| 1 | void CalculatePerturbedEnergy(struct Problem *P, int l, int DoGradient) 
 | 
|---|
| 2 | {
 | 
|---|
| 3 |   struct Lattice *Lat = &P->Lat;
 | 
|---|
| 4 |   struct Psis *Psi = &Lat->Psi;
 | 
|---|
| 5 |   struct Energy *E = Lat->E;
 | 
|---|
| 6 |   struct PseudoPot *PP = &P->PP;
 | 
|---|
| 7 |   struct RunStruct *R = &P->R;
 | 
|---|
| 8 |   struct LatticeLevel *LevS = R->LevS;
 | 
|---|
| 9 |   int state = R->CurrentMin;
 | 
|---|
| 10 |   int l_normal = Psi->TypeStartIndex[Occupied] + (l - Psi->TypeStartIndex[state]);  // offset l to \varphi_l^{(0)}
 | 
|---|
| 11 |   int ActNum = l - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[l].my_color_comm_ST_Psi;
 | 
|---|
| 12 |   int g, i, m, j;
 | 
|---|
| 13 |   double lambda, Lambda;
 | 
|---|
| 14 |   double RElambda10, RELambda10;
 | 
|---|
| 15 |   double RElambda01, RELambda01;
 | 
|---|
| 16 |   double IMlambda10, IMLambda10;
 | 
|---|
| 17 |   double IMlambda01, IMLambda01;
 | 
|---|
| 18 |   fftw_complex *source = LevS->LPsi->LocalPsi[l];
 | 
|---|
| 19 |   fftw_complex *grad = P->Grad.GradientArray[ActualGradient];
 | 
|---|
| 20 |   fftw_complex *Hc_grad = P->Grad.GradientArray[HcGradient];
 | 
|---|
| 21 |   fftw_complex *H1c_grad = P->Grad.GradientArray[H1cGradient];
 | 
|---|
| 22 |   fftw_complex *TempPsi_0 = H1c_grad;
 | 
|---|
| 23 |   fftw_complex *TempPsi_1 = P->Grad.GradientArray[TempGradient];
 | 
|---|
| 24 |   fftw_complex *varphi_1, *varphi_0;
 | 
|---|
| 25 |   struct OnePsiElement *OnePsiB, *LOnePsiB;
 | 
|---|
| 26 |   fftw_complex *LPsiDatB=NULL;
 | 
|---|
| 27 |   int ElementSize = (sizeof(fftw_complex) / sizeof(double)), RecvSource;
 | 
|---|
| 28 |   MPI_Status status;
 | 
|---|
| 29 |   
 | 
|---|
| 30 |   // ============ Calculate H^(0) psi^(1) =============================
 | 
|---|
| 31 |   SetArrayToDouble0((double *)Hc_grad,2*R->InitLevS->MaxG);
 | 
|---|
| 32 |   ApplyTotalHamiltonian(P,source,Hc_grad, PP->fnl[l], 1, 1);
 | 
|---|
| 33 |     
 | 
|---|
| 34 |   // ============ ENERGY FUNCTIONAL Evaluation  PART 1 ================  
 | 
|---|
| 35 |   varphi_0 = LevS->LPsi->LocalPsi[l_normal];
 | 
|---|
| 36 |   varphi_1 = LevS->LPsi->LocalPsi[l];
 | 
|---|
| 37 |   switch (state) {
 | 
|---|
| 38 |     case Perturbed_P0:
 | 
|---|
| 39 |       CalculatePerturbationOperator_P(P,varphi_0,TempPsi_0,0,0); //  \nabla_0 | \varphi_l^{(0)} \rangle
 | 
|---|
| 40 |       CalculatePerturbationOperator_P(P,varphi_1,TempPsi_1,0,0); //  \nabla_0 | \varphi_l^{(1)} \rangle
 | 
|---|
| 41 |       break;
 | 
|---|
| 42 |     case Perturbed_P1:
 | 
|---|
| 43 |       CalculatePerturbationOperator_P(P,varphi_0,TempPsi_0,1,0); //  \nabla_1 | \varphi_l^{(0)} \rangle
 | 
|---|
| 44 |       CalculatePerturbationOperator_P(P,varphi_1,TempPsi_1,1,0); //  \nabla_1 | \varphi_l^{(1)} \rangle
 | 
|---|
| 45 |       break;
 | 
|---|
| 46 |     case Perturbed_P2:
 | 
|---|
| 47 |       CalculatePerturbationOperator_P(P,varphi_0,TempPsi_0,2,0); //  \nabla_1 | \varphi_l^{(0)} \rangle
 | 
|---|
| 48 |       CalculatePerturbationOperator_P(P,varphi_1,TempPsi_1,2,0); //  \nabla_1 | \varphi_l^{(1)} \rangle
 | 
|---|
| 49 |       break;
 | 
|---|
| 50 |     case Perturbed_RxP0:
 | 
|---|
| 51 |       CalculatePerturbationOperator_RxP(P,varphi_0,TempPsi_0,l,0,0); //  r \times \nabla | \varphi_l^{(0)} \rangle
 | 
|---|
| 52 |       CalculatePerturbationOperator_RxP(P,varphi_1,TempPsi_1,l,0,0); //  r \times \nabla | \varphi_l^{(1)} \rangle
 | 
|---|
| 53 |       //CalculatePerturbationOperator_R(P,varphi_0,TempPsi_0,0,l); //  r \times \nabla | \varphi_l^{(0)} \rangle
 | 
|---|
| 54 |       //CalculatePerturbationOperator_R(P,varphi_1,TempPsi_1,0,l); //  r \times \nabla | \varphi_l^{(1)} \rangle
 | 
|---|
| 55 |       break;
 | 
|---|
| 56 |     case Perturbed_RxP1:
 | 
|---|
| 57 |       CalculatePerturbationOperator_RxP(P,varphi_0,TempPsi_0,l,1,0); //  r \times \nabla | \varphi_l^{(0)} \rangle
 | 
|---|
| 58 |       CalculatePerturbationOperator_RxP(P,varphi_1,TempPsi_1,l,1,0); //  r \times \nabla | \varphi_l^{(1)} \rangle
 | 
|---|
| 59 |       //CalculatePerturbationOperator_R(P,varphi_0,TempPsi_0,1,l); //  r \times \nabla | \varphi_l^{(0)} \rangle
 | 
|---|
| 60 |       //CalculatePerturbationOperator_R(P,varphi_1,TempPsi_1,1,l); //  r \times \nabla | \varphi_l^{(1)} \rangle
 | 
|---|
| 61 |       break;
 | 
|---|
| 62 |     case Perturbed_RxP2:
 | 
|---|
| 63 |       CalculatePerturbationOperator_RxP(P,varphi_0,TempPsi_0,l,2,0); //  r \times \nabla | \varphi_l^{(0)} \rangle
 | 
|---|
| 64 |       CalculatePerturbationOperator_RxP(P,varphi_1,TempPsi_1,l,2,0); //  r \times \nabla | \varphi_l^{(1)} \rangle
 | 
|---|
| 65 |       //CalculatePerturbationOperator_R(P,varphi_0,TempPsi_0,2,l); //  r \times \nabla | \varphi_l^{(0)} \rangle
 | 
|---|
| 66 |       //CalculatePerturbationOperator_R(P,varphi_1,TempPsi_1,2,l); //  r \times \nabla | \varphi_l^{(1)} \rangle
 | 
|---|
| 67 |       break;
 | 
|---|
| 68 |     default:
 | 
|---|
| 69 |       fprintf(stderr,"(%i) CalculatePerturbedEnergy called whilst not within perturbation run: CurrentMin = %i !\n",P->Par.me, R->CurrentMin);
 | 
|---|
| 70 |       break;
 | 
|---|
| 71 |   }
 | 
|---|
| 72 | 
 | 
|---|
| 73 |   // ============ GRADIENT and EIGENVALUE Evaluation  Part 1==============
 | 
|---|
| 74 |   lambda = 0.0;
 | 
|---|
| 75 |   if ((DoGradient) && (grad != NULL)) {
 | 
|---|
| 76 |     g = 0;
 | 
|---|
| 77 |     if (LevS->GArray[0].GSq == 0.0) {
 | 
|---|
| 78 |       lambda += Hc_grad[0].re*source[0].re;
 | 
|---|
| 79 |       grad[0].re = -(Hc_grad[0].re + TempPsi_0[0].re);
 | 
|---|
| 80 |       grad[0].im = -(Hc_grad[0].im + TempPsi_0[0].im);
 | 
|---|
| 81 |       g++;
 | 
|---|
| 82 |     }
 | 
|---|
| 83 |     for (;g<LevS->MaxG;g++) {
 | 
|---|
| 84 |       lambda += 2.*(Hc_grad[g].re*source[g].re + Hc_grad[g].im*source[g].im);
 | 
|---|
| 85 |       grad[g].re = -(Hc_grad[g].re + TempPsi_0[g].re);
 | 
|---|
| 86 |       grad[g].im = -(Hc_grad[g].im + TempPsi_0[g].im);
 | 
|---|
| 87 |     }
 | 
|---|
| 88 | 
 | 
|---|
| 89 |     m = -1;
 | 
|---|
| 90 |     for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) {  // go through all wave functions
 | 
|---|
| 91 |       OnePsiB = &Psi->AllPsiStatus[j];    // grab OnePsiB
 | 
|---|
| 92 |       if (OnePsiB->PsiType == state) {   // drop all but the ones of current min state
 | 
|---|
| 93 |         m++;  // increase m if it is type-specific wave function
 | 
|---|
| 94 |         if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
 | 
|---|
| 95 |            LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
 | 
|---|
| 96 |         else
 | 
|---|
| 97 |            LOnePsiB = NULL;
 | 
|---|
| 98 |         if (LOnePsiB == NULL) {   // if it's not local ... receive it from respective process into TempPsi
 | 
|---|
| 99 |           RecvSource = OnePsiB->my_color_comm_ST_Psi;
 | 
|---|
| 100 |           MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, PerturbedTag, P->Par.comm_ST_PsiT, &status );
 | 
|---|
| 101 |           LPsiDatB=LevS->LPsi->TempPsi;
 | 
|---|
| 102 |         } else {                  // .. otherwise send it to all other processes (Max_me... - 1)
 | 
|---|
| 103 |           for (i=0;i<P->Par.Max_me_comm_ST_PsiT;i++)
 | 
|---|
| 104 |             if (i != OnePsiB->my_color_comm_ST_Psi)
 | 
|---|
| 105 |               MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, i, PerturbedTag, P->Par.comm_ST_PsiT);
 | 
|---|
| 106 |           LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
 | 
|---|
| 107 |         } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
 | 
|---|
| 108 |   
 | 
|---|
| 109 |         g = 0;
 | 
|---|
| 110 |         if (LevS->GArray[0].GSq == 0.0) { // perform the summation
 | 
|---|
| 111 |           grad[0].re += Lat->Psi.lambda[ActNum][m]*LPsiDatB[0].re;
 | 
|---|
| 112 |           grad[0].im += Lat->Psi.lambda[ActNum][m]*LPsiDatB[0].im;
 | 
|---|
| 113 |           g++;
 | 
|---|
| 114 |         }
 | 
|---|
| 115 |         for (;g<LevS->MaxG;g++) {
 | 
|---|
| 116 |           grad[g].re += Lat->Psi.lambda[ActNum][m]*LPsiDatB[g].re;
 | 
|---|
| 117 |           grad[g].im += Lat->Psi.lambda[ActNum][m]*LPsiDatB[g].im;
 | 
|---|
| 118 |         }
 | 
|---|
| 119 |       }
 | 
|---|
| 120 |     }
 | 
|---|
| 121 |   } else {
 | 
|---|
| 122 |     g = 0;
 | 
|---|
| 123 |     if (LevS->GArray[0].GSq == 0.0) {
 | 
|---|
| 124 |       lambda += Hc_grad[0].re*source[0].re;
 | 
|---|
| 125 |       g++;
 | 
|---|
| 126 |     }
 | 
|---|
| 127 |     for (;g<LevS->MaxG;g++)
 | 
|---|
| 128 |       lambda += 2.*(Hc_grad[g].re*source[g].re + Hc_grad[g].im*source[g].im);
 | 
|---|
| 129 |   }
 | 
|---|
| 130 |   MPI_Allreduce ( &lambda, &Lambda, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
 | 
|---|
| 131 |   //fprintf(stderr,"(%i) Lambda[%i] = %lg\n",P->Par.me, l, Lambda);
 | 
|---|
| 132 |   Lat->Psi.AddData[l].Lambda = Lambda; 
 | 
|---|
| 133 | 
 | 
|---|
| 134 |   // ============ ENERGY FUNCTIONAL Evaluation  PART 2 ================
 | 
|---|
| 135 |   // varphi_1 jas negative symmetry, returning TemPsi_0 from CalculatePerturbedOperator also, thus real part of scalar product
 | 
|---|
| 136 |   // "-" due to purely imaginary wave function is on left hand side, thus becomes complex conjugated: i -> -i
 | 
|---|
| 137 |   // (-i goes into pert. op., "-" remains when on right hand side)  
 | 
|---|
| 138 |   IMlambda10 =  GradImSP(P,LevS,varphi_1,TempPsi_0) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * Psi->LocalPsiStatus[l_normal].PsiFactor);
 | 
|---|
| 139 |   IMlambda01 = -GradImSP(P,LevS,varphi_0,TempPsi_1) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * Psi->LocalPsiStatus[l_normal].PsiFactor);
 | 
|---|
| 140 |   RElambda10 =  GradSP(P,LevS,varphi_1,TempPsi_0) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * Psi->LocalPsiStatus[l_normal].PsiFactor);
 | 
|---|
| 141 |   RElambda01 = -GradSP(P,LevS,varphi_0,TempPsi_1) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * Psi->LocalPsiStatus[l_normal].PsiFactor);
 | 
|---|
| 142 |   
 | 
|---|
| 143 |   MPI_Allreduce ( &RElambda10, &RELambda10, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
 | 
|---|
| 144 |   MPI_Allreduce ( &RElambda01, &RELambda01, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
 | 
|---|
| 145 |   MPI_Allreduce ( &IMlambda10, &IMLambda10, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
 | 
|---|
| 146 |   MPI_Allreduce ( &IMlambda01, &IMLambda01, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
 | 
|---|
| 147 |   
 | 
|---|
| 148 |   E->PsiEnergy[Perturbed1_0Energy][l] = RELambda10;
 | 
|---|
| 149 |   E->PsiEnergy[Perturbed0_1Energy][l] = RELambda01;
 | 
|---|
| 150 |   if (P->Par.me == 0) {
 | 
|---|
| 151 |     fprintf(stderr,"RE.Lambda10[%i] = %lg\t RE.Lambda01[%i] = %lg\n", l, RELambda10, l, RELambda01);
 | 
|---|
| 152 |     fprintf(stderr,"IM.Lambda10[%i] = %lg\t IM.Lambda01[%i] = %lg\n", l, IMLambda10, l, IMLambda01);
 | 
|---|
| 153 |   }
 | 
|---|
| 154 | }
 | 
|---|
| 155 | 
 | 
|---|
| 156 | void CalculatePerturbationOperator_RxP(struct Problem *P, fftw_complex *source, fftw_complex *dest, int l, int index, int symmetry)
 | 
|---|
| 157 | {
 | 
|---|
| 158 |   struct RunStruct *R = &P->R;
 | 
|---|
| 159 |   struct LatticeLevel *Lev0 = R->Lev0;
 | 
|---|
| 160 |   struct LatticeLevel *LevS = R->LevS;
 | 
|---|
| 161 |   struct Lattice *Lat = &P->Lat;
 | 
|---|
| 162 |   struct fft_plan_3d *plan = Lat->plan;
 | 
|---|
| 163 |   struct Density *Dens0 = Lev0->Dens;
 | 
|---|
| 164 |   fftw_complex *tempdestRC =  Dens0->DensityCArray[CurrentDensity0];
 | 
|---|
| 165 |   fftw_real *tempdestR = (fftw_real *) tempdestRC;
 | 
|---|
| 166 |   fftw_complex *tempdestRC2 =  Dens0->DensityCArray[CurrentDensity1];
 | 
|---|
| 167 |   fftw_real *tempdestR2 = (fftw_real *) tempdestRC2;
 | 
|---|
| 168 |   fftw_complex *work =  Dens0->DensityCArray[TempDensity];
 | 
|---|
| 169 |   fftw_complex *PsiC = (fftw_complex *) Dens0->DensityCArray[ActualPsiDensity];
 | 
|---|
| 170 |   fftw_real *PsiCR = (fftw_real *) PsiC;
 | 
|---|
| 171 |   fftw_real *RealPhiR = (fftw_real *) Dens0->DensityArray[TempDensity];
 | 
|---|
| 172 |   fftw_real *RealPhiR2 = (fftw_real *) Dens0->DensityArray[Temp2Density];
 | 
|---|
| 173 |   fftw_complex *posfac, *destsnd, *destrcv, *destsnd2, *destrcv2;
 | 
|---|
| 174 |   double x[NDIM], fac[NDIM], *WCentre;
 | 
|---|
| 175 |   int n[NDIM], N0, n0, g, Index, pos, iS, i0;
 | 
|---|
| 176 | 
 | 
|---|
| 177 |   // init pointers and values
 | 
|---|
| 178 |   int myPE = P->Par.me_comm_ST_Psi;
 | 
|---|
| 179 |   int N[NDIM], NUp[NDIM];
 | 
|---|
| 180 |   N[0] = LevS->Plan0.plan->N[0];
 | 
|---|
| 181 |   N[1] = LevS->Plan0.plan->N[1];
 | 
|---|
| 182 |   N[2] = LevS->Plan0.plan->N[2];
 | 
|---|
| 183 |   NUp[0] = LevS->NUp[0]; 
 | 
|---|
| 184 |   NUp[1] = LevS->NUp[1]; 
 | 
|---|
| 185 |   NUp[2] = LevS->NUp[2]; 
 | 
|---|
| 186 |   double FFTFactor = 1./LevS->MaxN; 
 | 
|---|
| 187 |   N0 = LevS->Plan0.plan->local_nx;
 | 
|---|
| 188 |   WCentre = Lat->Psi.AddData[l].WannierCentre;
 | 
|---|
| 189 |   
 | 
|---|
| 190 |   // blow up source coefficients
 | 
|---|
| 191 |   SetArrayToDouble0((double *)tempdestRC ,Dens0->TotalSize*2);
 | 
|---|
| 192 |   SetArrayToDouble0((double *)tempdestRC2,Dens0->TotalSize*2);
 | 
|---|
| 193 |   SetArrayToDouble0((double *)RealPhiR ,Dens0->TotalSize*2);
 | 
|---|
| 194 |   SetArrayToDouble0((double *)RealPhiR2,Dens0->TotalSize*2);
 | 
|---|
| 195 |   SetArrayToDouble0((double *)PsiC,Dens0->TotalSize*2);
 | 
|---|
| 196 |   for (g=0; g<LevS->MaxG; g++) {
 | 
|---|
| 197 |     Index = LevS->GArray[g].Index;
 | 
|---|
| 198 |     posfac = &LevS->PosFactorUp[LevS->MaxNUp*g];
 | 
|---|
| 199 |     destrcv = &tempdestRC[LevS->MaxNUp*Index]; 
 | 
|---|
| 200 |     destrcv2 = &tempdestRC2[LevS->MaxNUp*Index]; 
 | 
|---|
| 201 |     for (pos=0; pos<LevS->MaxNUp; pos++) {
 | 
|---|
| 202 |       destrcv [pos].re = LevS->GArray[g].G[cross(index,1)]*(( source[g].im)*posfac[pos].re-(-source[g].re)*posfac[pos].im);
 | 
|---|
| 203 |       destrcv [pos].im = LevS->GArray[g].G[cross(index,1)]*(( source[g].im)*posfac[pos].im+(-source[g].re)*posfac[pos].re);
 | 
|---|
| 204 |       destrcv2[pos].re = LevS->GArray[g].G[cross(index,3)]*(( source[g].im)*posfac[pos].re-(-source[g].re)*posfac[pos].im);
 | 
|---|
| 205 |       destrcv2[pos].im = LevS->GArray[g].G[cross(index,3)]*(( source[g].im)*posfac[pos].im+(-source[g].re)*posfac[pos].re);
 | 
|---|
| 206 |     }
 | 
|---|
| 207 |   }
 | 
|---|
| 208 |   for (g=0; g<LevS->MaxDoubleG; g++) {
 | 
|---|
| 209 |     destsnd  = &tempdestRC [LevS->DoubleG[2*g]*LevS->MaxNUp];
 | 
|---|
| 210 |     destrcv  = &tempdestRC [LevS->DoubleG[2*g+1]*LevS->MaxNUp];
 | 
|---|
| 211 |     destsnd2 = &tempdestRC2[LevS->DoubleG[2*g]*LevS->MaxNUp];
 | 
|---|
| 212 |     destrcv2 = &tempdestRC2[LevS->DoubleG[2*g+1]*LevS->MaxNUp];
 | 
|---|
| 213 |     for (pos=0; pos<LevS->MaxNUp; pos++) {
 | 
|---|
| 214 |       destrcv [pos].re =  destsnd [pos].re;
 | 
|---|
| 215 |       destrcv [pos].im = -destsnd [pos].im;
 | 
|---|
| 216 |       destrcv2[pos].re =  destsnd2[pos].re;
 | 
|---|
| 217 |       destrcv2[pos].im = -destsnd2[pos].im;
 | 
|---|
| 218 |     }    
 | 
|---|
| 219 |   }  
 | 
|---|
| 220 |   
 | 
|---|
| 221 |   // fourier transform blown up wave function
 | 
|---|
| 222 |   fft_3d_complex_to_real(plan,LevS->LevelNo, FFTNFUp, tempdestRC , work);
 | 
|---|
| 223 |   DensityRTransformPos(LevS,tempdestR ,RealPhiR );
 | 
|---|
| 224 |   fft_3d_complex_to_real(plan,LevS->LevelNo, FFTNFUp, tempdestRC2, work);
 | 
|---|
| 225 |   DensityRTransformPos(LevS,tempdestR2,RealPhiR2);
 | 
|---|
| 226 | 
 | 
|---|
| 227 |   //fft_Psi(P,source,RealPhiR ,cross(index,1),6);
 | 
|---|
| 228 |   //fft_Psi(P,source,RealPhiR2,cross(index,3),6);
 | 
|---|
| 229 |   
 | 
|---|
| 230 |   // for every point on the real grid multiply with component of position vector
 | 
|---|
| 231 |   for (n0=0; n0<N0; n0++)
 | 
|---|
| 232 |     for (n[1]=0; n[1]<N[1]; n[1]++)
 | 
|---|
| 233 |       for (n[2]=0; n[2]<N[2]; n[2]++) {
 | 
|---|
| 234 |         n[0] = n0 + N0 * myPE;
 | 
|---|
| 235 |         fac[0] = (double)(n[0])/(double)((N[0]));
 | 
|---|
| 236 |         fac[1] = (double)(n[1])/(double)((N[1]));
 | 
|---|
| 237 |         fac[2] = (double)(n[2])/(double)((N[2]));
 | 
|---|
| 238 |         RMat33Vec3(x,Lat->RealBasis,fac);
 | 
|---|
| 239 |         iS = n[2] + N[2]*(n[1] + N[1]*n0);  // mind splitting of x axis due to multiple processes
 | 
|---|
| 240 |         i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
 | 
|---|
| 241 |         //PsiCR[iS] = ((double)n[cross(index,0)]/(double)N[cross(index,0)]*sqrt(Lat->RealBasisSQ[cross(index,0)]) - WCentre[cross(index,0)])*RealPhiR[i0] - ((double)n[cross(index,2)]/(double)N[cross(index,2)]*sqrt(Lat->RealBasisQ[cross(index,2)]) - WCentre[cross(index,2)])*RealPhiR2[i0];  
 | 
|---|
| 242 |         PsiCR[iS] = 
 | 
|---|
| 243 |             MinImageConv(Lat,x[cross(index,0)],WCentre[cross(index,0)],cross(index,0)) * RealPhiR [i0] 
 | 
|---|
| 244 |           - MinImageConv(Lat,x[cross(index,2)],WCentre[cross(index,2)],cross(index,2)) * RealPhiR2[i0]; 
 | 
|---|
| 245 |         //tmp += truedist(Lat,x[index_r],WCentre[index_r],index_r) * RealPhiR[i0];
 | 
|---|
| 246 |         //tmp += sawtooth(P,truedist(Lat,x[index_r],WCentre[index_r],index_r), index_r)*RealPhiR[i0];
 | 
|---|
| 247 |         //(Fehler mit falschem Ort ist vor dieser Stelle!): ueber result =  RealPhiR[i0] * (x[index_r]) * RealPhiR[i0]; gecheckt
 | 
|---|
| 248 |       }
 | 
|---|
| 249 |   
 | 
|---|
| 250 |   // inverse fourier transform 
 | 
|---|
| 251 |   fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, PsiC, work);
 | 
|---|
| 252 |   
 | 
|---|
| 253 |   // copy to destination array
 | 
|---|
| 254 |   for (g=0; g<LevS->MaxG; g++) {
 | 
|---|
| 255 |     Index = LevS->GArray[g].Index;
 | 
|---|
| 256 |     dest[g].re = ( PsiC[Index].re)*FFTFactor; 
 | 
|---|
| 257 |     dest[g].im = ( PsiC[Index].im)*FFTFactor;
 | 
|---|
| 258 |     if (LevS->GArray[g].GSq == 0)
 | 
|---|
| 259 |       dest[g].im = 0; // imaginary of G=0 is zero
 | 
|---|
| 260 |   }
 | 
|---|
| 261 | }
 | 
|---|