source: pcp/src/run.c@ 53b5b6

Last change on this file since 53b5b6 was 53b5b6, checked in by Frederik Heber <heber@…>, 17 years ago

CalculateForce(): ParseIonForce() commented back in, fprintf commented in

  • Property mode set to 100644
File size: 80.6 KB
Line 
1/** \file run.c
2 * Initialization of levels and calculation super-functions.
3 *
4 * Most important functions herein are CalculateForce() and CalculateMD(), which calls various
5 * functions in order to perfom the Molecular Dynamics simulation. MinimiseOccupied() and MinimiseUnOccupied()
6 * call various functions to perform the actual minimisation for the occupied and unoccupied wave functions.
7 * CalculateMinimumStop() evaluates the stop condition for desired precision or step count (or external signals).
8 *
9 * Minor functions are ChangeToLevUp() (which takes the calculation to the next finer level),
10 * UpdateActualPsiNo() (next Psi is minimized and an additional orthonormalization takes place) and UpdateToNewWaves()
11 * (which reinitializes density calculations after the wave functions have changed due to the ionic motion).
12 * OccupyByFermi() re-occupies orbitals according to Fermi distribution if calculated with additional orbitals.
13 * InitRun() and InitRunLevel() prepare the RunStruct with starting values. UpdateIon_PRCG() implements a CG
14 * algorithm to minimize the ionic forces and thus optimize the structure.
15 *
16 *
17 Project: ParallelCarParrinello
18 \author Jan Hamaekers
19 \date 2000
20
21 File: run.c
22 $Id: run.c,v 1.101.2.2 2007-04-21 13:01:13 foo Exp $
23*/
24
25#include <signal.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <math.h>
30#include <gsl/gsl_multimin.h>
31#include <gsl/gsl_vector.h>
32#include <gsl/gsl_errno.h>
33#include <gsl/gsl_math.h>
34#include <gsl/gsl_min.h>
35#include <gsl/gsl_randist.h>
36#include "mpi.h"
37#include "data.h"
38#include "errors.h"
39#include "helpers.h"
40#include "init.h"
41#include "opt.h"
42#include "myfft.h"
43#include "gramsch.h"
44#include "output.h"
45#include "energy.h"
46#include "density.h"
47#include "ions.h"
48#include "run.h"
49#include "riemann.h"
50#include "mymath.h"
51#include "pcp.h"
52#include "perturbed.h"
53#include "wannier.h"
54
55
56/** Initialization of the (initial) zero and simulation levels in RunStruct structure.
57 * RunStruct::InitLevS is set onto the STANDARTLEVEL in Lattice::Lev[], RunStruct::InitLev0 on
58 * level 0, RunStruct::LevS onto Lattice::MaxLevel-1 (maximum level) and RunStruct::Lev0 onto
59 * Lattice::MaxLevel-2 (one below).
60 * In case of RiemannTensor use an additional Riemann level is intertwined.
61 * \param *P Problem at hand
62 */
63void InitRunLevel(struct Problem *P)
64{
65 struct Lattice *Lat = &P->Lat;
66 struct RunStruct *R = &P->R;
67 struct RiemannTensor *RT = &Lat->RT;
68 int d,i;
69
70 switch (Lat->RT.Use) {
71 case UseNotRT:
72 R->InitLevSNo = STANDARTLEVEL;
73 R->InitLev0No = 0;
74 R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
75 R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
76 R->LevSNo = Lat->MaxLevel-1;
77 R->Lev0No = Lat->MaxLevel-2;
78 R->LevS = &P->Lat.Lev[R->LevSNo];
79 R->Lev0 = &P->Lat.Lev[R->Lev0No];
80 break;
81 case UseRT:
82 R->InitLevSNo = STANDARTLEVEL;
83 R->InitLev0No = 0;
84 R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
85 R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
86
87 /* R->LevSNo = Lat->MaxLevel-1;
88 R->Lev0No = Lat->MaxLevel-2;*/
89 R->LevSNo = Lat->MaxLevel-2;
90 R->Lev0No = Lat->MaxLevel-3;
91
92 R->LevRNo = P->Lat.RT.RiemannLevel;
93 R->LevRSNo = STANDARTLEVEL;
94 R->LevR0No = 0;
95 R->LevS = &P->Lat.Lev[R->LevSNo];
96 R->Lev0 = &P->Lat.Lev[R->Lev0No];
97 R->LevR = &P->Lat.Lev[R->LevRNo];
98 R->LevRS = &P->Lat.Lev[R->LevRSNo];
99 R->LevR0 = &P->Lat.Lev[R->LevR0No];
100 for (d=0; d<NDIM; d++) {
101 RT->NUpLevRS[d] = 1;
102 for (i=R->LevRNo-1; i >= R->LevRSNo; i--)
103 RT->NUpLevRS[d] *= Lat->LevelSizes[i];
104 RT->NUpLevR0[d] = 1;
105 for (i=R->LevRNo-1; i >= R->LevR0No; i--)
106 RT->NUpLevR0[d] *= Lat->LevelSizes[i];
107 }
108 break;
109 }
110}
111
112
113/** Initialization of RunStruct structure.
114 * Most of the actual entries in the RunStruct are set to their starter no-nonsense
115 * values (init if LatticeLevel is not STANDARTLEVEL otherwise normal max): FactorDensity,
116 * all Steps, XCEnergyFactor and HGcFactor, current and archived energie values are zeroed.
117 * \param *P problem at hand
118 */
119void InitRun(struct Problem *P)
120{
121 struct Lattice *Lat = &P->Lat;
122 struct RunStruct *R = &P->R;
123 struct Psis *Psi = &Lat->Psi;
124 int i,j;
125
126#ifndef SHORTSPEED
127 R->MaxMinStepFactor = Psi->AllMaxLocalNo;
128#else
129 R->MaxMinStepFactor = SHORTSPEED;
130#endif
131 if (R->LevSNo == STANDARTLEVEL) {
132 R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
133 R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
134 R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
135 R->ActualMaxMinStopStep = R->MaxMinStopStep;
136 R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
137 } else {
138 R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
139 R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
140 R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
141 R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
142 R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
143 }
144
145 R->FactorDensityR = 1./Lat->Volume;
146 R->FactorDensityC = Lat->Volume;
147
148 R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
149 R->UseForcesFile = 0;
150 R->UseOldPsi = 1;
151 R->MinStep = 0;
152 R->PsiStep = 0;
153 R->AlphaStep = 0;
154 R->DoCalcCGGauss = 0;
155 R->CurrentMin = Occupied;
156
157 R->MinStopStep = 0;
158
159 R->ScanPotential = 0; // in order to deactivate, simply set this to 0
160 R->ScanAtStep = 6; // must not be set to same as ScanPotential (then gradient is never calculated)
161 R->ScanDelta = 0.01; // step size on advance
162 R->ScanFlag = 0; // flag telling that we are scanning
163
164 //R->DoBrent = 0; // InitRun() occurs after ReadParameters(), thus this deactivates DoBrent line search
165
166 /* R->MaxOuterStep = 1;
167 R->MeanForceEps = 0.0;*/
168
169 R->NewRStep = 1;
170 /* Factor */
171 R->XCEnergyFactor = 1.0/R->FactorDensityR;
172 R->HGcFactor = 1.0/Lat->Volume;
173
174 /* Sollte auch geaendert werden */
175 /*Grad->GradientArray[GraSchGradient] = LevS->LPsi->LocalPsi[Psi->LocalNo];*/
176
177 for (j=Occupied;j<Extra;j++)
178 for (i=0; i < RUNMAXOLD; i++) {
179 R->TE[j][i] = 0;
180 R->KE[j][i] = 0;
181 }
182
183 R->MinimisationName = (char **) Malloc((perturbations+3)*(sizeof(char *)), "InitRun: *MinimisationName");
184 for (j=Occupied;j<=Extra;j++)
185 R->MinimisationName[j] = (char *) MallocString(6*(sizeof(char)), "InitRun: MinimisationName[]");
186 strncpy(R->MinimisationName[0],"Occ",6);
187 strncpy(R->MinimisationName[1],"UnOcc",6);
188 strncpy(R->MinimisationName[2],"P0",6);
189 strncpy(R->MinimisationName[3],"P1",6);
190 strncpy(R->MinimisationName[4],"P2",6);
191 strncpy(R->MinimisationName[5],"RxP0",6);
192 strncpy(R->MinimisationName[6],"RxP1",6);
193 strncpy(R->MinimisationName[7],"RxP2",6);
194 strncpy(R->MinimisationName[8],"Extra",6);
195}
196
197/** Re-occupy orbitals according to Fermi (bottom-up energy-wise).
198 * All OnePsiElementAddData#PsiFactor's are set to zero. \a electrons is set to Psi#Use-dependent
199 * Psis#GlobalNo.
200 * Then we go through OnePsiElementAddData#Lambda, find biggest, put one or two electrons into
201 * its PsiFactor, withdraw from \a electrons. Go on as long as there are \a electrons left.
202 * \param *P Problem at hand
203 */
204void OccupyByFermi(struct Problem *P) {
205 struct Lattice *Lat = &P->Lat;
206 struct Psis *Psi = &Lat->Psi;
207 int i, index, electrons = 0;
208 double lambda, electronsperorbit;
209
210 for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
211 Psi->LocalPsiStatus[i].PsiFactor = 0.0;
212 Psi->LocalPsiStatus[i].PsiType = UnOccupied;
213 //Psi->LocalPsiStatus[i].PsiGramSchStatus = (R->DoSeparated) ? NotUsedToOrtho : NotOrthogonal;
214 }
215
216 electronsperorbit = (Psi->Use == UseSpinUpDown) ? 1 : 2;
217 switch (Psi->PsiST) { // how many electrons may we re-distribute
218 case SpinDouble:
219 electrons = Psi->GlobalNo[PsiMaxNoDouble];
220 break;
221 case SpinUp:
222 electrons = Psi->GlobalNo[PsiMaxNoUp];
223 break;
224 case SpinDown:
225 electrons = Psi->GlobalNo[PsiMaxNoDown];
226 break;
227 }
228 while (electrons > 0) {
229 lambda = 0.0;
230 index = 0;
231 for (i=0; i< Psi->LocalNo; i++) // seek biggest unoccupied one
232 if ((lambda < Psi->AddData[i].Lambda) && (Psi->LocalPsiStatus[i].PsiFactor == 0.0)) {
233 index = i;
234 lambda = Psi->AddData[i].Lambda;
235 }
236 Psi->LocalPsiStatus[index].PsiFactor = electronsperorbit; // occupy state
237 Psi->LocalPsiStatus[index].PsiType = Occupied;
238 electrons--; // one electron less
239 }
240 for (i=0; i< Psi->LocalNo; i++) // set all PsiFactors to zero
241 if (Psi->LocalPsiStatus[i].PsiType == UnOccupied) Psi->LocalPsiStatus[i].PsiFactor = 1.0;
242
243 SpeedMeasure(P, DensityTime, StartTimeDo);
244 UpdateDensityCalculation(P);
245 SpeedMeasure(P, DensityTime, StopTimeDo);
246 InitPsiEnergyCalculation(P,Occupied); // goes through all orbitals calculating kinetic and non-local
247 CalculateDensityEnergy(P, 0);
248 EnergyAllReduce(P);
249// SetCurrentMinState(P,UnOccupied);
250// InitPsiEnergyCalculation(P,UnOccupied); /* STANDARTLEVEL */
251// CalculateGapEnergy(P); /* STANDARTLEVEL */
252// EnergyAllReduce(P);
253// SetCurrentMinState(P,Occupied);
254}
255
256/** Use next local Psi: Update RunStruct::ActualLocalPsiNo.
257 * Increases OnePsiElementAddData::Step, RunStruct::MinStep and RunStruct::PsiStep.
258 * RunStruct::OldActualLocalPsiNo is set to current one and this distributed
259 * (UpdateGramSchOldActualPsiNo()) among process.
260 * Afterwards RunStruct::ActualLocalPsiNo is increased (modulo Psis::LocalNo of
261 * this process) and again distributed (UpdateGramSchActualPsiNo()).
262 * Due to change in the GramSchmidt-Status, GramSch() is called for Orthonormalization.
263 * \param *P Problem at hand#
264 * \param IncType skip types PsiTypeTag#UnOccupied or PsiTypeTag#Occupied we only want next(thus we can handily advance only through either type)
265 */
266void UpdateActualPsiNo(struct Problem *P, enum PsiTypeTag IncType)
267{
268 struct RunStruct *R = &P->R;
269 if (R->CurrentMin != IncType) {
270 SetCurrentMinState(P,IncType);
271 R->PsiStep = R->MaxPsiStep; // force step to next Psi
272 }
273 P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
274 R->MinStep++;
275 R->PsiStep++;
276 if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) {
277 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
278 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
279 }
280 if (R->PsiStep >= R->MaxPsiStep) {
281 R->PsiStep=0;
282 do {
283 R->ActualLocalPsiNo++;
284 R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
285 } while (P->Lat.Psi.AllPsiStatus[R->ActualLocalPsiNo].PsiType != IncType);
286 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
287 //fprintf(stderr,"(%i) ActualLocalNo: %d\n", P->Par.me, R->ActualLocalPsiNo);
288 }
289 if ((R->UseAddGramSch == 1 && (R->OldActualLocalPsiNo != R->ActualLocalPsiNo || P->Lat.Psi.NoOfPsis == 1)) || R->UseAddGramSch == 2) {
290 if (P->Lat.Psi.LocalPsiStatus[R->OldActualLocalPsiNo].PsiGramSchStatus != NotUsedToOrtho) // don't reset by accident last psi of former minimisation run
291 SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
292 SpeedMeasure(P, GramSchTime, StartTimeDo);
293 //OrthogonalizePsis(P);
294 if (R->CurrentMin <= UnOccupied)
295 GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
296 else
297 GramSch(P, R->LevS, &P->Lat.Psi, Orthogonalize); //Orthogonalize
298 SpeedMeasure(P, GramSchTime, StopTimeDo);
299 }
300}
301
302/** Resets all OnePsiElement#DoBrent.\
303 * \param *P Problem at hand
304 * \param *Psi pointer to wave functions
305 */
306void ResetBrent(struct Problem *P, struct Psis *Psi) {
307 int i;
308 for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
309 //fprintf(stderr,"(%i) DoBrent[%i] = %i\n", P->Par.me, i, Psi->LocalPsiStatus[i].DoBrent);
310 if (Psi->LocalPsiStatus[i].PsiType == Occupied) Psi->LocalPsiStatus[i].DoBrent = 4;
311 }
312}
313
314/** Sets current minimisation state.
315 * Stores given \a state in RunStruct#CurrentMin and sets pointer Lattice#E accordingly.
316 * \param *P Problem at hand
317 * \param state given PsiTypeTag state
318 */
319void SetCurrentMinState(struct Problem *P, enum PsiTypeTag state) {
320 P->R.CurrentMin = state;
321 P->R.TotalEnergy = &(P->R.TE[state][0]);
322 P->R.KineticEnergy = &(P->R.KE[state][0]);
323 P->R.ActualRelTotalEnergy = &(P->R.ActualRelTE[state][0]);
324 P->R.ActualRelKineticEnergy = &(P->R.ActualRelKE[state][0]);
325 P->Lat.E = &(P->Lat.Energy[state]);
326}
327/*{
328 struct RunStruct *R = &P->R;
329 struct Lattice *Lat = &P->Lat;
330 struct Psis *Psi = &Lat->Psi;
331 P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
332 R->MinStep++;
333 R->PsiStep++;
334 if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) { // remember old actual local number
335 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
336 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
337 }
338 if (R->PsiStep >= R->MaxPsiStep) { // done enough minimisation steps for this orbital?
339 R->PsiStep=0;
340 do { // step on as long as we are still on a SkipType orbital
341 R->ActualLocalPsiNo++;
342 R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
343 } while ((P->Lat.Psi.LocalPsiStatus[R->ActualLocalPsiNo].PsiType == SkipType));
344 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
345 if (R->UseAddGramSch >= 1) {
346 SetGramSchOldActualPsi(P,Psi,NotOrthogonal);
347 // setze von OldActual bis bla auf nicht orthogonal
348 GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
349 }
350 } else if (R->UseAddGramSch == 2) {
351 SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
352 //if (SkipType == UnOccupied)
353 //ResetGramSch(P,Psi);
354 //fprintf(stderr,"UpdateActualPsiNo: GramSch() for %i\n",R->OldActualLocalPsiNo);
355 GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
356 }
357}*/
358
359/** Upgrades the calculation to the next finer level.
360 * If we are below the initial level,
361 * ChangePsiAndDensToLevUp() prepares density and Psi coefficients.
362 * Then the level change is made as RunStruct::LevSNo and RunStruct::Lev0No are decreased.
363 * The RunStruct::OldActualLocalPsi is set to current one and both are distributed
364 * (UpdateGramSchActualPsiNo(), UpdateGramSchOldActualPsiNo()).
365 * The PseudoPot'entials adopt the level up by calling ChangePseudoToLevUp().
366 * Now we are prepared to reset Energy::PsiEnergy and local and total density energy and
367 * recalculate them: InitPsiEnergyCalculation(), CalculateDensityEnergy() and CalculateIonsEnergy().
368 * Results are gathered EnergyAllReduce() and the output made EnergyOutput().
369 * Finally, the stop condition are reset for the new level (depending if it's the STANDARTLEVEL or
370 * not).
371 * \param *P Problem at hand
372 * \param *Stop is set to zero if we are below or equal to init level (see CalculateForce())
373 * \sa UpdateToNewWaves() very similar in the procedure, only the update of the Psis and density
374 * (ChangePsiAndDensToLevUp()) is already made there.
375 * \bug Missing TotalEnergy shifting for other PsiTypeTag's!
376 */
377static void ChangeToLevUp(struct Problem *P, int *Stop)
378{
379 struct RunStruct *R = &P->R;
380 struct Lattice *Lat = &P->Lat;
381 struct Psis *Psi = &Lat->Psi;
382 struct Energy *E = Lat->E;
383 struct RiemannTensor *RT = &Lat->RT;
384 int i;
385 if (R->LevSNo <= R->InitLevSNo) {
386 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
387 fprintf(stderr, "(%i) ChangeLevUp: LevSNo(%i) <= InitLevSNo(%i)\n", P->Par.me, R->LevSNo, R->InitLevSNo);
388 *Stop = 1;
389 return;
390 }
391 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
392 fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i)\n", R->LevSNo, R->InitLevSNo);
393 *Stop = 0;
394 P->Speed.LevUpSteps++;
395 SpeedMeasure(P, SimTime, StopTimeDo);
396 SpeedMeasure(P, InitSimTime, StartTimeDo);
397 SpeedMeasure(P, InitDensityTime, StartTimeDo);
398 ChangePsiAndDensToLevUp(P);
399 SpeedMeasure(P, InitDensityTime, StopTimeDo);
400 R->LevSNo--;
401 R->Lev0No--;
402 if (RT->ActualUse == standby && R->LevSNo == STANDARTLEVEL) {
403 P->Lat.RT.ActualUse = active;
404 CalculateRiemannTensorData(P);
405 Error(SomeError, "Calculate RT: Not further implemented");
406 }
407 R->LevS = &P->Lat.Lev[R->LevSNo];
408 R->Lev0 = &P->Lat.Lev[R->Lev0No];
409 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
410 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
411 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
412 ResetBrent(P, &P->Lat.Psi);
413 R->PsiStep=0;
414 R->MinStep=0;
415 P->Grad.GradientArray[GraSchGradient] = R->LevS->LPsi->LocalPsi[Psi->LocalNo];
416 ChangePseudoToLevUp(P);
417 for (i=0; i<MAXALLPSIENERGY; i++)
418 SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
419 SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
420 SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
421 for (i=MAXOLD-1; i > 0; i--) {
422 E->TotalEnergy[i] = E->TotalEnergy[i-1];
423 Lat->Energy[UnOccupied].TotalEnergy[i] = Lat->Energy[UnOccupied].TotalEnergy[i-1];
424 }
425 InitPsiEnergyCalculation(P,Occupied);
426 CalculateDensityEnergy(P,1);
427 CalculateIonsEnergy(P);
428 EnergyAllReduce(P);
429/* SetCurrentMinState(P,UnOccupied);
430 InitPsiEnergyCalculation(P,UnOccupied);
431 CalculateGapEnergy(P);
432 EnergyAllReduce(P);
433 SetCurrentMinState(P,Occupied);*/
434 EnergyOutput(P,0);
435 if (R->LevSNo == STANDARTLEVEL) {
436 R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
437 R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
438 R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
439 R->ActualMaxMinStopStep = R->MaxMinStopStep;
440 R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
441 } else {
442 R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
443 R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
444 R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
445 R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
446 R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
447 }
448 R->MinStopStep = 0;
449 SpeedMeasure(P, InitSimTime, StopTimeDo);
450 SpeedMeasure(P, SimTime, StartTimeDo);
451 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
452 fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i) Done\n", R->LevSNo, R->InitLevSNo);
453}
454
455/** Updates after the wave functions have changed (e.g.\ Ion moved).
456 * Old and current RunStruct::ActualLocalPsiNo are zeroed and distributed among the processes.
457 * InitDensityCalculation() is called, afterwards the pseudo potentials update to the new
458 * wave functions UpdatePseudoToNewWaves().
459 * Energy::AllLocalDensityEnergy, Energy::AllTotalDensityEnergy, Energy::AllTotalIonsEnergy and
460 * Energy::PsiEnergy[i] are set to zero.
461 * We are set to recalculate all of the following energies: Psis InitPsiEnergyCalculation(), density
462 * CalculateDensityEnergy(), ionic CalculateIonsEnergy() and ewald CalculateEwald().
463 * Results are gathered from all processes EnergyAllReduce() and EnergyOutput() is called.
464 * Finally, the various conditons in the RunStruct for stopping the calculation are set: number of
465 * minimisation steps, relative total or kinetic energy change or how often stop condition was
466 * evaluated.
467 * \param *P Problem at hand
468 */
469static void UpdateToNewWaves(struct Problem *P)
470{
471 struct RunStruct *R = &P->R;
472 struct Lattice *Lat = &P->Lat;
473 struct Psis *Psi = &Lat->Psi;
474 struct Energy *E = Lat->E;
475 int i;//,type;
476 R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
477 //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in UpdateGramSchActualPsiNo(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
478 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
479 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
480 R->PsiStep=0;
481 R->MinStep=0;
482 SpeedMeasure(P, InitDensityTime, StartTimeDo);
483 //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in Update../InitDensityCalculation(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
484 InitDensityCalculation(P);
485 SpeedMeasure(P, InitDensityTime, StopTimeDo);
486 UpdatePseudoToNewWaves(P);
487 for (i=0; i<MAXALLPSIENERGY; i++)
488 SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
489 SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
490 SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
491 SetArrayToDouble0(E->AllTotalIonsEnergy, MAXALLIONSENERGY);
492 InitPsiEnergyCalculation(P,Occupied);
493 CalculateDensityEnergy(P,1);
494 CalculateIonsEnergy(P);
495 CalculateEwald(P, 0);
496 EnergyAllReduce(P);
497/* if (R->DoUnOccupied) {
498 SetCurrentMinState(P,UnOccupied);
499 InitPsiEnergyCalculation(P,UnOccupied);
500 CalculateGapEnergy(P);
501 EnergyAllReduce(P);
502 }
503 if (R->DoPerturbation)
504 for(type=Perturbed_P0;type <=Perturbed_RxP2;type++) {
505 SetCurrentMinState(P,type);
506 InitPerturbedEnergyCalculation(P,1);
507 EnergyAllReduce(P);
508 }
509 SetCurrentMinState(P,Occupied);*/
510 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
511 EnergyOutput(P,0);
512 R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
513 R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
514 R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
515 R->ActualMaxMinStopStep = R->MaxMinStopStep;
516 R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
517 R->MinStopStep = 0;
518}
519
520/** Evaluates the stop condition and returns 0 or 1 for occupied states.
521 * Stop is set when:
522 * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
523 * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
524 * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
525 * - below relative rate of change:
526 * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
527 * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
528 * - if more than one minimisation step was made, calculate the relative changes of total
529 * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
530 * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
531 * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
532 * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
533 * \param *P Problem at hand
534 * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
535 * \return Stop: 1 - stop, 0 - continue
536 */
537int CalculateMinimumStop(struct Problem *P, int SuperStop)
538{
539 int Stop = 0, i;
540 struct RunStruct *R = &P->R;
541 struct Energy *E = P->Lat.E;
542 if (R->PsiStep == 0 && SuperStop) Stop = 1;
543 if (R->PsiStep == 0 && ((R->MinStopStep % R->ActualMaxMinStopStep == 0 && R->CurrentMin != UnOccupied) || (R->MinStopStep % R->ActualMaxMinGapStopStep == 0 && R->CurrentMin == UnOccupied))) {
544 if (R->MinStep >= R->ActualMaxMinStep) Stop = 1;
545 for (i=RUNMAXOLD-1; i > 0; i--) {
546 R->TotalEnergy[i] = R->TotalEnergy[i-1];
547 R->KineticEnergy[i] = R->KineticEnergy[i-1];
548 }
549 R->TotalEnergy[0] = E->TotalEnergy[0];
550 R->KineticEnergy[0] = E->AllTotalPsiEnergy[KineticEnergy];
551 if (R->MinStopStep) {
552 //if (R->TotalEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalEnergy[1] = %lg\n",R->TotalEnergy[1]);
553 R->ActualRelTotalEnergy[0] = fabs((R->TotalEnergy[0]-R->TotalEnergy[1])/R->TotalEnergy[1]);
554 //if (R->KineticEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticEnergy[1] = %lg\n",R->KineticEnergy[1]);
555 //if (R->CurrentMin < Perturbed_P0)
556 R->ActualRelKineticEnergy[0] = fabs((R->KineticEnergy[0]-R->KineticEnergy[1])/R->KineticEnergy[1]);
557 //else R->ActualRelKineticEnergy[0] = 0.;
558 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
559 switch (R->CurrentMin) {
560 default:
561 fprintf(stderr, "ARelTE: %e\tARelKE: %e\n", R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
562 break;
563 case UnOccupied:
564 fprintf(stderr, "ARelTGE: %e\tARelKGE: %e\n", R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
565 break;
566 }
567 //fprintf(stderr, "(%i) Comparing TE: %lg < %lg\tKE: %lg < %lg?\n", P->Par.me, R->ActualRelTotalEnergy[0], R->ActualRelEpsTotalEnergy, R->ActualRelKineticEnergy[0], R->ActualRelEpsKineticEnergy);
568 if ((R->ActualRelTotalEnergy[0] < R->ActualRelEpsTotalEnergy) &&
569 (R->ActualRelKineticEnergy[0] < R->ActualRelEpsKineticEnergy))
570 Stop = 1;
571 }
572 }
573 if (R->PsiStep == 0)
574 R->MinStopStep++;
575 if (P->Call.WriteSrcFiles == 2)
576 OutputVisSrcFiles(P, R->CurrentMin);
577 return(Stop);
578}
579
580/** Evaluates the stop condition and returns 0 or 1 for gap energies.
581 * Stop is set when:
582 * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
583 * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
584 * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
585 * - below relative rate of change:
586 * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
587 * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
588 * - if more than one minimisation step was made, calculate the relative changes of total
589 * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
590 * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
591 * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
592 * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
593 * \param *P Problem at hand
594 * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
595 * \return Stop: 1 - stop, 0 - continue
596 * \sa CalculateMinimumStop() - same procedure for occupied states
597 *//*
598static double CalculateGapStop(struct Problem *P, int SuperStop)
599{
600 int Stop = 0, i;
601 struct RunStruct *R = &P->R;
602 struct Lattice *Lat = &P->Lat;
603 struct Energy *E = P->Lat.E;
604 if (R->PsiStep == 0 && SuperStop) Stop = 1;
605 if (R->PsiStep == 0 && (R->MinStopStep % R->ActualMaxMinGapStopStep) == 0) {
606 if (R->MinStep >= R->ActualMaxMinStep) Stop = 1;
607 for (i=RUNMAXOLD-1; i > 0; i--) {
608 R->TotalGapEnergy[i] = R->TotalGapEnergy[i-1];
609 R->KineticGapEnergy[i] = R->KineticGapEnergy[i-1];
610 }
611 R->TotalGapEnergy[0] = Lat->Energy[UnOccupied].TotalEnergy[0];
612 R->KineticGapEnergy[0] = E->AllTotalPsiEnergy[GapPsiEnergy];
613 if (R->MinStopStep) {
614 if (R->TotalGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalGapEnergy[1] = %lg\n",R->TotalGapEnergy[1]);
615 R->ActualRelTotalGapEnergy[0] = fabs((R->TotalGapEnergy[0]-R->TotalGapEnergy[1])/R->TotalGapEnergy[1]);
616 if (R->KineticGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticGapEnergy[1] = %lg\n",R->KineticGapEnergy[1]);
617 R->ActualRelKineticGapEnergy[0] = fabs((R->KineticGapEnergy[0]-R->KineticGapEnergy[1])/R->KineticGapEnergy[1]);
618 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
619 fprintf(stderr, "(%i) -------------------------> ARelTGE: %e\tARelKGE: %e\n", P->Par.me, R->ActualRelTotalGapEnergy[0], R->ActualRelKineticGapEnergy[0]);
620 if ((R->ActualRelTotalGapEnergy[0] < R->ActualRelEpsTotalGapEnergy) &&
621 (R->ActualRelKineticGapEnergy[0] < R->ActualRelEpsKineticGapEnergy))
622 Stop = 1;
623 }
624 }
625 if (R->PsiStep == 0)
626 R->MinStopStep++;
627
628 return(Stop);
629}*/
630
631#define StepTolerance 1e-4
632
633static void CalculateEnergy(struct Problem *P) {
634 SpeedMeasure(P, DensityTime, StartTimeDo);
635 UpdateDensityCalculation(P);
636 SpeedMeasure(P, DensityTime, StopTimeDo);
637 UpdatePsiEnergyCalculation(P);
638 CalculateDensityEnergy(P, 0);
639 //CalculateIonsEnergy(P);
640 EnergyAllReduce(P);
641}
642
643/** Energy functional depending on one parameter \a x (for a certain Psi in a certain conjugate direction).
644 * \param x parameter for the which the function must be minimized
645 * \param *params additional params
646 * \return total energy if Psi is changed according to the given parameter
647 */
648static double fn1 (double x, void * params) {
649 struct Problem *P = (struct Problem *)(params);
650 struct RunStruct *R = &P->R;
651 struct Lattice *Lat = &P->Lat;
652 struct LatticeLevel *LevS = R->LevS;
653 int ElementSize = (sizeof(fftw_complex) / sizeof(double));
654 int i=R->ActualLocalPsiNo;
655 double ret;
656
657 //fprintf(stderr,"(%i) Evaluating fnl at %lg ...\n",P->Par.me, x);
658 //TestForOrth(P,R->LevS,P->Grad.GradientArray[GraSchGradient]);
659 CalculateNewWave(P, &x); // also stores Psi to oldPsi
660 //TestGramSch(P,R->LevS,&P->Lat.Psi,Occupied);
661 //fprintf(stderr,"(%i) Testing for orthogonality of %i against ...\n",P->Par.me, R->ActualLocalPsiNo);
662 //TestForOrth(P, LevS, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo]);
663 //UpdateActualPsiNo(P, Occupied);
664 //UpdateEnergyArray(P);
665 CalculateEnergy(P);
666 ret = Lat->E->TotalEnergy[0];
667 memcpy(LevS->LPsi->LocalPsi[i], LevS->LPsi->OldLocalPsi[i], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
668 //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
669 CalculateEnergy(P);
670 //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, x, ret);
671 return ret;
672}
673
674#ifdef HAVE_INLINE
675inline void flip(double *a, double *b) {
676#else
677void flip(double *a, double *b) {
678#endif
679 double tmp = *a;
680 *a = *b;
681 *b = tmp;
682}
683
684
685/** Minimise PsiType#Occupied orbitals.
686 * It is checked whether CallOptions#ReadSrcFiles is set and thus coefficients for the level have to be
687 * read from file and afterwards initialized.
688 *
689 * Then follows the main loop, until a stop condition is met:
690 * -# CalculateNewWave()\n
691 * Over a conjugate gradient method the next (minimal) wave function is sought for.
692 * -# UpdateActualPsiNo()\n
693 * Switch local Psi to next one.
694 * -# UpdateEnergyArray()\n
695 * Shift archived energy values to make space for next one.
696 * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
697 * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
698 * -# UpdatePsiEnergyCalculation()\n
699 * Calculate kinetic and non-local energy contributons from the Psis.
700 * -# CalculateDensityEnergy()\n
701 * Calculate remaining energy contributions from the Density and adds \f$V_xc\f$ onto DensityTypes#HGDensity.
702 * -# CalculateIonsEnergy()\n
703 * Calculate the Gauss self energy of the Ions.
704 * -# EnergyAllReduce()\n
705 * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
706 * -# CheckCPULIM()\n
707 * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
708 * -# CalculateMinimumStop()\n
709 * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
710 * CalculateNewWave().
711 *
712 * Before return orthonormality is tested.
713 * \param *P Problem at hand
714 * \param *Stop flag to determine if epsilon stop conditions have met
715 * \param *SuperStop flag to determinte whether external signal's required end of calculations
716 * \bug ResetGramSch() not allowed after reading orthonormal values from file
717 */
718static void MinimiseOccupied(struct Problem *P, int *Stop, int *SuperStop)
719{
720 struct RunStruct *R = &P->R;
721 struct Lattice *Lat = &P->Lat;
722 struct Psis *Psi = &Lat->Psi;
723 //struct FileData *F = &P->Files;
724// int i;
725// double norm;
726 //double dEdt0,ddEddt0,HartreeddEddt0,XCddEddt0, d[4], D[4],ConDirHConDir;
727 struct LatticeLevel *LevS = R->LevS;
728 int ElementSize = (sizeof(fftw_complex) / sizeof(double));
729 int iter = 0, status, max_iter=10;
730 const gsl_min_fminimizer_type *T;
731 gsl_min_fminimizer *s;
732 double m, a, b;
733 double f_m = 0., f_a, f_b;
734 double dcos, dsin;
735 int g;
736 fftw_complex *ConDir = P->Grad.GradientArray[ConDirGradient];
737 fftw_complex *source = NULL, *oldsource = NULL;
738 gsl_function F;
739 F.function = &fn1;
740 F.params = (void *) P;
741 T = gsl_min_fminimizer_brent;
742 s = gsl_min_fminimizer_alloc (T);
743 int DoBrent, StartLocalPsiNo;
744
745 ResetBrent(P,Psi);
746 *Stop = 0;
747 if (P->Call.ReadSrcFiles) {
748 if (!ReadSrcPsiDensity(P,Occupied,1, R->LevSNo)) { // if file for level exists and desired, read from file
749 P->Call.ReadSrcFiles = 0; // -r was bogus, remove it, have to start anew
750 if(P->Call.out[MinOut]) fprintf(stderr,"(%i) Re-initializing, files are missing/corrupted...\n", P->Par.me);
751 InitPsisValue(P, Psi->TypeStartIndex[Occupied], Psi->TypeStartIndex[Occupied+1]); // initialize perturbed array for this run
752 ResetGramSchTagType(P, Psi, Occupied, NotOrthogonal); // loaded values are orthonormal
753 } else {
754 SpeedMeasure(P, InitSimTime, StartTimeDo);
755 if(P->Call.out[MinOut]) fprintf(stderr, "(%i) Re-initializing %s psi array from source file of recent calculation\n", P->Par.me, R->MinimisationName[R->CurrentMin]);
756 ReadSrcPsiDensity(P, Occupied, 0, R->LevSNo);
757 //ResetGramSchTagType(P, Psi, Occupied, IsOrthonormal); // loaded values are orthonormal
758 // note: this did not work and is currently not clear why not (as TestGramSch says: OK, but minimisation goes awry without the following GramSch)
759 }
760 SpeedMeasure(P, InitGramSchTime, StartTimeDo);
761 GramSch(P, R->LevS, Psi, Orthonormalize);
762 SpeedMeasure(P, InitGramSchTime, StopTimeDo);
763 SpeedMeasure(P, InitDensityTime, StartTimeDo);
764 InitDensityCalculation(P);
765 SpeedMeasure(P, InitDensityTime, StopTimeDo);
766 InitPsiEnergyCalculation(P, Occupied); // go through all orbitals calculating kinetic and non-local
767 StartLocalPsiNo = R->ActualLocalPsiNo;
768 do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
769 CalculateDensityEnergy(P, 0);
770 UpdateActualPsiNo(P, Occupied);
771 } while (R->ActualLocalPsiNo != StartLocalPsiNo);
772 CalculateIonsEnergy(P);
773 EnergyAllReduce(P);
774 SpeedMeasure(P, InitSimTime, StopTimeDo);
775 R->LevS->Step++;
776 EnergyOutput(P,0);
777 }
778 if (P->Call.ReadSrcFiles != 1) { // otherwise minimise oneself
779 if(P->Call.out[LeaderOut]) fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[Occupied]);
780 while (*Stop != 1) { // loop testing condition over all Psis
781 // in the following loop, we have two cases:
782 // 1) still far away and just guessing: Use the normal CalculateNewWave() to improve Psi
783 // 2) closer (DoBrent=-1): use brent line search instead
784 // and due to these two cases, we also have two ifs inside each in order to catch stepping from one case
785 // to the other - due to decreasing DoBrent and/or stepping to the next Psi (which may not yet be DoBrent==1)
786
787 // case 1)
788 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
789 //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
790 if (R->DoBrent == 1) {
791 memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
792 //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
793 f_m = P->Lat.E->TotalEnergy[0]; // grab first value
794 m = 0.;
795 }
796 CalculateNewWave(P,NULL);
797 if ((R->DoBrent == 1) && (fabs(Lat->E->delta[0]) < M_PI/4.))
798 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent--;
799 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
800 UpdateActualPsiNo(P, Occupied);
801 UpdateEnergyArray(P);
802 CalculateEnergy(P); // just to get a sensible delta
803 if ((R->ActualLocalPsiNo != R->OldActualLocalPsiNo) && (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1)) {
804 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
805 // if we stepped on to a new Psi, which is already down at DoBrent=1 unlike the last one,
806 // then an up-to-date gradient is missing for the following Brent line search
807 if(P->Call.out[MinOut]) fprintf(stderr,"(%i) We stepped on to a new Psi, which is already in the Brent regime ...re-calc delta\n", P->Par.me);
808 memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
809 //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
810 f_m = P->Lat.E->TotalEnergy[0]; // grab first value
811 m = 0.;
812 DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
813 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
814 CalculateNewWave(P,NULL);
815 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
816 }
817 //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, m, f_m);
818 }
819 }
820
821 // case 2)
822 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) {
823 R->PsiStep=R->MaxPsiStep; // no more fresh gradients from this point for current ActualLocalPsiNo
824 a = b = 0.5*fabs(Lat->E->delta[0]);
825 // we have a meaningful first minimum guess from above CalculateNewWave() resp. from end of this if of last step: Lat->E->delta[0]
826 source = LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
827 oldsource = LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo];
828 //SetArrayToDouble0((double *)source,LevS->MaxG*2);
829 do {
830 a -= fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
831 if (a < -M_PI/2.) a = -M_PI/2.;// for this to work we need the pre-estimation which leads us into a nice regime (without gradient being the better _initial_ guess for a Psi)
832 dcos = cos(a);
833 dsin = sin(a);
834 for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
835 //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
836 c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
837 c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
838 }
839 CalculateEnergy(P);
840 f_a = P->Lat.E->TotalEnergy[0]; // grab second value at left border
841 //fprintf(stderr,"(%i) fnl(%lg) = %lg, Check ConDir[0] = %lg+i%lg, source[0] = %lg+i%lg, oldsource[0] = %lg+i%lg, TotDens[0] = %lg\n", P->Par.me, a, f_a, ConDir[0].re, ConDir[0].im, source[0].re, source[0].im, oldsource[0].re, oldsource[0].im, R->Lev0->Dens->DensityArray[TotalDensity][0]);
842 } while (f_a < f_m);
843
844 //SetArrayToDouble0((double *)source,LevS->MaxG*2);
845 do {
846 b += fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
847 if (b > M_PI/2.) b = M_PI/2.;
848 dcos = cos(b);
849 dsin = sin(b);
850 for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
851 //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
852 c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
853 c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
854 }
855 CalculateEnergy(P);
856 f_b = P->Lat.E->TotalEnergy[0]; // grab second value at left border
857 //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, b, f_b);
858 } while (f_b < f_m);
859
860 memcpy(source, oldsource, ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
861 //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
862 CalculateEnergy(P);
863
864 if(P->Call.out[ValueOut]) fprintf(stderr,"(%i) Preparing brent with f(a) (%lg,%lg)\t f(b) (%lg,%lg)\t f(m) (%lg,%lg) ...\n", P->Par.me,a,f_a,b,f_b,m,f_m);
865 iter=0;
866 gsl_min_fminimizer_set_with_values (s, &F, m, f_m, a, f_a, b, f_b);
867 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) using %s method\n",P->Par.me, gsl_min_fminimizer_name (s));
868 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) %5s [%9s, %9s] %9s %9s\n",P->Par.me, "iter", "lower", "upper", "min", "err(est)");
869 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me, iter, a, b, m, b - a);
870 do {
871 iter++;
872 status = gsl_min_fminimizer_iterate (s);
873
874 m = gsl_min_fminimizer_x_minimum (s);
875 a = gsl_min_fminimizer_x_lower (s);
876 b = gsl_min_fminimizer_x_upper (s);
877
878 status = gsl_min_test_interval (a, b, 0.001, 0.0);
879
880 if (status == GSL_SUCCESS)
881 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) Converged:\n",P->Par.me);
882
883 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me,
884 iter, a, b, m, b - a);
885 } while (status == GSL_CONTINUE && iter < max_iter);
886 CalculateNewWave(P,&m);
887 TestGramSch(P,LevS,Psi,Occupied);
888 UpdateActualPsiNo(P, Occupied); // step on due setting to MaxPsiStep further above
889 UpdateEnergyArray(P);
890 CalculateEnergy(P);
891 //fprintf(stderr,"(%i) Final value for Psi %i: %lg\n", P->Par.me, R->ActualLocalPsiNo, P->Lat.E->TotalEnergy[0]);
892 R->MinStopStep = R->ActualMaxMinStopStep; // check stop condition every time
893 if (*SuperStop != 1)
894 *SuperStop = CheckCPULIM(P);
895 *Stop = CalculateMinimumStop(P, *SuperStop);
896 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
897 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) { // new wave function means new gradient!
898 DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
899 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
900 //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
901 memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
902 //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
903 f_m = P->Lat.E->TotalEnergy[0]; // grab first value
904 m = 0.;
905 CalculateNewWave(P,NULL);
906 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
907 }
908 }
909
910 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) { // otherwise the following checks eliminiate stop=1 from above
911 if (*SuperStop != 1)
912 *SuperStop = CheckCPULIM(P);
913 *Stop = CalculateMinimumStop(P, *SuperStop);
914 }
915 /*EnergyOutput(P, Stop);*/
916 P->Speed.Steps++;
917 R->LevS->Step++;
918 /*ControlNativeDensity(P);*/
919 //fprintf(stderr,"(%i) Stop %i\n",P->Par.me, Stop);
920 }
921 if (*SuperStop == 1) OutputVisSrcFiles(P, Occupied); // is now done after localization (ComputeMLWF())
922 }
923 TestGramSch(P,R->LevS,Psi, Occupied);
924}
925
926/** Minimisation of the PsiTagType#UnOccupied orbitals in the field of the occupied ones.
927 * Assuming RunStruct#ActualLocalPsiNo is currenlty still an occupied wave function, we stop onward to the first
928 * unoccupied and reset RunStruct#OldActualLocalPsiNo. Then it is checked whether CallOptions#ReadSrcFiles is set
929 * and thus coefficients for the level have to be read from file and afterwards initialized.
930 *
931 * Then follows the main loop, until a stop condition is met:
932 * -# CalculateNewWave()\n
933 * Over a conjugate gradient method the next (minimal) wave function is sought for.
934 * -# UpdateActualPsiNo()\n
935 * Switch local Psi to next one.
936 * -# UpdateEnergyArray()\n
937 * Shift archived energy values to make space for next one.
938 * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
939 * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
940 * -# UpdatePsiEnergyCalculation()\n
941 * Calculate kinetic and non-local energy contributons from the Psis.
942 * -# CalculateGapEnergy()\n
943 * Calculate Gap energies (Hartreepotential, Pseudo) and the gradient.
944 * -# EnergyAllReduce()\n
945 * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
946 * -# CheckCPULIM()\n
947 * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
948 * -# CalculateMinimumStop()\n
949 * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
950 * CalculateNewWave().
951 *
952 * Afterwards, the coefficients are written to file by OutputVisSrcFiles() if desired. Orthonormality is tested, we step
953 * back to the occupied wave functions and the densities are re-initialized.
954 * \param *P Problem at hand
955 * \param *Stop flag to determine if epsilon stop conditions have met
956 * \param *SuperStop flag to determinte whether external signal's required end of calculations
957 */
958static void MinimiseUnoccupied (struct Problem *P, int *Stop, int *SuperStop) {
959 struct RunStruct *R = &P->R;
960 struct Lattice *Lat = &P->Lat;
961 struct Psis *Psi = &Lat->Psi;
962 int StartLocalPsiNo;
963
964 *Stop = 0;
965 R->PsiStep = R->MaxPsiStep; // in case it's zero from CalculateForce()
966 UpdateActualPsiNo(P, UnOccupied); // step on to next unoccupied one
967 R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset, otherwise OldActualLocalPsiNo still points to occupied wave function
968 UpdateGramSchOldActualPsiNo(P,Psi);
969 if (P->Call.ReadSrcFiles && ReadSrcPsiDensity(P,UnOccupied,1, R->LevSNo)) {
970 SpeedMeasure(P, InitSimTime, StartTimeDo);
971 if(P->Call.out[MinOut]) fprintf(stderr, "(%i) Re-initializing %s psi array from source file of recent calculation\n", P->Par.me, R->MinimisationName[R->CurrentMin]);
972 ReadSrcPsiDensity(P, UnOccupied, 0, R->LevSNo);
973 if (P->Call.ReadSrcFiles != 2) {
974 ResetGramSchTagType(P, Psi, UnOccupied, IsOrthonormal); // loaded values are orthonormal
975 SpeedMeasure(P, DensityTime, StartTimeDo);
976 InitDensityCalculation(P);
977 SpeedMeasure(P, DensityTime, StopTimeDo);
978 InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
979 //CalculateDensityEnergy(P, 0);
980 StartLocalPsiNo = R->ActualLocalPsiNo;
981 do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
982 CalculateGapEnergy(P);
983 UpdateActualPsiNo(P, Occupied);
984 } while (R->ActualLocalPsiNo != StartLocalPsiNo);
985 EnergyAllReduce(P);
986 }
987 SpeedMeasure(P, InitSimTime, StopTimeDo);
988 }
989 if (P->Call.ReadSrcFiles != 1) {
990 SpeedMeasure(P, InitSimTime, StartTimeDo);
991 ResetGramSchTagType(P, Psi, UnOccupied, NotOrthogonal);
992 SpeedMeasure(P, GramSchTime, StartTimeDo);
993 GramSch(P, R->LevS, Psi, Orthonormalize);
994 SpeedMeasure(P, GramSchTime, StopTimeDo);
995 SpeedMeasure(P, InitDensityTime, StartTimeDo);
996 InitDensityCalculation(P);
997 SpeedMeasure(P, InitDensityTime, StopTimeDo);
998 InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
999 //CalculateDensityEnergy(P, 0);
1000 CalculateGapEnergy(P);
1001 EnergyAllReduce(P);
1002 SpeedMeasure(P, InitSimTime, StopTimeDo);
1003 R->LevS->Step++;
1004 EnergyOutput(P,0);
1005 if(P->Call.out[LeaderOut]) fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[R->CurrentMin]);
1006 while (*Stop != 1) {
1007 CalculateNewWave(P,NULL);
1008 UpdateActualPsiNo(P, UnOccupied);
1009 /* New */
1010 UpdateEnergyArray(P);
1011 SpeedMeasure(P, DensityTime, StartTimeDo);
1012 UpdateDensityCalculation(P);
1013 SpeedMeasure(P, DensityTime, StopTimeDo);
1014 UpdatePsiEnergyCalculation(P);
1015 //CalculateDensityEnergy(P, 0);
1016 CalculateGapEnergy(P); //calculates XC, HGDensity, afterwards gradient, where V_xc is added upon HGDensity
1017 EnergyAllReduce(P);
1018 if (*SuperStop != 1)
1019 *SuperStop = CheckCPULIM(P);
1020 *Stop = CalculateMinimumStop(P, *SuperStop);
1021 /*EnergyOutput(P, Stop);*/
1022 P->Speed.Steps++;
1023 R->LevS->Step++;
1024 /*ControlNativeDensity(P);*/
1025 }
1026 OutputVisSrcFiles(P, UnOccupied);
1027// if (!TestReadnWriteSrcDensity(P,UnOccupied))
1028// Error(SomeError,"TestReadnWriteSrcDensity failed!");
1029 }
1030 TestGramSch(P,R->LevS,Psi, UnOccupied);
1031 ResetGramSchTagType(P, Psi, UnOccupied, NotUsedToOrtho);
1032 // re-calculate Occupied values (in preparation for perturbed ones)
1033 UpdateActualPsiNo(P, Occupied); // step on to next occupied one
1034 SpeedMeasure(P, DensityTime, StartTimeDo);
1035 InitDensityCalculation(P); // re-init densities to occupied standard
1036 SpeedMeasure(P, DensityTime, StopTimeDo);
1037// InitPsiEnergyCalculation(P,Occupied);
1038// CalculateDensityEnergy(P, 0);
1039// EnergyAllReduce(P);
1040}
1041
1042
1043/** Calculate the forces.
1044 * From RunStruct::LevSNo downto RunStruct::InitLevSNo the following routines are called in a loop:
1045 * -# In case of RunStruct#DoSeparated another loop begins for the unoccupied states with some reinitalization
1046 * before and afterwards. The loop however is much the same as the one above.
1047 * -# ChangeToLevUp()\n
1048 * Repeat the loop or when the above stop is reached, the level is changed and the loop repeated.
1049 *
1050 * Afterwards comes the actual force and energy calculation by calling:
1051 * -# ControlNativeDensity()\n
1052 * Checks if the density still reproduces particle number.
1053 * -# CalculateIonLocalForce(), SpeedMeasure()'d in LocFTime\n
1054 * Calculale local part of force acting on Ions.
1055 * -# CalculateIonNonLocalForce(), SpeedMeasure()'d in NonLocFTime\n
1056 * Calculale local part of force acting on Ions.
1057 * -# CalculateEwald()\n
1058 * Calculate Ewald force acting on Ions.
1059 * -# CalculateIonForce()\n
1060 * Sum up those three contributions.
1061 * -# CorrectForces()\n
1062 * Shifts center of gravity of all forces for each Ion, so that the cell itself remains at rest.
1063 * -# GetOuterStop()
1064 * Calculates a mean force per Ion.
1065 * \param *P Problem at hand
1066 * \return 1 - cpulim received, break operation, 0 - continue as normal
1067 */
1068int CalculateForce(struct Problem *P)
1069{
1070 struct RunStruct *R = &P->R;
1071 struct Lattice *Lat = &P->Lat;
1072 struct Psis *Psi = &Lat->Psi;
1073 struct LatticeLevel *LevS = R->LevS;
1074 struct FileData *F = &P->Files;
1075 struct Ions *I = &P->Ion;
1076 int Stop=0, SuperStop = 0, OuterStop = 0;
1077 //int i, j;
1078 SpeedMeasure(P, SimTime, StartTimeDo);
1079 if ((F->DoOutVis == 2) || (P->Call.ForcesFile == NULL)) { // if we want to draw those pretty density pictures, we have to solve the ground state in any case
1080 while ((R->LevSNo > R->InitLevSNo) || (!Stop && R->LevSNo == R->InitLevSNo)) {
1081 // occupied
1082 R->PsiStep = R->MaxPsiStep; // reset in-Psi-minimisation-counter, so that we really advance to the next wave function
1083 R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset OldActualLocalPsiNo, as it might still point to a perturbed wave function from last level
1084 UpdateGramSchOldActualPsiNo(P,Psi);
1085 ControlNativeDensity(P);
1086 MinimiseOccupied(P, &Stop, &SuperStop);
1087 if (!I->StructOpt) {
1088 if ((P->Call.ReadSrcFiles != 1) || (!ParseWannierFile(P))) { // only localize and store if they have just been minimised (hence don't come solely from file), otherwise read stored values from file (if possible)
1089 SpeedMeasure(P, WannierTime, StartTimeDo);
1090 ComputeMLWF(P); // localization of orbitals
1091 SpeedMeasure(P, WannierTime, StopTimeDo);
1092 OutputVisSrcFiles(P, Occupied); // rewrite now localized orbitals
1093 // if (!TestReadnWriteSrcDensity(P,Occupied))
1094 // Error(SomeError,"TestReadnWriteSrcDensity failed!");
1095 }
1096
1097// // plot psi cuts
1098// for (i=0; i < Psi->MaxPsiOfType; i++) // go through all wave functions (here without the extra ones for each process)
1099// if ((Psi->AllPsiStatus[i].PsiType == Occupied) && (Psi->AllPsiStatus[i].my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi))
1100// for (j=0;j<NDIM;j++) {
1101// //fprintf(stderr,"(%i) Plotting Psi %i/%i cut axis %i at coordinate %lg \n",P->Par.me, i, Psi->AllPsiStatus[i].MyGlobalNo, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j]);
1102// CalculateOneDensityR(Lat, R->LevS, R->Lev0->Dens, R->LevS->LPsi->LocalPsi[Psi->AllPsiStatus[i].MyLocalNo], R->Lev0->Dens->DensityArray[ActualDensity], R->FactorDensityR, 0);
1103// PlotSrcPlane(P, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j], Psi->AllPsiStatus[i].MyGlobalNo, R->Lev0->Dens->DensityArray[ActualDensity]);
1104// }
1105
1106 // unoccupied calc
1107 if (R->DoUnOccupied) {
1108 MinimiseUnoccupied(P, &Stop, &SuperStop);
1109 }
1110 // hamiltonian
1111 CalculateHamiltonian(P); // lambda_{kl} needed (and for bandgap after UnOccupied)
1112
1113 //TestSawtooth(P, 0);
1114 //TestSawtooth(P, 1);
1115 //TestSawtooth(P, 2);
1116
1117 // perturbed calc
1118 if ((R->DoPerturbation)) { // && R->LevSNo <= R->InitLevSNo) {
1119 AllocCurrentDensity(R->Lev0->Dens);// lock current density arrays
1120 MinimisePerturbed(P, &Stop, &SuperStop); // herein InitDensityCalculation() is called, thus no need to call it beforehand
1121
1122 SpeedMeasure(P, CurrDensTime, StartTimeDo);
1123 if (SuperStop != 1) {
1124 if ((R->DoFullCurrent == 1) || ((R->DoFullCurrent == 2) && (CheckOrbitalOverlap(P) == 1))) { //test to check whether orbitals have mutual overlap and thus \\DeltaJ_{xc} must not be dropped
1125 R->DoFullCurrent = 1; // set to 1 if it was 2 but Check...() yielded necessity
1126 //debug(P,"Filling with Delta j ...");
1127 FillDeltaCurrentDensity(P);
1128 }
1129 }
1130 SpeedMeasure(P, CurrDensTime, StopTimeDo);
1131 TestCurrent(P,0);
1132 TestCurrent(P,1);
1133 TestCurrent(P,2);
1134 if (F->DoOutCurr && R->Lev0->LevelNo == 0) // only output in uppermost level)
1135 OutputCurrentDensity(P);
1136 if (R->VectorPlane != -1)
1137 PlotVectorPlane(P,R->VectorPlane,R->VectorCut);
1138 CalculateMagneticSusceptibility(P);
1139 debug(P,"Normal calculation of shielding over R-space");
1140 CalculateChemicalShielding(P);
1141 CalculateChemicalShieldingByReciprocalCurrentDensity(P);
1142 SpeedMeasure(P, CurrDensTime, StopTimeDo);
1143 DisAllocCurrentDensity(R->Lev0->Dens); // unlock current density arrays
1144 } // end of if perturbation
1145 InitDensityCalculation(P); // all unperturbed(!) wave functions've "changed" from ComputeMLWF(), thus reinit density
1146 } else // end of if StructOpt or MaxOuterStep
1147 OutputVisSrcFiles(P, Occupied); // in structopt or MD write for every level
1148
1149 if ((!I->StructOpt) && (!R->MaxOuterStep)) // print intermediate levels energy results if we don't do MD or StructOpt
1150 EnergyOutput(P, 1);
1151 // next level
1152 ChangeToLevUp(P, &Stop);
1153 //if (isnan(LevS->LPsi->LocalPsi[R->ActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in ChangeToLevUp(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->ActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
1154 LevS = R->LevS; // re-set pointer that's changed from LevUp
1155 }
1156 SpeedMeasure(P, SimTime, StopTimeDo);
1157 ControlNativeDensity(P);
1158 TestGramSch(P,LevS,Psi, Occupied);
1159 // necessary for correct ionic forces ...
1160 SpeedMeasure(P, LocFTime, StartTimeDo);
1161 CalculateIonLocalForce(P);
1162 SpeedMeasure(P, LocFTime, StopTimeDo);
1163 SpeedMeasure(P, NonLocFTime, StartTimeDo);
1164 CalculateIonNonLocalForce(P);
1165 SpeedMeasure(P, NonLocFTime, StopTimeDo);
1166 CalculateEwald(P, 1);
1167 CalculateIonForce(P);
1168 }
1169 if (P->Call.ForcesFile != NULL) { // if we parse forces from file, values are written over (in case of DoOutVis)
1170 fprintf(stderr, "Parsing Forces from file.\n");
1171 ParseIonForce(P);
1172 //CalculateIonForce(P);
1173 }
1174 CorrectForces(P);
1175 // ... on output of densities
1176 if (F->DoOutOrbitals) { // output of each orbital
1177 debug(P,"OutputVisAllOrbital");
1178 OutputVisAllOrbital(P,0,1,Occupied);
1179 }
1180 //OutputNorm(P);
1181 //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
1182 //OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
1183 /*TestGramSch(P, R->LevS, &P->Lat.Psi); */
1184 GetOuterStop(P);
1185 //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
1186 if (SuperStop) OuterStop = 1;
1187 return OuterStop;
1188}
1189
1190/** Checks whether the given positions \a *v have changed wrt stored in IonData structure.
1191 * \param *P Problem at hand
1192 * \param *v gsl_vector storing new positions
1193 */
1194int CheckForChangedPositions(struct Problem *P, const gsl_vector *v)
1195{
1196 struct Ions *I = &P->Ion;
1197 int is,ia,k, index=0;
1198 int diff = 0;
1199 double *R_ion;
1200 for (is=0; is < I->Max_Types; is++) // for all elements
1201 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1202 R_ion = &I->I[is].R[NDIM*ia];
1203 for (k=0;k<NDIM;k++) { // for all dimensions
1204 if (fabs(R_ion[k] - gsl_vector_get (v, index++)) > MYEPSILON)
1205 diff++;
1206 }
1207 }
1208 return diff;
1209}
1210
1211/** Wrapper for CalculateForce() for simplex minimisation of total energy.
1212 * \param *v vector with degrees of freedom
1213 * \param *params additional arguments, here Problem at hand
1214 */
1215double StructOpt_func(const gsl_vector *v, void *params)
1216{
1217 struct Problem *P = (struct Problem *)params;
1218 struct RunStruct *R = &P->R;
1219 struct Ions *I = &P->Ion;
1220 struct Energy *E = P->Lat.E;
1221 int i;
1222 double *R_ion, *R_old, *R_old_old;//, *FIon;
1223 //double norm = 0.;
1224 int is,ia,k,index = 0;
1225 int OuterStop;
1226 double diff = 0., tmp;
1227 debug (P, "StructOpt_func");
1228 if (CheckForChangedPositions(P,v)) {
1229 // update ion positions from vector coordinates
1230 for (is=0; is < I->Max_Types; is++) // for all elements
1231 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1232 R_ion = &I->I[is].R[NDIM*ia];
1233 R_old = &I->I[is].R_old[NDIM*ia];
1234 R_old_old = &I->I[is].R_old_old[NDIM*ia];
1235 tmp = 0.;
1236 for (k=0;k<NDIM;k++) { // for all dimensions
1237 R_old_old[k] = R_old[k];
1238 R_old[k] = R_ion[k];
1239 tmp += (R_ion[k]-gsl_vector_get (v, index))*(R_ion[k]-gsl_vector_get (v, index));
1240 R_ion[k] = gsl_vector_get (v, index++);
1241 }
1242 diff += sqrt(tmp);
1243 }
1244 if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Summed Difference to former position %lg\n", P->Par.me, diff);
1245 // recalculate ionic forces (do electronic minimisation)
1246 R->OuterStep++;
1247 R->NewRStep++;
1248 UpdateWaveAfterIonMove(P);
1249 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1250 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1251 UpdateToNewWaves(P);
1252 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1253 OuterStop = CalculateForce(P);
1254 //UpdateIonsU(P);
1255 //CorrectVelocity(P);
1256 //CalculateEnergyIonsU(P);
1257 /* if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
1258 ScaleTemp(P);*/
1259 if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
1260 OutputVisSrcFiles(P, Occupied);
1261 if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
1262 /* // recalculate density for the specific wave function ...
1263 CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
1264 // ... and output (wherein ActualDensity is used instead of TotalDensity)
1265 OutputVis(P);
1266 OutputIonForce(P);
1267 EnergyOutput(P, 1);*/
1268 }
1269 }
1270 if (P->Par.me == 0) fprintf(stderr,"(%i) TE %e\n",P->Par.me, E->TotalEnergy[0]);
1271 return E->TotalEnergy[0];
1272}
1273
1274/** Wrapper for CalculateForce() for simplex minimisation of ionic forces.
1275 * \param *v vector with degrees of freedom
1276 * \param *params additional arguments, here Problem at hand
1277 */
1278double StructOpt_f(const gsl_vector *v, void *params)
1279{
1280 struct Problem *P = (struct Problem *)params;
1281 struct RunStruct *R = &P->R;
1282 struct Ions *I = &P->Ion;
1283 struct Energy *E = P->Lat.E;
1284 int i;
1285 double *R_ion, *R_old, *R_old_old;//, *FIon;
1286 //double norm = 0.;
1287 int is,ia,k,index = 0;
1288 int OuterStop;
1289 double diff = 0., tmp;
1290 //debug (P, "StructOpt_f");
1291 if (CheckForChangedPositions(P,v)) {
1292 // update ion positions from vector coordinates
1293 for (is=0; is < I->Max_Types; is++) // for all elements
1294 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1295 R_ion = &I->I[is].R[NDIM*ia];
1296 R_old = &I->I[is].R_old[NDIM*ia];
1297 R_old_old = &I->I[is].R_old_old[NDIM*ia];
1298 tmp = 0.;
1299 for (k=0;k<NDIM;k++) { // for all dimensions
1300 R_old_old[k] = R_old[k];
1301 R_old[k] = R_ion[k];
1302 tmp += (R_ion[k]-gsl_vector_get (v, index))*(R_ion[k]-gsl_vector_get (v, index));
1303 R_ion[k] = gsl_vector_get (v, index++);
1304 }
1305 diff += sqrt(tmp);
1306 }
1307 if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Summed Difference to former position %lg\n", P->Par.me, diff);
1308 // recalculate ionic forces (do electronic minimisation)
1309 //R->OuterStep++;
1310 R->NewRStep++;
1311 UpdateWaveAfterIonMove(P);
1312 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1313 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1314 UpdateToNewWaves(P);
1315 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1316 OuterStop = CalculateForce(P);
1317 //UpdateIonsU(P);
1318 //CorrectVelocity(P);
1319 //CalculateEnergyIonsU(P);
1320 /* if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
1321 ScaleTemp(P);*/
1322 if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
1323 OutputVisSrcFiles(P, Occupied);
1324 /*if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
1325 // recalculate density for the specific wave function ...
1326 CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
1327 // ... and output (wherein ActualDensity is used instead of TotalDensity)
1328 OutputVis(P);
1329 OutputIonForce(P);
1330 EnergyOutput(P, 1);
1331 }*/
1332 }
1333 GetOuterStop(P);
1334 //if (P->Call.out[LeaderOut] && (P->Par.me == 0)) fprintf(stderr,"(%i) Absolute Force summed over all Ions %e\n",P->Par.me, norm);
1335 return R->MeanForce[0];
1336 //if (P->Call.out[LeaderOut] && (P->Par.me == 0)) fprintf(stderr,"(%i) Struct_optf returning: %lg\n",P->Par.me,E->TotalEnergy[0]);
1337 //return E->TotalEnergy[0];
1338}
1339
1340void StructOpt_df(const gsl_vector *v, void *params, gsl_vector *df)
1341{
1342 struct Problem *P = (struct Problem *)params;
1343 struct Ions *I = &P->Ion;
1344 double *FIon;
1345 int is,ia,k, index=0;
1346 //debug (P, "StructOpt_df");
1347 // look through coordinate vector if positions have changed sind last StructOpt_f call
1348 if (CheckForChangedPositions(P,v)) {// if so, recalc to update forces
1349 debug (P, "Calling StructOpt_f to update");
1350 StructOpt_f(v, params);
1351 }
1352 for (is=0; is < I->Max_Types; is++) // for all elements
1353 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1354 FIon = &I->I[is].FIon[NDIM*ia];
1355 for (k=0;k<NDIM;k++) { // for all dimensions
1356 gsl_vector_set (df, index++, FIon[k]);
1357 }
1358 }
1359 if (P->Call.out[LeaderOut] && (P->Par.me == 0)) {
1360 fprintf(stderr,"(%i) Struct_Optdf returning",P->Par.me);
1361 gsl_vector_fprintf(stderr, df, "%lg");
1362 }
1363}
1364
1365void StructOpt_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df)
1366{
1367 *f = StructOpt_f(x, params);
1368 StructOpt_df(x, params, df);
1369}
1370
1371
1372/** CG implementation for the structure optimization.
1373 * We follow the example from the GSL manual.
1374 * \param *P Problem at hand
1375 */
1376void UpdateIon_PRCG(struct Problem *P)
1377{
1378 //struct RunStruct *Run = &P->R;
1379 struct Ions *I = &P->Ion;
1380 size_t np = NDIM*I->Max_TotalIons; // d.o.f = number of ions times number of dimensions
1381 int is, ia, k, index;
1382 double *R;
1383
1384 const gsl_multimin_fdfminimizer_type *T;
1385 gsl_multimin_fdfminimizer *s;
1386 gsl_vector *x;
1387 gsl_multimin_function_fdf minex_func;
1388
1389 size_t iter = 0;
1390 int status;
1391
1392 /* Starting point */
1393 x = gsl_vector_alloc (np);
1394 //fprintf(stderr,"(%i) d.o.f. = %i\n", P->Par.me, (int)np);
1395
1396 index=0;
1397 for (is=0; is < I->Max_Types; is++) // for all elements
1398 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1399 R = &I->I[is].R[NDIM*ia];
1400 for (k=0;k<NDIM;k++) // for all dimensions
1401 gsl_vector_set (x, index++, R[k]);
1402 }
1403
1404 /* Initialize method and iterate */
1405 minex_func.f = &StructOpt_f;
1406 minex_func.df = &StructOpt_df;
1407 minex_func.fdf = &StructOpt_fdf;
1408 minex_func.n = np;
1409 minex_func.params = (void *)P;
1410
1411 T = gsl_multimin_fdfminimizer_conjugate_pr;
1412 s = gsl_multimin_fdfminimizer_alloc (T, np);
1413
1414 gsl_multimin_fdfminimizer_set (s, &minex_func, x, 0.1, 0.001);
1415
1416 fprintf(stderr,"(%i) Commencing Structure optimization with PRCG: dof %d\n", P->Par.me,(int)np);
1417 do {
1418 iter++;
1419 status = gsl_multimin_fdfminimizer_iterate(s);
1420
1421 if (status)
1422 break;
1423
1424 status = gsl_multimin_test_gradient (s->gradient, 1e-2);
1425
1426 if (status == GSL_SUCCESS)
1427 if (P->Par.me == 0) fprintf (stderr,"(%i) converged to minimum at\n", P->Par.me);
1428
1429 if (P->Call.out[NormalOut]) fprintf(stderr,"(%i) Commencing '%s' step %i ... \n",P->Par.me, gsl_multimin_fdfminimizer_name(s), P->R.StructOptStep);
1430 if ((P->Call.out[NormalOut]) && (P->Par.me == 0)) fprintf (stderr, "(%i) %5d %10.5f\n", P->Par.me, (int)iter, s->f);
1431 //gsl_vector_fprintf(stderr, s->dx, "%lg");
1432 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
1433 OutputIonCoordinates(P, 0);
1434 P->R.StructOptStep++;
1435 } while ((status == GSL_CONTINUE) && (P->R.StructOptStep < P->R.MaxStructOptStep));
1436
1437 gsl_vector_free(x);
1438 gsl_multimin_fdfminimizer_free (s);
1439}
1440
1441/** Simplex implementation for the structure optimization.
1442 * We follow the example from the GSL manual.
1443 * \param *P Problem at hand
1444 */
1445void UpdateIon_Simplex(struct Problem *P)
1446{
1447 struct RunStruct *Run = &P->R;
1448 struct Ions *I = &P->Ion;
1449 size_t np = NDIM*I->Max_TotalIons; // d.o.f = number of ions times number of dimensions
1450 int is, ia, k, index;
1451 double *R;
1452
1453 const gsl_multimin_fminimizer_type *T;
1454 gsl_multimin_fminimizer *s;
1455 gsl_vector *x, *ss;
1456 gsl_multimin_function minex_func;
1457
1458 size_t iter = 0;
1459 int status;
1460 double size;
1461
1462 ss = gsl_vector_alloc (np);
1463 gsl_vector_set_all(ss, .2);
1464 /* Starting point */
1465 x = gsl_vector_alloc (np);
1466 //fprintf(stderr,"(%i) d.o.f. = %i\n", P->Par.me, (int)np);
1467
1468 index=0;
1469 for (is=0; is < I->Max_Types; is++) // for all elements
1470 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1471 R = &I->I[is].R[NDIM*ia];
1472 for (k=0;k<NDIM;k++) // for all dimensions
1473 gsl_vector_set (x, index++, R[k]);
1474 }
1475
1476 /* Initialize method and iterate */
1477 minex_func.f = &StructOpt_f;
1478 minex_func.n = np;
1479 minex_func.params = (void *)P;
1480
1481 T = gsl_multimin_fminimizer_nmsimplex;
1482 s = gsl_multimin_fminimizer_alloc (T, np);
1483
1484 gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
1485
1486 fprintf(stderr,"(%i) Commencing Structure optimization with NM simplex: dof %d\n", P->Par.me, (int)np);
1487 do {
1488 iter++;
1489 status = gsl_multimin_fminimizer_iterate(s);
1490
1491 if (status)
1492 break;
1493
1494 size = gsl_multimin_fminimizer_size (s);
1495 status = gsl_multimin_test_size (size, 1e-4);
1496
1497 if (status == GSL_SUCCESS)
1498 if (P->Par.me == 0) fprintf (stderr,"(%i) converged to minimum at\n", P->Par.me);
1499
1500 if (P->Call.out[MinOut]) fprintf(stderr,"(%i) Commencing '%s' step %i ... \n",P->Par.me, gsl_multimin_fminimizer_name(s), P->R.StructOptStep);
1501 if ((P->Call.out[MinOut]) && (P->Par.me == 0)) fprintf (stderr, "(%i) %5d %10.5f %10.5f\n", P->Par.me, (int)iter, s->fval, size);
1502 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
1503 OutputIonCoordinates(P, 0);
1504 P->R.StructOptStep++;
1505 } while ((status == GSL_CONTINUE) && (Run->OuterStep < Run->MaxOuterStep));
1506
1507 gsl_vector_free(x);
1508 gsl_vector_free(ss);
1509 gsl_multimin_fminimizer_free (s);
1510}
1511
1512/** Implementation of various thermostats.
1513 * All these thermostats apply an additional force which has the following forms:
1514 * -# Woodcock
1515 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
1516 * -# Gaussian
1517 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
1518 * -# Langevin
1519 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
1520 * -# Berendsen
1521 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
1522 * -# Nose-Hoover
1523 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
1524 * These Thermostats either simply rescale the velocities, thus Thermostats() should be called after UpdateIonsU(), and/or
1525 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
1526 * belatedly and the constraint force set.
1527 * \param *P Problem at hand
1528 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
1529 * \sa InitThermostat()
1530 */
1531void Thermostats(struct Problem *P, enum thermostats i)
1532{
1533 struct FileData *Files = &P->Files;
1534 struct Ions *I = &P->Ion;
1535 int is, ia, d;
1536 double *U;
1537 double a, ekin = 0.;
1538 double E = 0., F = 0.;
1539 double delta_alpha = 0.;
1540 const int delta_t = P->R.delta_t;
1541 double ScaleTempFactor;
1542 double sigma;
1543 gsl_rng * r;
1544 const gsl_rng_type * T;
1545
1546 // calculate current temperature
1547 CalculateEnergyIonsU(P); // Temperature now in I->ActualTemp
1548 ScaleTempFactor = P->R.TargetTemp/I->ActualTemp;
1549 //if ((P->Par.me == 0) && (I->ActualTemp < MYEPSILON)) fprintf(stderr,"Thermostat: (1) I->ActualTemp = %lg",I->ActualTemp);
1550 if (Files->MeOutMes) fprintf(Files->TemperatureFile, "%d\t%lg",P->R.OuterStep, I->ActualTemp);
1551
1552 // differentating between the various thermostats
1553 switch(i) {
1554 case None:
1555 debug(P, "Applying no thermostat...");
1556 break;
1557 case Woodcock:
1558 if ((P->R.ScaleTempStep > 0) && ((P->R.OuterStep-1) % P->R.ScaleTempStep == 0)) {
1559 debug(P, "Applying Woodcock thermostat...");
1560 for (is=0; is < I->Max_Types; is++) {
1561 a = 0.5*I->I[is].IonMass;
1562 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1563 U = &I->I[is].U[NDIM*ia];
1564 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1565 for (d=0; d<NDIM; d++) {
1566 U[d] *= sqrt(ScaleTempFactor);
1567 ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
1568 }
1569 }
1570 }
1571 }
1572 break;
1573 case Gaussian:
1574 debug(P, "Applying Gaussian thermostat...");
1575 for (is=0; is < I->Max_Types; is++) { // sum up constraint constant
1576 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1577 U = &I->I[is].U[NDIM*ia];
1578 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1579 for (d=0; d<NDIM; d++) {
1580 F += U[d] * I->I[is].FIon[d+NDIM*ia];
1581 E += U[d]*U[d]*I->I[is].IonMass;
1582 }
1583 }
1584 }
1585 if (P->Call.out[ValueOut]) fprintf(stderr, "(%i) Gaussian Least Constraint constant is %lg\n", P->Par.me, F/E);
1586 for (is=0; is < I->Max_Types; is++) { // apply constraint constant on constraint force and on velocities
1587 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1588 U = &I->I[is].U[NDIM*ia];
1589 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1590 for (d=0; d<NDIM; d++) {
1591 I->I[is].FConstraint[d+NDIM*ia] = (F/E) * (U[d]*I->I[is].IonMass);
1592 U[d] += delta_t/I->I[is].IonMass * (I->I[is].FConstraint[d+NDIM*ia]);
1593 ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
1594 }
1595 }
1596 }
1597 break;
1598 case Langevin:
1599 debug(P, "Applying Langevin thermostat...");
1600 // init random number generator
1601 gsl_rng_env_setup();
1602 T = gsl_rng_default;
1603 r = gsl_rng_alloc (T);
1604 // Go through each ion
1605 for (is=0; is < I->Max_Types; is++) {
1606 sigma = sqrt(P->R.TargetTemp/I->I[is].IonMass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime)
1607 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1608 U = &I->I[is].U[NDIM*ia];
1609 // throw a dice to determine whether it gets hit by a heat bath particle
1610 if (((((rand()/(double)RAND_MAX))*P->R.TempFrequency) < 1.)) { // (I->I[is].IMT[ia] == MoveIon) && even FixedIon moves, only not by other's forces
1611 if (P->Par.me == 0) fprintf(stderr,"(%i) Particle %i,%i was hit (sigma %lg): %lg -> ", P->Par.me, is, ia, sigma, sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]));
1612 // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis
1613 for (d=0; d<NDIM; d++) {
1614 U[d] = gsl_ran_gaussian (r, sigma);
1615 }
1616 if (P->Par.me == 0) fprintf(stderr,"%lg\n", sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]));
1617 }
1618 for (d=0; d<NDIM; d++)
1619 ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
1620 }
1621 }
1622 break;
1623 case Berendsen:
1624 debug(P, "Applying Berendsen-VanGunsteren thermostat...");
1625 for (is=0; is < I->Max_Types; is++) {
1626 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1627 U = &I->I[is].U[NDIM*ia];
1628 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1629 for (d=0; d<NDIM; d++) {
1630 U[d] *= sqrt(1+(P->R.delta_t/P->R.TempFrequency)*(ScaleTempFactor-1));
1631 ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
1632 }
1633 }
1634 }
1635 break;
1636 case NoseHoover:
1637 debug(P, "Applying Nose-Hoover thermostat...");
1638 // dynamically evolve alpha (the additional degree of freedom)
1639 delta_alpha = 0.;
1640 for (is=0; is < I->Max_Types; is++) { // sum up constraint constant
1641 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1642 U = &I->I[is].U[NDIM*ia];
1643 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1644 for (d=0; d<NDIM; d++) {
1645 delta_alpha += U[d]*U[d]*I->I[is].IonMass;
1646 }
1647 }
1648 }
1649 delta_alpha = (delta_alpha - (3.*I->Max_TotalIons+1.) * P->R.TargetTemp)/(P->R.HooverMass*Units2Electronmass);
1650 P->R.alpha += delta_alpha*delta_t;
1651 if (P->Par.me == 0) fprintf(stderr,"(%i) alpha = %lg * %i = %lg\n", P->Par.me, delta_alpha, delta_t, P->R.alpha);
1652 // apply updated alpha as additional force
1653 for (is=0; is < I->Max_Types; is++) { // apply constraint constant on constraint force and on velocities
1654 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1655 U = &I->I[is].U[NDIM*ia];
1656 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1657 for (d=0; d<NDIM; d++) {
1658 I->I[is].FConstraint[d+NDIM*ia] = - P->R.alpha * (U[d] * I->I[is].IonMass);
1659 U[d] += delta_t/I->I[is].IonMass * (I->I[is].FConstraint[d+NDIM*ia]);
1660 ekin += (0.5*I->I[is].IonMass) * U[d]*U[d];
1661 }
1662 }
1663 }
1664 break;
1665 }
1666 I->EKin = ekin;
1667 I->ActualTemp = (2./(3.*I->Max_TotalIons)*I->EKin);
1668 //if ((P->Par.me == 0) && (I->ActualTemp < MYEPSILON)) fprintf(stderr,"Thermostat: (2) I->ActualTemp = %lg",I->ActualTemp);
1669 if (Files->MeOutMes) { fprintf(Files->TemperatureFile, "\t%lg\n", I->ActualTemp); fflush(Files->TemperatureFile); }
1670}
1671
1672/** Does the Molecular Dynamics Calculations.
1673 * All of the following is SpeedMeasure()'d in SimTime.
1674 * Initialization by calling:
1675 * -# CorrectVelocity()\n
1676 * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
1677 * -# CalculateEnergyIonsU(), SpeedMeasure()'d in TimeTypes#InitSimTime\n
1678 * Calculates kinetic energy of "movable" Ions.
1679 * -# CalculateForce()\n
1680 * Does the minimisation, calculates densities, then energies and finally the forces.
1681 * -# OutputVisSrcFiles()\n
1682 * If desired, so-far made calculations are stored to file for later restarting.
1683 * -# OutputIonForce()\n
1684 * Write ion forces to file.
1685 * -# EnergyOutput()\n
1686 * Write calculated energies to screen or file.
1687 *
1688 * The simulation phase begins:
1689 * -# UpdateIonsR()\n
1690 * Move Ions according to the calculated force.
1691 * -# UpdateWaveAfterIonMove()\n
1692 * Update wave functions by averaging LocalPsi coefficients after the Ions have been shifted.
1693 * -# UpdateToNewWaves()\n
1694 * Update after wave functions have changed.
1695 * -# CalculateForce()\n
1696 * Does the minimisation, calculates densities, then energies and finally the forces.
1697 * -# UpdateIonsU()\n
1698 * Change ion's velocities according to the calculated acting force.
1699 * -# CorrectVelocity()\n
1700 * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
1701 * -# CalculateEnergyIonsU()\n
1702 * Calculates kinetic energy of "movable" Ions.
1703 * -# ScaleTemp()\n
1704 * The temperature is scaled, so the systems energy remains constant (they must not gain momenta out of nothing)
1705 * -# OutputVisSrcFiles()\n
1706 * If desired, so-far made calculations are stored to file for later restarting.
1707 * -# OutputVis()\n
1708 * Visulization data for OpenDX is written at certain steps if desired.
1709 * -# OutputIonForce()\n
1710 * Write ion forces to file.
1711 * -# EnergyOutput()\n
1712 * Write calculated energies to screen or file.
1713 *
1714 * After the ground state is found:
1715 * -# CalculateUnOccupied()\n
1716 * Energies of unoccupied orbitals - that have been left out completely so far -
1717 * are calculated.
1718 * -# TestGramSch()\n
1719 * Test if orbitals are still orthogonal.
1720 * -# CalculateHamiltonian()\n
1721 * Construct Hamiltonian and calculate Eigenvalues.
1722 * -# ComputeMLWF()\n
1723 * Localize orbital wave functions.
1724 *
1725 * \param *P Problem at hand
1726 */
1727void CalculateMD(struct Problem *P)
1728{
1729 struct RunStruct *R = &P->R;
1730 struct Ions *I = &P->Ion;
1731 struct Energy *E = P->Lat.E;
1732 int OuterStop = 0;
1733 int i;
1734
1735 SpeedMeasure(P, SimTime, StartTimeDo);
1736 // initial calculations (bring density on BO surface and output start energies, coordinates, densities, ...)
1737 SpeedMeasure(P, InitSimTime, StartTimeDo);
1738 R->OuterStep = 0;
1739 CorrectVelocity(P);
1740 CalculateEnergyIonsU(P);
1741 OuterStop = CalculateForce(P);
1742 //R->OuterStep++;
1743 P->Speed.InitSteps++;
1744 SpeedMeasure(P, InitSimTime, StopTimeDo);
1745
1746 OutputIonCoordinates(P, 1);
1747 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
1748 OutputIonForce(P);
1749 EnergyOutput(P, 1);
1750
1751 // if desired perform beforehand a structure relaxation/optimization
1752 if (I->StructOpt) {
1753 debug(P,"Commencing minimisation on ionic structure ...");
1754 R->StructOptStep = 0;
1755 //UpdateIon_PRCG(P);
1756 //UpdateIon_Simplex(P);
1757 while ((R->MeanForce[0] > 1e-4) && (R->StructOptStep < R->MaxStructOptStep)) {
1758 R->StructOptStep++;
1759 OutputIonCoordinates(P, 1);
1760 UpdateIons(P);
1761 UpdateWaveAfterIonMove(P);
1762 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1763 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1764 UpdateToNewWaves(P);
1765 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1766 OuterStop = CalculateForce(P);
1767 CalculateEnergyIonsU(P);
1768 if ((R->StructOptStep-1) % P->R.OutSrcStep == 0)
1769 OutputVisSrcFiles(P, Occupied);
1770 if ((R->StructOptStep-1) % P->R.OutVisStep == 0) {
1771 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
1772 OutputIonForce(P);
1773 EnergyOutput(P, 1);
1774 }
1775 if (P->Par.me == 0) fprintf(stderr,"(%i) Mean force is %lg\n", P->Par.me, R->MeanForce[0]);
1776 }
1777 OutputIonCoordinates(P, 1);
1778 }
1779 if (I->StructOpt && !OuterStop) {
1780 I->StructOpt = 0;
1781 OuterStop = CalculateForce(P);
1782 }
1783
1784 // and now begin with the molecular dynamics simulation
1785 debug(P,"Commencing MD simulation ...");
1786 while (!OuterStop && R->OuterStep < R->MaxOuterStep) {
1787 R->OuterStep++;
1788 if (P->Par.me == 0) {
1789 if (R->OuterStep > 1) fprintf(stderr,"\b\b\b\b\b\b\b\b\b\b\b\b");
1790 fprintf(stderr,"Time: %f fs\r", R->t*Atomictime2Femtoseconds);
1791 fflush(stderr);
1792 }
1793 OuterStop = CalculateForce(P);
1794 P->R.t += P->R.delta_t; // increase current time by delta_t
1795 R->NewRStep++;
1796
1797 UpdateIonsU(P);
1798 CorrectVelocity(P);
1799 Thermostats(P, I->Thermostat);
1800 CalculateEnergyIonsU(P);
1801
1802 UpdateIonsR(P);
1803 OutputIonCoordinates(P, 1);
1804
1805 UpdateWaveAfterIonMove(P);
1806 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1807 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1808 UpdateToNewWaves(P);
1809 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1810 //if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
1811 // ScaleTemp(P);
1812 if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
1813 OutputVisSrcFiles(P, Occupied);
1814 if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
1815 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
1816 OutputIonForce(P);
1817 EnergyOutput(P, 1);
1818 }
1819 ResetForces(P);
1820 }
1821 SpeedMeasure(P, SimTime, StopTimeDo);
1822 CloseOutputFiles(P);
1823}
Note: See TracBrowser for help on using the repository browser.