197 | Aloc[0] = Abuffer1; // get first left column
|
---|
| 198 | MPI_Irecv(Aloc[0], Num, MPI_DOUBLE, ProcRank-1, WannierALTag+2*k, comm, &requestR0);
|
---|
| 199 |
|
---|
| 200 | //fprintf(stderr,"...last right...");
|
---|
| 201 | Aloc[(2*max_rounds-1)] = Abuffer2;
|
---|
| 202 | MPI_Irecv(Aloc[(2*max_rounds-1)], Num, MPI_DOUBLE, ProcRank+1, WannierARTag+2*k, comm, &requestR1);
|
---|
| 203 | }
|
---|
| 204 |
|
---|
| 205 | //fprintf(stderr,"...waiting...");
|
---|
| 206 | if (ProcRank != ProcNum-1)
|
---|
| 207 | MPI_Wait(&requestS0, &status);
|
---|
| 208 | if (ProcRank != 0) // first left column
|
---|
| 209 | MPI_Wait(&requestR0, &status);
|
---|
| 210 | if (ProcRank != 0)
|
---|
| 211 | MPI_Wait(&requestS1, &status);
|
---|
| 212 | if (ProcRank != ProcNum-1)
|
---|
| 213 | MPI_Wait(&requestR1, &status);
|
---|
| 214 | //fprintf(stderr,"...done\n");
|
---|
| 215 | }
|
---|
| 216 |
|
---|
| 217 | /** Computation of Maximally Localized Wannier Functions.
|
---|
| 218 | * Maximally localized functions are prime when evulating a Hamiltonian with
|
---|
| 219 | * magnetic fields under periodic boundary conditions, as the common position
|
---|
| 220 | * operator is no longer valid. These can be obtained by orbital rotations, which
|
---|
| 221 | * are looked for iteratively and gathered in one transformation matrix, to be
|
---|
| 222 | * later applied to the set of orbital wave functions.
|
---|
| 223 | *
|
---|
| 224 | * In order to obtain these, the following algorithm is applied:
|
---|
| 225 | * -# Initialize U (identity) as the sought-for transformation matrix
|
---|
| 226 | * -# Compute the real symmetric (due to Gamma point symmetry!) matrix elements
|
---|
| 227 | * \f$A^{(k)}_{ij} = \langle \phi_i | A^{(k)} | \phi_j \rangle\f$ for the six operators
|
---|
| 228 | * \f$A^{(k)}\f$
|
---|
| 229 | * -# For each pair of indices (i,j) (i<j) do the following:
|
---|
| 230 | * -# Compute the 2x2 matrix \f$G = \Re \Bigl ( \sum_k h^H(A^{(k)}) h(A^{(k)}) \Bigr)\f$
|
---|
| 231 | * where \f$h(A) = [a_{ii} - a_{jj}, a_{ij} + a_{ji}]\f$
|
---|
| 232 | * -# Obtain eigenvalues and eigenvectors of G. Set \f$[x,y]^T\f$ to the eigenvector of G
|
---|
| 233 | * corresponding to the greatest eigenvalue, such that \f$x\geq0\f$
|
---|
| 234 | * -# Compute the rotation matrix R elements (ii,ij,ji,jj) \f$[c,s,-s,c]\f$ different from the
|
---|
| 235 | * identity matrix by \f$r=\sqrt{x^2+y^2}\f$, \f$c = \sqrt{\frac{x+r}{2r}}\f$
|
---|
| 236 | * \f$s=\frac{y}{\sqrt{2r(x+r)}}\f$
|
---|
| 237 | * -# Perform the similarity operation \f$A^{(k)} \rightarrow R A^{(k)} R\f$
|
---|
| 238 | * -# Gather the rotations in \f$U = U R\f$
|
---|
| 239 | * -# Compute the total spread \f$\sigma^2_{A^{(k)}}\f$
|
---|
| 240 | * -# Compare the change in spread to a desired minimum RunStruct#EpsWannier, if still greater go to step 3.
|
---|
| 241 | * -# Apply transformations to the orbital wavefunctions \f$ | \phi_i \rangle = \sum_j U_{ij} | \phi_j \rangle\f$
|
---|
| 242 | * -# Compute the position of the Wannier centers from diagonal elements of \f$A^{(k)}\f$, store in
|
---|
| 243 | * OnePsiElementAddData#WannierCentre
|
---|
| 244 | *
|
---|
| 245 | * Afterwards, the routine applies the found unitary rotation to the unperturbed group of wave functions.
|
---|
| 246 | * Note that hereby additional memory is needed as old and transformed wave functions must be present at the same
|
---|
| 247 | * time.
|
---|
| 248 | *
|
---|
| 249 | * The routine uses parallelization if possible. A parallel Jacobi-Diagonalization is implemented using the index
|
---|
| 250 | * generation in music() and shift-columns() such that the evaluated position operator eigenvalue matrices
|
---|
| 251 | * may be diagonalized simultaneously and parallely. We use the implementation explained in
|
---|
| 252 | * [Golub, Matrix computations, 1989, p451].
|
---|
| 253 | *
|
---|
| 254 | * \param *P Problem at hand
|
---|
| 255 | */
|
---|
| 256 | void ComputeMLWF(struct Problem *P) {
|
---|
| 257 | // variables and allocation
|
---|
| 258 | struct FileData *F = &P->Files;
|
---|
| 259 | struct Lattice *Lat = &P->Lat;
|
---|
| 260 | struct RunStruct *R = &P->R;
|
---|
| 261 | struct Psis *Psi = &Lat->Psi;
|
---|
| 262 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 263 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 264 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 265 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 266 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
| 267 | fftw_real *PsiCR = (fftw_real *)PsiC;
|
---|
| 268 | fftw_complex *work = Dens0->DensityCArray[Temp2Density];
|
---|
| 269 | fftw_real **HGcR = &Dens0->DensityArray[HGDensity]; // use HGDensity, 4x Gap..Density, TempDensity as a storage array
|
---|
| 270 | fftw_complex **HGcRC = (fftw_complex**)HGcR;
|
---|
| 271 | fftw_complex **HGcR2C = &Dens0->DensityCArray[HGcDensity]; // use HGcDensity, 4x Gap..Density, TempDensity as an array
|
---|
| 272 | fftw_real **HGcR2 = (fftw_real**)HGcR2C;
|
---|
| 273 | MPI_Status status;
|
---|
| 274 | struct OnePsiElement *OnePsiB, *OnePsiA, *LOnePsiB;
|
---|
| 275 | int ElementSize = (sizeof(fftw_complex) / sizeof(double)), RecvSource;
|
---|
| 276 | fftw_complex *LPsiDatA=NULL, *LPsiDatB=NULL;
|
---|
| 277 | int n[NDIM],n0,i0,iS, Index;
|
---|
| 278 | int N0;
|
---|
| 279 | int N[NDIM];
|
---|
| 280 | const int NUpx = LevS->NUp[0];
|
---|
| 281 | const int NUpy = LevS->NUp[1];
|
---|
| 282 | const int NUpz = LevS->NUp[2];
|
---|
| 283 | int e,i,j,k,l,m,u,p,g;
|
---|
| 284 | int Num = Psi->NoOfPsis; // is number of occupied plus unoccupied states for rows
|
---|
| 285 | double x,y,r;
|
---|
| 286 | double q[NDIM];
|
---|
| 287 | double *c,*s;
|
---|
| 288 | int index;
|
---|
| 289 | double spread = 0., old_spread=0., Spread=0.;
|
---|
| 290 | double WannierCentre[Num][NDIM];
|
---|
| 291 | double WannierSpread[Num];
|
---|
| 292 | double tmp,tmp2;
|
---|
| 293 | double a_ij = 0, b_ij = 0, A_ij = 0, B_ij = 0;
|
---|
| 294 | double **cos_lookup,**sin_lookup;
|
---|
| 295 | gsl_matrix *G;
|
---|
| 296 | gsl_vector *h;
|
---|
| 297 | gsl_vector *eval;
|
---|
| 298 | gsl_matrix *evec;
|
---|
| 299 | gsl_eigen_symmv_workspace *w;
|
---|
| 300 | int ProcNum, ProcRank, set;
|
---|
| 301 | int it_steps; // iteration step counter
|
---|
| 302 | int *top, *bot;
|
---|
| 303 | int Lsend, Rsend, Lrecv, Rrecv; // where left(right) column is sent to or where it originates from
|
---|
| 304 | int left, right; // left or right neighbour for process
|
---|
| 305 | double **Aloc[max_operators+1], **Uloc; // local columns for one step of A[k]
|
---|
| 306 | double *Around[max_operators+1], *Uround; // all local columns for one round of A[k]
|
---|
| 307 | double *Atotal[max_operators+1], *Utotal; // all local columns for one round of A[k]
|
---|
| 308 | double a_i, a_j;
|
---|
| 309 | int tagR0, tagR1, tagS0, tagS1;
|
---|
| 310 | int iloc, jloc;
|
---|
| 311 | double *s_all, *c_all;
|
---|
| 312 | int round, max_rounds;
|
---|
| 313 | int start;
|
---|
| 314 | int *rcounts, *rdispls;
|
---|
| 315 | int AllocNum = ceil((double)Num / 2. ) *2;
|
---|
| 316 | int totalflag, flag;
|
---|
| 317 | int *marker, **group;
|
---|
| 318 | int partner[Num];
|
---|
| 319 | int type = Occupied;
|
---|
| 320 | MPI_Comm *comm;
|
---|
| 321 | char spin[12], suffix[18];
|
---|
| 322 |
|
---|
| 323 | N0 = LevS->Plan0.plan->local_nx;
|
---|
| 324 | N[0] = LevS->Plan0.plan->N[0];
|
---|
| 325 | N[1] = LevS->Plan0.plan->N[1];
|
---|
| 326 | N[2] = LevS->Plan0.plan->N[2];
|
---|
| 327 |
|
---|
| 328 | comm = &P->Par.comm_ST;
|
---|
| 329 |
|
---|
| 330 | fprintf(stderr,"(%i) Comparing groups - AllocNum %i --- All %i\t Psi %i\t PsiT %i\n",P->Par.me, AllocNum, P->Par.Max_me_comm_ST, P->Par.Max_me_comm_ST_Psi, P->Par.Max_my_color_comm_ST_Psi);
|
---|
| 331 | if (AllocNum % (P->Par.Max_me_comm_ST*2) == 0) { // all parallel
|
---|
| 332 | comm = &P->Par.comm_ST;
|
---|
| 333 | fprintf(stderr,"(%i) Jacobi is done parallely by all\n", P->Par.me);
|
---|
| 334 | } else if (P->Par.Max_me_comm_ST_Psi >= P->Par.Max_my_color_comm_ST_Psi) { // always the bigger group comes first
|
---|
| 335 | if (AllocNum % (P->Par.Max_me_comm_ST_Psi*2) == 0) { // coefficients parallel
|
---|
| 336 | comm = &P->Par.comm_ST_Psi;
|
---|
| 337 | fprintf(stderr,"(%i) Jacobi is done parallely by Psi\n", P->Par.me);
|
---|
| 338 | } else if (AllocNum % (P->Par.Max_my_color_comm_ST_Psi*2) == 0) { // Psis parallel
|
---|
| 339 | comm = &P->Par.comm_ST_PsiT;
|
---|
| 340 | fprintf(stderr,"(%i) Jacobi is done parallely by PsiT\n", P->Par.me);
|
---|
| 341 | }
|
---|
| 342 | } else {
|
---|
| 343 | if (AllocNum % (P->Par.Max_my_color_comm_ST_Psi*2) == 0) { // Psis parallel
|
---|
| 344 | comm = &P->Par.comm_ST_PsiT;
|
---|
| 345 | fprintf(stderr,"(%i) Jacobi is done parallely by PsiT\n", P->Par.me);
|
---|
| 346 | } else if (AllocNum % (P->Par.Max_me_comm_ST_Psi*2) == 0) { // coefficients parallel
|
---|
| 347 | comm = &P->Par.comm_ST_Psi;
|
---|
| 348 | fprintf(stderr,"(%i) Jacobi is done parallely by Psi\n", P->Par.me);
|
---|
| 349 | }
|
---|
| 350 | }
|
---|
| 351 |
|
---|
| 352 | MPI_Comm_size (*comm, &ProcNum);
|
---|
| 353 | MPI_Comm_rank (*comm, &ProcRank);
|
---|
| 354 |
|
---|
| 355 | if(P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Beginning localization of orbitals ...\n",P->Par.me);
|
---|
| 356 |
|
---|
| 357 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 2\n",P->Par.me);
|
---|
| 358 |
|
---|
| 359 | // STEP 2: Calculate A[k]_ij = V/N \sum_{G1,G2} C^\ast_{l,G1} c_{m,G2} \sum_R A^{(k)}(R) exp(iR(G2-G1))
|
---|
| 360 | gsl_matrix *A[max_operators+1]; // one extra for B matrix
|
---|
| 361 | for (u=0;u<=max_operators;u++)
|
---|
| 362 | A[u] = gsl_matrix_calloc (AllocNum,AllocNum); // allocate matrix
|
---|
| 363 |
|
---|
| 364 | // create lookup table for sin/cos values
|
---|
| 365 | cos_lookup = (double **) Malloc(sizeof(double *)*NDIM, "ComputeMLWF: *cos_lookup");
|
---|
| 366 | sin_lookup = (double **) Malloc(sizeof(double *)*NDIM, "ComputeMLWF: *sin_lookup");
|
---|
| 367 | for (i=0;i<NDIM;i++) {
|
---|
| 368 | // allocate memory
|
---|
| 369 | cos_lookup[i] = (double *) Malloc(sizeof(double)*LevS->Plan0.plan->N[i], "ComputeMLWF: cos_lookup");
|
---|
| 370 | sin_lookup[i] = (double *) Malloc(sizeof(double)*LevS->Plan0.plan->N[i], "ComputeMLWF: sin_lookup");
|
---|
| 371 | // reset arrays
|
---|
| 372 | SetArrayToDouble0(cos_lookup[i],LevS->Plan0.plan->N[i]);
|
---|
| 373 | SetArrayToDouble0(sin_lookup[i],LevS->Plan0.plan->N[i]);
|
---|
| 374 | // create lookup values
|
---|
| 375 | for (j=0;j<LevS->Plan0.plan->N[i];j++) {
|
---|
| 376 | tmp = 2*PI/(double)LevS->Plan0.plan->N[i]*(double)j;
|
---|
| 377 | cos_lookup[i][j] = cos(tmp);
|
---|
| 378 | sin_lookup[i][j] = sin(tmp);
|
---|
| 379 | }
|
---|
| 380 | }
|
---|
| 381 | l=-1; // to access U matrix element (0..Num-1)
|
---|
| 382 | // fill the matrices
|
---|
| 383 | for (i=0; i < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; i++) { // go through all wave functions
|
---|
| 384 | OnePsiA = &Psi->AllPsiStatus[i]; // grab OnePsiA
|
---|
| 385 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
| 386 | l++; // increase l if it is non-extra wave function
|
---|
| 387 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
| 388 | LPsiDatA=LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo];
|
---|
| 389 | else
|
---|
| 390 | LPsiDatA = NULL; // otherwise processes won't enter second loop, though they're supposed to send coefficients!
|
---|
| 391 |
|
---|
| 392 | //fprintf(stderr,"(%i),(%i,%i): fft'd, A[..] and B, back-fft'd acting on \\phi_A\n",P->Par.me,l,0);
|
---|
| 393 | if (LPsiDatA != NULL) {
|
---|
| 394 | CalculateOneDensityR(Lat, LevS, Dens0, LPsiDatA, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 1);
|
---|
| 395 | // note: factor is not used when storing result in DensityCArray[ActualPsiDensity] in CalculateOneDensityR()!
|
---|
| 396 | for (n0=0;n0<N0;n0++)
|
---|
| 397 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
| 398 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
| 399 | i0 = n[2]*NUpz+N[2]*NUpz*(n[1]*NUpy+N[1]*NUpy*n0*NUpx);
|
---|
| 400 | iS = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
| 401 | n[0] = n0 + LevS->Plan0.plan->start_nx;
|
---|
| 402 | for (k=0;k<max_operators;k+=2) {
|
---|
| 403 | e = k/2;
|
---|
| 404 | tmp = 2*PI/(double)(N[e])*(double)(n[e]);
|
---|
| 405 | tmp2 = PsiCR[i0] /LevS->MaxN;
|
---|
| 406 | // check lookup
|
---|
| 407 | if (!l) // perform check on first wave function only
|
---|
| 408 | if ((fabs(cos(tmp) - cos_lookup[e][n[e]]) > MYEPSILON) || (fabs(sin(tmp) - sin_lookup[e][n[e]]) > MYEPSILON)) {
|
---|
| 409 | Error(SomeError, "Lookup table does not match real value!");
|
---|
| 410 | }
|
---|
| 411 | HGcR[k][iS] = cos_lookup[e][n[e]] * tmp2; /* Matrix Vector Mult */
|
---|
| 412 | HGcR2[k][iS] = cos_lookup[e][n[e]] * HGcR[k][iS]; /* Matrix Vector Mult */
|
---|
| 413 | HGcR[k+1][iS] = sin_lookup[e][n[e]] * tmp2; /* Matrix Vector Mult */
|
---|
| 414 | HGcR2[k+1][iS] = sin_lookup[e][n[e]] * HGcR[k+1][iS]; /* Matrix Vector Mult */
|
---|
| 415 | }
|
---|
| 416 | }
|
---|
| 417 | for (u=0;u<max_operators;u++) {
|
---|
| 418 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcRC[u], work);
|
---|
| 419 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcR2C[u], work);
|
---|
| 420 | }
|
---|
| 421 | }
|
---|
| 422 | m = -1; // to access U matrix element (0..Num-1)
|
---|
| 423 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
| 424 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
| 425 | if (OnePsiB->PsiType == type) { // drop all but occupied ones
|
---|
| 426 | m++; // increase m if it is non-extra wave function
|
---|
| 427 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
| 428 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
| 429 | else
|
---|
| 430 | LOnePsiB = NULL;
|
---|
| 431 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
| 432 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
| 433 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, WannierTag2, P->Par.comm_ST_PsiT, &status );
|
---|
| 434 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
| 435 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
| 436 | for (p=0;p<P->Par.Max_me_comm_ST_PsiT;p++)
|
---|
| 437 | if (p != OnePsiB->my_color_comm_ST_Psi)
|
---|
| 438 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, p, WannierTag2, P->Par.comm_ST_PsiT);
|
---|
| 439 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
| 440 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
| 441 |
|
---|
| 442 | for (u=0;u<max_operators;u++) {
|
---|
| 443 | a_ij = 0;
|
---|
| 444 | b_ij = 0;
|
---|
| 445 | if (LPsiDatA != NULL) { // calculate, reduce and send to all ...
|
---|
| 446 | //fprintf(stderr,"(%i),(%i,%i): A[%i]: multiplying with \\phi_B\n",P->Par.me, l,m,u);
|
---|
| 447 | g=0;
|
---|
| 448 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
| 449 | Index = LevS->GArray[g].Index;
|
---|
| 450 | a_ij = (LPsiDatB[0].re*HGcRC[u][Index].re + LPsiDatB[0].im*HGcRC[u][Index].im);
|
---|
| 451 | b_ij = (LPsiDatB[0].re*HGcR2C[u][Index].re + LPsiDatB[0].im*HGcR2C[u][Index].im);
|
---|
| 452 | g++;
|
---|
| 453 | }
|
---|
| 454 | for (; g < LevS->MaxG; g++) {
|
---|
| 455 | Index = LevS->GArray[g].Index;
|
---|
| 456 | a_ij += 2*(LPsiDatB[g].re*HGcRC[u][Index].re + LPsiDatB[g].im*HGcRC[u][Index].im);
|
---|
| 457 | b_ij += 2*(LPsiDatB[g].re*HGcR2C[u][Index].re + LPsiDatB[g].im*HGcR2C[u][Index].im);
|
---|
| 458 | } // due to the symmetry the resulting matrix element is real and symmetric in (i,j) ! (complex multiplication simplifies ...)
|
---|
| 459 | // sum up elements from all coefficients sharing processes
|
---|
| 460 | MPI_Allreduce ( &a_ij, &A_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 461 | MPI_Allreduce ( &b_ij, &B_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 462 | a_ij = A_ij;
|
---|
| 463 | b_ij = B_ij;
|
---|
| 464 | // send element to all Psi-sharing who don't have l local (MPI_Send is a lot slower than AllReduce!)
|
---|
| 465 | MPI_Allreduce ( &a_ij, &A_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);
|
---|
| 466 | MPI_Allreduce ( &b_ij, &B_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);
|
---|
| 467 | } else { // receive ...
|
---|
| 468 | MPI_Allreduce ( &a_ij, &A_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);
|
---|
| 469 | MPI_Allreduce ( &b_ij, &B_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);
|
---|
| 470 | }
|
---|
| 471 | // ... and store
|
---|
| 472 | //fprintf(stderr,"(%i),(%i,%i): A[%i]: setting component (local: %lg, total: %lg)\n",P->Par.me, l,m,u,a_ij,A_ij);
|
---|
| 473 | //fprintf(stderr,"(%i),(%i,%i): B: adding upon component (local: %lg, total: %lg)\n",P->Par.me, l,m,b_ij,B_ij);
|
---|
| 474 | gsl_matrix_set(A[u], l, m, A_ij);
|
---|
| 475 | gsl_matrix_set(A[max_operators], l, m, B_ij + gsl_matrix_get(A[max_operators],l,m));
|
---|
| 476 | }
|
---|
| 477 | }
|
---|
| 478 | }
|
---|
| 479 | }
|
---|
| 480 | }
|
---|
| 481 | // reset extra entries
|
---|
| 482 | for (u=0;u<=max_operators;u++) {
|
---|
| 483 | for (i=Num;i<AllocNum;i++)
|
---|
| 484 | for (j=0;j<AllocNum;j++)
|
---|
| 485 | gsl_matrix_set(A[u], i,j, 0.);
|
---|
| 486 | for (i=Num;i<AllocNum;i++)
|
---|
| 487 | for (j=0;j<AllocNum;j++)
|
---|
| 488 | gsl_matrix_set(A[u], j,i, 0.);
|
---|
| 489 | }
|
---|
| 490 | // free lookups
|
---|
| 491 | for (i=0;i<NDIM;i++) {
|
---|
| 492 | Free(cos_lookup[i]);
|
---|
| 493 | Free(sin_lookup[i]);
|
---|
| 494 | }
|
---|
| 495 | Free(cos_lookup);
|
---|
| 496 | Free(sin_lookup);
|
---|
| 497 |
|
---|
| 498 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 1\n",P->Par.me);
|
---|
| 499 | // STEP 1: Initialize U = 1
|
---|
| 500 | gsl_matrix *U = gsl_matrix_alloc (AllocNum,AllocNum);
|
---|
| 501 | gsl_matrix_set_identity(U);
|
---|
| 502 |
|
---|
| 503 | // init merry-go-round array
|
---|
| 504 | top = (int *) Malloc(sizeof(int)*AllocNum/2, "ComputeMLWF: top");
|
---|
| 505 | bot = (int *) Malloc(sizeof(int)*AllocNum/2, "ComputeMLWF: bot");
|
---|
| 506 | //debug(P,"init merry-go-round array");
|
---|
| 507 | for (i=0;i<AllocNum/2;i++) {
|
---|
| 508 | top[i] = 2*i;
|
---|
| 509 | bot[i] = 2*i+1;
|
---|
| 510 | }
|
---|
| 511 |
|
---|
| 512 | /*// print A matrices for debug
|
---|
| 513 | if (P->Par.me == 0)
|
---|
| 514 | for (u=0;u<max_operators+1;u++) {
|
---|
| 515 | fprintf(stderr, "A[%i] = \n",u);
|
---|
| 516 | for (i=0;i<Num;i++) {
|
---|
| 517 | for (j=0;j<Num;j++)
|
---|
| 518 | fprintf(stderr, "%e\t",gsl_matrix_get(A[u],i,j));
|
---|
| 519 | fprintf(stderr, "\n");
|
---|
| 520 | }
|
---|
| 521 | }
|
---|
| 522 | */
|
---|
| 523 | if (Num != 1) {
|
---|
| 524 | // one- or multi-process case?
|
---|
| 525 | if (((AllocNum % 2) == 0) && (ProcNum != 1) && ((AllocNum / 2) % ProcNum == 0)) {
|
---|
| 526 | max_rounds = (AllocNum / 2)/ProcNum; // each process must perform multiple rotations per step of a set
|
---|
| 527 | //fprintf(stderr,"(%i) start %i\tstep %i\tmax.rounds %i\n",P->Par.me, ProcRank, ProcNum, max_rounds);
|
---|
| 528 | // allocate column vectors for interchange of columns
|
---|
| 529 | //debug(P,"allocate column vectors for interchange of columns");
|
---|
| 530 | c = (double *) Malloc(sizeof(double)*max_rounds, "ComputeMLWF: c");
|
---|
| 531 | s = (double *) Malloc(sizeof(double)*max_rounds, "ComputeMLWF: s");
|
---|
| 532 | c_all = (double *) Malloc(sizeof(double)*AllocNum/2, "ComputeMLWF: c_all");
|
---|
| 533 | s_all = (double *) Malloc(sizeof(double)*AllocNum/2, "ComputeMLWF: s_all");
|
---|
| 534 | rcounts = (int *) Malloc(sizeof(int)*ProcNum, "ComputeMLWF: rcounts");
|
---|
| 535 | rdispls = (int *) Malloc(sizeof(int)*ProcNum, "ComputeMLWF: rdispls");
|
---|
| 536 | /* // print starting values of index generation tables top and bot
|
---|
| 537 | fprintf(stderr,"top\t");
|
---|
| 538 | for (k=0;k<AllocNum/2;k++)
|
---|
| 539 | fprintf(stderr,"%i\t", top[k]);
|
---|
| 540 | fprintf(stderr,"\n");
|
---|
| 541 | fprintf(stderr,"bot\t");
|
---|
| 542 | for (k=0;k<AllocNum/2;k++)
|
---|
| 543 | fprintf(stderr,"%i\t", bot[k]);
|
---|
| 544 | fprintf(stderr,"\n");*/
|
---|
| 545 | // establish communication partners
|
---|
| 546 | //debug(P,"establish communication partners");
|
---|
| 547 | if (ProcRank == 0) {
|
---|
| 548 | tagS0 = WannierALTag; // left p0 always remains left p0
|
---|
| 549 | } else {
|
---|
| 550 | tagS0 = ProcRank == ProcNum - 1 ? WannierARTag : WannierALTag; // left p_last becomes right p_last
|
---|
| 551 | }
|
---|
| 552 | tagS1 = ProcRank == 0 ? WannierALTag : WannierARTag; // right p0 always goes into left p1
|
---|
| 553 | tagR0 = WannierALTag; //
|
---|
| 554 | tagR1 = WannierARTag; // first process
|
---|
| 555 | if (ProcRank == 0) {
|
---|
| 556 | left = ProcNum-1;
|
---|
| 557 | right = 1;
|
---|
| 558 | Lsend = 0;
|
---|
| 559 | Rsend = 1;
|
---|
| 560 | Lrecv = 0;
|
---|
| 561 | Rrecv = 1;
|
---|
| 562 | } else if (ProcRank == ProcNum - 1) {
|
---|
| 563 | left = ProcRank - 1;
|
---|
| 564 | right = 0;
|
---|
| 565 | Lsend = ProcRank;
|
---|
| 566 | Rsend = ProcRank - 1;
|
---|
| 567 | Lrecv = ProcRank - 1;
|
---|
| 568 | Rrecv = ProcRank;
|
---|
| 569 | } else {
|
---|
| 570 | left = ProcRank - 1;
|
---|
| 571 | right = ProcRank + 1;
|
---|
| 572 | Lsend = ProcRank+1;
|
---|
| 573 | Rsend = ProcRank - 1;
|
---|
| 574 | Lrecv = ProcRank - 1;
|
---|
| 575 | Rrecv = ProcRank+1;
|
---|
| 576 | }
|
---|
| 577 | //fprintf(stderr,"(%i) left %i\t right %i --- Lsend %i\tRsend%i\tLrecv %i\tRrecv%i\n",P->Par.me, left, right, Lsend, Rsend, Lrecv, Rrecv);
|
---|
| 578 | // allocate eigenvector stuff
|
---|
| 579 | //debug(P,"allocate eigenvector stuff");
|
---|
| 580 | G = gsl_matrix_calloc (2,2);
|
---|
| 581 | h = gsl_vector_alloc (2);
|
---|
| 582 | eval = gsl_vector_alloc (2);
|
---|
| 583 | evec = gsl_matrix_alloc (2,2);
|
---|
| 584 | w = gsl_eigen_symmv_alloc(2);
|
---|
| 585 | // initialise A_loc
|
---|
| 586 | //debug(P,"initialise A_loc");
|
---|
| 587 | for (k=0;k<max_operators+1;k++) {
|
---|
| 588 | //Aloc[k] = (double *) Malloc(sizeof(double)*AllocNum*2, "ComputeMLWF: Aloc[k]");
|
---|
| 589 | Around[k] = (double *) Malloc(sizeof(double)*AllocNum*2*max_rounds, "ComputeMLWF: Around[k]");
|
---|
| 590 | Atotal[k] = (double *) Malloc(sizeof(double)*AllocNum*AllocNum, "ComputeMLWF: Atotal[k]");
|
---|
| 591 | Aloc[k] = (double **) Malloc(sizeof(double *)*2*max_rounds, "ComputeMLWF: Aloc[k]");
|
---|
| 592 | //Around[k] = &Atotal[k][ProcRank*AllocNum*2*max_rounds];
|
---|
| 593 |
|
---|
| 594 | for (round=0;round<max_rounds;round++) {
|
---|
| 595 | Aloc[k][2*round] = &Around[k][AllocNum*(2*round)];
|
---|
| 596 | Aloc[k][2*round+1] = &Around[k][AllocNum*(2*round+1)];
|
---|
| 597 | for (l=0;l<AllocNum;l++) {
|
---|
| 598 | Aloc[k][2*round][l] = gsl_matrix_get(A[k],l,2*(ProcRank*max_rounds+round));
|
---|
| 599 | Aloc[k][2*round+1][l] = gsl_matrix_get(A[k],l,2*(ProcRank*max_rounds+round)+1);
|
---|
| 600 | //fprintf(stderr,"(%i) (%i, 0/1) A_loc1 %e\tA_loc2 %e\n",P->Par.me, l, Aloc[k][l],Aloc[k][l+AllocNum]);
|
---|
| 601 | }
|
---|
| 602 | }
|
---|
| 603 | }
|
---|
| 604 | // initialise U_loc
|
---|
| 605 | //debug(P,"initialise U_loc");
|
---|
| 606 | //Uloc = (double *) Malloc(sizeof(double)*AllocNum*2, "ComputeMLWF: Uloc");
|
---|
| 607 | Uround = (double *) Malloc(sizeof(double)*AllocNum*2*max_rounds, "ComputeMLWF: Uround");
|
---|
| 608 | Utotal = (double *) Malloc(sizeof(double)*AllocNum*AllocNum, "ComputeMLWF: Utotal");
|
---|
| 609 | Uloc = (double **) Malloc(sizeof(double *)*2*max_rounds, "ComputeMLWF: Uloc");
|
---|
| 610 | //Uround = &Utotal[ProcRank*AllocNum*2*max_rounds];
|
---|
| 611 | for (round=0;round<max_rounds;round++) {
|
---|
| 612 | Uloc[2*round] = &Uround[AllocNum*(2*round)];
|
---|
| 613 | Uloc[2*round+1] = &Uround[AllocNum*(2*round+1)];
|
---|
| 614 | for (l=0;l<AllocNum;l++) {
|
---|
| 615 | Uloc[2*round][l] = gsl_matrix_get(U,l,2*(ProcRank*max_rounds+round));
|
---|
| 616 | Uloc[2*round+1][l] = gsl_matrix_get(U,l,2*(ProcRank*max_rounds+round)+1);
|
---|
| 617 | //fprintf(stderr,"(%i) (%i, 0/1) U_loc1 %e\tU_loc2 %e\n",P->Par.me, l, Uloc[l+AllocNum*0],Uloc[l+AllocNum*1]);
|
---|
| 618 | }
|
---|
| 619 | }
|
---|
| 620 | // now comes the iteration loop
|
---|
| 621 | //debug(P,"now comes the iteration loop");
|
---|
| 622 | it_steps = 0;
|
---|
| 623 | do {
|
---|
| 624 | it_steps++;
|
---|
| 625 | fprintf(stderr,"(%i) Beginning parallel iteration %i ... ",P->Par.me,it_steps);
|
---|
| 626 | for (set=0; set < AllocNum-1; set++) { // one column less due to column 0 stating at its place all the time
|
---|
| 627 | //fprintf(stderr,"(%i) Beginning rotation set %i ...\n",P->Par.me,set);
|
---|
| 628 | for (round = 0; round < max_rounds;round++) {
|
---|
| 629 | start = ProcRank * max_rounds + round;
|
---|
| 630 | // get indices
|
---|
| 631 | i = top[start] < bot[start] ? top[start] : bot[start]; // minimum of the two indices
|
---|
| 632 | iloc = top[start] < bot[start] ? 0 : 1;
|
---|
| 633 | j = top[start] > bot[start] ? top[start] : bot[start]; // maximum of the two indices: thus j > i
|
---|
| 634 | jloc = top[start] > bot[start] ? 0 : 1;
|
---|
| 635 | //fprintf(stderr,"(%i) my (%i,%i), loc(%i,%i)\n",P->Par.me, i,j, iloc, jloc);
|
---|
| 636 |
|
---|
| 637 | // calculate rotation angle, i.e. c and s
|
---|
| 638 | //fprintf(stderr,"(%i),(%i,%i) calculate rotation angle\n",P->Par.me,i,j);
|
---|
| 639 | gsl_matrix_set_zero(G);
|
---|
| 640 | for (k=0;k<max_operators;k++) { // go through all operators ...
|
---|
| 641 | // Calculate vector h(a) = [a_ii - a_jj, a_ij + a_ji, i(a_ji - a_ij)]
|
---|
| 642 | //fprintf(stderr,"(%i) k%i [a_ii - a_jj] = %e - %e = %e\n",P->Par.me, k,Aloc[k][2*round+iloc][i], Aloc[k][2*round+jloc][j],Aloc[k][2*round+iloc][i] - Aloc[k][2*round+jloc][j]);
|
---|
| 643 | //fprintf(stderr,"(%i) k%i [a_ij + a_ji] = %e - %e = %e\n",P->Par.me, k,Aloc[k][2*round+jloc][i], Aloc[k][2*round+iloc][j],Aloc[k][2*round+jloc][i] + Aloc[k][2*round+iloc][j]);
|
---|
| 644 | gsl_vector_set(h, 0, Aloc[k][2*round+iloc][i] - Aloc[k][2*round+jloc][j]);
|
---|
| 645 | gsl_vector_set(h, 1, Aloc[k][2*round+jloc][i] + Aloc[k][2*round+iloc][j]);
|
---|
| 646 |
|
---|
| 647 | // Calculate G = Re[ \sum_k h^H (A^{(k)}) h(A^{(k)}) ]
|
---|
| 648 | for (l=0;l<2;l++)
|
---|
| 649 | for (m=0;m<2;m++)
|
---|
| 650 | gsl_matrix_set(G,l,m, gsl_vector_get(h,l) * gsl_vector_get(h,m) + gsl_matrix_get(G,l,m));
|
---|
| 651 | }
|
---|
| 652 | //fprintf(stderr,"(%i),(%i,%i) STEP 3b\n",P->Par.me,i,j);
|
---|
| 653 | // STEP 3b: retrieve eigenvector which belongs to greatest eigenvalue of G
|
---|
| 654 | gsl_eigen_symmv(G, eval, evec, w); // calculates eigenvalues and eigenvectors of G
|
---|
| 655 | index = gsl_vector_max_index (eval); // get biggest eigenvalue
|
---|
| 656 | x = gsl_matrix_get(evec, 0, index);
|
---|
| 657 | y = gsl_matrix_get(evec, 1, index) * x/fabs(x);
|
---|
| 658 | x = fabs(x); // ensure x>=0 so that rotation angles remain smaller Pi/4
|
---|
| 659 | //fprintf(stderr,"(%i),(%i,%i) STEP 3c\n",P->Par.me,i,j);
|
---|
| 660 | // STEP 3c: calculate R = [[c,s^\ast],[-s,c^\ast]]
|
---|
| 661 | r = sqrt(x*x + y*y);
|
---|
| 662 | c[round] = sqrt((x + r) / (2*r));
|
---|
| 663 | s[round] = y / sqrt(2*r*(x+r));
|
---|
| 664 | // [[c,s],[-s,c]]= V_small
|
---|
| 665 | //fprintf(stderr,"(%i),(%i,%i) COS %e\t SIN %e\n",P->Par.me,i,j,c[round],s[round]);
|
---|
| 666 |
|
---|
| 667 | //fprintf(stderr,"(%i),(%i,%i) STEP 3e\n",P->Par.me,i,j);
|
---|
| 668 | // V_loc = V_loc * V_small
|
---|
| 669 | //debug(P,"apply rotation to local U");
|
---|
| 670 | for (l=0;l<AllocNum;l++) {
|
---|
| 671 | a_i = Uloc[2*round+iloc][l];
|
---|
| 672 | a_j = Uloc[2*round+jloc][l];
|
---|
| 673 | Uloc[2*round+iloc][l] = c[round] * a_i + s[round] * a_j;
|
---|
| 674 | Uloc[2*round+jloc][l] = -s[round] * a_i + c[round] * a_j;
|
---|
| 675 | }
|
---|
| 676 | } // end of round
|
---|
| 677 | // circulate the rotation angles
|
---|
| 678 | //debug(P,"circulate the rotation angles");
|
---|
| 679 | MPI_Allgather(c, max_rounds, MPI_DOUBLE, c_all, max_rounds, MPI_DOUBLE, *comm); // MPI_Allgather is waaaaay faster than ring circulation
|
---|
| 680 | MPI_Allgather(s, max_rounds, MPI_DOUBLE, s_all, max_rounds, MPI_DOUBLE, *comm);
|
---|
| 681 | //m = start;
|
---|
| 682 | for (l=0;l<AllocNum/2;l++) { // for each process
|
---|
| 683 | // we have V_small from process k
|
---|
| 684 | //debug(P,"Apply V_small from other process");
|
---|
| 685 | i = top[l] < bot[l] ? top[l] : bot[l]; // minimum of the two indices
|
---|
| 686 | j = top[l] > bot[l] ? top[l] : bot[l]; // maximum of the two indices: thus j > i
|
---|
| 687 | iloc = top[l] < bot[l] ? 0 : 1;
|
---|
| 688 | jloc = top[l] > bot[l] ? 0 : 1;
|
---|
| 689 | for (m=0;m<max_rounds;m++) {
|
---|
| 690 | //fprintf(stderr,"(%i) %i processes' (%i,%i)\n",P->Par.me, m,i,j);
|
---|
| 691 | // apply row rotation to each A[k]
|
---|
| 692 | for (k=0;k<max_operators+1;k++) {// one extra for B matrix !
|
---|
| 693 | //fprintf(stderr,"(%i) A:(k%i) a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, i, Aloc[k][2*m+iloc][i],j,Aloc[k][2*m+iloc][j]);
|
---|
| 694 | //fprintf(stderr,"(%i) A:(k%i) a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, i, Aloc[k][2*m+jloc][i],j,Aloc[k][2*m+jloc][j]);
|
---|
| 695 | a_i = Aloc[k][2*m+iloc][i];
|
---|
| 696 | a_j = Aloc[k][2*m+iloc][j];
|
---|
| 697 | Aloc[k][2*m+iloc][i] = c_all[l] * a_i + s_all[l] * a_j;
|
---|
| 698 | Aloc[k][2*m+iloc][j] = -s_all[l] * a_i + c_all[l] * a_j;
|
---|
| 699 | a_i = Aloc[k][2*m+jloc][i];
|
---|
| 700 | a_j = Aloc[k][2*m+jloc][j];
|
---|
| 701 | Aloc[k][2*m+jloc][i] = c_all[l] * a_i + s_all[l] * a_j;
|
---|
| 702 | Aloc[k][2*m+jloc][j] = -s_all[l] * a_i + c_all[l] * a_j;
|
---|
| 703 | //fprintf(stderr,"(%i) A^%i: a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, i, Aloc[k][2*m+iloc][i],j,Aloc[k][2*m+iloc][j]);
|
---|
| 704 | //fprintf(stderr,"(%i) A^%i: a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, i, Aloc[k][2*m+jloc][i],j,Aloc[k][2*m+jloc][j]);
|
---|
| 705 | }
|
---|
| 706 | }
|
---|
| 707 | }
|
---|
| 708 | // apply rotation to local operator matrices
|
---|
| 709 | // A_loc = A_loc * V_small
|
---|
| 710 | //debug(P,"apply rotation to local operator matrices A[k]");
|
---|
| 711 | for (m=0;m<max_rounds;m++) {
|
---|
| 712 | start = ProcRank * max_rounds + m;
|
---|
| 713 | iloc = top[start] < bot[start] ? 0 : 1;
|
---|
| 714 | jloc = top[start] > bot[start] ? 0 : 1;
|
---|
| 715 | for (k=0;k<max_operators+1;k++) {// one extra for B matrix !
|
---|
| 716 | for (l=0;l<AllocNum;l++) {
|
---|
| 717 | // Columns, i and j belong to this process only!
|
---|
| 718 | a_i = Aloc[k][2*m+iloc][l];
|
---|
| 719 | a_j = Aloc[k][2*m+jloc][l];
|
---|
| 720 | Aloc[k][2*m+iloc][l] = c[m] * a_i + s[m] * a_j;
|
---|
| 721 | Aloc[k][2*m+jloc][l] = -s[m] * a_i + c[m] * a_j;
|
---|
| 722 | //fprintf(stderr,"(%i) A:(k%i) a_i[%i] %e\ta_j[%i] %e\n",P->Par.me, k, l, Aloc[k][2*m+iloc][l],l,Aloc[k][2*m+jloc][l]);
|
---|
| 723 | }
|
---|
| 724 | }
|
---|
| 725 | }
|
---|
| 726 | // Shuffling of these round's columns to prepare next rotation set
|
---|
| 727 | for (k=0;k<max_operators+1;k++) {// one extra for B matrix !
|
---|
| 728 | // extract columns from A
|
---|
| 729 | //debug(P,"extract columns from A");
|
---|
| 730 | shiftcolumns(*comm, Aloc[k], AllocNum, max_rounds, k, tagS0, tagS1, tagR0, tagR1);
|
---|
| 731 |
|
---|
| 732 | }
|
---|
| 733 | // and also for V ...
|
---|
| 734 | //debug(P,"extract columns from U");
|
---|
| 735 | shiftcolumns(*comm, Uloc, AllocNum, max_rounds, 0, tagS0, tagS1, tagR0, tagR1);
|
---|
| 736 |
|
---|
| 737 |
|
---|
| 738 | // and merry-go-round for the indices too
|
---|
| 739 | //debug(P,"and merry-go-round for the indices too");
|
---|
| 740 | music(top, bot, AllocNum/2);
|
---|
| 741 | }
|
---|
| 742 |
|
---|
| 743 | //fprintf(stderr,"(%i) STEP 4\n",P->Par.me);
|
---|
| 744 | // STEP 4: calculate new variance: \sum_{ik} (A^{(k)}_ii)^2
|
---|
| 745 | old_spread = Spread;
|
---|
| 746 | spread = 0.;
|
---|
| 747 | for(k=0;k<max_operators;k++) { // go through all self-adjoint operators
|
---|
| 748 | for (i=0; i < 2*max_rounds; i++) { // go through all wave functions
|
---|
| 749 | spread += Aloc[k][i][i+ProcRank*2*max_rounds]*Aloc[k][i][i+ProcRank*2*max_rounds];
|
---|
| 750 | //spread += gsl_matrix_get(A[k],i,i)*gsl_matrix_get(A[k],i,i);
|
---|
| 751 | }
|
---|
| 752 | }
|
---|
| 753 | MPI_Allreduce(&spread, &Spread, 1, MPI_DOUBLE, MPI_SUM, *comm);
|
---|
| 754 | //Spread = spread;
|
---|
| 755 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 5: %2.9e - %2.9e <= %lg ?\n",P->Par.me,old_spread,Spread,R->EpsWannier);
|
---|
| 756 | else fprintf(stderr,"%2.9e\n",Spread);
|
---|
| 757 | // STEP 5: check change of variance
|
---|
| 758 | } while (fabs(old_spread-Spread) >= R->EpsWannier);
|
---|
| 759 | // end of iterative diagonalization loop: We have found our final orthogonal U!
|
---|
| 760 |
|
---|
| 761 | for (l=0;l<ProcNum;l++)
|
---|
| 762 | rcounts[l] = AllocNum;
|
---|
| 763 | //debug(P,"allgather U");
|
---|
| 764 | for (round=0;round<2*max_rounds;round++) {
|
---|
| 765 | for (l=0;l<ProcNum;l++)
|
---|
| 766 | rdispls[l] = (l*2*max_rounds + round)*AllocNum;
|
---|
| 767 | MPI_Allgatherv(Uloc[round], AllocNum, MPI_DOUBLE, Utotal, rcounts, rdispls, MPI_DOUBLE, *comm);
|
---|
| 768 | }
|
---|
| 769 | for (k=0;k<AllocNum;k++) {
|
---|
| 770 | for(l=0;l<AllocNum;l++) {
|
---|
| 771 | gsl_matrix_set(U,k,l, Utotal[l+k*AllocNum]);
|
---|
| 772 | }
|
---|
| 773 | }
|
---|
| 774 |
|
---|
| 775 |
|
---|
| 776 | // after one set, gather A[k] from all and calculate spread
|
---|
| 777 | for (l=0;l<ProcNum;l++)
|
---|
| 778 | rcounts[l] = AllocNum;
|
---|
| 779 | //debug(P,"gather A[k] for spread");
|
---|
| 780 | for (u=0;u<max_operators+1;u++) {// one extra for B matrix !
|
---|
| 781 | //debug(P,"A[k] all gather");
|
---|
| 782 | for (round=0;round<2*max_rounds;round++) {
|
---|
| 783 | for (l=0;l<ProcNum;l++)
|
---|
| 784 | rdispls[l] = (l*2*max_rounds + round)*AllocNum;
|
---|
| 785 | MPI_Allgatherv(Aloc[u][round], AllocNum, MPI_DOUBLE, Atotal[u], rcounts, rdispls, MPI_DOUBLE, *comm);
|
---|
| 786 | }
|
---|
| 787 | for (k=0;k<AllocNum;k++) {
|
---|
| 788 | for(l=0;l<AllocNum;l++) {
|
---|
| 789 | gsl_matrix_set(A[u],k,l, Atotal[u][l+k*AllocNum]);
|
---|
| 790 | }
|
---|
| 791 | }
|
---|
| 792 | }
|
---|
| 793 |
|
---|
| 794 | // free eigenvector stuff
|
---|
| 795 | gsl_vector_free(h);
|
---|
| 796 | gsl_matrix_free(G);
|
---|
| 797 | gsl_eigen_symmv_free(w);
|
---|
| 798 | gsl_vector_free(eval);
|
---|
| 799 | gsl_matrix_free(evec);
|
---|
| 800 | // Free column vectors
|
---|
| 801 | for (k=0;k<max_operators+1;k++) {
|
---|
| 802 | Free(Atotal[k]);
|
---|
| 803 | Free(Around[k]);
|
---|
| 804 | }
|
---|
| 805 | Free(Uround);
|
---|
| 806 | Free(Utotal);
|
---|
| 807 | Free(c_all);
|
---|
| 808 | Free(s_all);
|
---|
| 809 | Free(c);
|
---|
| 810 | Free(s);
|
---|
| 811 | Free(rcounts);
|
---|
| 812 | Free(rdispls);
|
---|
| 813 |
|
---|
| 814 | } else {
|
---|
| 815 |
|
---|
| 816 | c = (double *) Malloc(sizeof(double), "ComputeMLWF: c");
|
---|
| 817 | s = (double *) Malloc(sizeof(double), "ComputeMLWF: s");
|
---|
| 818 | G = gsl_matrix_calloc (2,2);
|
---|
| 819 | h = gsl_vector_alloc (2);
|
---|
| 820 | eval = gsl_vector_alloc (2);
|
---|
| 821 | evec = gsl_matrix_alloc (2,2);
|
---|
| 822 | w = gsl_eigen_symmv_alloc(2);
|
---|
| 823 | //debug(P,"now comes the iteration loop");
|
---|
| 824 | it_steps=0;
|
---|
| 825 | do {
|
---|
| 826 | it_steps++;
|
---|
| 827 | //if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 3: Iteratively maximize negative spread part\n",P->Par.me);
|
---|
| 828 | fprintf(stderr,"(%i) Beginning iteration %i ... ",P->Par.me,it_steps);
|
---|
| 829 | for (set=0; set < AllocNum-1; set++) { // one column less due to column 0 stating at its place all the time
|
---|
| 830 | //fprintf(stderr,"(%i) Beginning rotation set %i ...\n",P->Par.me,set);
|
---|
| 831 | // STEP 3: for all index pairs 0<= i<j <AllocNum
|
---|
| 832 | for (ProcRank=0;ProcRank<AllocNum/2;ProcRank++) {
|
---|
| 833 | // get indices
|
---|
| 834 | i = top[ProcRank] < bot[ProcRank] ? top[ProcRank] : bot[ProcRank]; // minimum of the two indices
|
---|
| 835 | j = top[ProcRank] > bot[ProcRank] ? top[ProcRank] : bot[ProcRank]; // maximum of the two indices: thus j > i
|
---|
| 836 | //fprintf(stderr,"(%i),(%i,%i) STEP 3a\n",P->Par.me,i,j);
|
---|
| 837 | // STEP 3a: Calculate G
|
---|
| 838 | gsl_matrix_set_zero(G);
|
---|
| 839 |
|
---|
| 840 | for (k=0;k<max_operators;k++) { // go through all operators ...
|
---|
| 841 | // Calculate vector h(a) = [a_ii - a_jj, a_ij + a_ji, i(a_ji - a_ij)]
|
---|
| 842 | //fprintf(stderr,"(%i) k%i [a_ii - a_ij] = %e - %e = %e\n",P->Par.me, k,gsl_matrix_get(A[k],i,i), gsl_matrix_get(A[k],j,j),gsl_matrix_get(A[k],i,i) - gsl_matrix_get(A[k],j,j));
|
---|
| 843 | //fprintf(stderr,"(%i) k%i [a_ij + a_jij] = %e - %e = %e\n",P->Par.me, k,gsl_matrix_get(A[k],i,j), gsl_matrix_get(A[k],j,i),gsl_matrix_get(A[k],i,j) + gsl_matrix_get(A[k],j,i));
|
---|
| 844 | gsl_vector_set(h, 0, gsl_matrix_get(A[k],i,i) - gsl_matrix_get(A[k],j,j));
|
---|
| 845 | gsl_vector_set(h, 1, gsl_matrix_get(A[k],i,j) + gsl_matrix_get(A[k],j,i));
|
---|
| 846 | //gsl_vector_complex_set(h, 2, gsl_complex_mul_imag(gsl_complex_add(gsl_matrix_complex_get(A[k],j,i), gsl_matrix_complex_get(A[k],i,j)),1));
|
---|
| 847 |
|
---|
| 848 | // Calculate G = Re[ \sum_k h^H (A^{(k)}) h(A^{(k)}) ]
|
---|
| 849 | for (l=0;l<2;l++)
|
---|
| 850 | for (m=0;m<2;m++)
|
---|
| 851 | gsl_matrix_set(G,l,m, gsl_vector_get(h,l) * gsl_vector_get(h,m) + gsl_matrix_get(G,l,m));
|
---|
| 852 | }
|
---|
| 853 |
|
---|
| 854 | //fprintf(stderr,"(%i),(%i,%i) STEP 3b\n",P->Par.me,i,j);
|
---|
| 855 | // STEP 3b: retrieve eigenvector which belongs to greatest eigenvalue of G
|
---|
| 856 | gsl_eigen_symmv(G, eval, evec, w); // calculates eigenvalues and eigenvectors of G
|
---|
| 857 |
|
---|
| 858 | index = gsl_vector_max_index (eval); // get biggest eigenvalue
|
---|
| 859 | x = gsl_matrix_get(evec, 0, index);
|
---|
| 860 | y = gsl_matrix_get(evec, 1, index) * x/fabs(x);
|
---|
| 861 | //z = gsl_matrix_get(evec, 2, index) * x/fabs(x);
|
---|
| 862 | x = fabs(x); // ensure x>=0 so that rotation angles remain smaller Pi/4
|
---|
| 863 |
|
---|
| 864 | //fprintf(stderr,"(%i),(%i,%i) STEP 3c\n",P->Par.me,i,j);
|
---|
| 865 | // STEP 3c: calculate R = [[c,s^\ast],[-s,c^\ast]]
|
---|
| 866 | r = sqrt(x*x + y*y); // + z*z);
|
---|
| 867 | c[0] = sqrt((x + r) / (2*r));
|
---|
| 868 | s[0] = y / sqrt(2*r*(x+r)); //, -z / sqrt(2*r*(x+r)));
|
---|
| 869 | //fprintf(stderr,"(%i),(%i,%i) COS %e\t SIN %e\n",P->Par.me,i,j,c[0],s[0]);
|
---|
| 870 |
|
---|
| 871 | //fprintf(stderr,"(%i),(%i,%i) STEP 3d\n",P->Par.me,i,j);
|
---|
| 872 | // STEP 3d: apply rotation R to rows and columns of A^{(k)}
|
---|
| 873 | for (k=0;k<max_operators+1;k++) {// one extra for B matrix !
|
---|
| 874 | for (l=0;l<AllocNum;l++) {
|
---|
| 875 | // Rows
|
---|
| 876 | a_i = gsl_matrix_get(A[k],i,l);
|
---|
| 877 | a_j = gsl_matrix_get(A[k],j,l);
|
---|
| 878 | gsl_matrix_set(A[k], i, l, c[0] * a_i + s[0] * a_j);
|
---|
| 879 | gsl_matrix_set(A[k], j, l, -s[0] * a_i + c[0] * a_j);
|
---|
| 880 | }
|
---|
| 881 | for (l=0;l<AllocNum;l++) {
|
---|
| 882 | // Columns
|
---|
| 883 | a_i = gsl_matrix_get(A[k],l,i);
|
---|
| 884 | a_j = gsl_matrix_get(A[k],l,j);
|
---|
| 885 | gsl_matrix_set(A[k], l, i, c[0] * a_i + s[0] * a_j);
|
---|
| 886 | gsl_matrix_set(A[k], l, j, -s[0] * a_i + c[0] * a_j);
|
---|
| 887 | }
|
---|
| 888 | }
|
---|
| 889 | //fprintf(stderr,"(%i),(%i,%i) STEP 3e\n",P->Par.me,i,j);
|
---|
| 890 | // STEP 3e: apply U = R*U
|
---|
| 891 | for (l=0;l<AllocNum;l++) {
|
---|
| 892 | a_i = gsl_matrix_get(U,i,l);
|
---|
| 893 | a_j = gsl_matrix_get(U,j,l);
|
---|
| 894 | gsl_matrix_set(U, i, l, c[0] * a_i + s[0] * a_j);
|
---|
| 895 | gsl_matrix_set(U, j, l, -s[0] * a_i + c[0] * a_j);
|
---|
| 896 | }
|
---|
| 897 | }
|
---|
| 898 | // and merry-go-round for the indices too
|
---|
| 899 | //debug(P,"and merry-go-round for the indices too");
|
---|
| 900 | if (AllocNum > 2) music(top, bot, AllocNum/2);
|
---|
| 901 | }
|
---|
| 902 |
|
---|
| 903 | //if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 4\n",P->Par.me);
|
---|
| 904 | // STEP 4: calculate new variance: \sum_{ik} (A^{(k)}_ii)^2
|
---|
| 905 | old_spread = spread;
|
---|
| 906 | spread = 0;
|
---|
| 907 | for(k=0;k<max_operators;k++) { // go through all self-adjoint operators
|
---|
| 908 | for (i=0; i < AllocNum; i++) { // go through all wave functions
|
---|
| 909 | spread += pow(gsl_matrix_get(A[k],i,i),2);
|
---|
| 910 | }
|
---|
| 911 | }
|
---|
| 912 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 5: %2.9e - %2.9e <= %lg ?\n",P->Par.me,old_spread,spread,R->EpsWannier);
|
---|
| 913 | else fprintf(stderr,"%2.9e\n",spread);
|
---|
| 914 | // STEP 5: check change of variance
|
---|
| 915 | } while (fabs(old_spread-spread) >= R->EpsWannier);
|
---|
| 916 | // end of iterative diagonalization loop: We have found our final orthogonal U!
|
---|
| 917 | gsl_vector_free(h);
|
---|
| 918 | gsl_matrix_free(G);
|
---|
| 919 | gsl_eigen_symmv_free(w);
|
---|
| 920 | gsl_vector_free(eval);
|
---|
| 921 | gsl_matrix_free(evec);
|
---|
| 922 | Free(c);
|
---|
| 923 | Free(s);
|
---|
| 924 | }
|
---|
| 925 |
|
---|
| 926 | if(P->Call.out[ReadOut]) {// && P->Par.me == 0) {
|
---|
| 927 | //debug(P,"output total U");
|
---|
| 928 | fprintf(stderr,"(%i) U_tot = \n",P->Par.me);
|
---|
| 929 | for (k=0;k<Num;k++) {
|
---|
| 930 | for (l=0;l<Num;l++)
|
---|
| 931 | fprintf(stderr,"%e\t",gsl_matrix_get(U,l,k));
|
---|
| 932 | fprintf(stderr,"\n");
|
---|
| 933 | }
|
---|
| 934 | }
|
---|
| 935 | }
|
---|
| 936 | Free(top);
|
---|
| 937 | Free(bot);
|
---|
| 938 |
|
---|
| 939 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 6: Allocating buffer mem\n",P->Par.me);
|
---|
| 940 | // STEP 6: apply transformation U to all wave functions \sum_i^Num U_ji | \phi_i \rangle = | \phi_j^\ast \rangle
|
---|
| 941 | Num = Psi->TypeStartIndex[type+1] - Psi->TypeStartIndex[type]; // recalc Num as we can only work with local Psis from here
|
---|
| 942 | fftw_complex **coeffs_buffer = Malloc(sizeof(fftw_complex *)*Num, "ComputeMLWF: **coeffs_buffer");
|
---|
| 943 | for (l=0;l<Num;l++) // allocate for each local wave function
|
---|
| 944 | coeffs_buffer[l] = LevS->LPsi->OldLocalPsi[l];
|
---|
| 945 |
|
---|
| 946 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 6: Transformation ...\n",P->Par.me);
|
---|
| 947 | l=-1; // to access U matrix element (0..Num-1)
|
---|
| 948 | k=-1; // to access the above swap coeffs_buffer (0..LocalNo-1)
|
---|
| 949 | for (i=0; i < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; i++) { // go through all wave functions
|
---|
| 950 | OnePsiA = &Psi->AllPsiStatus[i]; // grab OnePsiA
|
---|
| 951 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
| 952 | l++; // increase l if it is occupied wave function
|
---|
| 953 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) { // local?
|
---|
| 954 | k++; // increase k only if it is a local, non-extra orbital wave function
|
---|
| 955 | LPsiDatA = (fftw_complex *) coeffs_buffer[k]; // new coeffs first go to copy buffer, old ones must not be overwritten yet
|
---|
| 956 | SetArrayToDouble0((double *)LPsiDatA, 2*LevS->MaxG); // zero buffer part
|
---|
| 957 | } else
|
---|
| 958 | LPsiDatA = NULL; // otherwise processes won't enter second loop, though they're supposed to send coefficients!
|
---|
| 959 |
|
---|
| 960 | m = -1; // to access U matrix element (0..Num-1)
|
---|
| 961 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
| 962 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
| 963 | if (OnePsiB->PsiType == type) { // drop all but occupied ones
|
---|
| 964 | m++; // increase m if it is occupied wave function
|
---|
| 965 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
| 966 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
| 967 | else
|
---|
| 968 | LOnePsiB = NULL;
|
---|
| 969 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
| 970 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
| 971 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, WannierTag2, P->Par.comm_ST_PsiT, &status );
|
---|
| 972 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
| 973 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
| 974 | for (p=0;p<P->Par.Max_me_comm_ST_PsiT;p++)
|
---|
| 975 | if (p != OnePsiB->my_color_comm_ST_Psi)
|
---|
| 976 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, p, WannierTag2, P->Par.comm_ST_PsiT);
|
---|
| 977 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
| 978 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
| 979 |
|
---|
| 980 | if (LPsiDatA != NULL) {
|
---|
| 981 | double tmp = gsl_matrix_get(U,l,m);
|
---|
| 982 | g=0;
|
---|
| 983 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
| 984 | LPsiDatA[g].re += LPsiDatB[g].re * tmp;
|
---|
| 985 | LPsiDatA[g].im += LPsiDatB[g].im * tmp;
|
---|
| 986 | g++;
|
---|
| 987 | }
|
---|
| 988 | for (; g < LevS->MaxG; g++) {
|
---|
| 989 | LPsiDatA[g].re += LPsiDatB[g].re * tmp;
|
---|
| 990 | LPsiDatA[g].im += LPsiDatB[g].im * tmp;
|
---|
| 991 | }
|
---|
| 992 | }
|
---|
| 993 | }
|
---|
| 994 | }
|
---|
| 995 | }
|
---|
| 996 | }
|
---|
| 997 | gsl_matrix_free(U);
|
---|
| 998 |
|
---|
| 999 | if(P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) STEP 6: Swapping buffer mem\n",P->Par.me);
|
---|
| 1000 | // now, as all wave functions are updated, swap the buffer
|
---|
| 1001 | l = -1;
|
---|
| 1002 | for (k=0;k<Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT;k++) { // go through each local occupied wave function
|
---|
| 1003 | if (Psi->AllPsiStatus[k].PsiType == type && Psi->AllPsiStatus[k].my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) {
|
---|
| 1004 | l++;
|
---|
| 1005 | if(P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) (k:%i,l:%i) LocalNo = (%i,%i)\t AllPsiNo = (%i,%i)\n", P->Par.me, k,l,Psi->LocalPsiStatus[l].MyLocalNo, Psi->LocalPsiStatus[l].MyGlobalNo, Psi->AllPsiStatus[k].MyLocalNo, Psi->AllPsiStatus[k].MyGlobalNo);
|
---|
| 1006 | LPsiDatA = (fftw_complex *)coeffs_buffer[l];
|
---|
| 1007 | LPsiDatB = LevS->LPsi->LocalPsi[l];
|
---|
| 1008 | for (g=0;g<LevS->MaxG;g++) {
|
---|
| 1009 | LPsiDatB[g].re = LPsiDatA[g].re;
|
---|
| 1010 | LPsiDatB[g].im = LPsiDatA[g].im;
|
---|
| 1011 | }
|
---|
| 1012 | // recalculating non-local form factors which are coefficient dependent!
|
---|
| 1013 | CalculateNonLocalEnergyNoRT(P, Psi->LocalPsiStatus[l].MyLocalNo);
|
---|
| 1014 | }
|
---|
| 1015 | }
|
---|
| 1016 | // and free allocated buffer memory
|
---|
| 1017 | Free(coeffs_buffer);
|
---|
| 1018 |
|
---|
| 1019 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) STEP 7\n",P->Par.me);
|
---|
| 1020 | // STEP 7: Compute Wannier centers, spread and printout
|
---|
| 1021 | // the spread for x,y,z resides in the respective diagonal element of A_.. for each orbital
|
---|
| 1022 | if(P->Call.out[ReadOut]) fprintf(stderr,"(%i) Spread printout\n", P->Par.me);
|
---|
| 1023 |
|
---|
| 1024 | switch (Lat->Psi.PsiST) {
|
---|
| 1025 | case SpinDouble:
|
---|
| 1026 | strncpy(suffix,".spread.csv",18);
|
---|
| 1027 | strncat(spin,"SpinDouble",12);
|
---|
| 1028 | break;
|
---|
| 1029 | case SpinUp:
|
---|
| 1030 | strncpy(suffix,".spread_up.csv",18);
|
---|
| 1031 | strncat(spin,"SpinUp",12);
|
---|
| 1032 | break;
|
---|
| 1033 | case SpinDown:
|
---|
| 1034 | strncpy(suffix,".spread_down.csv",18);
|
---|
| 1035 | strncat(spin,"SpinDown",12);
|
---|
| 1036 | break;
|
---|
| 1037 | }
|
---|
| 1038 | if (P->Par.me_comm_ST == 0) {
|
---|
| 1039 | if (R->LevSNo == Lat->MaxLevel-1) // open freshly if first level
|
---|
| 1040 | OpenFile(P, &F->SpreadFile, suffix, "w", P->Call.out[ReadOut]); // only open on starting level
|
---|
| 1041 | else if (F->SpreadFile == NULL) // re-open if not first level and not opened yet (or closed from ParseWannierFile)
|
---|
| 1042 | OpenFile(P, &F->SpreadFile, suffix, "a", P->Call.out[ReadOut]); // only open on starting level
|
---|
| 1043 | if (F->SpreadFile == NULL) {
|
---|
| 1044 | Error(SomeError,"ComputeMLWF: Error opening Wannier File!\n");
|
---|
| 1045 | } else {
|
---|
| 1046 | fprintf(F->SpreadFile,"#===== W A N N I E R C E N T R E S for Level %d of type %s ========================\n", R->LevSNo, spin);
|
---|
| 1047 | fprintf(F->SpreadFile,"# Orbital+Level\tx\ty\tz\tSpread\n");
|
---|
| 1048 | }
|
---|
| 1049 | }
|
---|
| 1050 | old_spread = 0;
|
---|
| 1051 | spread = 0;
|
---|
| 1052 | i=-1;
|
---|
| 1053 | for (l=0; l < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; l++) { // go through all wave functions
|
---|
| 1054 | OnePsiA = &Psi->AllPsiStatus[l]; // grab OnePsiA
|
---|
| 1055 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
| 1056 | i++; // increase l if it is occupied wave function
|
---|
| 1057 | //fprintf(stderr,"(%i) Wannier for %i\n", P->Par.me, i);
|
---|
| 1058 |
|
---|
| 1059 | // calculate Wannier Centre
|
---|
| 1060 | for (j=0;j<NDIM;j++) {
|
---|
| 1061 | WannierCentre[i][j] = Lat->RealBasisQ[j]/(2*PI) * GSL_IMAG( gsl_complex_log( gsl_complex_rect(gsl_matrix_get(A[j*2],i,i),gsl_matrix_get(A[j*2+1],i,i))));
|
---|
| 1062 | if (WannierCentre[i][j] < 0) // change wrap around of above operator to smooth 0...Lat->RealBasisSQ
|
---|
| 1063 | WannierCentre[i][j] = Lat->RealBasisQ[j] + WannierCentre[i][j];
|
---|
| 1064 | }
|
---|
| 1065 |
|
---|
| 1066 | // store orbital spread and centre in file
|
---|
| 1067 | tmp = - pow(gsl_matrix_get(A[0],i,i),2) - pow(gsl_matrix_get(A[1],i,i),2)
|
---|
| 1068 | - pow(gsl_matrix_get(A[2],i,i),2) - pow(gsl_matrix_get(A[3],i,i),2)
|
---|
| 1069 | - pow(gsl_matrix_get(A[4],i,i),2) - pow(gsl_matrix_get(A[5],i,i),2);
|
---|
| 1070 | WannierSpread[i] = gsl_matrix_get(A[max_operators],i,i) + tmp;
|
---|
| 1071 | //fprintf(stderr,"(%i) WannierSpread[%i] = %e\n", P->Par.me, i, WannierSpread[i]);
|
---|
| 1072 | //if (P->Par.me == 0) fprintf(F->SpreadFile,"Orbital %d:\t Wannier center (x,y,z)=(%lg,%lg,%lg)\t Spread sigma^2 = %lg - %lg = %lg\n",
|
---|
| 1073 | //Psi->AllPsiStatus[i].MyGlobalNo, WannierCentre[i][0], WannierCentre[i][1], WannierCentre[i][2], gsl_matrix_get(A[max_operators],i,i), -tmp, WannierSpread[i]);
|
---|
| 1074 | //if (P->Par.me == 0) fprintf(F->SpreadFile,"%e\t%e\t%e\n",
|
---|
| 1075 | //WannierCentre[i][0], WannierCentre[i][1], WannierCentre[i][2]);
|
---|
| 1076 |
|
---|
| 1077 | // gather all spreads
|
---|
| 1078 | old_spread += gsl_matrix_get(A[max_operators],i,i); // tr(U^H B U)
|
---|
| 1079 | for (k=0;k<max_operators;k++)
|
---|
| 1080 | spread += pow(gsl_matrix_get(A[k],i,i),2);
|
---|
| 1081 |
|
---|
| 1082 | // store calculated Wannier centre
|
---|
| 1083 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // is this local?
|
---|
| 1084 | for (j=0;j<NDIM;j++)
|
---|
| 1085 | Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[j] = WannierCentre[i][j];
|
---|
| 1086 | }
|
---|
| 1087 | }
|
---|
| 1088 |
|
---|
| 1089 | // join Wannier orbital to groups with common centres under certain conditions
|
---|
| 1090 | switch (R->CommonWannier) {
|
---|
| 1091 | case 4:
|
---|
| 1092 | debug(P,"Shifting each Wannier centers to cell center");
|
---|
| 1093 | for (i=0; i < Num; i++) { // go through all occupied wave functions
|
---|
| 1094 | for (j=0;j<NDIM;j++)
|
---|
| 1095 | WannierCentre[i][j] = Lat->RealBasisQ[j]/2.;
|
---|
| 1096 | }
|
---|
| 1097 | break;
|
---|
| 1098 | case 3:
|
---|
| 1099 | debug(P,"Shifting Wannier centers individually to nearest grid point");
|
---|
| 1100 | for (i=0;i < Num; i++) { // go through all wave functions
|
---|
| 1101 | for (j=0;j<NDIM;j++) {
|
---|
| 1102 | tmp = WannierCentre[i][j]/Lat->RealBasisQ[j]*(double)N[j];
|
---|
| 1103 | //fprintf(stderr,"(%i) N[%i]: %i\t tmp %e\t floor %e\t ceil %e\n",P->Par.me, j, N[j], tmp, floor(tmp), ceil(tmp));
|
---|
| 1104 | if (fabs((double)floor(tmp) - tmp) < fabs((double)ceil(tmp) - tmp))
|
---|
| 1105 | WannierCentre[i][j] = (double)floor(tmp)/(double)N[j]*Lat->RealBasisQ[j];
|
---|
| 1106 | else
|
---|
| 1107 | WannierCentre[i][j] = (double)ceil(tmp)/(double)N[j]*Lat->RealBasisQ[j];
|
---|
| 1108 | }
|
---|
| 1109 | }
|
---|
| 1110 | break;
|
---|
| 1111 | case 2:
|
---|
| 1112 | debug(P,"Combining individual orbitals according to spread.");
|
---|
| 1113 | //fprintf(stderr,"(%i) Finding multiple bindings and Reweighting Wannier centres\n",P->Par.me);
|
---|
| 1114 | //debug(P,"finding partners");
|
---|
| 1115 | marker = (int*) Malloc(sizeof(int)*(Num+1),"ComputeMLWF: marker");
|
---|
| 1116 | group = (int**) Malloc(sizeof(int *)*Num,"ComputeMLWF: group");
|
---|
| 1117 | for (l=0;l<Num;l++) {
|
---|
| 1118 | group[l] = (int*) Malloc(sizeof(int)*(Num+1),"ComputeMLWF: group[l]"); // each must group must have one more as end marker
|
---|
| 1119 | for (k=0;k<=Num;k++)
|
---|
| 1120 | group[l][k] = -1; // reset partner group
|
---|
| 1121 | }
|
---|
| 1122 | for (k=0;k<Num;k++)
|
---|
| 1123 | partner[k] = 0;
|
---|
| 1124 | //debug(P,"mem allocated");
|
---|
| 1125 | // go for each orbital through every other, check distance against the sum of both spreads
|
---|
| 1126 | // if smaller add to group of this orbital
|
---|
| 1127 | for (l=0;l<Num;l++) {
|
---|
| 1128 | j=0; // index for partner group
|
---|
| 1129 | for (k=0;k<Num;k++) { // check this against l
|
---|
| 1130 | Spread = 0.;
|
---|
| 1131 | for (i=0;i<NDIM;i++) {
|
---|
| 1132 | //fprintf(stderr,"(%i) Spread += (%e - %e)^2 \n", P->Par.me, WannierCentre[l][i], WannierCentre[k][i]);
|
---|
| 1133 | Spread += (WannierCentre[l][i] - WannierCentre[k][i])*(WannierCentre[l][i] - WannierCentre[k][i]);
|
---|
| 1134 | }
|
---|
| 1135 | Spread = sqrt(Spread); // distance in Spread
|
---|
| 1136 | //fprintf(stderr,"(%i) %i to %i: distance %e, SpreadSum = %e + %e = %e \n", P->Par.me, l, k, Spread, WannierSpread[l], WannierSpread[k], WannierSpread[l]+WannierSpread[k]);
|
---|
| 1137 | if (Spread < 1.5*(WannierSpread[l]+WannierSpread[k])) {// if distance smaller than sum of spread
|
---|
| 1138 | group[l][j++] = k; // add k to group of l
|
---|
| 1139 | partner[l]++;
|
---|
| 1140 | //fprintf(stderr,"(%i) %i added as %i-th member to %i's group.\n", P->Par.me, k, j, l);
|
---|
| 1141 | }
|
---|
| 1142 | }
|
---|
| 1143 | }
|
---|
| 1144 |
|
---|
| 1145 | // consistency, for each orbital check if this orbital is also in the group of each referred orbital
|
---|
| 1146 | //debug(P,"checking consistency");
|
---|
| 1147 | totalflag = 1;
|
---|
| 1148 | for (l=0;l<Num;l++) // checking l's group
|
---|
| 1149 | for (k=0;k<Num;k++) { // k is partner index
|
---|
| 1150 | if (group[l][k] != -1) { // if current index k is a partner
|
---|
| 1151 | flag = 0;
|
---|
| 1152 | for(j=0;j<Num;j++) { // go through each entry in l partner's partner group if l exists
|
---|
| 1153 | if ((group[ group[l][k] ][j] == l))
|
---|
| 1154 | flag = 1;
|
---|
| 1155 | }
|
---|
| 1156 | //if (flag == 0) fprintf(stderr, "(%i) in %i's group %i is referred as a partner, but not the other way round!\n", P->Par.me, l, group[l][k]);
|
---|
| 1157 | if (totalflag == 1) totalflag = flag;
|
---|
| 1158 | }
|
---|
| 1159 | }
|
---|
| 1160 | // for each orbital group (marker group) weight each center to a total and put this into the local WannierCentres
|
---|
| 1161 | //debug(P,"weight and calculate new centers for partner groups");
|
---|
| 1162 | for (l=0;l<=Num;l++)
|
---|
| 1163 | marker[l] = 1;
|
---|
| 1164 | if (totalflag) {
|
---|
| 1165 | for (l=0;l<Num;l++) { // go through each orbital
|
---|
| 1166 | if (marker[l] != 0) { // if it hasn't been reweighted
|
---|
| 1167 | marker[l] = 0;
|
---|
| 1168 | for (i=0;i<NDIM;i++)
|
---|
| 1169 | q[i] = 0.;
|
---|
| 1170 | j = 0;
|
---|
| 1171 | while (group[l][j] != -1) {
|
---|
| 1172 | marker[group[l][j]] = 0;
|
---|
| 1173 | for (i=0;i<NDIM;i++) {
|
---|
| 1174 | //fprintf(stderr,"(%i) Adding to %i's group, %i entry of %i: %e\n", P->Par.me, l, i, group[l][j], WannierCentre[ group[l][j] ][i]);
|
---|
| 1175 | q[i] += WannierCentre[ group[l][j] ][i];
|
---|
| 1176 | }
|
---|
| 1177 | j++;
|
---|
| 1178 | }
|
---|
| 1179 | //fprintf(stderr,"(%i) %i's group: (%e,%e,%e)/%i = (%e,%e,%e)\n", P->Par.me, l, q[0], q[1], q[2], j, q[0]/(double)j, q[1]/(double)j, q[2]/(double)j);
|
---|
| 1180 | for (i=0;i<NDIM;i++) {// weight by number of elements in partner group
|
---|
| 1181 | q[i] /= (double)(j);
|
---|
| 1182 | }
|
---|
| 1183 |
|
---|
| 1184 | // put WannierCentre into own and all partners'
|
---|
| 1185 | for (i=0;i<NDIM;i++)
|
---|
| 1186 | WannierCentre[l][i] = q[i];
|
---|
| 1187 | j = 0;
|
---|
| 1188 | while (group[l][j] != -1) {
|
---|
| 1189 | for (i=0;i<NDIM;i++)
|
---|
| 1190 | WannierCentre[group[l][j]][i] = q[i];
|
---|
| 1191 | j++;
|
---|
| 1192 | }
|
---|
| 1193 | }
|
---|
| 1194 | }
|
---|
| 1195 | }
|
---|
| 1196 | if (P->Call.out[StepLeaderOut]) {
|
---|
| 1197 | fprintf(stderr,"Summary:\n");
|
---|
| 1198 | fprintf(stderr,"========\n");
|
---|
| 1199 | for (i=0;i<Num;i++)
|
---|
| 1200 | fprintf(stderr,"%i belongs to a %i-ple binding.\n",i,partner[i]);
|
---|
| 1201 | }
|
---|
| 1202 | //debug(P,"done");
|
---|
| 1203 |
|
---|
| 1204 | Free(marker);
|
---|
| 1205 | for (l=0;l<Num;l++)
|
---|
| 1206 | Free(group[l]);
|
---|
| 1207 | Free(group);
|
---|
| 1208 | break;
|
---|
| 1209 | case 1:
|
---|
| 1210 | debug(P,"Individual orbitals are changed to center of all.");
|
---|
| 1211 | for (i=0;i<NDIM;i++) // zero center of weight
|
---|
| 1212 | q[i] = 0.;
|
---|
| 1213 | for (k=0;k<Num;k++)
|
---|
| 1214 | for (i=0;i<NDIM;i++) { // sum up all orbitals each component
|
---|
| 1215 | q[i] += WannierCentre[k][i];
|
---|
| 1216 | }
|
---|
| 1217 | for (i=0;i<NDIM;i++) // divide by number
|
---|
| 1218 | q[i] /= Num;
|
---|
| 1219 | for (k=0;k<Num;k++)
|
---|
| 1220 | for (i=0;i<NDIM;i++) { // put into this function's array
|
---|
| 1221 | WannierCentre[k][i] = q[i];
|
---|
| 1222 | }
|
---|
| 1223 | break;
|
---|
| 1224 | case 0:
|
---|
| 1225 | default:
|
---|
| 1226 | break;
|
---|
| 1227 | }
|
---|
| 1228 |
|
---|
| 1229 | // put (new) WannierCentres into local ones and into file
|
---|
| 1230 | i=-1;
|
---|
| 1231 | for (l=0; l < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; l++) { // go through all wave functions
|
---|
| 1232 | OnePsiA = &Psi->AllPsiStatus[l]; // grab OnePsiA
|
---|
| 1233 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
| 1234 | i++; // increase l if it is occupied wave function
|
---|
| 1235 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) {// is this local?
|
---|
| 1236 | for (j=0;j<NDIM;j++)
|
---|
| 1237 | Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[j] = WannierCentre[i][j];
|
---|
| 1238 | }
|
---|
| 1239 | if (P->Par.me_comm_ST == 0)
|
---|
| 1240 | fprintf(F->SpreadFile,"Psi%d_Lev%d\t%lg\t%lg\t%lg\t%lg\n", Psi->AllPsiStatus[i].MyGlobalNo, R->LevSNo, WannierCentre[i][0], WannierCentre[i][1], WannierCentre[i][2], WannierSpread[i]);
|
---|
| 1241 | }
|
---|
| 1242 | }
|
---|
| 1243 | if (P->Par.me_comm_ST == 0) {
|
---|
| 1244 | fprintf(F->SpreadFile,"\n#Matrix traces\tB_ii\tA_ii^2\tTotal (B_ii - A_ii^2)\n");
|
---|
| 1245 | fprintf(F->SpreadFile,"TotalSpread_L%d\t%lg\t%lg\t%lg\n\n",R->LevSNo, old_spread, spread, old_spread - spread);
|
---|
| 1246 | }
|
---|
| 1247 | fflush(F->SpreadFile);
|
---|
| 1248 |
|
---|
| 1249 | // and the spread was calculated in the loop above
|
---|
| 1250 | /*
|
---|
| 1251 | i=-1;
|
---|
| 1252 | for (l=0;l<Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT;l++)
|
---|
| 1253 | if (Psi->AllPsiStatus[l].PsiType == type) {
|
---|
| 1254 | i++;
|
---|
| 1255 | spread = CalculateSpread(P,l);
|
---|
| 1256 | tmp = gsl_matrix_get(A[max_operators],i,i) - pow(gsl_matrix_get(A[0],i,i),2) - pow(gsl_matrix_get(A[1],i,i),2)
|
---|
| 1257 | - pow(gsl_matrix_get(A[2],i,i),2) - pow(gsl_matrix_get(A[3],i,i),2)
|
---|
| 1258 | - pow(gsl_matrix_get(A[4],i,i),2) - pow(gsl_matrix_get(A[5],i,i),2);
|
---|
| 1259 | if(P->Call.out[ValueOut]) fprintf(stderr, "(%i) Check of spread of %ith wave function: %lg against %lg\n",P->Par.me, i, Psi->AddData[i].WannierSpread, tmp);
|
---|
| 1260 | }*/
|
---|
| 1261 | // free all remaining memory
|
---|
| 1262 | for (k=0;k<max_operators+1;k++)
|
---|
| 1263 | gsl_matrix_free(A[k]);
|
---|
| 1264 | }
|
---|
| 1265 |
|
---|
| 1266 | /** Parses the spread file and puts values into OnePsiElementAddData#WannierCentre.
|
---|
| 1267 | * \param *P Problem at hand
|
---|
| 1268 | * \return 1 - success, 0 - failure
|
---|
| 1269 | */
|
---|
| 1270 | int ParseWannierFile(struct Problem *P)
|
---|
| 1271 | {
|
---|
| 1272 | struct Lattice *Lat = &P->Lat;
|
---|
| 1273 | struct RunStruct *R = &P->R;
|
---|
| 1274 | struct Psis *Psi = &Lat->Psi;
|
---|
| 1275 | struct OnePsiElement *OnePsiA;
|
---|
| 1276 | int i,l,j, msglen;
|
---|
| 1277 | FILE *SpreadFile;
|
---|
| 1278 | char tagname[255];
|
---|
| 1279 | char suffix[18];
|
---|
| 1280 | double WannierCentre[NDIM+1]; // combined centre and spread
|
---|
| 1281 | MPI_Status status;
|
---|
| 1282 | enum PsiTypeTag type = Occupied;
|
---|
| 1283 | int signal = 0; // 1 - ok, 0 - error
|
---|
| 1284 |
|
---|
| 1285 | switch (Lat->Psi.PsiST) {
|
---|
| 1286 | case SpinDouble:
|
---|
| 1287 | strncpy(suffix,".spread.csv",18);
|
---|
| 1288 | break;
|
---|
| 1289 | case SpinUp:
|
---|
| 1290 | strncpy(suffix,".spread_up.csv",18);
|
---|
| 1291 | break;
|
---|
| 1292 | case SpinDown:
|
---|
| 1293 | strncpy(suffix,".spread_down.csv",18);
|
---|
| 1294 | break;
|
---|
| 1295 | }
|
---|
| 1296 |
|
---|
| 1297 | if (P->Par.me_comm_ST == 0) {
|
---|
| 1298 | if(!OpenFile(P, &SpreadFile, suffix, "r", P->Call.out[ReadOut])) { // check if file exists
|
---|
| 1299 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
| 1300 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
| 1301 | return 0;
|
---|
| 1302 | //Error(SomeError,"ParseWannierFile: Opening failed\n");
|
---|
| 1303 | }
|
---|
| 1304 | signal = 1;
|
---|
| 1305 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
| 1306 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
| 1307 | } else {
|
---|
| 1308 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
| 1309 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
| 1310 | if (signal == 0)
|
---|
| 1311 | return 0;
|
---|
| 1312 | }
|
---|
| 1313 | i=-1;
|
---|
| 1314 | for (l=0; l < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; l++) { // go through all wave functions
|
---|
| 1315 | OnePsiA = &Psi->AllPsiStatus[l]; // grab OnePsiA
|
---|
| 1316 | if (OnePsiA->PsiType == type) { // drop all but occupied ones
|
---|
| 1317 | i++; // increase l if it is occupied wave function
|
---|
| 1318 | if (P->Par.me_comm_ST == 0) { // only process 0 may access the spread file
|
---|
| 1319 | sprintf(tagname,"Psi%d_Lev%d",i,R->LevSNo);
|
---|
| 1320 | signal = 0;
|
---|
| 1321 | if (!ParseForParameter(0,SpreadFile,tagname,0,3,1,row_double,WannierCentre,optional)) {
|
---|
| 1322 | //Error(SomeError,"ParseWannierFile: Parsing WannierCentre failed");
|
---|
| 1323 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
| 1324 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
| 1325 | return 0;
|
---|
| 1326 | }
|
---|
| 1327 | if (!ParseForParameter(0,SpreadFile,tagname,0,4,1,double_type,&WannierCentre[NDIM],optional)) {
|
---|
| 1328 | //Error(SomeError,"ParseWannierFile: Parsing WannierSpread failed");
|
---|
| 1329 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
| 1330 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
| 1331 | return 0;
|
---|
| 1332 | }
|
---|
| 1333 | signal = 1;
|
---|
| 1334 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
| 1335 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
| 1336 | } else {
|
---|
| 1337 | if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
|
---|
| 1338 | Error(SomeError,"ParseWannierFile: Bcast of signal failed\n");
|
---|
| 1339 | if (signal == 0)
|
---|
| 1340 | return 0;
|
---|
| 1341 | }
|
---|
| 1342 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) { // is this Psi local?
|
---|
| 1343 | if ((P->Par.me_comm_ST != 0) && (P->Par.me_comm_ST_Psi == 0)) { // if they don't belong to process 0 and we are a leader of a Psi group, receive 'em
|
---|
| 1344 | if (MPI_Recv(WannierCentre, NDIM+1, MPI_DOUBLE, 0, ParseWannierTag, P->Par.comm_ST_PsiT, &status) != MPI_SUCCESS)
|
---|
| 1345 | Error(SomeError,"ParseWannierFile: MPI_Recv of WannierCentre/Spread from process 0 failed");
|
---|
| 1346 | //return 0;
|
---|
| 1347 | MPI_Get_count(&status, MPI_DOUBLE, &msglen);
|
---|
| 1348 | if (msglen != NDIM+1)
|
---|
| 1349 | Error(SomeError,"ParseWannierFile: MPI_Recv of WannierCentre/Spread from process 0 failed due to wrong item count");
|
---|
| 1350 | //return 0;
|
---|
| 1351 | }
|
---|
| 1352 | if (MPI_Bcast(WannierCentre, NDIM+1, MPI_DOUBLE, 0, P->Par.comm_ST_Psi) != MPI_SUCCESS) // Bcast to all processes of the Psi group from leader
|
---|
| 1353 | Error(SomeError,"ParseWannierFile: MPI_Bcast of WannierCentre/Spread to sub process in Psi group failed");
|
---|
| 1354 | //return 0;
|
---|
| 1355 | // and store 'em (for all who have this Psi local)
|
---|
| 1356 | fprintf(stderr,"(%i) Psi %i, L %i: (x,y,z) = (%lg, %lg, %lg), Spread %lg\n",P->Par.me,i, R->LevSNo, WannierCentre[0], WannierCentre[1], WannierCentre[2], WannierCentre[NDIM]);
|
---|
| 1357 | for (j=0;j<NDIM;j++) Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[j] = WannierCentre[j];
|
---|
| 1358 | Psi->AddData[OnePsiA->MyLocalNo].WannierSpread = WannierCentre[NDIM];
|
---|
| 1359 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) %s\t%lg\t%lg\t%lg\t\t%lg\n",P->Par.me, tagname,Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[0],Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[1],Psi->AddData[OnePsiA->MyLocalNo].WannierCentre[2],Psi->AddData[OnePsiA->MyLocalNo].WannierSpread);
|
---|
| 1360 | } else if (P->Par.me_comm_ST == 0) { // if they are not local, yet we are process 0, send 'em to leader of its Psi group
|
---|
| 1361 | if (MPI_Send(WannierCentre, NDIM+1, MPI_DOUBLE, OnePsiA->my_color_comm_ST_Psi, ParseWannierTag, P->Par.comm_ST_PsiT) != MPI_SUCCESS)
|
---|
| 1362 | Error(SomeError,"ParseWannierFile: MPI_Send of WannierCentre/Spread to process 0 of owning Psi group failed");
|
---|
| 1363 | //return 0;
|
---|
| 1364 | }
|
---|
| 1365 | }
|
---|
| 1366 | }
|
---|
| 1367 | if ((SpreadFile != NULL) && (P->Par.me_comm_ST == 0))
|
---|
| 1368 | fclose(SpreadFile);
|
---|
| 1369 | fprintf(stderr,"(%i) Parsing Wannier files succeeded!\n", P->Par.me);
|
---|
| 1370 | return 1;
|
---|
| 1371 | }
|
---|
| 1372 |
|
---|
| 1373 | /** Calculates the spread of orbital \a i.
|
---|
| 1374 | * Stored in OnePsiElementAddData#WannierSpread.
|
---|
| 1375 | * \param *P Problem at hand
|
---|
| 1376 | * \param i i-th wave function (note "extra" ones are not counted!)
|
---|
| 1377 | * \return spread \f$\sigma^2_{A^{(k)}}\f$
|
---|
| 1378 | */
|
---|
| 1379 | double CalculateSpread(struct Problem *P, int i) {
|
---|
| 1380 | struct Lattice *Lat = &P->Lat;
|
---|
| 1381 | struct RunStruct *R = &P->R;
|
---|
| 1382 | struct Psis *Psi = &Lat->Psi;
|
---|
| 1383 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 1384 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1385 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 1386 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 1387 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
| 1388 | fftw_real *PsiCR = (fftw_real *)PsiC;
|
---|
| 1389 | fftw_complex *work = Dens0->DensityCArray[Temp2Density];
|
---|
| 1390 | fftw_real **HGcR = &Dens0->DensityArray[HGcDensity]; // use HGcDensity, 4x Gap..Density, TempDensity as a storage array
|
---|
| 1391 | fftw_complex **HGcRC = (fftw_complex**)HGcR;
|
---|
| 1392 | fftw_complex **HGcR2C = &Dens0->DensityCArray[HGcDensity]; // use HGcDensity, 4x Gap..Density, TempDensity as an array
|
---|
| 1393 | fftw_real **HGcR2 = (fftw_real**)HGcR2C;
|
---|
| 1394 | MPI_Status status;
|
---|
| 1395 | struct OnePsiElement *OnePsiA, *LOnePsiA;
|
---|
| 1396 | int ElementSize = (sizeof(fftw_complex) / sizeof(double)), RecvSource;
|
---|
| 1397 | fftw_complex *LPsiDatA=NULL;
|
---|
| 1398 | int k,n[NDIM],n0, *N,N0, g, p, iS, i0, Index;
|
---|
| 1399 | N0 = LevS->Plan0.plan->local_nx;
|
---|
| 1400 | N = LevS->Plan0.plan->N;
|
---|
| 1401 | const int NUpx = LevS->NUp[0];
|
---|
| 1402 | const int NUpy = LevS->NUp[1];
|
---|
| 1403 | const int NUpz = LevS->NUp[2];
|
---|
| 1404 | double a_ij, b_ij, A_ij, B_ij;
|
---|
| 1405 | double tmp, tmp2, spread = 0;
|
---|
| 1406 | double **cos_lookup, **sin_lookup;
|
---|
| 1407 |
|
---|
| 1408 | b_ij = 0;
|
---|
| 1409 |
|
---|
| 1410 | // create lookup table for sin/cos values
|
---|
| 1411 | cos_lookup = (double **) Malloc(sizeof(double *)*NDIM, "ComputeMLWF: *cos_lookup");
|
---|
| 1412 | sin_lookup = (double **) Malloc(sizeof(double *)*NDIM, "ComputeMLWF: *sin_lookup");
|
---|
| 1413 | for (k=0;k<NDIM;k++) {
|
---|
| 1414 | // allocate memory
|
---|
| 1415 | cos_lookup[k] = (double *) Malloc(sizeof(double)*LevS->Plan0.plan->N[k], "ComputeMLWF: cos_lookup");
|
---|
| 1416 | sin_lookup[k] = (double *) Malloc(sizeof(double)*LevS->Plan0.plan->N[k], "ComputeMLWF: sin_lookup");
|
---|
| 1417 | // reset arrays
|
---|
| 1418 | SetArrayToDouble0(cos_lookup[k],LevS->Plan0.plan->N[k]);
|
---|
| 1419 | SetArrayToDouble0(sin_lookup[k],LevS->Plan0.plan->N[k]);
|
---|
| 1420 | // create lookup values
|
---|
| 1421 | for (g=0;g<LevS->Plan0.plan->N[k];g++) {
|
---|
| 1422 | tmp = 2*PI/(double)LevS->Plan0.plan->N[k]*(double)g;
|
---|
| 1423 | cos_lookup[k][g] = cos(tmp);
|
---|
| 1424 | sin_lookup[k][g] = sin(tmp);
|
---|
| 1425 | }
|
---|
| 1426 | }
|
---|
| 1427 | // fill matrices
|
---|
| 1428 | OnePsiA = &Psi->AllPsiStatus[i]; // grab the desired OnePsiA
|
---|
| 1429 | if (OnePsiA->PsiType != Extra) { // drop if extra one
|
---|
| 1430 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
| 1431 | LOnePsiA = &Psi->LocalPsiStatus[OnePsiA->MyLocalNo];
|
---|
| 1432 | else
|
---|
| 1433 | LOnePsiA = NULL;
|
---|
| 1434 | if (LOnePsiA == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
| 1435 | RecvSource = OnePsiA->my_color_comm_ST_Psi;
|
---|
| 1436 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, WannierTag1, P->Par.comm_ST_PsiT, &status );
|
---|
| 1437 | LPsiDatA=LevS->LPsi->TempPsi;
|
---|
| 1438 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
| 1439 | for (p=0;p<P->Par.Max_me_comm_ST_PsiT;p++)
|
---|
| 1440 | if (p != OnePsiA->my_color_comm_ST_Psi)
|
---|
| 1441 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, p, WannierTag1, P->Par.comm_ST_PsiT);
|
---|
| 1442 | LPsiDatA=LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo];
|
---|
| 1443 | } // LPsiDatA is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
| 1444 |
|
---|
| 1445 | CalculateOneDensityR(Lat, LevS, Dens0, LPsiDatA, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 1);
|
---|
| 1446 | // note: factor is not used when storing result in DensityCArray[ActualPsiDensity] in CalculateOneDensityR()!
|
---|
| 1447 | for (n0=0;n0<N0;n0++)
|
---|
| 1448 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
| 1449 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
| 1450 | i0 = n[2]*NUpz+N[2]*NUpz*(n[1]*NUpy+N[1]*NUpy*n0*NUpx);
|
---|
| 1451 | iS = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
| 1452 | n[0] = n0 + LevS->Plan0.plan->start_nx;
|
---|
| 1453 | for (k=0;k<max_operators;k+=2) {
|
---|
| 1454 | tmp = 2*PI/(double)(N[k/2])*(double)(n[k/2]);
|
---|
| 1455 | tmp2 = PsiCR[i0] /LevS->MaxN;
|
---|
| 1456 | // check lookup
|
---|
| 1457 | if ((fabs(cos(tmp) - cos_lookup[k/2][n[k/2]]) > MYEPSILON) || (fabs(sin(tmp) - sin_lookup[k/2][n[k/2]]) > MYEPSILON)) {
|
---|
| 1458 | fprintf(stderr,"(%i) (cos) %2.15e against (lookup) %2.15e,\t(sin) %2.15e against (lookup) %2.15e\n", P->Par.me, cos(tmp), cos_lookup[k/2][n[k/2]],sin(tmp),sin_lookup[k/2][n[k/2]]);
|
---|
| 1459 | Error(SomeError, "Lookup table does not match real value!");
|
---|
| 1460 | }
|
---|
| 1461 | // HGcR[k][iS] = cos_lookup[k/2][n[k/2]] * tmp2; /* Matrix Vector Mult */
|
---|
| 1462 | // HGcR2[k][iS] = cos_lookup[k/2][n[k/2]] * HGcR[k][iS]; /* Matrix Vector Mult */
|
---|
| 1463 | // HGcR[k+1][iS] = sin_lookup[k/2][n[k/2]] * tmp2; /* Matrix Vector Mult */
|
---|
| 1464 | // HGcR2[k+1][iS] = sin_lookup[k/2][n[k/2]] * HGcR[k+1][iS]; /* Matrix Vector Mult */
|
---|
| 1465 | HGcR[k][iS] = cos(tmp) * tmp2; /* Matrix Vector Mult */
|
---|
| 1466 | HGcR2[k][iS] = pow(cos(tmp),2) * tmp2; /* Matrix Vector Mult */
|
---|
| 1467 | HGcR[k+1][iS] = sin(tmp) * tmp2; /* Matrix Vector Mult */
|
---|
| 1468 | HGcR2[k+1][iS] = pow(sin(tmp),2) * tmp2; /* Matrix Vector Mult */
|
---|
| 1469 | }
|
---|
| 1470 | }
|
---|
| 1471 | for (k=0;k<max_operators;k++) {
|
---|
| 1472 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcRC[k], work);
|
---|
| 1473 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcR2C[k], work);
|
---|
| 1474 | }
|
---|
| 1475 |
|
---|
| 1476 |
|
---|
| 1477 | for (k=0;k<max_operators;k++) {
|
---|
| 1478 | a_ij = 0;
|
---|
| 1479 | //fprintf(stderr,"(%i),(%i,%i): A[%i]: multiplying with \\phi_B\n",P->Par.me, l,m,k);
|
---|
| 1480 | // sum directly in a_ij and b_ij the two desired terms
|
---|
| 1481 | g=0;
|
---|
| 1482 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
| 1483 | Index = LevS->GArray[g].Index;
|
---|
| 1484 | a_ij += (LPsiDatA[0].re*HGcRC[k][Index].re + LPsiDatA[0].im*HGcRC[k][Index].im);
|
---|
| 1485 | b_ij += (LPsiDatA[0].re*HGcR2C[k][Index].re + LPsiDatA[0].im*HGcR2C[k][Index].im);
|
---|
| 1486 | g++;
|
---|
| 1487 | }
|
---|
| 1488 | for (; g < LevS->MaxG; g++) {
|
---|
| 1489 | Index = LevS->GArray[g].Index;
|
---|
| 1490 | a_ij += 2*(LPsiDatA[g].re*HGcRC[k][Index].re + LPsiDatA[g].im*HGcRC[k][Index].im);
|
---|
| 1491 | b_ij += 2*(LPsiDatA[g].re*HGcR2C[k][Index].re + LPsiDatA[g].im*HGcR2C[k][Index].im);
|
---|
| 1492 | } // due to the symmetry the resulting matrix element is real and symmetric in (i,i) ! (complex multiplication simplifies ...)
|
---|
| 1493 | MPI_Allreduce ( &a_ij, &A_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 1494 | spread += pow(A_ij,2);
|
---|
| 1495 | }
|
---|
| 1496 | }
|
---|
| 1497 | MPI_Allreduce ( &b_ij, &B_ij, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 1498 |
|
---|
| 1499 | // store spread in OnePsiElementAdd
|
---|
| 1500 | Psi->AddData[i].WannierSpread = B_ij - spread;
|
---|
| 1501 | // free lookups
|
---|
| 1502 | for (k=0;k<NDIM;k++) {
|
---|
| 1503 | Free(cos_lookup[k]);
|
---|
| 1504 | Free(sin_lookup[k]);
|
---|
| 1505 | }
|
---|
| 1506 | Free(cos_lookup);
|
---|
| 1507 | Free(sin_lookup);
|
---|
| 1508 |
|
---|
| 1509 | return (B_ij - spread);
|
---|
| 1510 | }
|
---|