[a0bcf1] | 1 | /** \file run.c
|
---|
| 2 | * Initialization of levels and calculation super-functions.
|
---|
| 3 | *
|
---|
| 4 | * Most important functions herein are CalculateForce() and CalculateMD(), which calls various
|
---|
| 5 | * functions in order to perfom the Molecular Dynamics simulation. MinimiseOccupied() and MinimiseUnOccupied()
|
---|
| 6 | * call various functions to perform the actual minimisation for the occupied and unoccupied wave functions.
|
---|
| 7 | * CalculateMinimumStop() evaluates the stop condition for desired precision or step count (or external signals).
|
---|
| 8 | *
|
---|
| 9 | * Minor functions are ChangeToLevUp() (which takes the calculation to the next finer level),
|
---|
| 10 | * UpdateActualPsiNo() (next Psi is minimized and an additional orthonormalization takes place) and UpdateToNewWaves()
|
---|
| 11 | * (which reinitializes density calculations after the wave functions have changed due to the ionic motion).
|
---|
| 12 | * OccupyByFermi() re-occupies orbitals according to Fermi distribution if calculated with additional orbitals.
|
---|
| 13 | * InitRun() and InitRunLevel() prepare the RunStruct with starting values. UpdateIon_PRCG() implements a CG
|
---|
| 14 | * algorithm to minimize the ionic forces and thus optimize the structure.
|
---|
| 15 | *
|
---|
| 16 | *
|
---|
| 17 | Project: ParallelCarParrinello
|
---|
| 18 | \author Jan Hamaekers
|
---|
| 19 | \date 2000
|
---|
| 20 |
|
---|
| 21 | File: run.c
|
---|
| 22 | $Id: run.c,v 1.101.2.2 2007-04-21 13:01:13 foo Exp $
|
---|
| 23 | */
|
---|
| 24 |
|
---|
| 25 | #include <signal.h>
|
---|
| 26 | #include <stdlib.h>
|
---|
| 27 | #include <stdio.h>
|
---|
| 28 | #include <string.h>
|
---|
| 29 | #include <math.h>
|
---|
| 30 | #include <gsl/gsl_multimin.h>
|
---|
| 31 | #include <gsl/gsl_vector.h>
|
---|
| 32 | #include <gsl/gsl_errno.h>
|
---|
| 33 | #include <gsl/gsl_math.h>
|
---|
| 34 | #include <gsl/gsl_min.h>
|
---|
[f915e1] | 35 | #include <gsl/gsl_randist.h>
|
---|
[a0bcf1] | 36 | #include "mpi.h"
|
---|
| 37 | #include "data.h"
|
---|
| 38 | #include "errors.h"
|
---|
| 39 | #include "helpers.h"
|
---|
| 40 | #include "init.h"
|
---|
| 41 | #include "opt.h"
|
---|
| 42 | #include "myfft.h"
|
---|
| 43 | #include "gramsch.h"
|
---|
| 44 | #include "output.h"
|
---|
| 45 | #include "energy.h"
|
---|
| 46 | #include "density.h"
|
---|
| 47 | #include "ions.h"
|
---|
| 48 | #include "run.h"
|
---|
| 49 | #include "riemann.h"
|
---|
| 50 | #include "mymath.h"
|
---|
| 51 | #include "pcp.h"
|
---|
| 52 | #include "perturbed.h"
|
---|
| 53 | #include "wannier.h"
|
---|
| 54 |
|
---|
| 55 |
|
---|
| 56 | /** Initialization of the (initial) zero and simulation levels in RunStruct structure.
|
---|
| 57 | * RunStruct::InitLevS is set onto the STANDARTLEVEL in Lattice::Lev[], RunStruct::InitLev0 on
|
---|
| 58 | * level 0, RunStruct::LevS onto Lattice::MaxLevel-1 (maximum level) and RunStruct::Lev0 onto
|
---|
| 59 | * Lattice::MaxLevel-2 (one below).
|
---|
| 60 | * In case of RiemannTensor use an additional Riemann level is intertwined.
|
---|
| 61 | * \param *P Problem at hand
|
---|
| 62 | */
|
---|
| 63 | void InitRunLevel(struct Problem *P)
|
---|
| 64 | {
|
---|
| 65 | struct Lattice *Lat = &P->Lat;
|
---|
| 66 | struct RunStruct *R = &P->R;
|
---|
| 67 | struct RiemannTensor *RT = &Lat->RT;
|
---|
| 68 | int d,i;
|
---|
| 69 |
|
---|
| 70 | switch (Lat->RT.Use) {
|
---|
| 71 | case UseNotRT:
|
---|
| 72 | R->InitLevSNo = STANDARTLEVEL;
|
---|
| 73 | R->InitLev0No = 0;
|
---|
| 74 | R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
|
---|
| 75 | R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
|
---|
| 76 | R->LevSNo = Lat->MaxLevel-1;
|
---|
| 77 | R->Lev0No = Lat->MaxLevel-2;
|
---|
| 78 | R->LevS = &P->Lat.Lev[R->LevSNo];
|
---|
| 79 | R->Lev0 = &P->Lat.Lev[R->Lev0No];
|
---|
| 80 | break;
|
---|
| 81 | case UseRT:
|
---|
| 82 | R->InitLevSNo = STANDARTLEVEL;
|
---|
| 83 | R->InitLev0No = 0;
|
---|
| 84 | R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
|
---|
| 85 | R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
|
---|
| 86 |
|
---|
| 87 | /* R->LevSNo = Lat->MaxLevel-1;
|
---|
| 88 | R->Lev0No = Lat->MaxLevel-2;*/
|
---|
| 89 | R->LevSNo = Lat->MaxLevel-2;
|
---|
| 90 | R->Lev0No = Lat->MaxLevel-3;
|
---|
| 91 |
|
---|
| 92 | R->LevRNo = P->Lat.RT.RiemannLevel;
|
---|
| 93 | R->LevRSNo = STANDARTLEVEL;
|
---|
| 94 | R->LevR0No = 0;
|
---|
| 95 | R->LevS = &P->Lat.Lev[R->LevSNo];
|
---|
| 96 | R->Lev0 = &P->Lat.Lev[R->Lev0No];
|
---|
| 97 | R->LevR = &P->Lat.Lev[R->LevRNo];
|
---|
| 98 | R->LevRS = &P->Lat.Lev[R->LevRSNo];
|
---|
| 99 | R->LevR0 = &P->Lat.Lev[R->LevR0No];
|
---|
| 100 | for (d=0; d<NDIM; d++) {
|
---|
| 101 | RT->NUpLevRS[d] = 1;
|
---|
| 102 | for (i=R->LevRNo-1; i >= R->LevRSNo; i--)
|
---|
| 103 | RT->NUpLevRS[d] *= Lat->LevelSizes[i];
|
---|
| 104 | RT->NUpLevR0[d] = 1;
|
---|
| 105 | for (i=R->LevRNo-1; i >= R->LevR0No; i--)
|
---|
| 106 | RT->NUpLevR0[d] *= Lat->LevelSizes[i];
|
---|
| 107 | }
|
---|
| 108 | break;
|
---|
| 109 | }
|
---|
| 110 | }
|
---|
| 111 |
|
---|
| 112 |
|
---|
| 113 | /** Initialization of RunStruct structure.
|
---|
| 114 | * Most of the actual entries in the RunStruct are set to their starter no-nonsense
|
---|
| 115 | * values (init if LatticeLevel is not STANDARTLEVEL otherwise normal max): FactorDensity,
|
---|
| 116 | * all Steps, XCEnergyFactor and HGcFactor, current and archived energie values are zeroed.
|
---|
| 117 | * \param *P problem at hand
|
---|
| 118 | */
|
---|
| 119 | void InitRun(struct Problem *P)
|
---|
| 120 | {
|
---|
| 121 | struct Lattice *Lat = &P->Lat;
|
---|
| 122 | struct RunStruct *R = &P->R;
|
---|
| 123 | struct Psis *Psi = &Lat->Psi;
|
---|
| 124 | int i,j;
|
---|
| 125 |
|
---|
| 126 | #ifndef SHORTSPEED
|
---|
| 127 | R->MaxMinStepFactor = Psi->AllMaxLocalNo;
|
---|
| 128 | #else
|
---|
| 129 | R->MaxMinStepFactor = SHORTSPEED;
|
---|
| 130 | #endif
|
---|
| 131 | if (R->LevSNo == STANDARTLEVEL) {
|
---|
| 132 | R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
| 133 | R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
|
---|
| 134 | R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
|
---|
| 135 | R->ActualMaxMinStopStep = R->MaxMinStopStep;
|
---|
| 136 | R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
|
---|
| 137 | } else {
|
---|
| 138 | R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
| 139 | R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
|
---|
| 140 | R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
|
---|
| 141 | R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
|
---|
| 142 | R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
|
---|
| 143 | }
|
---|
| 144 |
|
---|
| 145 | R->FactorDensityR = 1./Lat->Volume;
|
---|
| 146 | R->FactorDensityC = Lat->Volume;
|
---|
| 147 |
|
---|
| 148 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
|
---|
[3ff846] | 149 | R->UseForcesFile = 0;
|
---|
[a0bcf1] | 150 | R->UseOldPsi = 1;
|
---|
| 151 | R->MinStep = 0;
|
---|
| 152 | R->PsiStep = 0;
|
---|
| 153 | R->AlphaStep = 0;
|
---|
| 154 | R->DoCalcCGGauss = 0;
|
---|
| 155 | R->CurrentMin = Occupied;
|
---|
| 156 |
|
---|
| 157 | R->MinStopStep = 0;
|
---|
| 158 |
|
---|
| 159 | R->ScanPotential = 0; // in order to deactivate, simply set this to 0
|
---|
| 160 | R->ScanAtStep = 6; // must not be set to same as ScanPotential (then gradient is never calculated)
|
---|
| 161 | R->ScanDelta = 0.01; // step size on advance
|
---|
| 162 | R->ScanFlag = 0; // flag telling that we are scanning
|
---|
| 163 |
|
---|
| 164 | //R->DoBrent = 0; // InitRun() occurs after ReadParameters(), thus this deactivates DoBrent line search
|
---|
| 165 |
|
---|
| 166 | /* R->MaxOuterStep = 1;
|
---|
| 167 | R->MeanForceEps = 0.0;*/
|
---|
| 168 |
|
---|
| 169 | R->NewRStep = 1;
|
---|
| 170 | /* Factor */
|
---|
| 171 | R->XCEnergyFactor = 1.0/R->FactorDensityR;
|
---|
| 172 | R->HGcFactor = 1.0/Lat->Volume;
|
---|
| 173 |
|
---|
| 174 | /* Sollte auch geaendert werden */
|
---|
| 175 | /*Grad->GradientArray[GraSchGradient] = LevS->LPsi->LocalPsi[Psi->LocalNo];*/
|
---|
| 176 |
|
---|
| 177 | for (j=Occupied;j<Extra;j++)
|
---|
| 178 | for (i=0; i < RUNMAXOLD; i++) {
|
---|
| 179 | R->TE[j][i] = 0;
|
---|
| 180 | R->KE[j][i] = 0;
|
---|
| 181 | }
|
---|
| 182 |
|
---|
| 183 | R->MinimisationName = (char **) Malloc((perturbations+3)*(sizeof(char *)), "InitRun: *MinimisationName");
|
---|
| 184 | for (j=Occupied;j<=Extra;j++)
|
---|
| 185 | R->MinimisationName[j] = (char *) MallocString(6*(sizeof(char)), "InitRun: MinimisationName[]");
|
---|
| 186 | strncpy(R->MinimisationName[0],"Occ",6);
|
---|
| 187 | strncpy(R->MinimisationName[1],"UnOcc",6);
|
---|
| 188 | strncpy(R->MinimisationName[2],"P0",6);
|
---|
| 189 | strncpy(R->MinimisationName[3],"P1",6);
|
---|
| 190 | strncpy(R->MinimisationName[4],"P2",6);
|
---|
| 191 | strncpy(R->MinimisationName[5],"RxP0",6);
|
---|
| 192 | strncpy(R->MinimisationName[6],"RxP1",6);
|
---|
| 193 | strncpy(R->MinimisationName[7],"RxP2",6);
|
---|
| 194 | strncpy(R->MinimisationName[8],"Extra",6);
|
---|
| 195 | }
|
---|
| 196 |
|
---|
| 197 | /** Re-occupy orbitals according to Fermi (bottom-up energy-wise).
|
---|
| 198 | * All OnePsiElementAddData#PsiFactor's are set to zero. \a electrons is set to Psi#Use-dependent
|
---|
| 199 | * Psis#GlobalNo.
|
---|
| 200 | * Then we go through OnePsiElementAddData#Lambda, find biggest, put one or two electrons into
|
---|
| 201 | * its PsiFactor, withdraw from \a electrons. Go on as long as there are \a electrons left.
|
---|
| 202 | * \param *P Problem at hand
|
---|
| 203 | */
|
---|
| 204 | void OccupyByFermi(struct Problem *P) {
|
---|
| 205 | struct Lattice *Lat = &P->Lat;
|
---|
| 206 | struct Psis *Psi = &Lat->Psi;
|
---|
| 207 | int i, index, electrons = 0;
|
---|
| 208 | double lambda, electronsperorbit;
|
---|
| 209 |
|
---|
| 210 | for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
|
---|
| 211 | Psi->LocalPsiStatus[i].PsiFactor = 0.0;
|
---|
| 212 | Psi->LocalPsiStatus[i].PsiType = UnOccupied;
|
---|
| 213 | //Psi->LocalPsiStatus[i].PsiGramSchStatus = (R->DoSeparated) ? NotUsedToOrtho : NotOrthogonal;
|
---|
| 214 | }
|
---|
| 215 |
|
---|
| 216 | electronsperorbit = (Psi->Use == UseSpinUpDown) ? 1 : 2;
|
---|
| 217 | switch (Psi->PsiST) { // how many electrons may we re-distribute
|
---|
| 218 | case SpinDouble:
|
---|
| 219 | electrons = Psi->GlobalNo[PsiMaxNoDouble];
|
---|
| 220 | break;
|
---|
| 221 | case SpinUp:
|
---|
| 222 | electrons = Psi->GlobalNo[PsiMaxNoUp];
|
---|
| 223 | break;
|
---|
| 224 | case SpinDown:
|
---|
| 225 | electrons = Psi->GlobalNo[PsiMaxNoDown];
|
---|
| 226 | break;
|
---|
| 227 | }
|
---|
| 228 | while (electrons > 0) {
|
---|
| 229 | lambda = 0.0;
|
---|
| 230 | index = 0;
|
---|
| 231 | for (i=0; i< Psi->LocalNo; i++) // seek biggest unoccupied one
|
---|
| 232 | if ((lambda < Psi->AddData[i].Lambda) && (Psi->LocalPsiStatus[i].PsiFactor == 0.0)) {
|
---|
| 233 | index = i;
|
---|
| 234 | lambda = Psi->AddData[i].Lambda;
|
---|
| 235 | }
|
---|
| 236 | Psi->LocalPsiStatus[index].PsiFactor = electronsperorbit; // occupy state
|
---|
| 237 | Psi->LocalPsiStatus[index].PsiType = Occupied;
|
---|
| 238 | electrons--; // one electron less
|
---|
| 239 | }
|
---|
| 240 | for (i=0; i< Psi->LocalNo; i++) // set all PsiFactors to zero
|
---|
| 241 | if (Psi->LocalPsiStatus[i].PsiType == UnOccupied) Psi->LocalPsiStatus[i].PsiFactor = 1.0;
|
---|
| 242 |
|
---|
| 243 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
| 244 | UpdateDensityCalculation(P);
|
---|
| 245 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
| 246 | InitPsiEnergyCalculation(P,Occupied); // goes through all orbitals calculating kinetic and non-local
|
---|
| 247 | CalculateDensityEnergy(P, 0);
|
---|
| 248 | EnergyAllReduce(P);
|
---|
| 249 | // SetCurrentMinState(P,UnOccupied);
|
---|
| 250 | // InitPsiEnergyCalculation(P,UnOccupied); /* STANDARTLEVEL */
|
---|
| 251 | // CalculateGapEnergy(P); /* STANDARTLEVEL */
|
---|
| 252 | // EnergyAllReduce(P);
|
---|
| 253 | // SetCurrentMinState(P,Occupied);
|
---|
| 254 | }
|
---|
| 255 |
|
---|
| 256 | /** Use next local Psi: Update RunStruct::ActualLocalPsiNo.
|
---|
| 257 | * Increases OnePsiElementAddData::Step, RunStruct::MinStep and RunStruct::PsiStep.
|
---|
| 258 | * RunStruct::OldActualLocalPsiNo is set to current one and this distributed
|
---|
| 259 | * (UpdateGramSchOldActualPsiNo()) among process.
|
---|
| 260 | * Afterwards RunStruct::ActualLocalPsiNo is increased (modulo Psis::LocalNo of
|
---|
| 261 | * this process) and again distributed (UpdateGramSchActualPsiNo()).
|
---|
| 262 | * Due to change in the GramSchmidt-Status, GramSch() is called for Orthonormalization.
|
---|
| 263 | * \param *P Problem at hand#
|
---|
| 264 | * \param IncType skip types PsiTypeTag#UnOccupied or PsiTypeTag#Occupied we only want next(thus we can handily advance only through either type)
|
---|
| 265 | */
|
---|
| 266 | void UpdateActualPsiNo(struct Problem *P, enum PsiTypeTag IncType)
|
---|
| 267 | {
|
---|
| 268 | struct RunStruct *R = &P->R;
|
---|
| 269 | if (R->CurrentMin != IncType) {
|
---|
| 270 | SetCurrentMinState(P,IncType);
|
---|
| 271 | R->PsiStep = R->MaxPsiStep; // force step to next Psi
|
---|
| 272 | }
|
---|
| 273 | P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
|
---|
| 274 | R->MinStep++;
|
---|
| 275 | R->PsiStep++;
|
---|
| 276 | if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) {
|
---|
| 277 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
| 278 | UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
|
---|
| 279 | }
|
---|
| 280 | if (R->PsiStep >= R->MaxPsiStep) {
|
---|
| 281 | R->PsiStep=0;
|
---|
| 282 | do {
|
---|
| 283 | R->ActualLocalPsiNo++;
|
---|
| 284 | R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
|
---|
| 285 | } while (P->Lat.Psi.AllPsiStatus[R->ActualLocalPsiNo].PsiType != IncType);
|
---|
| 286 | UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
|
---|
| 287 | //fprintf(stderr,"(%i) ActualLocalNo: %d\n", P->Par.me, R->ActualLocalPsiNo);
|
---|
| 288 | }
|
---|
| 289 | if ((R->UseAddGramSch == 1 && (R->OldActualLocalPsiNo != R->ActualLocalPsiNo || P->Lat.Psi.NoOfPsis == 1)) || R->UseAddGramSch == 2) {
|
---|
| 290 | if (P->Lat.Psi.LocalPsiStatus[R->OldActualLocalPsiNo].PsiGramSchStatus != NotUsedToOrtho) // don't reset by accident last psi of former minimisation run
|
---|
| 291 | SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
|
---|
| 292 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
[3ff846] | 293 | //OrthogonalizePsis(P);
|
---|
[41521a] | 294 | if (R->CurrentMin <= UnOccupied)
|
---|
| 295 | GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
|
---|
| 296 | else
|
---|
| 297 | GramSch(P, R->LevS, &P->Lat.Psi, Orthogonalize); //Orthogonalize
|
---|
[a0bcf1] | 298 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
| 299 | }
|
---|
| 300 | }
|
---|
| 301 |
|
---|
| 302 | /** Resets all OnePsiElement#DoBrent.\
|
---|
| 303 | * \param *P Problem at hand
|
---|
| 304 | * \param *Psi pointer to wave functions
|
---|
| 305 | */
|
---|
| 306 | void ResetBrent(struct Problem *P, struct Psis *Psi) {
|
---|
| 307 | int i;
|
---|
| 308 | for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
|
---|
| 309 | //fprintf(stderr,"(%i) DoBrent[%i] = %i\n", P->Par.me, i, Psi->LocalPsiStatus[i].DoBrent);
|
---|
| 310 | if (Psi->LocalPsiStatus[i].PsiType == Occupied) Psi->LocalPsiStatus[i].DoBrent = 4;
|
---|
| 311 | }
|
---|
| 312 | }
|
---|
| 313 |
|
---|
| 314 | /** Sets current minimisation state.
|
---|
| 315 | * Stores given \a state in RunStruct#CurrentMin and sets pointer Lattice#E accordingly.
|
---|
| 316 | * \param *P Problem at hand
|
---|
| 317 | * \param state given PsiTypeTag state
|
---|
| 318 | */
|
---|
| 319 | void SetCurrentMinState(struct Problem *P, enum PsiTypeTag state) {
|
---|
| 320 | P->R.CurrentMin = state;
|
---|
| 321 | P->R.TotalEnergy = &(P->R.TE[state][0]);
|
---|
| 322 | P->R.KineticEnergy = &(P->R.KE[state][0]);
|
---|
| 323 | P->R.ActualRelTotalEnergy = &(P->R.ActualRelTE[state][0]);
|
---|
| 324 | P->R.ActualRelKineticEnergy = &(P->R.ActualRelKE[state][0]);
|
---|
| 325 | P->Lat.E = &(P->Lat.Energy[state]);
|
---|
| 326 | }
|
---|
| 327 | /*{
|
---|
| 328 | struct RunStruct *R = &P->R;
|
---|
| 329 | struct Lattice *Lat = &P->Lat;
|
---|
| 330 | struct Psis *Psi = &Lat->Psi;
|
---|
| 331 | P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
|
---|
| 332 | R->MinStep++;
|
---|
| 333 | R->PsiStep++;
|
---|
| 334 | if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) { // remember old actual local number
|
---|
| 335 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
| 336 | UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
|
---|
| 337 | }
|
---|
| 338 | if (R->PsiStep >= R->MaxPsiStep) { // done enough minimisation steps for this orbital?
|
---|
| 339 | R->PsiStep=0;
|
---|
| 340 | do { // step on as long as we are still on a SkipType orbital
|
---|
| 341 | R->ActualLocalPsiNo++;
|
---|
| 342 | R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
|
---|
| 343 | } while ((P->Lat.Psi.LocalPsiStatus[R->ActualLocalPsiNo].PsiType == SkipType));
|
---|
| 344 | UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
|
---|
| 345 | if (R->UseAddGramSch >= 1) {
|
---|
| 346 | SetGramSchOldActualPsi(P,Psi,NotOrthogonal);
|
---|
| 347 | // setze von OldActual bis bla auf nicht orthogonal
|
---|
| 348 | GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
|
---|
| 349 | }
|
---|
| 350 | } else if (R->UseAddGramSch == 2) {
|
---|
| 351 | SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
|
---|
| 352 | //if (SkipType == UnOccupied)
|
---|
| 353 | //ResetGramSch(P,Psi);
|
---|
| 354 | //fprintf(stderr,"UpdateActualPsiNo: GramSch() for %i\n",R->OldActualLocalPsiNo);
|
---|
| 355 | GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
|
---|
| 356 | }
|
---|
| 357 | }*/
|
---|
| 358 |
|
---|
| 359 | /** Upgrades the calculation to the next finer level.
|
---|
| 360 | * If we are below the initial level,
|
---|
| 361 | * ChangePsiAndDensToLevUp() prepares density and Psi coefficients.
|
---|
| 362 | * Then the level change is made as RunStruct::LevSNo and RunStruct::Lev0No are decreased.
|
---|
| 363 | * The RunStruct::OldActualLocalPsi is set to current one and both are distributed
|
---|
| 364 | * (UpdateGramSchActualPsiNo(), UpdateGramSchOldActualPsiNo()).
|
---|
| 365 | * The PseudoPot'entials adopt the level up by calling ChangePseudoToLevUp().
|
---|
| 366 | * Now we are prepared to reset Energy::PsiEnergy and local and total density energy and
|
---|
| 367 | * recalculate them: InitPsiEnergyCalculation(), CalculateDensityEnergy() and CalculateIonsEnergy().
|
---|
| 368 | * Results are gathered EnergyAllReduce() and the output made EnergyOutput().
|
---|
| 369 | * Finally, the stop condition are reset for the new level (depending if it's the STANDARTLEVEL or
|
---|
| 370 | * not).
|
---|
| 371 | * \param *P Problem at hand
|
---|
| 372 | * \param *Stop is set to zero if we are below or equal to init level (see CalculateForce())
|
---|
| 373 | * \sa UpdateToNewWaves() very similar in the procedure, only the update of the Psis and density
|
---|
| 374 | * (ChangePsiAndDensToLevUp()) is already made there.
|
---|
| 375 | * \bug Missing TotalEnergy shifting for other PsiTypeTag's!
|
---|
| 376 | */
|
---|
| 377 | static void ChangeToLevUp(struct Problem *P, int *Stop)
|
---|
| 378 | {
|
---|
| 379 | struct RunStruct *R = &P->R;
|
---|
| 380 | struct Lattice *Lat = &P->Lat;
|
---|
| 381 | struct Psis *Psi = &Lat->Psi;
|
---|
| 382 | struct Energy *E = Lat->E;
|
---|
| 383 | struct RiemannTensor *RT = &Lat->RT;
|
---|
| 384 | int i;
|
---|
| 385 | if (R->LevSNo <= R->InitLevSNo) {
|
---|
[4931e0] | 386 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
| 387 | fprintf(stderr, "(%i) ChangeLevUp: LevSNo(%i) <= InitLevSNo(%i)\n", P->Par.me, R->LevSNo, R->InitLevSNo);
|
---|
[a0bcf1] | 388 | *Stop = 1;
|
---|
| 389 | return;
|
---|
| 390 | }
|
---|
| 391 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
| 392 | fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i)\n", R->LevSNo, R->InitLevSNo);
|
---|
| 393 | *Stop = 0;
|
---|
| 394 | P->Speed.LevUpSteps++;
|
---|
| 395 | SpeedMeasure(P, SimTime, StopTimeDo);
|
---|
| 396 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
| 397 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
| 398 | ChangePsiAndDensToLevUp(P);
|
---|
| 399 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
| 400 | R->LevSNo--;
|
---|
| 401 | R->Lev0No--;
|
---|
| 402 | if (RT->ActualUse == standby && R->LevSNo == STANDARTLEVEL) {
|
---|
| 403 | P->Lat.RT.ActualUse = active;
|
---|
| 404 | CalculateRiemannTensorData(P);
|
---|
| 405 | Error(SomeError, "Calculate RT: Not further implemented");
|
---|
| 406 | }
|
---|
| 407 | R->LevS = &P->Lat.Lev[R->LevSNo];
|
---|
| 408 | R->Lev0 = &P->Lat.Lev[R->Lev0No];
|
---|
| 409 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
| 410 | UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
|
---|
| 411 | UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
|
---|
| 412 | ResetBrent(P, &P->Lat.Psi);
|
---|
| 413 | R->PsiStep=0;
|
---|
| 414 | R->MinStep=0;
|
---|
| 415 | P->Grad.GradientArray[GraSchGradient] = R->LevS->LPsi->LocalPsi[Psi->LocalNo];
|
---|
| 416 | ChangePseudoToLevUp(P);
|
---|
| 417 | for (i=0; i<MAXALLPSIENERGY; i++)
|
---|
| 418 | SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
|
---|
| 419 | SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
|
---|
| 420 | SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
|
---|
| 421 | for (i=MAXOLD-1; i > 0; i--) {
|
---|
| 422 | E->TotalEnergy[i] = E->TotalEnergy[i-1];
|
---|
| 423 | Lat->Energy[UnOccupied].TotalEnergy[i] = Lat->Energy[UnOccupied].TotalEnergy[i-1];
|
---|
| 424 | }
|
---|
| 425 | InitPsiEnergyCalculation(P,Occupied);
|
---|
| 426 | CalculateDensityEnergy(P,1);
|
---|
| 427 | CalculateIonsEnergy(P);
|
---|
| 428 | EnergyAllReduce(P);
|
---|
| 429 | /* SetCurrentMinState(P,UnOccupied);
|
---|
| 430 | InitPsiEnergyCalculation(P,UnOccupied);
|
---|
| 431 | CalculateGapEnergy(P);
|
---|
| 432 | EnergyAllReduce(P);
|
---|
| 433 | SetCurrentMinState(P,Occupied);*/
|
---|
| 434 | EnergyOutput(P,0);
|
---|
| 435 | if (R->LevSNo == STANDARTLEVEL) {
|
---|
| 436 | R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
| 437 | R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
|
---|
| 438 | R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
|
---|
| 439 | R->ActualMaxMinStopStep = R->MaxMinStopStep;
|
---|
| 440 | R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
|
---|
| 441 | } else {
|
---|
| 442 | R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
| 443 | R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
|
---|
| 444 | R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
|
---|
| 445 | R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
|
---|
| 446 | R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
|
---|
| 447 | }
|
---|
| 448 | R->MinStopStep = 0;
|
---|
| 449 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
| 450 | SpeedMeasure(P, SimTime, StartTimeDo);
|
---|
| 451 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
| 452 | fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i) Done\n", R->LevSNo, R->InitLevSNo);
|
---|
| 453 | }
|
---|
| 454 |
|
---|
| 455 | /** Updates after the wave functions have changed (e.g.\ Ion moved).
|
---|
| 456 | * Old and current RunStruct::ActualLocalPsiNo are zeroed and distributed among the processes.
|
---|
| 457 | * InitDensityCalculation() is called, afterwards the pseudo potentials update to the new
|
---|
| 458 | * wave functions UpdatePseudoToNewWaves().
|
---|
| 459 | * Energy::AllLocalDensityEnergy, Energy::AllTotalDensityEnergy, Energy::AllTotalIonsEnergy and
|
---|
| 460 | * Energy::PsiEnergy[i] are set to zero.
|
---|
| 461 | * We are set to recalculate all of the following energies: Psis InitPsiEnergyCalculation(), density
|
---|
| 462 | * CalculateDensityEnergy(), ionic CalculateIonsEnergy() and ewald CalculateEwald().
|
---|
| 463 | * Results are gathered from all processes EnergyAllReduce() and EnergyOutput() is called.
|
---|
| 464 | * Finally, the various conditons in the RunStruct for stopping the calculation are set: number of
|
---|
| 465 | * minimisation steps, relative total or kinetic energy change or how often stop condition was
|
---|
| 466 | * evaluated.
|
---|
| 467 | * \param *P Problem at hand
|
---|
| 468 | */
|
---|
| 469 | static void UpdateToNewWaves(struct Problem *P)
|
---|
| 470 | {
|
---|
| 471 | struct RunStruct *R = &P->R;
|
---|
| 472 | struct Lattice *Lat = &P->Lat;
|
---|
| 473 | struct Psis *Psi = &Lat->Psi;
|
---|
| 474 | struct Energy *E = Lat->E;
|
---|
[8ea7f8] | 475 | int i;//,type;
|
---|
[a0bcf1] | 476 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
|
---|
| 477 | //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in UpdateGramSchActualPsiNo(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 478 | UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
|
---|
| 479 | UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
|
---|
| 480 | R->PsiStep=0;
|
---|
| 481 | R->MinStep=0;
|
---|
| 482 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
| 483 | //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in Update../InitDensityCalculation(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 484 | InitDensityCalculation(P);
|
---|
| 485 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
| 486 | UpdatePseudoToNewWaves(P);
|
---|
| 487 | for (i=0; i<MAXALLPSIENERGY; i++)
|
---|
| 488 | SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
|
---|
| 489 | SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
|
---|
| 490 | SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
|
---|
| 491 | SetArrayToDouble0(E->AllTotalIonsEnergy, MAXALLIONSENERGY);
|
---|
| 492 | InitPsiEnergyCalculation(P,Occupied);
|
---|
| 493 | CalculateDensityEnergy(P,1);
|
---|
| 494 | CalculateIonsEnergy(P);
|
---|
| 495 | CalculateEwald(P, 0);
|
---|
| 496 | EnergyAllReduce(P);
|
---|
[8ea7f8] | 497 | /* if (R->DoUnOccupied) {
|
---|
[a0bcf1] | 498 | SetCurrentMinState(P,UnOccupied);
|
---|
[8ea7f8] | 499 | InitPsiEnergyCalculation(P,UnOccupied);
|
---|
| 500 | CalculateGapEnergy(P);
|
---|
[a0bcf1] | 501 | EnergyAllReduce(P);
|
---|
| 502 | }
|
---|
| 503 | if (R->DoPerturbation)
|
---|
| 504 | for(type=Perturbed_P0;type <=Perturbed_RxP2;type++) {
|
---|
| 505 | SetCurrentMinState(P,type);
|
---|
[8ea7f8] | 506 | InitPerturbedEnergyCalculation(P,1);
|
---|
[a0bcf1] | 507 | EnergyAllReduce(P);
|
---|
| 508 | }
|
---|
[8ea7f8] | 509 | SetCurrentMinState(P,Occupied);*/
|
---|
[a0bcf1] | 510 | E->TotalEnergyOuter[0] = E->TotalEnergy[0];
|
---|
| 511 | EnergyOutput(P,0);
|
---|
| 512 | R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
|
---|
| 513 | R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
|
---|
| 514 | R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
|
---|
| 515 | R->ActualMaxMinStopStep = R->MaxMinStopStep;
|
---|
| 516 | R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
|
---|
| 517 | R->MinStopStep = 0;
|
---|
| 518 | }
|
---|
| 519 |
|
---|
| 520 | /** Evaluates the stop condition and returns 0 or 1 for occupied states.
|
---|
| 521 | * Stop is set when:
|
---|
| 522 | * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
|
---|
| 523 | * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
|
---|
| 524 | * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
|
---|
| 525 | * - below relative rate of change:
|
---|
| 526 | * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
|
---|
| 527 | * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
|
---|
| 528 | * - if more than one minimisation step was made, calculate the relative changes of total
|
---|
| 529 | * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
|
---|
| 530 | * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
|
---|
| 531 | * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
|
---|
| 532 | * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
|
---|
| 533 | * \param *P Problem at hand
|
---|
| 534 | * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
|
---|
| 535 | * \return Stop: 1 - stop, 0 - continue
|
---|
| 536 | */
|
---|
| 537 | int CalculateMinimumStop(struct Problem *P, int SuperStop)
|
---|
| 538 | {
|
---|
| 539 | int Stop = 0, i;
|
---|
| 540 | struct RunStruct *R = &P->R;
|
---|
| 541 | struct Energy *E = P->Lat.E;
|
---|
| 542 | if (R->PsiStep == 0 && SuperStop) Stop = 1;
|
---|
| 543 | if (R->PsiStep == 0 && ((R->MinStopStep % R->ActualMaxMinStopStep == 0 && R->CurrentMin != UnOccupied) || (R->MinStopStep % R->ActualMaxMinGapStopStep == 0 && R->CurrentMin == UnOccupied))) {
|
---|
[02ba60] | 544 | if (R->MinStep >= R->ActualMaxMinStep) Stop = 1;
|
---|
[a0bcf1] | 545 | for (i=RUNMAXOLD-1; i > 0; i--) {
|
---|
| 546 | R->TotalEnergy[i] = R->TotalEnergy[i-1];
|
---|
| 547 | R->KineticEnergy[i] = R->KineticEnergy[i-1];
|
---|
| 548 | }
|
---|
| 549 | R->TotalEnergy[0] = E->TotalEnergy[0];
|
---|
| 550 | R->KineticEnergy[0] = E->AllTotalPsiEnergy[KineticEnergy];
|
---|
| 551 | if (R->MinStopStep) {
|
---|
| 552 | //if (R->TotalEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalEnergy[1] = %lg\n",R->TotalEnergy[1]);
|
---|
| 553 | R->ActualRelTotalEnergy[0] = fabs((R->TotalEnergy[0]-R->TotalEnergy[1])/R->TotalEnergy[1]);
|
---|
| 554 | //if (R->KineticEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticEnergy[1] = %lg\n",R->KineticEnergy[1]);
|
---|
| 555 | //if (R->CurrentMin < Perturbed_P0)
|
---|
| 556 | R->ActualRelKineticEnergy[0] = fabs((R->KineticEnergy[0]-R->KineticEnergy[1])/R->KineticEnergy[1]);
|
---|
| 557 | //else R->ActualRelKineticEnergy[0] = 0.;
|
---|
| 558 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
| 559 | switch (R->CurrentMin) {
|
---|
| 560 | default:
|
---|
| 561 | fprintf(stderr, "ARelTE: %e\tARelKE: %e\n", R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
|
---|
| 562 | break;
|
---|
| 563 | case UnOccupied:
|
---|
[4931e0] | 564 | fprintf(stderr, "ARelTGE: %e\tARelKGE: %e\n", R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
|
---|
[a0bcf1] | 565 | break;
|
---|
| 566 | }
|
---|
[02ba60] | 567 | //fprintf(stderr, "(%i) Comparing TE: %lg < %lg\tKE: %lg < %lg?\n", P->Par.me, R->ActualRelTotalEnergy[0], R->ActualRelEpsTotalEnergy, R->ActualRelKineticEnergy[0], R->ActualRelEpsKineticEnergy);
|
---|
[a0bcf1] | 568 | if ((R->ActualRelTotalEnergy[0] < R->ActualRelEpsTotalEnergy) &&
|
---|
[02ba60] | 569 | (R->ActualRelKineticEnergy[0] < R->ActualRelEpsKineticEnergy))
|
---|
[a0bcf1] | 570 | Stop = 1;
|
---|
| 571 | }
|
---|
| 572 | }
|
---|
| 573 | if (R->PsiStep == 0)
|
---|
| 574 | R->MinStopStep++;
|
---|
| 575 | if (P->Call.WriteSrcFiles == 2)
|
---|
| 576 | OutputVisSrcFiles(P, R->CurrentMin);
|
---|
| 577 | return(Stop);
|
---|
| 578 | }
|
---|
| 579 |
|
---|
| 580 | /** Evaluates the stop condition and returns 0 or 1 for gap energies.
|
---|
| 581 | * Stop is set when:
|
---|
| 582 | * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
|
---|
| 583 | * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
|
---|
| 584 | * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
|
---|
| 585 | * - below relative rate of change:
|
---|
| 586 | * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
|
---|
| 587 | * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
|
---|
| 588 | * - if more than one minimisation step was made, calculate the relative changes of total
|
---|
| 589 | * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
|
---|
| 590 | * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
|
---|
| 591 | * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
|
---|
| 592 | * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
|
---|
| 593 | * \param *P Problem at hand
|
---|
| 594 | * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
|
---|
| 595 | * \return Stop: 1 - stop, 0 - continue
|
---|
| 596 | * \sa CalculateMinimumStop() - same procedure for occupied states
|
---|
| 597 | *//*
|
---|
| 598 | static double CalculateGapStop(struct Problem *P, int SuperStop)
|
---|
| 599 | {
|
---|
| 600 | int Stop = 0, i;
|
---|
| 601 | struct RunStruct *R = &P->R;
|
---|
| 602 | struct Lattice *Lat = &P->Lat;
|
---|
| 603 | struct Energy *E = P->Lat.E;
|
---|
| 604 | if (R->PsiStep == 0 && SuperStop) Stop = 1;
|
---|
| 605 | if (R->PsiStep == 0 && (R->MinStopStep % R->ActualMaxMinGapStopStep) == 0) {
|
---|
| 606 | if (R->MinStep >= R->ActualMaxMinStep) Stop = 1;
|
---|
| 607 | for (i=RUNMAXOLD-1; i > 0; i--) {
|
---|
| 608 | R->TotalGapEnergy[i] = R->TotalGapEnergy[i-1];
|
---|
| 609 | R->KineticGapEnergy[i] = R->KineticGapEnergy[i-1];
|
---|
| 610 | }
|
---|
| 611 | R->TotalGapEnergy[0] = Lat->Energy[UnOccupied].TotalEnergy[0];
|
---|
| 612 | R->KineticGapEnergy[0] = E->AllTotalPsiEnergy[GapPsiEnergy];
|
---|
| 613 | if (R->MinStopStep) {
|
---|
| 614 | if (R->TotalGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalGapEnergy[1] = %lg\n",R->TotalGapEnergy[1]);
|
---|
| 615 | R->ActualRelTotalGapEnergy[0] = fabs((R->TotalGapEnergy[0]-R->TotalGapEnergy[1])/R->TotalGapEnergy[1]);
|
---|
| 616 | if (R->KineticGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticGapEnergy[1] = %lg\n",R->KineticGapEnergy[1]);
|
---|
| 617 | R->ActualRelKineticGapEnergy[0] = fabs((R->KineticGapEnergy[0]-R->KineticGapEnergy[1])/R->KineticGapEnergy[1]);
|
---|
| 618 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
| 619 | fprintf(stderr, "(%i) -------------------------> ARelTGE: %e\tARelKGE: %e\n", P->Par.me, R->ActualRelTotalGapEnergy[0], R->ActualRelKineticGapEnergy[0]);
|
---|
| 620 | if ((R->ActualRelTotalGapEnergy[0] < R->ActualRelEpsTotalGapEnergy) &&
|
---|
| 621 | (R->ActualRelKineticGapEnergy[0] < R->ActualRelEpsKineticGapEnergy))
|
---|
| 622 | Stop = 1;
|
---|
| 623 | }
|
---|
| 624 | }
|
---|
| 625 | if (R->PsiStep == 0)
|
---|
| 626 | R->MinStopStep++;
|
---|
| 627 |
|
---|
| 628 | return(Stop);
|
---|
| 629 | }*/
|
---|
| 630 |
|
---|
| 631 | #define StepTolerance 1e-4
|
---|
| 632 |
|
---|
| 633 | static void CalculateEnergy(struct Problem *P) {
|
---|
| 634 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
| 635 | UpdateDensityCalculation(P);
|
---|
| 636 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
| 637 | UpdatePsiEnergyCalculation(P);
|
---|
| 638 | CalculateDensityEnergy(P, 0);
|
---|
| 639 | //CalculateIonsEnergy(P);
|
---|
| 640 | EnergyAllReduce(P);
|
---|
| 641 | }
|
---|
| 642 |
|
---|
| 643 | /** Energy functional depending on one parameter \a x (for a certain Psi in a certain conjugate direction).
|
---|
| 644 | * \param x parameter for the which the function must be minimized
|
---|
| 645 | * \param *params additional params
|
---|
| 646 | * \return total energy if Psi is changed according to the given parameter
|
---|
| 647 | */
|
---|
| 648 | static double fn1 (double x, void * params) {
|
---|
| 649 | struct Problem *P = (struct Problem *)(params);
|
---|
| 650 | struct RunStruct *R = &P->R;
|
---|
| 651 | struct Lattice *Lat = &P->Lat;
|
---|
| 652 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 653 | int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
| 654 | int i=R->ActualLocalPsiNo;
|
---|
| 655 | double ret;
|
---|
| 656 |
|
---|
| 657 | //fprintf(stderr,"(%i) Evaluating fnl at %lg ...\n",P->Par.me, x);
|
---|
| 658 | //TestForOrth(P,R->LevS,P->Grad.GradientArray[GraSchGradient]);
|
---|
| 659 | CalculateNewWave(P, &x); // also stores Psi to oldPsi
|
---|
| 660 | //TestGramSch(P,R->LevS,&P->Lat.Psi,Occupied);
|
---|
| 661 | //fprintf(stderr,"(%i) Testing for orthogonality of %i against ...\n",P->Par.me, R->ActualLocalPsiNo);
|
---|
| 662 | //TestForOrth(P, LevS, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo]);
|
---|
| 663 | //UpdateActualPsiNo(P, Occupied);
|
---|
| 664 | //UpdateEnergyArray(P);
|
---|
| 665 | CalculateEnergy(P);
|
---|
| 666 | ret = Lat->E->TotalEnergy[0];
|
---|
| 667 | memcpy(LevS->LPsi->LocalPsi[i], LevS->LPsi->OldLocalPsi[i], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
| 668 | //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
| 669 | CalculateEnergy(P);
|
---|
| 670 | //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, x, ret);
|
---|
| 671 | return ret;
|
---|
| 672 | }
|
---|
| 673 |
|
---|
| 674 | #ifdef HAVE_INLINE
|
---|
| 675 | inline void flip(double *a, double *b) {
|
---|
| 676 | #else
|
---|
| 677 | void flip(double *a, double *b) {
|
---|
| 678 | #endif
|
---|
| 679 | double tmp = *a;
|
---|
| 680 | *a = *b;
|
---|
| 681 | *b = tmp;
|
---|
| 682 | }
|
---|
| 683 |
|
---|
| 684 |
|
---|
| 685 | /** Minimise PsiType#Occupied orbitals.
|
---|
| 686 | * It is checked whether CallOptions#ReadSrcFiles is set and thus coefficients for the level have to be
|
---|
| 687 | * read from file and afterwards initialized.
|
---|
| 688 | *
|
---|
| 689 | * Then follows the main loop, until a stop condition is met:
|
---|
| 690 | * -# CalculateNewWave()\n
|
---|
| 691 | * Over a conjugate gradient method the next (minimal) wave function is sought for.
|
---|
| 692 | * -# UpdateActualPsiNo()\n
|
---|
| 693 | * Switch local Psi to next one.
|
---|
| 694 | * -# UpdateEnergyArray()\n
|
---|
| 695 | * Shift archived energy values to make space for next one.
|
---|
| 696 | * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
|
---|
| 697 | * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
|
---|
| 698 | * -# UpdatePsiEnergyCalculation()\n
|
---|
| 699 | * Calculate kinetic and non-local energy contributons from the Psis.
|
---|
| 700 | * -# CalculateDensityEnergy()\n
|
---|
| 701 | * Calculate remaining energy contributions from the Density and adds \f$V_xc\f$ onto DensityTypes#HGDensity.
|
---|
| 702 | * -# CalculateIonsEnergy()\n
|
---|
| 703 | * Calculate the Gauss self energy of the Ions.
|
---|
| 704 | * -# EnergyAllReduce()\n
|
---|
| 705 | * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
|
---|
| 706 | * -# CheckCPULIM()\n
|
---|
| 707 | * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
|
---|
| 708 | * -# CalculateMinimumStop()\n
|
---|
| 709 | * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
|
---|
| 710 | * CalculateNewWave().
|
---|
| 711 | *
|
---|
| 712 | * Before return orthonormality is tested.
|
---|
| 713 | * \param *P Problem at hand
|
---|
| 714 | * \param *Stop flag to determine if epsilon stop conditions have met
|
---|
| 715 | * \param *SuperStop flag to determinte whether external signal's required end of calculations
|
---|
[487182] | 716 | * \bug ResetGramSch() not allowed after reading orthonormal values from file
|
---|
[a0bcf1] | 717 | */
|
---|
| 718 | static void MinimiseOccupied(struct Problem *P, int *Stop, int *SuperStop)
|
---|
| 719 | {
|
---|
| 720 | struct RunStruct *R = &P->R;
|
---|
| 721 | struct Lattice *Lat = &P->Lat;
|
---|
| 722 | struct Psis *Psi = &Lat->Psi;
|
---|
| 723 | //struct FileData *F = &P->Files;
|
---|
| 724 | // int i;
|
---|
| 725 | // double norm;
|
---|
| 726 | //double dEdt0,ddEddt0,HartreeddEddt0,XCddEddt0, d[4], D[4],ConDirHConDir;
|
---|
| 727 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 728 | int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
| 729 | int iter = 0, status, max_iter=10;
|
---|
| 730 | const gsl_min_fminimizer_type *T;
|
---|
| 731 | gsl_min_fminimizer *s;
|
---|
| 732 | double m, a, b;
|
---|
| 733 | double f_m = 0., f_a, f_b;
|
---|
| 734 | double dcos, dsin;
|
---|
| 735 | int g;
|
---|
| 736 | fftw_complex *ConDir = P->Grad.GradientArray[ConDirGradient];
|
---|
| 737 | fftw_complex *source = NULL, *oldsource = NULL;
|
---|
| 738 | gsl_function F;
|
---|
| 739 | F.function = &fn1;
|
---|
| 740 | F.params = (void *) P;
|
---|
| 741 | T = gsl_min_fminimizer_brent;
|
---|
| 742 | s = gsl_min_fminimizer_alloc (T);
|
---|
| 743 | int DoBrent, StartLocalPsiNo;
|
---|
| 744 |
|
---|
| 745 | ResetBrent(P,Psi);
|
---|
| 746 | *Stop = 0;
|
---|
| 747 | if (P->Call.ReadSrcFiles) {
|
---|
| 748 | if (!ReadSrcPsiDensity(P,Occupied,1, R->LevSNo)) { // if file for level exists and desired, read from file
|
---|
| 749 | P->Call.ReadSrcFiles = 0; // -r was bogus, remove it, have to start anew
|
---|
[4931e0] | 750 | if(P->Call.out[MinOut]) fprintf(stderr,"(%i) Re-initializing, files are missing/corrupted...\n", P->Par.me);
|
---|
[a0bcf1] | 751 | InitPsisValue(P, Psi->TypeStartIndex[Occupied], Psi->TypeStartIndex[Occupied+1]); // initialize perturbed array for this run
|
---|
| 752 | ResetGramSchTagType(P, Psi, Occupied, NotOrthogonal); // loaded values are orthonormal
|
---|
| 753 | } else {
|
---|
| 754 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
[487182] | 755 | if(P->Call.out[MinOut]) fprintf(stderr, "(%i) Re-initializing %s psi array from source file of recent calculation\n", P->Par.me, R->MinimisationName[R->CurrentMin]);
|
---|
[a0bcf1] | 756 | ReadSrcPsiDensity(P, Occupied, 0, R->LevSNo);
|
---|
[487182] | 757 | //ResetGramSchTagType(P, Psi, Occupied, IsOrthonormal); // loaded values are orthonormal
|
---|
| 758 | // note: this did not work and is currently not clear why not (as TestGramSch says: OK, but minimisation goes awry without the following GramSch)
|
---|
[a0bcf1] | 759 | }
|
---|
[487182] | 760 | SpeedMeasure(P, InitGramSchTime, StartTimeDo);
|
---|
| 761 | GramSch(P, R->LevS, Psi, Orthonormalize);
|
---|
| 762 | SpeedMeasure(P, InitGramSchTime, StopTimeDo);
|
---|
[a0bcf1] | 763 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
| 764 | InitDensityCalculation(P);
|
---|
| 765 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
| 766 | InitPsiEnergyCalculation(P, Occupied); // go through all orbitals calculating kinetic and non-local
|
---|
| 767 | StartLocalPsiNo = R->ActualLocalPsiNo;
|
---|
| 768 | do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
|
---|
| 769 | CalculateDensityEnergy(P, 0);
|
---|
| 770 | UpdateActualPsiNo(P, Occupied);
|
---|
| 771 | } while (R->ActualLocalPsiNo != StartLocalPsiNo);
|
---|
| 772 | CalculateIonsEnergy(P);
|
---|
| 773 | EnergyAllReduce(P);
|
---|
| 774 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
| 775 | R->LevS->Step++;
|
---|
| 776 | EnergyOutput(P,0);
|
---|
[487182] | 777 | }
|
---|
[a0bcf1] | 778 | if (P->Call.ReadSrcFiles != 1) { // otherwise minimise oneself
|
---|
[4931e0] | 779 | if(P->Call.out[LeaderOut]) fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[Occupied]);
|
---|
[a0bcf1] | 780 | while (*Stop != 1) { // loop testing condition over all Psis
|
---|
| 781 | // in the following loop, we have two cases:
|
---|
| 782 | // 1) still far away and just guessing: Use the normal CalculateNewWave() to improve Psi
|
---|
| 783 | // 2) closer (DoBrent=-1): use brent line search instead
|
---|
| 784 | // and due to these two cases, we also have two ifs inside each in order to catch stepping from one case
|
---|
| 785 | // to the other - due to decreasing DoBrent and/or stepping to the next Psi (which may not yet be DoBrent==1)
|
---|
| 786 |
|
---|
| 787 | // case 1)
|
---|
| 788 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
|
---|
| 789 | //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
|
---|
[487182] | 790 | if (R->DoBrent == 1) {
|
---|
| 791 | memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
| 792 | //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
| 793 | f_m = P->Lat.E->TotalEnergy[0]; // grab first value
|
---|
| 794 | m = 0.;
|
---|
| 795 | }
|
---|
[a0bcf1] | 796 | CalculateNewWave(P,NULL);
|
---|
| 797 | if ((R->DoBrent == 1) && (fabs(Lat->E->delta[0]) < M_PI/4.))
|
---|
| 798 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent--;
|
---|
| 799 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
|
---|
| 800 | UpdateActualPsiNo(P, Occupied);
|
---|
| 801 | UpdateEnergyArray(P);
|
---|
| 802 | CalculateEnergy(P); // just to get a sensible delta
|
---|
| 803 | if ((R->ActualLocalPsiNo != R->OldActualLocalPsiNo) && (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1)) {
|
---|
| 804 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
| 805 | // if we stepped on to a new Psi, which is already down at DoBrent=1 unlike the last one,
|
---|
| 806 | // then an up-to-date gradient is missing for the following Brent line search
|
---|
[487182] | 807 | if(P->Call.out[MinOut]) fprintf(stderr,"(%i) We stepped on to a new Psi, which is already in the Brent regime ...re-calc delta\n", P->Par.me);
|
---|
[a0bcf1] | 808 | memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
| 809 | //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
| 810 | f_m = P->Lat.E->TotalEnergy[0]; // grab first value
|
---|
| 811 | m = 0.;
|
---|
| 812 | DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
|
---|
| 813 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
|
---|
| 814 | CalculateNewWave(P,NULL);
|
---|
| 815 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
|
---|
| 816 | }
|
---|
| 817 | //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, m, f_m);
|
---|
| 818 | }
|
---|
| 819 | }
|
---|
| 820 |
|
---|
| 821 | // case 2)
|
---|
| 822 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) {
|
---|
| 823 | R->PsiStep=R->MaxPsiStep; // no more fresh gradients from this point for current ActualLocalPsiNo
|
---|
| 824 | a = b = 0.5*fabs(Lat->E->delta[0]);
|
---|
| 825 | // we have a meaningful first minimum guess from above CalculateNewWave() resp. from end of this if of last step: Lat->E->delta[0]
|
---|
| 826 | source = LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
|
---|
| 827 | oldsource = LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo];
|
---|
| 828 | //SetArrayToDouble0((double *)source,LevS->MaxG*2);
|
---|
| 829 | do {
|
---|
| 830 | a -= fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
|
---|
| 831 | if (a < -M_PI/2.) a = -M_PI/2.;// for this to work we need the pre-estimation which leads us into a nice regime (without gradient being the better _initial_ guess for a Psi)
|
---|
| 832 | dcos = cos(a);
|
---|
| 833 | dsin = sin(a);
|
---|
| 834 | for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
|
---|
| 835 | //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 836 | c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
|
---|
| 837 | c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
|
---|
| 838 | }
|
---|
| 839 | CalculateEnergy(P);
|
---|
| 840 | f_a = P->Lat.E->TotalEnergy[0]; // grab second value at left border
|
---|
| 841 | //fprintf(stderr,"(%i) fnl(%lg) = %lg, Check ConDir[0] = %lg+i%lg, source[0] = %lg+i%lg, oldsource[0] = %lg+i%lg, TotDens[0] = %lg\n", P->Par.me, a, f_a, ConDir[0].re, ConDir[0].im, source[0].re, source[0].im, oldsource[0].re, oldsource[0].im, R->Lev0->Dens->DensityArray[TotalDensity][0]);
|
---|
| 842 | } while (f_a < f_m);
|
---|
| 843 |
|
---|
| 844 | //SetArrayToDouble0((double *)source,LevS->MaxG*2);
|
---|
| 845 | do {
|
---|
| 846 | b += fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
|
---|
| 847 | if (b > M_PI/2.) b = M_PI/2.;
|
---|
| 848 | dcos = cos(b);
|
---|
| 849 | dsin = sin(b);
|
---|
| 850 | for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
|
---|
| 851 | //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 852 | c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
|
---|
| 853 | c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
|
---|
| 854 | }
|
---|
| 855 | CalculateEnergy(P);
|
---|
| 856 | f_b = P->Lat.E->TotalEnergy[0]; // grab second value at left border
|
---|
| 857 | //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, b, f_b);
|
---|
| 858 | } while (f_b < f_m);
|
---|
| 859 |
|
---|
| 860 | memcpy(source, oldsource, ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
| 861 | //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
| 862 | CalculateEnergy(P);
|
---|
| 863 |
|
---|
[4931e0] | 864 | if(P->Call.out[ValueOut]) fprintf(stderr,"(%i) Preparing brent with f(a) (%lg,%lg)\t f(b) (%lg,%lg)\t f(m) (%lg,%lg) ...\n", P->Par.me,a,f_a,b,f_b,m,f_m);
|
---|
[a0bcf1] | 865 | iter=0;
|
---|
| 866 | gsl_min_fminimizer_set_with_values (s, &F, m, f_m, a, f_a, b, f_b);
|
---|
[4931e0] | 867 | if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) using %s method\n",P->Par.me, gsl_min_fminimizer_name (s));
|
---|
| 868 | if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) %5s [%9s, %9s] %9s %9s\n",P->Par.me, "iter", "lower", "upper", "min", "err(est)");
|
---|
| 869 | if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me, iter, a, b, m, b - a);
|
---|
[a0bcf1] | 870 | do {
|
---|
| 871 | iter++;
|
---|
| 872 | status = gsl_min_fminimizer_iterate (s);
|
---|
| 873 |
|
---|
| 874 | m = gsl_min_fminimizer_x_minimum (s);
|
---|
| 875 | a = gsl_min_fminimizer_x_lower (s);
|
---|
| 876 | b = gsl_min_fminimizer_x_upper (s);
|
---|
| 877 |
|
---|
| 878 | status = gsl_min_test_interval (a, b, 0.001, 0.0);
|
---|
| 879 |
|
---|
| 880 | if (status == GSL_SUCCESS)
|
---|
[4931e0] | 881 | if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) Converged:\n",P->Par.me);
|
---|
[a0bcf1] | 882 |
|
---|
[4931e0] | 883 | if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me,
|
---|
[a0bcf1] | 884 | iter, a, b, m, b - a);
|
---|
| 885 | } while (status == GSL_CONTINUE && iter < max_iter);
|
---|
| 886 | CalculateNewWave(P,&m);
|
---|
| 887 | TestGramSch(P,LevS,Psi,Occupied);
|
---|
| 888 | UpdateActualPsiNo(P, Occupied); // step on due setting to MaxPsiStep further above
|
---|
| 889 | UpdateEnergyArray(P);
|
---|
| 890 | CalculateEnergy(P);
|
---|
| 891 | //fprintf(stderr,"(%i) Final value for Psi %i: %lg\n", P->Par.me, R->ActualLocalPsiNo, P->Lat.E->TotalEnergy[0]);
|
---|
| 892 | R->MinStopStep = R->ActualMaxMinStopStep; // check stop condition every time
|
---|
| 893 | if (*SuperStop != 1)
|
---|
| 894 | *SuperStop = CheckCPULIM(P);
|
---|
| 895 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
| 896 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
|
---|
| 897 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) { // new wave function means new gradient!
|
---|
| 898 | DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
|
---|
| 899 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
|
---|
| 900 | //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
|
---|
| 901 | memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
|
---|
| 902 | //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
|
---|
| 903 | f_m = P->Lat.E->TotalEnergy[0]; // grab first value
|
---|
| 904 | m = 0.;
|
---|
| 905 | CalculateNewWave(P,NULL);
|
---|
| 906 | Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
|
---|
| 907 | }
|
---|
| 908 | }
|
---|
| 909 |
|
---|
| 910 | if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) { // otherwise the following checks eliminiate stop=1 from above
|
---|
| 911 | if (*SuperStop != 1)
|
---|
| 912 | *SuperStop = CheckCPULIM(P);
|
---|
| 913 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
| 914 | }
|
---|
| 915 | /*EnergyOutput(P, Stop);*/
|
---|
| 916 | P->Speed.Steps++;
|
---|
| 917 | R->LevS->Step++;
|
---|
| 918 | /*ControlNativeDensity(P);*/
|
---|
| 919 | //fprintf(stderr,"(%i) Stop %i\n",P->Par.me, Stop);
|
---|
| 920 | }
|
---|
[5a538b] | 921 | if (*SuperStop == 1) OutputVisSrcFiles(P, Occupied); // is now done after localization (ComputeMLWF())
|
---|
[a0bcf1] | 922 | }
|
---|
| 923 | TestGramSch(P,R->LevS,Psi, Occupied);
|
---|
| 924 | }
|
---|
| 925 |
|
---|
| 926 | /** Minimisation of the PsiTagType#UnOccupied orbitals in the field of the occupied ones.
|
---|
| 927 | * Assuming RunStruct#ActualLocalPsiNo is currenlty still an occupied wave function, we stop onward to the first
|
---|
| 928 | * unoccupied and reset RunStruct#OldActualLocalPsiNo. Then it is checked whether CallOptions#ReadSrcFiles is set
|
---|
| 929 | * and thus coefficients for the level have to be read from file and afterwards initialized.
|
---|
| 930 | *
|
---|
| 931 | * Then follows the main loop, until a stop condition is met:
|
---|
| 932 | * -# CalculateNewWave()\n
|
---|
| 933 | * Over a conjugate gradient method the next (minimal) wave function is sought for.
|
---|
| 934 | * -# UpdateActualPsiNo()\n
|
---|
| 935 | * Switch local Psi to next one.
|
---|
| 936 | * -# UpdateEnergyArray()\n
|
---|
| 937 | * Shift archived energy values to make space for next one.
|
---|
| 938 | * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
|
---|
| 939 | * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
|
---|
| 940 | * -# UpdatePsiEnergyCalculation()\n
|
---|
| 941 | * Calculate kinetic and non-local energy contributons from the Psis.
|
---|
| 942 | * -# CalculateGapEnergy()\n
|
---|
| 943 | * Calculate Gap energies (Hartreepotential, Pseudo) and the gradient.
|
---|
| 944 | * -# EnergyAllReduce()\n
|
---|
| 945 | * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
|
---|
| 946 | * -# CheckCPULIM()\n
|
---|
| 947 | * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
|
---|
| 948 | * -# CalculateMinimumStop()\n
|
---|
| 949 | * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
|
---|
| 950 | * CalculateNewWave().
|
---|
| 951 | *
|
---|
| 952 | * Afterwards, the coefficients are written to file by OutputVisSrcFiles() if desired. Orthonormality is tested, we step
|
---|
| 953 | * back to the occupied wave functions and the densities are re-initialized.
|
---|
| 954 | * \param *P Problem at hand
|
---|
| 955 | * \param *Stop flag to determine if epsilon stop conditions have met
|
---|
| 956 | * \param *SuperStop flag to determinte whether external signal's required end of calculations
|
---|
| 957 | */
|
---|
| 958 | static void MinimiseUnoccupied (struct Problem *P, int *Stop, int *SuperStop) {
|
---|
| 959 | struct RunStruct *R = &P->R;
|
---|
| 960 | struct Lattice *Lat = &P->Lat;
|
---|
| 961 | struct Psis *Psi = &Lat->Psi;
|
---|
| 962 | int StartLocalPsiNo;
|
---|
| 963 |
|
---|
| 964 | *Stop = 0;
|
---|
| 965 | R->PsiStep = R->MaxPsiStep; // in case it's zero from CalculateForce()
|
---|
| 966 | UpdateActualPsiNo(P, UnOccupied); // step on to next unoccupied one
|
---|
| 967 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset, otherwise OldActualLocalPsiNo still points to occupied wave function
|
---|
| 968 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
| 969 | if (P->Call.ReadSrcFiles && ReadSrcPsiDensity(P,UnOccupied,1, R->LevSNo)) {
|
---|
| 970 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
[4931e0] | 971 | if(P->Call.out[MinOut]) fprintf(stderr, "(%i) Re-initializing %s psi array from source file of recent calculation\n", P->Par.me, R->MinimisationName[R->CurrentMin]);
|
---|
[a0bcf1] | 972 | ReadSrcPsiDensity(P, UnOccupied, 0, R->LevSNo);
|
---|
| 973 | if (P->Call.ReadSrcFiles != 2) {
|
---|
| 974 | ResetGramSchTagType(P, Psi, UnOccupied, IsOrthonormal); // loaded values are orthonormal
|
---|
| 975 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
| 976 | InitDensityCalculation(P);
|
---|
| 977 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
| 978 | InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
|
---|
| 979 | //CalculateDensityEnergy(P, 0);
|
---|
| 980 | StartLocalPsiNo = R->ActualLocalPsiNo;
|
---|
| 981 | do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
|
---|
| 982 | CalculateGapEnergy(P);
|
---|
| 983 | UpdateActualPsiNo(P, Occupied);
|
---|
| 984 | } while (R->ActualLocalPsiNo != StartLocalPsiNo);
|
---|
| 985 | EnergyAllReduce(P);
|
---|
| 986 | }
|
---|
| 987 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
| 988 | }
|
---|
| 989 | if (P->Call.ReadSrcFiles != 1) {
|
---|
| 990 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
| 991 | ResetGramSchTagType(P, Psi, UnOccupied, NotOrthogonal);
|
---|
| 992 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
| 993 | GramSch(P, R->LevS, Psi, Orthonormalize);
|
---|
| 994 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
| 995 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
| 996 | InitDensityCalculation(P);
|
---|
| 997 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
| 998 | InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
|
---|
| 999 | //CalculateDensityEnergy(P, 0);
|
---|
| 1000 | CalculateGapEnergy(P);
|
---|
| 1001 | EnergyAllReduce(P);
|
---|
| 1002 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
| 1003 | R->LevS->Step++;
|
---|
| 1004 | EnergyOutput(P,0);
|
---|
[4931e0] | 1005 | if(P->Call.out[LeaderOut]) fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[R->CurrentMin]);
|
---|
[a0bcf1] | 1006 | while (*Stop != 1) {
|
---|
| 1007 | CalculateNewWave(P,NULL);
|
---|
| 1008 | UpdateActualPsiNo(P, UnOccupied);
|
---|
| 1009 | /* New */
|
---|
| 1010 | UpdateEnergyArray(P);
|
---|
| 1011 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
| 1012 | UpdateDensityCalculation(P);
|
---|
| 1013 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
| 1014 | UpdatePsiEnergyCalculation(P);
|
---|
| 1015 | //CalculateDensityEnergy(P, 0);
|
---|
| 1016 | CalculateGapEnergy(P); //calculates XC, HGDensity, afterwards gradient, where V_xc is added upon HGDensity
|
---|
| 1017 | EnergyAllReduce(P);
|
---|
| 1018 | if (*SuperStop != 1)
|
---|
| 1019 | *SuperStop = CheckCPULIM(P);
|
---|
| 1020 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
| 1021 | /*EnergyOutput(P, Stop);*/
|
---|
| 1022 | P->Speed.Steps++;
|
---|
| 1023 | R->LevS->Step++;
|
---|
| 1024 | /*ControlNativeDensity(P);*/
|
---|
| 1025 | }
|
---|
| 1026 | OutputVisSrcFiles(P, UnOccupied);
|
---|
| 1027 | // if (!TestReadnWriteSrcDensity(P,UnOccupied))
|
---|
| 1028 | // Error(SomeError,"TestReadnWriteSrcDensity failed!");
|
---|
| 1029 | }
|
---|
| 1030 | TestGramSch(P,R->LevS,Psi, UnOccupied);
|
---|
| 1031 | ResetGramSchTagType(P, Psi, UnOccupied, NotUsedToOrtho);
|
---|
| 1032 | // re-calculate Occupied values (in preparation for perturbed ones)
|
---|
| 1033 | UpdateActualPsiNo(P, Occupied); // step on to next occupied one
|
---|
| 1034 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
| 1035 | InitDensityCalculation(P); // re-init densities to occupied standard
|
---|
| 1036 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
| 1037 | // InitPsiEnergyCalculation(P,Occupied);
|
---|
| 1038 | // CalculateDensityEnergy(P, 0);
|
---|
| 1039 | // EnergyAllReduce(P);
|
---|
| 1040 | }
|
---|
| 1041 |
|
---|
| 1042 |
|
---|
| 1043 | /** Calculate the forces.
|
---|
| 1044 | * From RunStruct::LevSNo downto RunStruct::InitLevSNo the following routines are called in a loop:
|
---|
| 1045 | * -# In case of RunStruct#DoSeparated another loop begins for the unoccupied states with some reinitalization
|
---|
| 1046 | * before and afterwards. The loop however is much the same as the one above.
|
---|
| 1047 | * -# ChangeToLevUp()\n
|
---|
| 1048 | * Repeat the loop or when the above stop is reached, the level is changed and the loop repeated.
|
---|
| 1049 | *
|
---|
| 1050 | * Afterwards comes the actual force and energy calculation by calling:
|
---|
| 1051 | * -# ControlNativeDensity()\n
|
---|
| 1052 | * Checks if the density still reproduces particle number.
|
---|
| 1053 | * -# CalculateIonLocalForce(), SpeedMeasure()'d in LocFTime\n
|
---|
| 1054 | * Calculale local part of force acting on Ions.
|
---|
| 1055 | * -# CalculateIonNonLocalForce(), SpeedMeasure()'d in NonLocFTime\n
|
---|
| 1056 | * Calculale local part of force acting on Ions.
|
---|
| 1057 | * -# CalculateEwald()\n
|
---|
| 1058 | * Calculate Ewald force acting on Ions.
|
---|
| 1059 | * -# CalculateIonForce()\n
|
---|
| 1060 | * Sum up those three contributions.
|
---|
| 1061 | * -# CorrectForces()\n
|
---|
| 1062 | * Shifts center of gravity of all forces for each Ion, so that the cell itself remains at rest.
|
---|
| 1063 | * -# GetOuterStop()
|
---|
| 1064 | * Calculates a mean force per Ion.
|
---|
| 1065 | * \param *P Problem at hand
|
---|
| 1066 | * \return 1 - cpulim received, break operation, 0 - continue as normal
|
---|
| 1067 | */
|
---|
| 1068 | int CalculateForce(struct Problem *P)
|
---|
| 1069 | {
|
---|
| 1070 | struct RunStruct *R = &P->R;
|
---|
| 1071 | struct Lattice *Lat = &P->Lat;
|
---|
| 1072 | struct Psis *Psi = &Lat->Psi;
|
---|
| 1073 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1074 | struct FileData *F = &P->Files;
|
---|
| 1075 | struct Ions *I = &P->Ion;
|
---|
| 1076 | int Stop=0, SuperStop = 0, OuterStop = 0;
|
---|
| 1077 | //int i, j;
|
---|
[5712cb] | 1078 | SpeedMeasure(P, SimTime, StartTimeDo);
|
---|
| 1079 | if ((F->DoOutVis == 2) || (P->Call.ForcesFile == NULL)) { // if we want to draw those pretty density pictures, we have to solve the ground state in any case
|
---|
| 1080 | while ((R->LevSNo > R->InitLevSNo) || (!Stop && R->LevSNo == R->InitLevSNo)) {
|
---|
| 1081 | // occupied
|
---|
[333e84] | 1082 | R->PsiStep = R->MaxPsiStep; // reset in-Psi-minimisation-counter, so that we really advance to the next wave function
|
---|
[5712cb] | 1083 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset OldActualLocalPsiNo, as it might still point to a perturbed wave function from last level
|
---|
| 1084 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
| 1085 | ControlNativeDensity(P);
|
---|
| 1086 | MinimiseOccupied(P, &Stop, &SuperStop);
|
---|
| 1087 | if (!I->StructOpt) {
|
---|
| 1088 | if ((P->Call.ReadSrcFiles != 1) || (!ParseWannierFile(P))) { // only localize and store if they have just been minimised (hence don't come solely from file), otherwise read stored values from file (if possible)
|
---|
| 1089 | SpeedMeasure(P, WannierTime, StartTimeDo);
|
---|
| 1090 | ComputeMLWF(P); // localization of orbitals
|
---|
| 1091 | SpeedMeasure(P, WannierTime, StopTimeDo);
|
---|
| 1092 | OutputVisSrcFiles(P, Occupied); // rewrite now localized orbitals
|
---|
| 1093 | // if (!TestReadnWriteSrcDensity(P,Occupied))
|
---|
| 1094 | // Error(SomeError,"TestReadnWriteSrcDensity failed!");
|
---|
| 1095 | }
|
---|
| 1096 |
|
---|
[a0bcf1] | 1097 | // // plot psi cuts
|
---|
| 1098 | // for (i=0; i < Psi->MaxPsiOfType; i++) // go through all wave functions (here without the extra ones for each process)
|
---|
| 1099 | // if ((Psi->AllPsiStatus[i].PsiType == Occupied) && (Psi->AllPsiStatus[i].my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi))
|
---|
| 1100 | // for (j=0;j<NDIM;j++) {
|
---|
| 1101 | // //fprintf(stderr,"(%i) Plotting Psi %i/%i cut axis %i at coordinate %lg \n",P->Par.me, i, Psi->AllPsiStatus[i].MyGlobalNo, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j]);
|
---|
| 1102 | // CalculateOneDensityR(Lat, R->LevS, R->Lev0->Dens, R->LevS->LPsi->LocalPsi[Psi->AllPsiStatus[i].MyLocalNo], R->Lev0->Dens->DensityArray[ActualDensity], R->FactorDensityR, 0);
|
---|
| 1103 | // PlotSrcPlane(P, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j], Psi->AllPsiStatus[i].MyGlobalNo, R->Lev0->Dens->DensityArray[ActualDensity]);
|
---|
| 1104 | // }
|
---|
| 1105 |
|
---|
[5712cb] | 1106 | // unoccupied calc
|
---|
| 1107 | if (R->DoUnOccupied) {
|
---|
| 1108 | MinimiseUnoccupied(P, &Stop, &SuperStop);
|
---|
[a0bcf1] | 1109 | }
|
---|
[5712cb] | 1110 | // hamiltonian
|
---|
| 1111 | CalculateHamiltonian(P); // lambda_{kl} needed (and for bandgap after UnOccupied)
|
---|
| 1112 |
|
---|
| 1113 | //TestSawtooth(P, 0);
|
---|
| 1114 | //TestSawtooth(P, 1);
|
---|
| 1115 | //TestSawtooth(P, 2);
|
---|
| 1116 |
|
---|
| 1117 | // perturbed calc
|
---|
| 1118 | if ((R->DoPerturbation)) { // && R->LevSNo <= R->InitLevSNo) {
|
---|
| 1119 | AllocCurrentDensity(R->Lev0->Dens);// lock current density arrays
|
---|
| 1120 | MinimisePerturbed(P, &Stop, &SuperStop); // herein InitDensityCalculation() is called, thus no need to call it beforehand
|
---|
| 1121 |
|
---|
| 1122 | SpeedMeasure(P, CurrDensTime, StartTimeDo);
|
---|
| 1123 | if (SuperStop != 1) {
|
---|
| 1124 | if ((R->DoFullCurrent == 1) || ((R->DoFullCurrent == 2) && (CheckOrbitalOverlap(P) == 1))) { //test to check whether orbitals have mutual overlap and thus \\DeltaJ_{xc} must not be dropped
|
---|
| 1125 | R->DoFullCurrent = 1; // set to 1 if it was 2 but Check...() yielded necessity
|
---|
[963310a] | 1126 | //debug(P,"Filling with Delta j ...");
|
---|
[5712cb] | 1127 | FillDeltaCurrentDensity(P);
|
---|
[963310a] | 1128 | }
|
---|
[5712cb] | 1129 | }
|
---|
| 1130 | SpeedMeasure(P, CurrDensTime, StopTimeDo);
|
---|
| 1131 | TestCurrent(P,0);
|
---|
| 1132 | TestCurrent(P,1);
|
---|
| 1133 | TestCurrent(P,2);
|
---|
[963310a] | 1134 | if (F->DoOutCurr && R->Lev0->LevelNo == 0) // only output in uppermost level)
|
---|
[5712cb] | 1135 | OutputCurrentDensity(P);
|
---|
[963310a] | 1136 | if (R->VectorPlane != -1)
|
---|
[5712cb] | 1137 | PlotVectorPlane(P,R->VectorPlane,R->VectorCut);
|
---|
| 1138 | CalculateMagneticSusceptibility(P);
|
---|
| 1139 | debug(P,"Normal calculation of shielding over R-space");
|
---|
[cc9c36] | 1140 | CalculateMagneticMoment(P);
|
---|
[5712cb] | 1141 | CalculateChemicalShieldingByReciprocalCurrentDensity(P);
|
---|
| 1142 | SpeedMeasure(P, CurrDensTime, StopTimeDo);
|
---|
| 1143 | DisAllocCurrentDensity(R->Lev0->Dens); // unlock current density arrays
|
---|
| 1144 | } // end of if perturbation
|
---|
[a0bcf1] | 1145 | InitDensityCalculation(P); // all unperturbed(!) wave functions've "changed" from ComputeMLWF(), thus reinit density
|
---|
[5712cb] | 1146 | } else // end of if StructOpt or MaxOuterStep
|
---|
| 1147 | OutputVisSrcFiles(P, Occupied); // in structopt or MD write for every level
|
---|
[a0bcf1] | 1148 |
|
---|
[5712cb] | 1149 | if ((!I->StructOpt) && (!R->MaxOuterStep)) // print intermediate levels energy results if we don't do MD or StructOpt
|
---|
[963310a] | 1150 | EnergyOutput(P, 1);
|
---|
[5712cb] | 1151 | // next level
|
---|
| 1152 | ChangeToLevUp(P, &Stop);
|
---|
| 1153 | //if (isnan(LevS->LPsi->LocalPsi[R->ActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in ChangeToLevUp(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->ActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 1154 | LevS = R->LevS; // re-set pointer that's changed from LevUp
|
---|
| 1155 | }
|
---|
| 1156 | SpeedMeasure(P, SimTime, StopTimeDo);
|
---|
| 1157 | ControlNativeDensity(P);
|
---|
[2026d4] | 1158 | TestGramSch(P,LevS,Psi, Occupied);
|
---|
| 1159 | // necessary for correct ionic forces ...
|
---|
| 1160 | SpeedMeasure(P, LocFTime, StartTimeDo);
|
---|
| 1161 | CalculateIonLocalForce(P);
|
---|
| 1162 | SpeedMeasure(P, LocFTime, StopTimeDo);
|
---|
| 1163 | SpeedMeasure(P, NonLocFTime, StartTimeDo);
|
---|
| 1164 | CalculateIonNonLocalForce(P);
|
---|
| 1165 | SpeedMeasure(P, NonLocFTime, StopTimeDo);
|
---|
| 1166 | CalculateEwald(P, 1);
|
---|
| 1167 | CalculateIonForce(P);
|
---|
[a0bcf1] | 1168 | }
|
---|
[5712cb] | 1169 | if (P->Call.ForcesFile != NULL) { // if we parse forces from file, values are written over (in case of DoOutVis)
|
---|
| 1170 | fprintf(stderr, "Parsing Forces from file.\n");
|
---|
[53b5b6] | 1171 | ParseIonForce(P);
|
---|
[5712cb] | 1172 | //CalculateIonForce(P);
|
---|
[2026d4] | 1173 | }
|
---|
[a0bcf1] | 1174 | CorrectForces(P);
|
---|
| 1175 | // ... on output of densities
|
---|
| 1176 | if (F->DoOutOrbitals) { // output of each orbital
|
---|
| 1177 | debug(P,"OutputVisAllOrbital");
|
---|
| 1178 | OutputVisAllOrbital(P,0,1,Occupied);
|
---|
| 1179 | }
|
---|
[5712cb] | 1180 | //OutputNorm(P);
|
---|
[2026d4] | 1181 | //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
|
---|
[5712cb] | 1182 | //OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
|
---|
[2026d4] | 1183 | /*TestGramSch(P, R->LevS, &P->Lat.Psi); */
|
---|
[a0bcf1] | 1184 | GetOuterStop(P);
|
---|
| 1185 | //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
|
---|
| 1186 | if (SuperStop) OuterStop = 1;
|
---|
| 1187 | return OuterStop;
|
---|
| 1188 | }
|
---|
| 1189 |
|
---|
[2026d4] | 1190 | /** Checks whether the given positions \a *v have changed wrt stored in IonData structure.
|
---|
| 1191 | * \param *P Problem at hand
|
---|
| 1192 | * \param *v gsl_vector storing new positions
|
---|
| 1193 | */
|
---|
| 1194 | int CheckForChangedPositions(struct Problem *P, const gsl_vector *v)
|
---|
| 1195 | {
|
---|
| 1196 | struct Ions *I = &P->Ion;
|
---|
| 1197 | int is,ia,k, index=0;
|
---|
| 1198 | int diff = 0;
|
---|
| 1199 | double *R_ion;
|
---|
| 1200 | for (is=0; is < I->Max_Types; is++) // for all elements
|
---|
| 1201 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
|
---|
| 1202 | R_ion = &I->I[is].R[NDIM*ia];
|
---|
| 1203 | for (k=0;k<NDIM;k++) { // for all dimensions
|
---|
| 1204 | if (fabs(R_ion[k] - gsl_vector_get (v, index++)) > MYEPSILON)
|
---|
| 1205 | diff++;
|
---|
| 1206 | }
|
---|
| 1207 | }
|
---|
| 1208 | return diff;
|
---|
| 1209 | }
|
---|
| 1210 |
|
---|
| 1211 | /** Wrapper for CalculateForce() for simplex minimisation of total energy.
|
---|
| 1212 | * \param *v vector with degrees of freedom
|
---|
| 1213 | * \param *params additional arguments, here Problem at hand
|
---|
| 1214 | */
|
---|
| 1215 | double StructOpt_func(const gsl_vector *v, void *params)
|
---|
| 1216 | {
|
---|
| 1217 | struct Problem *P = (struct Problem *)params;
|
---|
| 1218 | struct RunStruct *R = &P->R;
|
---|
| 1219 | struct Ions *I = &P->Ion;
|
---|
| 1220 | struct Energy *E = P->Lat.E;
|
---|
| 1221 | int i;
|
---|
| 1222 | double *R_ion, *R_old, *R_old_old;//, *FIon;
|
---|
| 1223 | //double norm = 0.;
|
---|
| 1224 | int is,ia,k,index = 0;
|
---|
| 1225 | int OuterStop;
|
---|
| 1226 | double diff = 0., tmp;
|
---|
| 1227 | debug (P, "StructOpt_func");
|
---|
| 1228 | if (CheckForChangedPositions(P,v)) {
|
---|
| 1229 | // update ion positions from vector coordinates
|
---|
| 1230 | for (is=0; is < I->Max_Types; is++) // for all elements
|
---|
| 1231 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
|
---|
| 1232 | R_ion = &I->I[is].R[NDIM*ia];
|
---|
| 1233 | R_old = &I->I[is].R_old[NDIM*ia];
|
---|
| 1234 | R_old_old = &I->I[is].R_old_old[NDIM*ia];
|
---|
| 1235 | tmp = 0.;
|
---|
| 1236 | for (k=0;k<NDIM;k++) { // for all dimensions
|
---|
| 1237 | R_old_old[k] = R_old[k];
|
---|
| 1238 | R_old[k] = R_ion[k];
|
---|
| 1239 | tmp += (R_ion[k]-gsl_vector_get (v, index))*(R_ion[k]-gsl_vector_get (v, index));
|
---|
| 1240 | R_ion[k] = gsl_vector_get (v, index++);
|
---|
| 1241 | }
|
---|
| 1242 | diff += sqrt(tmp);
|
---|
| 1243 | }
|
---|
| 1244 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Summed Difference to former position %lg\n", P->Par.me, diff);
|
---|
| 1245 | // recalculate ionic forces (do electronic minimisation)
|
---|
| 1246 | R->OuterStep++;
|
---|
| 1247 | R->NewRStep++;
|
---|
| 1248 | UpdateWaveAfterIonMove(P);
|
---|
| 1249 | for (i=MAXOLD-1; i > 0; i--) // store away old energies
|
---|
| 1250 | E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
|
---|
| 1251 | UpdateToNewWaves(P);
|
---|
| 1252 | E->TotalEnergyOuter[0] = E->TotalEnergy[0];
|
---|
| 1253 | OuterStop = CalculateForce(P);
|
---|
| 1254 | //UpdateIonsU(P);
|
---|
| 1255 | //CorrectVelocity(P);
|
---|
| 1256 | //CalculateEnergyIonsU(P);
|
---|
| 1257 | /* if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
|
---|
| 1258 | ScaleTemp(P);*/
|
---|
| 1259 | if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
|
---|
| 1260 | OutputVisSrcFiles(P, Occupied);
|
---|
| 1261 | if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
|
---|
| 1262 | /* // recalculate density for the specific wave function ...
|
---|
| 1263 | CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
|
---|
| 1264 | // ... and output (wherein ActualDensity is used instead of TotalDensity)
|
---|
| 1265 | OutputVis(P);
|
---|
| 1266 | OutputIonForce(P);
|
---|
| 1267 | EnergyOutput(P, 1);*/
|
---|
| 1268 | }
|
---|
| 1269 | }
|
---|
| 1270 | if (P->Par.me == 0) fprintf(stderr,"(%i) TE %e\n",P->Par.me, E->TotalEnergy[0]);
|
---|
| 1271 | return E->TotalEnergy[0];
|
---|
| 1272 | }
|
---|
| 1273 |
|
---|
[a0bcf1] | 1274 | /** Wrapper for CalculateForce() for simplex minimisation of ionic forces.
|
---|
| 1275 | * \param *v vector with degrees of freedom
|
---|
| 1276 | * \param *params additional arguments, here Problem at hand
|
---|
| 1277 | */
|
---|
[f915e1] | 1278 | double StructOpt_f(const gsl_vector *v, void *params)
|
---|
[a0bcf1] | 1279 | {
|
---|
| 1280 | struct Problem *P = (struct Problem *)params;
|
---|
| 1281 | struct RunStruct *R = &P->R;
|
---|
| 1282 | struct Ions *I = &P->Ion;
|
---|
| 1283 | struct Energy *E = P->Lat.E;
|
---|
| 1284 | int i;
|
---|
[27a5bf] | 1285 | double *R_ion, *R_old, *R_old_old;//, *FIon;
|
---|
| 1286 | //double norm = 0.;
|
---|
| 1287 | int is,ia,k,index = 0;
|
---|
[a0bcf1] | 1288 | int OuterStop;
|
---|
[27a5bf] | 1289 | double diff = 0., tmp;
|
---|
| 1290 | //debug (P, "StructOpt_f");
|
---|
| 1291 | if (CheckForChangedPositions(P,v)) {
|
---|
| 1292 | // update ion positions from vector coordinates
|
---|
| 1293 | for (is=0; is < I->Max_Types; is++) // for all elements
|
---|
| 1294 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
|
---|
| 1295 | R_ion = &I->I[is].R[NDIM*ia];
|
---|
| 1296 | R_old = &I->I[is].R_old[NDIM*ia];
|
---|
| 1297 | R_old_old = &I->I[is].R_old_old[NDIM*ia];
|
---|
| 1298 | tmp = 0.;
|
---|
| 1299 | for (k=0;k<NDIM;k++) { // for all dimensions
|
---|
| 1300 | R_old_old[k] = R_old[k];
|
---|
| 1301 | R_old[k] = R_ion[k];
|
---|
| 1302 | tmp += (R_ion[k]-gsl_vector_get (v, index))*(R_ion[k]-gsl_vector_get (v, index));
|
---|
| 1303 | R_ion[k] = gsl_vector_get (v, index++);
|
---|
| 1304 | }
|
---|
| 1305 | diff += sqrt(tmp);
|
---|
| 1306 | }
|
---|
| 1307 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Summed Difference to former position %lg\n", P->Par.me, diff);
|
---|
| 1308 | // recalculate ionic forces (do electronic minimisation)
|
---|
| 1309 | //R->OuterStep++;
|
---|
| 1310 | R->NewRStep++;
|
---|
| 1311 | UpdateWaveAfterIonMove(P);
|
---|
| 1312 | for (i=MAXOLD-1; i > 0; i--) // store away old energies
|
---|
| 1313 | E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
|
---|
| 1314 | UpdateToNewWaves(P);
|
---|
| 1315 | E->TotalEnergyOuter[0] = E->TotalEnergy[0];
|
---|
| 1316 | OuterStop = CalculateForce(P);
|
---|
| 1317 | //UpdateIonsU(P);
|
---|
| 1318 | //CorrectVelocity(P);
|
---|
| 1319 | //CalculateEnergyIonsU(P);
|
---|
| 1320 | /* if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
|
---|
| 1321 | ScaleTemp(P);*/
|
---|
| 1322 | if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
|
---|
| 1323 | OutputVisSrcFiles(P, Occupied);
|
---|
| 1324 | /*if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
|
---|
| 1325 | // recalculate density for the specific wave function ...
|
---|
| 1326 | CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
|
---|
| 1327 | // ... and output (wherein ActualDensity is used instead of TotalDensity)
|
---|
| 1328 | OutputVis(P);
|
---|
| 1329 | OutputIonForce(P);
|
---|
| 1330 | EnergyOutput(P, 1);
|
---|
| 1331 | }*/
|
---|
[a0bcf1] | 1332 | }
|
---|
[27a5bf] | 1333 | GetOuterStop(P);
|
---|
| 1334 | //if (P->Call.out[LeaderOut] && (P->Par.me == 0)) fprintf(stderr,"(%i) Absolute Force summed over all Ions %e\n",P->Par.me, norm);
|
---|
| 1335 | return R->MeanForce[0];
|
---|
| 1336 | //if (P->Call.out[LeaderOut] && (P->Par.me == 0)) fprintf(stderr,"(%i) Struct_optf returning: %lg\n",P->Par.me,E->TotalEnergy[0]);
|
---|
| 1337 | //return E->TotalEnergy[0];
|
---|
[a0bcf1] | 1338 | }
|
---|
| 1339 |
|
---|
[f915e1] | 1340 | void StructOpt_df(const gsl_vector *v, void *params, gsl_vector *df)
|
---|
[a0bcf1] | 1341 | {
|
---|
| 1342 | struct Problem *P = (struct Problem *)params;
|
---|
| 1343 | struct Ions *I = &P->Ion;
|
---|
| 1344 | double *FIon;
|
---|
[27a5bf] | 1345 | int is,ia,k, index=0;
|
---|
| 1346 | //debug (P, "StructOpt_df");
|
---|
| 1347 | // look through coordinate vector if positions have changed sind last StructOpt_f call
|
---|
| 1348 | if (CheckForChangedPositions(P,v)) {// if so, recalc to update forces
|
---|
| 1349 | debug (P, "Calling StructOpt_f to update");
|
---|
| 1350 | StructOpt_f(v, params);
|
---|
| 1351 | }
|
---|
[a0bcf1] | 1352 | for (is=0; is < I->Max_Types; is++) // for all elements
|
---|
| 1353 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
|
---|
| 1354 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
| 1355 | for (k=0;k<NDIM;k++) { // for all dimensions
|
---|
| 1356 | gsl_vector_set (df, index++, FIon[k]);
|
---|
| 1357 | }
|
---|
[27a5bf] | 1358 | }
|
---|
| 1359 | if (P->Call.out[LeaderOut] && (P->Par.me == 0)) {
|
---|
| 1360 | fprintf(stderr,"(%i) Struct_Optdf returning",P->Par.me);
|
---|
| 1361 | gsl_vector_fprintf(stderr, df, "%lg");
|
---|
| 1362 | }
|
---|
[a0bcf1] | 1363 | }
|
---|
| 1364 |
|
---|
[f915e1] | 1365 | void StructOpt_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df)
|
---|
[a0bcf1] | 1366 | {
|
---|
[f915e1] | 1367 | *f = StructOpt_f(x, params);
|
---|
| 1368 | StructOpt_df(x, params, df);
|
---|
[a0bcf1] | 1369 | }
|
---|
| 1370 |
|
---|
| 1371 |
|
---|
| 1372 | /** CG implementation for the structure optimization.
|
---|
| 1373 | * We follow the example from the GSL manual.
|
---|
| 1374 | * \param *P Problem at hand
|
---|
| 1375 | */
|
---|
| 1376 | void UpdateIon_PRCG(struct Problem *P)
|
---|
| 1377 | {
|
---|
[27a5bf] | 1378 | //struct RunStruct *Run = &P->R;
|
---|
[a0bcf1] | 1379 | struct Ions *I = &P->Ion;
|
---|
| 1380 | size_t np = NDIM*I->Max_TotalIons; // d.o.f = number of ions times number of dimensions
|
---|
| 1381 | int is, ia, k, index;
|
---|
| 1382 | double *R;
|
---|
| 1383 |
|
---|
| 1384 | const gsl_multimin_fdfminimizer_type *T;
|
---|
| 1385 | gsl_multimin_fdfminimizer *s;
|
---|
| 1386 | gsl_vector *x;
|
---|
| 1387 | gsl_multimin_function_fdf minex_func;
|
---|
| 1388 |
|
---|
| 1389 | size_t iter = 0;
|
---|
| 1390 | int status;
|
---|
| 1391 |
|
---|
| 1392 | /* Starting point */
|
---|
| 1393 | x = gsl_vector_alloc (np);
|
---|
[27a5bf] | 1394 | //fprintf(stderr,"(%i) d.o.f. = %i\n", P->Par.me, (int)np);
|
---|
[a0bcf1] | 1395 |
|
---|
| 1396 | index=0;
|
---|
| 1397 | for (is=0; is < I->Max_Types; is++) // for all elements
|
---|
| 1398 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
|
---|
| 1399 | R = &I->I[is].R[NDIM*ia];
|
---|
| 1400 | for (k=0;k<NDIM;k++) // for all dimensions
|
---|
| 1401 | gsl_vector_set (x, index++, R[k]);
|
---|
| 1402 | }
|
---|
| 1403 |
|
---|
| 1404 | /* Initialize method and iterate */
|
---|
[f915e1] | 1405 | minex_func.f = &StructOpt_f;
|
---|
| 1406 | minex_func.df = &StructOpt_df;
|
---|
| 1407 | minex_func.fdf = &StructOpt_fdf;
|
---|
[a0bcf1] | 1408 | minex_func.n = np;
|
---|
| 1409 | minex_func.params = (void *)P;
|
---|
| 1410 |
|
---|
| 1411 | T = gsl_multimin_fdfminimizer_conjugate_pr;
|
---|
| 1412 | s = gsl_multimin_fdfminimizer_alloc (T, np);
|
---|
| 1413 |
|
---|
[27a5bf] | 1414 | gsl_multimin_fdfminimizer_set (s, &minex_func, x, 0.1, 0.001);
|
---|
[a0bcf1] | 1415 |
|
---|
[27a5bf] | 1416 | fprintf(stderr,"(%i) Commencing Structure optimization with PRCG: dof %d\n", P->Par.me,(int)np);
|
---|
[a0bcf1] | 1417 | do {
|
---|
| 1418 | iter++;
|
---|
| 1419 | status = gsl_multimin_fdfminimizer_iterate(s);
|
---|
| 1420 |
|
---|
| 1421 | if (status)
|
---|
| 1422 | break;
|
---|
| 1423 |
|
---|
[27a5bf] | 1424 | status = gsl_multimin_test_gradient (s->gradient, 1e-2);
|
---|
[a0bcf1] | 1425 |
|
---|
| 1426 | if (status == GSL_SUCCESS)
|
---|
| 1427 | if (P->Par.me == 0) fprintf (stderr,"(%i) converged to minimum at\n", P->Par.me);
|
---|
| 1428 |
|
---|
[53b5b6] | 1429 | if (P->Call.out[NormalOut]) fprintf(stderr,"(%i) Commencing '%s' step %i ... \n",P->Par.me, gsl_multimin_fdfminimizer_name(s), P->R.StructOptStep);
|
---|
[4931e0] | 1430 | if ((P->Call.out[NormalOut]) && (P->Par.me == 0)) fprintf (stderr, "(%i) %5d %10.5f\n", P->Par.me, (int)iter, s->f);
|
---|
[27a5bf] | 1431 | //gsl_vector_fprintf(stderr, s->dx, "%lg");
|
---|
| 1432 | OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
|
---|
[774ae8] | 1433 | OutputIonCoordinates(P, 0);
|
---|
[27a5bf] | 1434 | P->R.StructOptStep++;
|
---|
| 1435 | } while ((status == GSL_CONTINUE) && (P->R.StructOptStep < P->R.MaxStructOptStep));
|
---|
[a0bcf1] | 1436 |
|
---|
| 1437 | gsl_vector_free(x);
|
---|
| 1438 | gsl_multimin_fdfminimizer_free (s);
|
---|
| 1439 | }
|
---|
| 1440 |
|
---|
[27a5bf] | 1441 | /** Simplex implementation for the structure optimization.
|
---|
| 1442 | * We follow the example from the GSL manual.
|
---|
| 1443 | * \param *P Problem at hand
|
---|
| 1444 | */
|
---|
| 1445 | void UpdateIon_Simplex(struct Problem *P)
|
---|
| 1446 | {
|
---|
| 1447 | struct RunStruct *Run = &P->R;
|
---|
| 1448 | struct Ions *I = &P->Ion;
|
---|
| 1449 | size_t np = NDIM*I->Max_TotalIons; // d.o.f = number of ions times number of dimensions
|
---|
| 1450 | int is, ia, k, index;
|
---|
| 1451 | double *R;
|
---|
| 1452 |
|
---|
| 1453 | const gsl_multimin_fminimizer_type *T;
|
---|
| 1454 | gsl_multimin_fminimizer *s;
|
---|
| 1455 | gsl_vector *x, *ss;
|
---|
| 1456 | gsl_multimin_function minex_func;
|
---|
| 1457 |
|
---|
| 1458 | size_t iter = 0;
|
---|
| 1459 | int status;
|
---|
| 1460 | double size;
|
---|
| 1461 |
|
---|
| 1462 | ss = gsl_vector_alloc (np);
|
---|
| 1463 | gsl_vector_set_all(ss, .2);
|
---|
| 1464 | /* Starting point */
|
---|
| 1465 | x = gsl_vector_alloc (np);
|
---|
| 1466 | //fprintf(stderr,"(%i) d.o.f. = %i\n", P->Par.me, (int)np);
|
---|
| 1467 |
|
---|
| 1468 | index=0;
|
---|
| 1469 | for (is=0; is < I->Max_Types; is++) // for all elements
|
---|
| 1470 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
|
---|
| 1471 | R = &I->I[is].R[NDIM*ia];
|
---|
| 1472 | for (k=0;k<NDIM;k++) // for all dimensions
|
---|
| 1473 | gsl_vector_set (x, index++, R[k]);
|
---|
| 1474 | }
|
---|
| 1475 |
|
---|
| 1476 | /* Initialize method and iterate */
|
---|
| 1477 | minex_func.f = &StructOpt_f;
|
---|
| 1478 | minex_func.n = np;
|
---|
| 1479 | minex_func.params = (void *)P;
|
---|
| 1480 |
|
---|
| 1481 | T = gsl_multimin_fminimizer_nmsimplex;
|
---|
| 1482 | s = gsl_multimin_fminimizer_alloc (T, np);
|
---|
| 1483 |
|
---|
| 1484 | gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
|
---|
| 1485 |
|
---|
| 1486 | fprintf(stderr,"(%i) Commencing Structure optimization with NM simplex: dof %d\n", P->Par.me, (int)np);
|
---|
| 1487 | do {
|
---|
| 1488 | iter++;
|
---|
| 1489 | status = gsl_multimin_fminimizer_iterate(s);
|
---|
| 1490 |
|
---|
| 1491 | if (status)
|
---|
| 1492 | break;
|
---|
| 1493 |
|
---|
| 1494 | size = gsl_multimin_fminimizer_size (s);
|
---|
| 1495 | status = gsl_multimin_test_size (size, 1e-4);
|
---|
| 1496 |
|
---|
| 1497 | if (status == GSL_SUCCESS)
|
---|
| 1498 | if (P->Par.me == 0) fprintf (stderr,"(%i) converged to minimum at\n", P->Par.me);
|
---|
| 1499 |
|
---|
| 1500 | if (P->Call.out[MinOut]) fprintf(stderr,"(%i) Commencing '%s' step %i ... \n",P->Par.me, gsl_multimin_fminimizer_name(s), P->R.StructOptStep);
|
---|
| 1501 | if ((P->Call.out[MinOut]) && (P->Par.me == 0)) fprintf (stderr, "(%i) %5d %10.5f %10.5f\n", P->Par.me, (int)iter, s->fval, size);
|
---|
| 1502 | OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
|
---|
[774ae8] | 1503 | OutputIonCoordinates(P, 0);
|
---|
[27a5bf] | 1504 | P->R.StructOptStep++;
|
---|
| 1505 | } while ((status == GSL_CONTINUE) && (Run->OuterStep < Run->MaxOuterStep));
|
---|
| 1506 |
|
---|
| 1507 | gsl_vector_free(x);
|
---|
| 1508 | gsl_vector_free(ss);
|
---|
| 1509 | gsl_multimin_fminimizer_free (s);
|
---|
| 1510 | }
|
---|
| 1511 |
|
---|
[f915e1] | 1512 | /** Implementation of various thermostats.
|
---|
| 1513 | * All these thermostats apply an additional force which has the following forms:
|
---|
| 1514 | * -# Woodcock
|
---|
| 1515 | * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
|
---|
| 1516 | * -# Gaussian
|
---|
| 1517 | * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
|
---|
| 1518 | * -# Langevin
|
---|
| 1519 | * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
|
---|
| 1520 | * -# Berendsen
|
---|
| 1521 | * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
|
---|
| 1522 | * -# Nose-Hoover
|
---|
| 1523 | * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
|
---|
| 1524 | * These Thermostats either simply rescale the velocities, thus Thermostats() should be called after UpdateIonsU(), and/or
|
---|
| 1525 | * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
|
---|
| 1526 | * belatedly and the constraint force set.
|
---|
| 1527 | * \param *P Problem at hand
|
---|
| 1528 | * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
|
---|
| 1529 | * \sa InitThermostat()
|
---|
| 1530 | */
|
---|
| 1531 | void Thermostats(struct Problem *P, enum thermostats i)
|
---|
| 1532 | {
|
---|
| 1533 | struct FileData *Files = &P->Files;
|
---|
| 1534 | struct Ions *I = &P->Ion;
|
---|
| 1535 | int is, ia, d;
|
---|
| 1536 | double *U;
|
---|
| 1537 | double a, ekin = 0.;
|
---|
| 1538 | double E = 0., F = 0.;
|
---|
| 1539 | double delta_alpha = 0.;
|
---|
| 1540 | const int delta_t = P->R.delta_t;
|
---|
| 1541 | double ScaleTempFactor;
|
---|
| 1542 | double sigma;
|
---|
| 1543 | gsl_rng * r;
|
---|
| 1544 | const gsl_rng_type * T;
|
---|
| 1545 |
|
---|
| 1546 | // calculate current temperature
|
---|
| 1547 | CalculateEnergyIonsU(P); // Temperature now in I->ActualTemp
|
---|
| 1548 | ScaleTempFactor = P->R.TargetTemp/I->ActualTemp;
|
---|
| 1549 | //if ((P->Par.me == 0) && (I->ActualTemp < MYEPSILON)) fprintf(stderr,"Thermostat: (1) I->ActualTemp = %lg",I->ActualTemp);
|
---|
| 1550 | if (Files->MeOutMes) fprintf(Files->TemperatureFile, "%d\t%lg",P->R.OuterStep, I->ActualTemp);
|
---|
| 1551 |
|
---|
| 1552 | // differentating between the various thermostats
|
---|
| 1553 | switch(i) {
|
---|
| 1554 | case None:
|
---|
| 1555 | debug(P, "Applying no thermostat...");
|
---|
| 1556 | break;
|
---|
| 1557 | case Woodcock:
|
---|
| 1558 | if ((P->R.ScaleTempStep > 0) && ((P->R.OuterStep-1) % P->R.ScaleTempStep == 0)) {
|
---|
| 1559 | debug(P, "Applying Woodcock thermostat...");
|
---|
| 1560 | for (is=0; is < I->Max_Types; is++) {
|
---|
| 1561 | a = 0.5*I->I[is].IonMass;
|
---|
| 1562 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 1563 | U = &I->I[is].U[NDIM*ia];
|
---|
| 1564 | if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
|
---|
| 1565 | for (d=0; d<NDIM; d++) {
|
---|
| 1566 | U[d] *= sqrt(ScaleTempFactor);
|
---|
| 1567 | ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
|
---|
| 1568 | }
|
---|
| 1569 | }
|
---|
| 1570 | }
|
---|
| 1571 | }
|
---|
| 1572 | break;
|
---|
| 1573 | case Gaussian:
|
---|
| 1574 | debug(P, "Applying Gaussian thermostat...");
|
---|
| 1575 | for (is=0; is < I->Max_Types; is++) { // sum up constraint constant
|
---|
| 1576 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 1577 | U = &I->I[is].U[NDIM*ia];
|
---|
| 1578 | if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
|
---|
| 1579 | for (d=0; d<NDIM; d++) {
|
---|
| 1580 | F += U[d] * I->I[is].FIon[d+NDIM*ia];
|
---|
| 1581 | E += U[d]*U[d]*I->I[is].IonMass;
|
---|
| 1582 | }
|
---|
| 1583 | }
|
---|
| 1584 | }
|
---|
| 1585 | if (P->Call.out[ValueOut]) fprintf(stderr, "(%i) Gaussian Least Constraint constant is %lg\n", P->Par.me, F/E);
|
---|
| 1586 | for (is=0; is < I->Max_Types; is++) { // apply constraint constant on constraint force and on velocities
|
---|
| 1587 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 1588 | U = &I->I[is].U[NDIM*ia];
|
---|
| 1589 | if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
|
---|
| 1590 | for (d=0; d<NDIM; d++) {
|
---|
| 1591 | I->I[is].FConstraint[d+NDIM*ia] = (F/E) * (U[d]*I->I[is].IonMass);
|
---|
| 1592 | U[d] += delta_t/I->I[is].IonMass * (I->I[is].FConstraint[d+NDIM*ia]);
|
---|
| 1593 | ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
|
---|
| 1594 | }
|
---|
| 1595 | }
|
---|
| 1596 | }
|
---|
| 1597 | break;
|
---|
| 1598 | case Langevin:
|
---|
| 1599 | debug(P, "Applying Langevin thermostat...");
|
---|
| 1600 | // init random number generator
|
---|
| 1601 | gsl_rng_env_setup();
|
---|
| 1602 | T = gsl_rng_default;
|
---|
| 1603 | r = gsl_rng_alloc (T);
|
---|
| 1604 | // Go through each ion
|
---|
| 1605 | for (is=0; is < I->Max_Types; is++) {
|
---|
| 1606 | sigma = sqrt(P->R.TargetTemp/I->I[is].IonMass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime)
|
---|
| 1607 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 1608 | U = &I->I[is].U[NDIM*ia];
|
---|
| 1609 | // throw a dice to determine whether it gets hit by a heat bath particle
|
---|
| 1610 | if (((((rand()/(double)RAND_MAX))*P->R.TempFrequency) < 1.)) { // (I->I[is].IMT[ia] == MoveIon) && even FixedIon moves, only not by other's forces
|
---|
| 1611 | if (P->Par.me == 0) fprintf(stderr,"(%i) Particle %i,%i was hit (sigma %lg): %lg -> ", P->Par.me, is, ia, sigma, sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]));
|
---|
| 1612 | // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis
|
---|
| 1613 | for (d=0; d<NDIM; d++) {
|
---|
| 1614 | U[d] = gsl_ran_gaussian (r, sigma);
|
---|
| 1615 | }
|
---|
| 1616 | if (P->Par.me == 0) fprintf(stderr,"%lg\n", sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]));
|
---|
| 1617 | }
|
---|
| 1618 | for (d=0; d<NDIM; d++)
|
---|
| 1619 | ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
|
---|
| 1620 | }
|
---|
| 1621 | }
|
---|
| 1622 | break;
|
---|
| 1623 | case Berendsen:
|
---|
| 1624 | debug(P, "Applying Berendsen-VanGunsteren thermostat...");
|
---|
| 1625 | for (is=0; is < I->Max_Types; is++) {
|
---|
| 1626 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 1627 | U = &I->I[is].U[NDIM*ia];
|
---|
| 1628 | if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
|
---|
| 1629 | for (d=0; d<NDIM; d++) {
|
---|
| 1630 | U[d] *= sqrt(1+(P->R.delta_t/P->R.TempFrequency)*(ScaleTempFactor-1));
|
---|
| 1631 | ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
|
---|
| 1632 | }
|
---|
| 1633 | }
|
---|
| 1634 | }
|
---|
| 1635 | break;
|
---|
| 1636 | case NoseHoover:
|
---|
| 1637 | debug(P, "Applying Nose-Hoover thermostat...");
|
---|
| 1638 | // dynamically evolve alpha (the additional degree of freedom)
|
---|
| 1639 | delta_alpha = 0.;
|
---|
| 1640 | for (is=0; is < I->Max_Types; is++) { // sum up constraint constant
|
---|
| 1641 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 1642 | U = &I->I[is].U[NDIM*ia];
|
---|
| 1643 | if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
|
---|
| 1644 | for (d=0; d<NDIM; d++) {
|
---|
| 1645 | delta_alpha += U[d]*U[d]*I->I[is].IonMass;
|
---|
| 1646 | }
|
---|
| 1647 | }
|
---|
| 1648 | }
|
---|
| 1649 | delta_alpha = (delta_alpha - (3.*I->Max_TotalIons+1.) * P->R.TargetTemp)/(P->R.HooverMass*Units2Electronmass);
|
---|
| 1650 | P->R.alpha += delta_alpha*delta_t;
|
---|
| 1651 | if (P->Par.me == 0) fprintf(stderr,"(%i) alpha = %lg * %i = %lg\n", P->Par.me, delta_alpha, delta_t, P->R.alpha);
|
---|
| 1652 | // apply updated alpha as additional force
|
---|
| 1653 | for (is=0; is < I->Max_Types; is++) { // apply constraint constant on constraint force and on velocities
|
---|
| 1654 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 1655 | U = &I->I[is].U[NDIM*ia];
|
---|
| 1656 | if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
|
---|
| 1657 | for (d=0; d<NDIM; d++) {
|
---|
| 1658 | I->I[is].FConstraint[d+NDIM*ia] = - P->R.alpha * (U[d] * I->I[is].IonMass);
|
---|
| 1659 | U[d] += delta_t/I->I[is].IonMass * (I->I[is].FConstraint[d+NDIM*ia]);
|
---|
| 1660 | ekin += (0.5*I->I[is].IonMass) * U[d]*U[d];
|
---|
| 1661 | }
|
---|
| 1662 | }
|
---|
| 1663 | }
|
---|
| 1664 | break;
|
---|
| 1665 | }
|
---|
| 1666 | I->EKin = ekin;
|
---|
| 1667 | I->ActualTemp = (2./(3.*I->Max_TotalIons)*I->EKin);
|
---|
| 1668 | //if ((P->Par.me == 0) && (I->ActualTemp < MYEPSILON)) fprintf(stderr,"Thermostat: (2) I->ActualTemp = %lg",I->ActualTemp);
|
---|
| 1669 | if (Files->MeOutMes) { fprintf(Files->TemperatureFile, "\t%lg\n", I->ActualTemp); fflush(Files->TemperatureFile); }
|
---|
| 1670 | }
|
---|
| 1671 |
|
---|
[a0bcf1] | 1672 | /** Does the Molecular Dynamics Calculations.
|
---|
| 1673 | * All of the following is SpeedMeasure()'d in SimTime.
|
---|
| 1674 | * Initialization by calling:
|
---|
| 1675 | * -# CorrectVelocity()\n
|
---|
| 1676 | * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
|
---|
| 1677 | * -# CalculateEnergyIonsU(), SpeedMeasure()'d in TimeTypes#InitSimTime\n
|
---|
| 1678 | * Calculates kinetic energy of "movable" Ions.
|
---|
| 1679 | * -# CalculateForce()\n
|
---|
| 1680 | * Does the minimisation, calculates densities, then energies and finally the forces.
|
---|
| 1681 | * -# OutputVisSrcFiles()\n
|
---|
| 1682 | * If desired, so-far made calculations are stored to file for later restarting.
|
---|
| 1683 | * -# OutputIonForce()\n
|
---|
| 1684 | * Write ion forces to file.
|
---|
| 1685 | * -# EnergyOutput()\n
|
---|
| 1686 | * Write calculated energies to screen or file.
|
---|
| 1687 | *
|
---|
| 1688 | * The simulation phase begins:
|
---|
| 1689 | * -# UpdateIonsR()\n
|
---|
| 1690 | * Move Ions according to the calculated force.
|
---|
| 1691 | * -# UpdateWaveAfterIonMove()\n
|
---|
| 1692 | * Update wave functions by averaging LocalPsi coefficients after the Ions have been shifted.
|
---|
| 1693 | * -# UpdateToNewWaves()\n
|
---|
| 1694 | * Update after wave functions have changed.
|
---|
| 1695 | * -# CalculateForce()\n
|
---|
| 1696 | * Does the minimisation, calculates densities, then energies and finally the forces.
|
---|
| 1697 | * -# UpdateIonsU()\n
|
---|
| 1698 | * Change ion's velocities according to the calculated acting force.
|
---|
| 1699 | * -# CorrectVelocity()\n
|
---|
| 1700 | * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
|
---|
| 1701 | * -# CalculateEnergyIonsU()\n
|
---|
| 1702 | * Calculates kinetic energy of "movable" Ions.
|
---|
| 1703 | * -# ScaleTemp()\n
|
---|
| 1704 | * The temperature is scaled, so the systems energy remains constant (they must not gain momenta out of nothing)
|
---|
| 1705 | * -# OutputVisSrcFiles()\n
|
---|
| 1706 | * If desired, so-far made calculations are stored to file for later restarting.
|
---|
| 1707 | * -# OutputVis()\n
|
---|
| 1708 | * Visulization data for OpenDX is written at certain steps if desired.
|
---|
| 1709 | * -# OutputIonForce()\n
|
---|
| 1710 | * Write ion forces to file.
|
---|
| 1711 | * -# EnergyOutput()\n
|
---|
| 1712 | * Write calculated energies to screen or file.
|
---|
| 1713 | *
|
---|
| 1714 | * After the ground state is found:
|
---|
| 1715 | * -# CalculateUnOccupied()\n
|
---|
| 1716 | * Energies of unoccupied orbitals - that have been left out completely so far -
|
---|
| 1717 | * are calculated.
|
---|
| 1718 | * -# TestGramSch()\n
|
---|
| 1719 | * Test if orbitals are still orthogonal.
|
---|
| 1720 | * -# CalculateHamiltonian()\n
|
---|
| 1721 | * Construct Hamiltonian and calculate Eigenvalues.
|
---|
| 1722 | * -# ComputeMLWF()\n
|
---|
| 1723 | * Localize orbital wave functions.
|
---|
| 1724 | *
|
---|
| 1725 | * \param *P Problem at hand
|
---|
| 1726 | */
|
---|
| 1727 | void CalculateMD(struct Problem *P)
|
---|
| 1728 | {
|
---|
| 1729 | struct RunStruct *R = &P->R;
|
---|
| 1730 | struct Ions *I = &P->Ion;
|
---|
[27a5bf] | 1731 | struct Energy *E = P->Lat.E;
|
---|
[a0bcf1] | 1732 | int OuterStop = 0;
|
---|
[27a5bf] | 1733 | int i;
|
---|
| 1734 |
|
---|
[a0bcf1] | 1735 | SpeedMeasure(P, SimTime, StartTimeDo);
|
---|
[27a5bf] | 1736 | // initial calculations (bring density on BO surface and output start energies, coordinates, densities, ...)
|
---|
[a0bcf1] | 1737 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
| 1738 | R->OuterStep = 0;
|
---|
| 1739 | CorrectVelocity(P);
|
---|
| 1740 | CalculateEnergyIonsU(P);
|
---|
| 1741 | OuterStop = CalculateForce(P);
|
---|
[27a5bf] | 1742 | //R->OuterStep++;
|
---|
[a0bcf1] | 1743 | P->Speed.InitSteps++;
|
---|
| 1744 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
[27a5bf] | 1745 |
|
---|
[774ae8] | 1746 | OutputIonCoordinates(P, 1);
|
---|
[27a5bf] | 1747 | OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
|
---|
[a0bcf1] | 1748 | OutputIonForce(P);
|
---|
| 1749 | EnergyOutput(P, 1);
|
---|
[27a5bf] | 1750 |
|
---|
| 1751 | // if desired perform beforehand a structure relaxation/optimization
|
---|
| 1752 | if (I->StructOpt) {
|
---|
| 1753 | debug(P,"Commencing minimisation on ionic structure ...");
|
---|
| 1754 | R->StructOptStep = 0;
|
---|
| 1755 | //UpdateIon_PRCG(P);
|
---|
| 1756 | //UpdateIon_Simplex(P);
|
---|
| 1757 | while ((R->MeanForce[0] > 1e-4) && (R->StructOptStep < R->MaxStructOptStep)) {
|
---|
| 1758 | R->StructOptStep++;
|
---|
[774ae8] | 1759 | OutputIonCoordinates(P, 1);
|
---|
[27a5bf] | 1760 | UpdateIons(P);
|
---|
| 1761 | UpdateWaveAfterIonMove(P);
|
---|
| 1762 | for (i=MAXOLD-1; i > 0; i--) // store away old energies
|
---|
| 1763 | E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
|
---|
| 1764 | UpdateToNewWaves(P);
|
---|
| 1765 | E->TotalEnergyOuter[0] = E->TotalEnergy[0];
|
---|
| 1766 | OuterStop = CalculateForce(P);
|
---|
| 1767 | CalculateEnergyIonsU(P);
|
---|
| 1768 | if ((R->StructOptStep-1) % P->R.OutSrcStep == 0)
|
---|
| 1769 | OutputVisSrcFiles(P, Occupied);
|
---|
| 1770 | if ((R->StructOptStep-1) % P->R.OutVisStep == 0) {
|
---|
| 1771 | OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
|
---|
| 1772 | OutputIonForce(P);
|
---|
| 1773 | EnergyOutput(P, 1);
|
---|
| 1774 | }
|
---|
| 1775 | if (P->Par.me == 0) fprintf(stderr,"(%i) Mean force is %lg\n", P->Par.me, R->MeanForce[0]);
|
---|
| 1776 | }
|
---|
[774ae8] | 1777 | OutputIonCoordinates(P, 1);
|
---|
[a0bcf1] | 1778 | }
|
---|
| 1779 | if (I->StructOpt && !OuterStop) {
|
---|
| 1780 | I->StructOpt = 0;
|
---|
| 1781 | OuterStop = CalculateForce(P);
|
---|
| 1782 | }
|
---|
[27a5bf] | 1783 |
|
---|
| 1784 | // and now begin with the molecular dynamics simulation
|
---|
| 1785 | debug(P,"Commencing MD simulation ...");
|
---|
| 1786 | while (!OuterStop && R->OuterStep < R->MaxOuterStep) {
|
---|
[a0bcf1] | 1787 | R->OuterStep++;
|
---|
[27a5bf] | 1788 | if (P->Par.me == 0) {
|
---|
| 1789 | if (R->OuterStep > 1) fprintf(stderr,"\b\b\b\b\b\b\b\b\b\b\b\b");
|
---|
| 1790 | fprintf(stderr,"Time: %f fs\r", R->t*Atomictime2Femtoseconds);
|
---|
| 1791 | fflush(stderr);
|
---|
[a0bcf1] | 1792 | }
|
---|
| 1793 | OuterStop = CalculateForce(P);
|
---|
[27a5bf] | 1794 | P->R.t += P->R.delta_t; // increase current time by delta_t
|
---|
| 1795 | R->NewRStep++;
|
---|
| 1796 |
|
---|
[a0bcf1] | 1797 | UpdateIonsU(P);
|
---|
| 1798 | CorrectVelocity(P);
|
---|
[27a5bf] | 1799 | Thermostats(P, I->Thermostat);
|
---|
[a0bcf1] | 1800 | CalculateEnergyIonsU(P);
|
---|
[27a5bf] | 1801 |
|
---|
| 1802 | UpdateIonsR(P);
|
---|
[774ae8] | 1803 | OutputIonCoordinates(P, 1);
|
---|
[27a5bf] | 1804 |
|
---|
| 1805 | UpdateWaveAfterIonMove(P);
|
---|
| 1806 | for (i=MAXOLD-1; i > 0; i--) // store away old energies
|
---|
| 1807 | E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
|
---|
| 1808 | UpdateToNewWaves(P);
|
---|
| 1809 | E->TotalEnergyOuter[0] = E->TotalEnergy[0];
|
---|
| 1810 | //if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
|
---|
| 1811 | // ScaleTemp(P);
|
---|
[a0bcf1] | 1812 | if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
|
---|
| 1813 | OutputVisSrcFiles(P, Occupied);
|
---|
| 1814 | if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
|
---|
[27a5bf] | 1815 | OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
|
---|
| 1816 | OutputIonForce(P);
|
---|
| 1817 | EnergyOutput(P, 1);
|
---|
[a0bcf1] | 1818 | }
|
---|
[27a5bf] | 1819 | ResetForces(P);
|
---|
| 1820 | }
|
---|
[a0bcf1] | 1821 | SpeedMeasure(P, SimTime, StopTimeDo);
|
---|
| 1822 | CloseOutputFiles(P);
|
---|
| 1823 | }
|
---|