source: pcp/src/run.c@ 807e8a

Last change on this file since 807e8a was ae0078, checked in by Frederik Heber <heber@…>, 17 years ago

CalculateMD(): extra CalculateForce() only done in DoPerturbation case

  • Property mode set to 100644
File size: 81.2 KB
RevLine 
[a0bcf1]1/** \file run.c
2 * Initialization of levels and calculation super-functions.
3 *
4 * Most important functions herein are CalculateForce() and CalculateMD(), which calls various
5 * functions in order to perfom the Molecular Dynamics simulation. MinimiseOccupied() and MinimiseUnOccupied()
6 * call various functions to perform the actual minimisation for the occupied and unoccupied wave functions.
7 * CalculateMinimumStop() evaluates the stop condition for desired precision or step count (or external signals).
8 *
9 * Minor functions are ChangeToLevUp() (which takes the calculation to the next finer level),
10 * UpdateActualPsiNo() (next Psi is minimized and an additional orthonormalization takes place) and UpdateToNewWaves()
11 * (which reinitializes density calculations after the wave functions have changed due to the ionic motion).
12 * OccupyByFermi() re-occupies orbitals according to Fermi distribution if calculated with additional orbitals.
13 * InitRun() and InitRunLevel() prepare the RunStruct with starting values. UpdateIon_PRCG() implements a CG
14 * algorithm to minimize the ionic forces and thus optimize the structure.
15 *
16 *
17 Project: ParallelCarParrinello
18 \author Jan Hamaekers
19 \date 2000
20
21 File: run.c
22 $Id: run.c,v 1.101.2.2 2007-04-21 13:01:13 foo Exp $
23*/
24
25#include <signal.h>
26#include <stdlib.h>
27#include <stdio.h>
28#include <string.h>
29#include <math.h>
30#include <gsl/gsl_multimin.h>
31#include <gsl/gsl_vector.h>
32#include <gsl/gsl_errno.h>
33#include <gsl/gsl_math.h>
34#include <gsl/gsl_min.h>
[f915e1]35#include <gsl/gsl_randist.h>
[a0bcf1]36#include "mpi.h"
37#include "data.h"
38#include "errors.h"
39#include "helpers.h"
40#include "init.h"
41#include "opt.h"
42#include "myfft.h"
43#include "gramsch.h"
44#include "output.h"
45#include "energy.h"
46#include "density.h"
47#include "ions.h"
48#include "run.h"
49#include "riemann.h"
50#include "mymath.h"
51#include "pcp.h"
52#include "perturbed.h"
53#include "wannier.h"
54
55
56/** Initialization of the (initial) zero and simulation levels in RunStruct structure.
57 * RunStruct::InitLevS is set onto the STANDARTLEVEL in Lattice::Lev[], RunStruct::InitLev0 on
58 * level 0, RunStruct::LevS onto Lattice::MaxLevel-1 (maximum level) and RunStruct::Lev0 onto
59 * Lattice::MaxLevel-2 (one below).
60 * In case of RiemannTensor use an additional Riemann level is intertwined.
61 * \param *P Problem at hand
62 */
63void InitRunLevel(struct Problem *P)
64{
65 struct Lattice *Lat = &P->Lat;
66 struct RunStruct *R = &P->R;
67 struct RiemannTensor *RT = &Lat->RT;
68 int d,i;
69
70 switch (Lat->RT.Use) {
71 case UseNotRT:
72 R->InitLevSNo = STANDARTLEVEL;
73 R->InitLev0No = 0;
74 R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
75 R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
76 R->LevSNo = Lat->MaxLevel-1;
77 R->Lev0No = Lat->MaxLevel-2;
78 R->LevS = &P->Lat.Lev[R->LevSNo];
79 R->Lev0 = &P->Lat.Lev[R->Lev0No];
80 break;
81 case UseRT:
82 R->InitLevSNo = STANDARTLEVEL;
83 R->InitLev0No = 0;
84 R->InitLevS = &P->Lat.Lev[R->InitLevSNo];
85 R->InitLev0 = &P->Lat.Lev[R->InitLev0No];
86
87 /* R->LevSNo = Lat->MaxLevel-1;
88 R->Lev0No = Lat->MaxLevel-2;*/
89 R->LevSNo = Lat->MaxLevel-2;
90 R->Lev0No = Lat->MaxLevel-3;
91
92 R->LevRNo = P->Lat.RT.RiemannLevel;
93 R->LevRSNo = STANDARTLEVEL;
94 R->LevR0No = 0;
95 R->LevS = &P->Lat.Lev[R->LevSNo];
96 R->Lev0 = &P->Lat.Lev[R->Lev0No];
97 R->LevR = &P->Lat.Lev[R->LevRNo];
98 R->LevRS = &P->Lat.Lev[R->LevRSNo];
99 R->LevR0 = &P->Lat.Lev[R->LevR0No];
100 for (d=0; d<NDIM; d++) {
101 RT->NUpLevRS[d] = 1;
102 for (i=R->LevRNo-1; i >= R->LevRSNo; i--)
103 RT->NUpLevRS[d] *= Lat->LevelSizes[i];
104 RT->NUpLevR0[d] = 1;
105 for (i=R->LevRNo-1; i >= R->LevR0No; i--)
106 RT->NUpLevR0[d] *= Lat->LevelSizes[i];
107 }
108 break;
109 }
110}
111
112
113/** Initialization of RunStruct structure.
114 * Most of the actual entries in the RunStruct are set to their starter no-nonsense
115 * values (init if LatticeLevel is not STANDARTLEVEL otherwise normal max): FactorDensity,
116 * all Steps, XCEnergyFactor and HGcFactor, current and archived energie values are zeroed.
117 * \param *P problem at hand
118 */
119void InitRun(struct Problem *P)
120{
121 struct Lattice *Lat = &P->Lat;
122 struct RunStruct *R = &P->R;
123 struct Psis *Psi = &Lat->Psi;
124 int i,j;
125
126#ifndef SHORTSPEED
127 R->MaxMinStepFactor = Psi->AllMaxLocalNo;
128#else
129 R->MaxMinStepFactor = SHORTSPEED;
130#endif
131 if (R->LevSNo == STANDARTLEVEL) {
132 R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
133 R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
134 R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
135 R->ActualMaxMinStopStep = R->MaxMinStopStep;
136 R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
137 } else {
138 R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
139 R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
140 R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
141 R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
142 R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
143 }
144
145 R->FactorDensityR = 1./Lat->Volume;
146 R->FactorDensityC = Lat->Volume;
147
148 R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
[3ff846]149 R->UseForcesFile = 0;
[a0bcf1]150 R->UseOldPsi = 1;
151 R->MinStep = 0;
152 R->PsiStep = 0;
153 R->AlphaStep = 0;
154 R->DoCalcCGGauss = 0;
155 R->CurrentMin = Occupied;
156
157 R->MinStopStep = 0;
158
159 R->ScanPotential = 0; // in order to deactivate, simply set this to 0
160 R->ScanAtStep = 6; // must not be set to same as ScanPotential (then gradient is never calculated)
161 R->ScanDelta = 0.01; // step size on advance
162 R->ScanFlag = 0; // flag telling that we are scanning
163
164 //R->DoBrent = 0; // InitRun() occurs after ReadParameters(), thus this deactivates DoBrent line search
165
166 /* R->MaxOuterStep = 1;
167 R->MeanForceEps = 0.0;*/
168
169 R->NewRStep = 1;
170 /* Factor */
171 R->XCEnergyFactor = 1.0/R->FactorDensityR;
172 R->HGcFactor = 1.0/Lat->Volume;
173
174 /* Sollte auch geaendert werden */
175 /*Grad->GradientArray[GraSchGradient] = LevS->LPsi->LocalPsi[Psi->LocalNo];*/
176
177 for (j=Occupied;j<Extra;j++)
178 for (i=0; i < RUNMAXOLD; i++) {
179 R->TE[j][i] = 0;
180 R->KE[j][i] = 0;
181 }
182
183 R->MinimisationName = (char **) Malloc((perturbations+3)*(sizeof(char *)), "InitRun: *MinimisationName");
184 for (j=Occupied;j<=Extra;j++)
185 R->MinimisationName[j] = (char *) MallocString(6*(sizeof(char)), "InitRun: MinimisationName[]");
186 strncpy(R->MinimisationName[0],"Occ",6);
187 strncpy(R->MinimisationName[1],"UnOcc",6);
188 strncpy(R->MinimisationName[2],"P0",6);
189 strncpy(R->MinimisationName[3],"P1",6);
190 strncpy(R->MinimisationName[4],"P2",6);
191 strncpy(R->MinimisationName[5],"RxP0",6);
192 strncpy(R->MinimisationName[6],"RxP1",6);
193 strncpy(R->MinimisationName[7],"RxP2",6);
194 strncpy(R->MinimisationName[8],"Extra",6);
195}
196
197/** Re-occupy orbitals according to Fermi (bottom-up energy-wise).
198 * All OnePsiElementAddData#PsiFactor's are set to zero. \a electrons is set to Psi#Use-dependent
199 * Psis#GlobalNo.
200 * Then we go through OnePsiElementAddData#Lambda, find biggest, put one or two electrons into
201 * its PsiFactor, withdraw from \a electrons. Go on as long as there are \a electrons left.
202 * \param *P Problem at hand
203 */
204void OccupyByFermi(struct Problem *P) {
205 struct Lattice *Lat = &P->Lat;
206 struct Psis *Psi = &Lat->Psi;
207 int i, index, electrons = 0;
208 double lambda, electronsperorbit;
209
210 for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
211 Psi->LocalPsiStatus[i].PsiFactor = 0.0;
212 Psi->LocalPsiStatus[i].PsiType = UnOccupied;
213 //Psi->LocalPsiStatus[i].PsiGramSchStatus = (R->DoSeparated) ? NotUsedToOrtho : NotOrthogonal;
214 }
215
216 electronsperorbit = (Psi->Use == UseSpinUpDown) ? 1 : 2;
217 switch (Psi->PsiST) { // how many electrons may we re-distribute
218 case SpinDouble:
219 electrons = Psi->GlobalNo[PsiMaxNoDouble];
220 break;
221 case SpinUp:
222 electrons = Psi->GlobalNo[PsiMaxNoUp];
223 break;
224 case SpinDown:
225 electrons = Psi->GlobalNo[PsiMaxNoDown];
226 break;
227 }
228 while (electrons > 0) {
229 lambda = 0.0;
230 index = 0;
231 for (i=0; i< Psi->LocalNo; i++) // seek biggest unoccupied one
232 if ((lambda < Psi->AddData[i].Lambda) && (Psi->LocalPsiStatus[i].PsiFactor == 0.0)) {
233 index = i;
234 lambda = Psi->AddData[i].Lambda;
235 }
236 Psi->LocalPsiStatus[index].PsiFactor = electronsperorbit; // occupy state
237 Psi->LocalPsiStatus[index].PsiType = Occupied;
238 electrons--; // one electron less
239 }
240 for (i=0; i< Psi->LocalNo; i++) // set all PsiFactors to zero
241 if (Psi->LocalPsiStatus[i].PsiType == UnOccupied) Psi->LocalPsiStatus[i].PsiFactor = 1.0;
242
243 SpeedMeasure(P, DensityTime, StartTimeDo);
244 UpdateDensityCalculation(P);
245 SpeedMeasure(P, DensityTime, StopTimeDo);
246 InitPsiEnergyCalculation(P,Occupied); // goes through all orbitals calculating kinetic and non-local
247 CalculateDensityEnergy(P, 0);
248 EnergyAllReduce(P);
249// SetCurrentMinState(P,UnOccupied);
250// InitPsiEnergyCalculation(P,UnOccupied); /* STANDARTLEVEL */
251// CalculateGapEnergy(P); /* STANDARTLEVEL */
252// EnergyAllReduce(P);
253// SetCurrentMinState(P,Occupied);
254}
255
256/** Use next local Psi: Update RunStruct::ActualLocalPsiNo.
257 * Increases OnePsiElementAddData::Step, RunStruct::MinStep and RunStruct::PsiStep.
258 * RunStruct::OldActualLocalPsiNo is set to current one and this distributed
259 * (UpdateGramSchOldActualPsiNo()) among process.
260 * Afterwards RunStruct::ActualLocalPsiNo is increased (modulo Psis::LocalNo of
261 * this process) and again distributed (UpdateGramSchActualPsiNo()).
262 * Due to change in the GramSchmidt-Status, GramSch() is called for Orthonormalization.
263 * \param *P Problem at hand#
264 * \param IncType skip types PsiTypeTag#UnOccupied or PsiTypeTag#Occupied we only want next(thus we can handily advance only through either type)
265 */
266void UpdateActualPsiNo(struct Problem *P, enum PsiTypeTag IncType)
267{
268 struct RunStruct *R = &P->R;
269 if (R->CurrentMin != IncType) {
270 SetCurrentMinState(P,IncType);
271 R->PsiStep = R->MaxPsiStep; // force step to next Psi
272 }
273 P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
274 R->MinStep++;
275 R->PsiStep++;
276 if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) {
277 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
278 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
279 }
280 if (R->PsiStep >= R->MaxPsiStep) {
281 R->PsiStep=0;
282 do {
283 R->ActualLocalPsiNo++;
284 R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
285 } while (P->Lat.Psi.AllPsiStatus[R->ActualLocalPsiNo].PsiType != IncType);
286 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
287 //fprintf(stderr,"(%i) ActualLocalNo: %d\n", P->Par.me, R->ActualLocalPsiNo);
288 }
289 if ((R->UseAddGramSch == 1 && (R->OldActualLocalPsiNo != R->ActualLocalPsiNo || P->Lat.Psi.NoOfPsis == 1)) || R->UseAddGramSch == 2) {
290 if (P->Lat.Psi.LocalPsiStatus[R->OldActualLocalPsiNo].PsiGramSchStatus != NotUsedToOrtho) // don't reset by accident last psi of former minimisation run
291 SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
292 SpeedMeasure(P, GramSchTime, StartTimeDo);
[3ff846]293 //OrthogonalizePsis(P);
[41521a]294 if (R->CurrentMin <= UnOccupied)
295 GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
296 else
297 GramSch(P, R->LevS, &P->Lat.Psi, Orthogonalize); //Orthogonalize
[a0bcf1]298 SpeedMeasure(P, GramSchTime, StopTimeDo);
299 }
300}
301
302/** Resets all OnePsiElement#DoBrent.\
303 * \param *P Problem at hand
304 * \param *Psi pointer to wave functions
305 */
306void ResetBrent(struct Problem *P, struct Psis *Psi) {
307 int i;
308 for (i=0; i< Psi->LocalNo; i++) {// set all PsiFactors to zero
309 //fprintf(stderr,"(%i) DoBrent[%i] = %i\n", P->Par.me, i, Psi->LocalPsiStatus[i].DoBrent);
310 if (Psi->LocalPsiStatus[i].PsiType == Occupied) Psi->LocalPsiStatus[i].DoBrent = 4;
311 }
312}
313
314/** Sets current minimisation state.
315 * Stores given \a state in RunStruct#CurrentMin and sets pointer Lattice#E accordingly.
316 * \param *P Problem at hand
317 * \param state given PsiTypeTag state
318 */
319void SetCurrentMinState(struct Problem *P, enum PsiTypeTag state) {
320 P->R.CurrentMin = state;
321 P->R.TotalEnergy = &(P->R.TE[state][0]);
322 P->R.KineticEnergy = &(P->R.KE[state][0]);
323 P->R.ActualRelTotalEnergy = &(P->R.ActualRelTE[state][0]);
324 P->R.ActualRelKineticEnergy = &(P->R.ActualRelKE[state][0]);
325 P->Lat.E = &(P->Lat.Energy[state]);
326}
327/*{
328 struct RunStruct *R = &P->R;
329 struct Lattice *Lat = &P->Lat;
330 struct Psis *Psi = &Lat->Psi;
331 P->Lat.Psi.AddData[R->ActualLocalPsiNo].Step++;
332 R->MinStep++;
333 R->PsiStep++;
334 if (R->OldActualLocalPsiNo != R->ActualLocalPsiNo) { // remember old actual local number
335 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
336 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
337 }
338 if (R->PsiStep >= R->MaxPsiStep) { // done enough minimisation steps for this orbital?
339 R->PsiStep=0;
340 do { // step on as long as we are still on a SkipType orbital
341 R->ActualLocalPsiNo++;
342 R->ActualLocalPsiNo %= P->Lat.Psi.LocalNo;
343 } while ((P->Lat.Psi.LocalPsiStatus[R->ActualLocalPsiNo].PsiType == SkipType));
344 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
345 if (R->UseAddGramSch >= 1) {
346 SetGramSchOldActualPsi(P,Psi,NotOrthogonal);
347 // setze von OldActual bis bla auf nicht orthogonal
348 GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
349 }
350 } else if (R->UseAddGramSch == 2) {
351 SetGramSchOldActualPsi(P, &P->Lat.Psi, NotOrthogonal);
352 //if (SkipType == UnOccupied)
353 //ResetGramSch(P,Psi);
354 //fprintf(stderr,"UpdateActualPsiNo: GramSch() for %i\n",R->OldActualLocalPsiNo);
355 GramSch(P, R->LevS, &P->Lat.Psi, Orthonormalize);
356 }
357}*/
358
359/** Upgrades the calculation to the next finer level.
360 * If we are below the initial level,
361 * ChangePsiAndDensToLevUp() prepares density and Psi coefficients.
362 * Then the level change is made as RunStruct::LevSNo and RunStruct::Lev0No are decreased.
363 * The RunStruct::OldActualLocalPsi is set to current one and both are distributed
364 * (UpdateGramSchActualPsiNo(), UpdateGramSchOldActualPsiNo()).
365 * The PseudoPot'entials adopt the level up by calling ChangePseudoToLevUp().
366 * Now we are prepared to reset Energy::PsiEnergy and local and total density energy and
367 * recalculate them: InitPsiEnergyCalculation(), CalculateDensityEnergy() and CalculateIonsEnergy().
368 * Results are gathered EnergyAllReduce() and the output made EnergyOutput().
369 * Finally, the stop condition are reset for the new level (depending if it's the STANDARTLEVEL or
370 * not).
371 * \param *P Problem at hand
372 * \param *Stop is set to zero if we are below or equal to init level (see CalculateForce())
373 * \sa UpdateToNewWaves() very similar in the procedure, only the update of the Psis and density
374 * (ChangePsiAndDensToLevUp()) is already made there.
375 * \bug Missing TotalEnergy shifting for other PsiTypeTag's!
376 */
377static void ChangeToLevUp(struct Problem *P, int *Stop)
378{
379 struct RunStruct *R = &P->R;
380 struct Lattice *Lat = &P->Lat;
381 struct Psis *Psi = &Lat->Psi;
382 struct Energy *E = Lat->E;
383 struct RiemannTensor *RT = &Lat->RT;
384 int i;
385 if (R->LevSNo <= R->InitLevSNo) {
[4931e0]386 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
387 fprintf(stderr, "(%i) ChangeLevUp: LevSNo(%i) <= InitLevSNo(%i)\n", P->Par.me, R->LevSNo, R->InitLevSNo);
[a0bcf1]388 *Stop = 1;
389 return;
390 }
391 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
392 fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i)\n", R->LevSNo, R->InitLevSNo);
393 *Stop = 0;
394 P->Speed.LevUpSteps++;
395 SpeedMeasure(P, SimTime, StopTimeDo);
396 SpeedMeasure(P, InitSimTime, StartTimeDo);
397 SpeedMeasure(P, InitDensityTime, StartTimeDo);
398 ChangePsiAndDensToLevUp(P);
399 SpeedMeasure(P, InitDensityTime, StopTimeDo);
400 R->LevSNo--;
401 R->Lev0No--;
402 if (RT->ActualUse == standby && R->LevSNo == STANDARTLEVEL) {
403 P->Lat.RT.ActualUse = active;
404 CalculateRiemannTensorData(P);
405 Error(SomeError, "Calculate RT: Not further implemented");
406 }
407 R->LevS = &P->Lat.Lev[R->LevSNo];
408 R->Lev0 = &P->Lat.Lev[R->Lev0No];
409 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
410 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
411 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
412 ResetBrent(P, &P->Lat.Psi);
413 R->PsiStep=0;
414 R->MinStep=0;
415 P->Grad.GradientArray[GraSchGradient] = R->LevS->LPsi->LocalPsi[Psi->LocalNo];
416 ChangePseudoToLevUp(P);
417 for (i=0; i<MAXALLPSIENERGY; i++)
418 SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
419 SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
420 SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
421 for (i=MAXOLD-1; i > 0; i--) {
422 E->TotalEnergy[i] = E->TotalEnergy[i-1];
423 Lat->Energy[UnOccupied].TotalEnergy[i] = Lat->Energy[UnOccupied].TotalEnergy[i-1];
424 }
425 InitPsiEnergyCalculation(P,Occupied);
426 CalculateDensityEnergy(P,1);
427 CalculateIonsEnergy(P);
428 EnergyAllReduce(P);
429/* SetCurrentMinState(P,UnOccupied);
430 InitPsiEnergyCalculation(P,UnOccupied);
431 CalculateGapEnergy(P);
432 EnergyAllReduce(P);
433 SetCurrentMinState(P,Occupied);*/
434 EnergyOutput(P,0);
435 if (R->LevSNo == STANDARTLEVEL) {
436 R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
437 R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
438 R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
439 R->ActualMaxMinStopStep = R->MaxMinStopStep;
440 R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
441 } else {
442 R->ActualMaxMinStep = R->MaxInitMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
443 R->ActualRelEpsTotalEnergy = R->InitRelEpsTotalEnergy;
444 R->ActualRelEpsKineticEnergy = R->InitRelEpsKineticEnergy;
445 R->ActualMaxMinStopStep = R->InitMaxMinStopStep;
446 R->ActualMaxMinGapStopStep = R->InitMaxMinGapStopStep;
447 }
448 R->MinStopStep = 0;
449 SpeedMeasure(P, InitSimTime, StopTimeDo);
450 SpeedMeasure(P, SimTime, StartTimeDo);
451 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
452 fprintf(stderr, "(0) ChangeLevUp: LevSNo(%i) InitLevSNo(%i) Done\n", R->LevSNo, R->InitLevSNo);
453}
454
455/** Updates after the wave functions have changed (e.g.\ Ion moved).
456 * Old and current RunStruct::ActualLocalPsiNo are zeroed and distributed among the processes.
457 * InitDensityCalculation() is called, afterwards the pseudo potentials update to the new
458 * wave functions UpdatePseudoToNewWaves().
459 * Energy::AllLocalDensityEnergy, Energy::AllTotalDensityEnergy, Energy::AllTotalIonsEnergy and
460 * Energy::PsiEnergy[i] are set to zero.
461 * We are set to recalculate all of the following energies: Psis InitPsiEnergyCalculation(), density
462 * CalculateDensityEnergy(), ionic CalculateIonsEnergy() and ewald CalculateEwald().
463 * Results are gathered from all processes EnergyAllReduce() and EnergyOutput() is called.
464 * Finally, the various conditons in the RunStruct for stopping the calculation are set: number of
465 * minimisation steps, relative total or kinetic energy change or how often stop condition was
466 * evaluated.
467 * \param *P Problem at hand
468 */
469static void UpdateToNewWaves(struct Problem *P)
470{
471 struct RunStruct *R = &P->R;
472 struct Lattice *Lat = &P->Lat;
473 struct Psis *Psi = &Lat->Psi;
474 struct Energy *E = Lat->E;
[8ea7f8]475 int i;//,type;
[a0bcf1]476 R->OldActualLocalPsiNo = R->ActualLocalPsiNo = 0;
477 //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in UpdateGramSchActualPsiNo(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
478 UpdateGramSchActualPsiNo(P, &P->Lat.Psi);
479 UpdateGramSchOldActualPsiNo(P, &P->Lat.Psi);
480 R->PsiStep=0;
481 R->MinStep=0;
482 SpeedMeasure(P, InitDensityTime, StartTimeDo);
483 //if (isnan((double)R->LevS->LPsi->LocalPsi[R->OldActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in Update../InitDensityCalculation(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->OldActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
484 InitDensityCalculation(P);
485 SpeedMeasure(P, InitDensityTime, StopTimeDo);
486 UpdatePseudoToNewWaves(P);
487 for (i=0; i<MAXALLPSIENERGY; i++)
488 SetArrayToDouble0(E->PsiEnergy[i], Psi->LocalNo);
489 SetArrayToDouble0(E->AllLocalDensityEnergy, MAXALLDENSITYENERGY);
490 SetArrayToDouble0(E->AllTotalDensityEnergy, MAXALLDENSITYENERGY);
491 SetArrayToDouble0(E->AllTotalIonsEnergy, MAXALLIONSENERGY);
492 InitPsiEnergyCalculation(P,Occupied);
493 CalculateDensityEnergy(P,1);
494 CalculateIonsEnergy(P);
495 CalculateEwald(P, 0);
496 EnergyAllReduce(P);
[8ea7f8]497/* if (R->DoUnOccupied) {
[a0bcf1]498 SetCurrentMinState(P,UnOccupied);
[8ea7f8]499 InitPsiEnergyCalculation(P,UnOccupied);
500 CalculateGapEnergy(P);
[a0bcf1]501 EnergyAllReduce(P);
502 }
503 if (R->DoPerturbation)
504 for(type=Perturbed_P0;type <=Perturbed_RxP2;type++) {
505 SetCurrentMinState(P,type);
[8ea7f8]506 InitPerturbedEnergyCalculation(P,1);
[a0bcf1]507 EnergyAllReduce(P);
508 }
[8ea7f8]509 SetCurrentMinState(P,Occupied);*/
[a0bcf1]510 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
511 EnergyOutput(P,0);
512 R->ActualMaxMinStep = R->MaxMinStep*R->MaxPsiStep*R->MaxMinStepFactor;
513 R->ActualRelEpsTotalEnergy = R->RelEpsTotalEnergy;
514 R->ActualRelEpsKineticEnergy = R->RelEpsKineticEnergy;
515 R->ActualMaxMinStopStep = R->MaxMinStopStep;
516 R->ActualMaxMinGapStopStep = R->MaxMinGapStopStep;
517 R->MinStopStep = 0;
518}
519
520/** Evaluates the stop condition and returns 0 or 1 for occupied states.
521 * Stop is set when:
522 * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
523 * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
524 * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
525 * - below relative rate of change:
526 * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
527 * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
528 * - if more than one minimisation step was made, calculate the relative changes of total
529 * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
530 * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
531 * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
532 * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
533 * \param *P Problem at hand
534 * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
535 * \return Stop: 1 - stop, 0 - continue
536 */
537int CalculateMinimumStop(struct Problem *P, int SuperStop)
538{
539 int Stop = 0, i;
540 struct RunStruct *R = &P->R;
541 struct Energy *E = P->Lat.E;
542 if (R->PsiStep == 0 && SuperStop) Stop = 1;
543 if (R->PsiStep == 0 && ((R->MinStopStep % R->ActualMaxMinStopStep == 0 && R->CurrentMin != UnOccupied) || (R->MinStopStep % R->ActualMaxMinGapStopStep == 0 && R->CurrentMin == UnOccupied))) {
[02ba60]544 if (R->MinStep >= R->ActualMaxMinStep) Stop = 1;
[a0bcf1]545 for (i=RUNMAXOLD-1; i > 0; i--) {
546 R->TotalEnergy[i] = R->TotalEnergy[i-1];
547 R->KineticEnergy[i] = R->KineticEnergy[i-1];
548 }
549 R->TotalEnergy[0] = E->TotalEnergy[0];
550 R->KineticEnergy[0] = E->AllTotalPsiEnergy[KineticEnergy];
551 if (R->MinStopStep) {
552 //if (R->TotalEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalEnergy[1] = %lg\n",R->TotalEnergy[1]);
553 R->ActualRelTotalEnergy[0] = fabs((R->TotalEnergy[0]-R->TotalEnergy[1])/R->TotalEnergy[1]);
554 //if (R->KineticEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticEnergy[1] = %lg\n",R->KineticEnergy[1]);
555 //if (R->CurrentMin < Perturbed_P0)
556 R->ActualRelKineticEnergy[0] = fabs((R->KineticEnergy[0]-R->KineticEnergy[1])/R->KineticEnergy[1]);
557 //else R->ActualRelKineticEnergy[0] = 0.;
558 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
559 switch (R->CurrentMin) {
560 default:
561 fprintf(stderr, "ARelTE: %e\tARelKE: %e\n", R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
562 break;
563 case UnOccupied:
[4931e0]564 fprintf(stderr, "ARelTGE: %e\tARelKGE: %e\n", R->ActualRelTotalEnergy[0], R->ActualRelKineticEnergy[0]);
[a0bcf1]565 break;
566 }
[02ba60]567 //fprintf(stderr, "(%i) Comparing TE: %lg < %lg\tKE: %lg < %lg?\n", P->Par.me, R->ActualRelTotalEnergy[0], R->ActualRelEpsTotalEnergy, R->ActualRelKineticEnergy[0], R->ActualRelEpsKineticEnergy);
[a0bcf1]568 if ((R->ActualRelTotalEnergy[0] < R->ActualRelEpsTotalEnergy) &&
[02ba60]569 (R->ActualRelKineticEnergy[0] < R->ActualRelEpsKineticEnergy))
[a0bcf1]570 Stop = 1;
571 }
572 }
573 if (R->PsiStep == 0)
574 R->MinStopStep++;
575 if (P->Call.WriteSrcFiles == 2)
576 OutputVisSrcFiles(P, R->CurrentMin);
577 return(Stop);
578}
579
580/** Evaluates the stop condition and returns 0 or 1 for gap energies.
581 * Stop is set when:
582 * - SuperStop at best possible point (e.g.\ LevelChange): RunStruct::PsiStep == 0 && SuperStop == 1
583 * - RunStruct::PsiStep && RunStruct::MinStopStep modulo RunStruct::ActualMaxMinStopStep == 0
584 * - To many minimisation steps: RunStruct::MinStep > RunStruct::ActualMaxMinStopStep
585 * - below relative rate of change:
586 * - Remember old values: Shift all RunStruct::TotalEnergy and RunStruct::KineticEnergy by
587 * one and transfer current one from Energy::TotalEnergy and Energy::AllTotalPsiEnergy[KineticEnergy].
588 * - if more than one minimisation step was made, calculate the relative changes of total
589 * energy and kinetic energy and store them in RunStruct::ActualRelTotalEnergy and
590 * RunStruct::ActualRelKineticEnergy and check them against the sought for minimum
591 * values RunStruct::ActualRelEpsTotalEnergy and RunStruct::ActualRelEpsKineticEnergy.
592 * - if RunStruct::PsiStep is zero (default), increase RunStruct::MinStopStep
593 * \param *P Problem at hand
594 * \param SuperStop 1 - external signal: ceasing calculation, 0 - no signal
595 * \return Stop: 1 - stop, 0 - continue
596 * \sa CalculateMinimumStop() - same procedure for occupied states
597 *//*
598static double CalculateGapStop(struct Problem *P, int SuperStop)
599{
600 int Stop = 0, i;
601 struct RunStruct *R = &P->R;
602 struct Lattice *Lat = &P->Lat;
603 struct Energy *E = P->Lat.E;
604 if (R->PsiStep == 0 && SuperStop) Stop = 1;
605 if (R->PsiStep == 0 && (R->MinStopStep % R->ActualMaxMinGapStopStep) == 0) {
606 if (R->MinStep >= R->ActualMaxMinStep) Stop = 1;
607 for (i=RUNMAXOLD-1; i > 0; i--) {
608 R->TotalGapEnergy[i] = R->TotalGapEnergy[i-1];
609 R->KineticGapEnergy[i] = R->KineticGapEnergy[i-1];
610 }
611 R->TotalGapEnergy[0] = Lat->Energy[UnOccupied].TotalEnergy[0];
612 R->KineticGapEnergy[0] = E->AllTotalPsiEnergy[GapPsiEnergy];
613 if (R->MinStopStep) {
614 if (R->TotalGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->TotalGapEnergy[1] = %lg\n",R->TotalGapEnergy[1]);
615 R->ActualRelTotalGapEnergy[0] = fabs((R->TotalGapEnergy[0]-R->TotalGapEnergy[1])/R->TotalGapEnergy[1]);
616 if (R->KineticGapEnergy[1] < MYEPSILON) fprintf(stderr,"CalculateMinimumStop: R->KineticGapEnergy[1] = %lg\n",R->KineticGapEnergy[1]);
617 R->ActualRelKineticGapEnergy[0] = fabs((R->KineticGapEnergy[0]-R->KineticGapEnergy[1])/R->KineticGapEnergy[1]);
618 if (P->Call.out[LeaderOut] && (P->Par.me == 0))
619 fprintf(stderr, "(%i) -------------------------> ARelTGE: %e\tARelKGE: %e\n", P->Par.me, R->ActualRelTotalGapEnergy[0], R->ActualRelKineticGapEnergy[0]);
620 if ((R->ActualRelTotalGapEnergy[0] < R->ActualRelEpsTotalGapEnergy) &&
621 (R->ActualRelKineticGapEnergy[0] < R->ActualRelEpsKineticGapEnergy))
622 Stop = 1;
623 }
624 }
625 if (R->PsiStep == 0)
626 R->MinStopStep++;
627
628 return(Stop);
629}*/
630
631#define StepTolerance 1e-4
632
633static void CalculateEnergy(struct Problem *P) {
634 SpeedMeasure(P, DensityTime, StartTimeDo);
635 UpdateDensityCalculation(P);
636 SpeedMeasure(P, DensityTime, StopTimeDo);
637 UpdatePsiEnergyCalculation(P);
638 CalculateDensityEnergy(P, 0);
639 //CalculateIonsEnergy(P);
640 EnergyAllReduce(P);
641}
642
643/** Energy functional depending on one parameter \a x (for a certain Psi in a certain conjugate direction).
644 * \param x parameter for the which the function must be minimized
645 * \param *params additional params
646 * \return total energy if Psi is changed according to the given parameter
647 */
648static double fn1 (double x, void * params) {
649 struct Problem *P = (struct Problem *)(params);
650 struct RunStruct *R = &P->R;
651 struct Lattice *Lat = &P->Lat;
652 struct LatticeLevel *LevS = R->LevS;
653 int ElementSize = (sizeof(fftw_complex) / sizeof(double));
654 int i=R->ActualLocalPsiNo;
655 double ret;
656
657 //fprintf(stderr,"(%i) Evaluating fnl at %lg ...\n",P->Par.me, x);
658 //TestForOrth(P,R->LevS,P->Grad.GradientArray[GraSchGradient]);
659 CalculateNewWave(P, &x); // also stores Psi to oldPsi
660 //TestGramSch(P,R->LevS,&P->Lat.Psi,Occupied);
661 //fprintf(stderr,"(%i) Testing for orthogonality of %i against ...\n",P->Par.me, R->ActualLocalPsiNo);
662 //TestForOrth(P, LevS, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo]);
663 //UpdateActualPsiNo(P, Occupied);
664 //UpdateEnergyArray(P);
665 CalculateEnergy(P);
666 ret = Lat->E->TotalEnergy[0];
667 memcpy(LevS->LPsi->LocalPsi[i], LevS->LPsi->OldLocalPsi[i], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
668 //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
669 CalculateEnergy(P);
670 //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, x, ret);
671 return ret;
672}
673
674#ifdef HAVE_INLINE
675inline void flip(double *a, double *b) {
676#else
677void flip(double *a, double *b) {
678#endif
679 double tmp = *a;
680 *a = *b;
681 *b = tmp;
682}
683
684
685/** Minimise PsiType#Occupied orbitals.
686 * It is checked whether CallOptions#ReadSrcFiles is set and thus coefficients for the level have to be
687 * read from file and afterwards initialized.
688 *
689 * Then follows the main loop, until a stop condition is met:
690 * -# CalculateNewWave()\n
691 * Over a conjugate gradient method the next (minimal) wave function is sought for.
692 * -# UpdateActualPsiNo()\n
693 * Switch local Psi to next one.
694 * -# UpdateEnergyArray()\n
695 * Shift archived energy values to make space for next one.
696 * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
697 * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
698 * -# UpdatePsiEnergyCalculation()\n
699 * Calculate kinetic and non-local energy contributons from the Psis.
700 * -# CalculateDensityEnergy()\n
701 * Calculate remaining energy contributions from the Density and adds \f$V_xc\f$ onto DensityTypes#HGDensity.
702 * -# CalculateIonsEnergy()\n
703 * Calculate the Gauss self energy of the Ions.
704 * -# EnergyAllReduce()\n
705 * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
706 * -# CheckCPULIM()\n
707 * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
708 * -# CalculateMinimumStop()\n
709 * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
710 * CalculateNewWave().
711 *
712 * Before return orthonormality is tested.
713 * \param *P Problem at hand
714 * \param *Stop flag to determine if epsilon stop conditions have met
715 * \param *SuperStop flag to determinte whether external signal's required end of calculations
[487182]716 * \bug ResetGramSch() not allowed after reading orthonormal values from file
[a0bcf1]717 */
718static void MinimiseOccupied(struct Problem *P, int *Stop, int *SuperStop)
719{
720 struct RunStruct *R = &P->R;
721 struct Lattice *Lat = &P->Lat;
722 struct Psis *Psi = &Lat->Psi;
[6df7db]723 struct Ions *I = &P->Ion;
[a0bcf1]724 //struct FileData *F = &P->Files;
725// int i;
726// double norm;
727 //double dEdt0,ddEddt0,HartreeddEddt0,XCddEddt0, d[4], D[4],ConDirHConDir;
728 struct LatticeLevel *LevS = R->LevS;
729 int ElementSize = (sizeof(fftw_complex) / sizeof(double));
730 int iter = 0, status, max_iter=10;
731 const gsl_min_fminimizer_type *T;
732 gsl_min_fminimizer *s;
733 double m, a, b;
734 double f_m = 0., f_a, f_b;
735 double dcos, dsin;
736 int g;
737 fftw_complex *ConDir = P->Grad.GradientArray[ConDirGradient];
738 fftw_complex *source = NULL, *oldsource = NULL;
739 gsl_function F;
740 F.function = &fn1;
741 F.params = (void *) P;
742 T = gsl_min_fminimizer_brent;
743 s = gsl_min_fminimizer_alloc (T);
744 int DoBrent, StartLocalPsiNo;
745
746 ResetBrent(P,Psi);
747 *Stop = 0;
[6df7db]748 if ((P->Call.ReadSrcFiles != DoNotParse) && (!I->StructOpt)) {
[a0bcf1]749 if (!ReadSrcPsiDensity(P,Occupied,1, R->LevSNo)) { // if file for level exists and desired, read from file
[d6f7f3]750 P->Call.ReadSrcFiles = DoNotParse; // -r was bogus, remove it, have to start anew
[4931e0]751 if(P->Call.out[MinOut]) fprintf(stderr,"(%i) Re-initializing, files are missing/corrupted...\n", P->Par.me);
[a0bcf1]752 InitPsisValue(P, Psi->TypeStartIndex[Occupied], Psi->TypeStartIndex[Occupied+1]); // initialize perturbed array for this run
753 ResetGramSchTagType(P, Psi, Occupied, NotOrthogonal); // loaded values are orthonormal
754 } else {
755 SpeedMeasure(P, InitSimTime, StartTimeDo);
[487182]756 if(P->Call.out[MinOut]) fprintf(stderr, "(%i) Re-initializing %s psi array from source file of recent calculation\n", P->Par.me, R->MinimisationName[R->CurrentMin]);
[a0bcf1]757 ReadSrcPsiDensity(P, Occupied, 0, R->LevSNo);
[487182]758 //ResetGramSchTagType(P, Psi, Occupied, IsOrthonormal); // loaded values are orthonormal
759 // note: this did not work and is currently not clear why not (as TestGramSch says: OK, but minimisation goes awry without the following GramSch)
[a0bcf1]760 }
[487182]761 SpeedMeasure(P, InitGramSchTime, StartTimeDo);
762 GramSch(P, R->LevS, Psi, Orthonormalize);
763 SpeedMeasure(P, InitGramSchTime, StopTimeDo);
[a0bcf1]764 SpeedMeasure(P, InitDensityTime, StartTimeDo);
765 InitDensityCalculation(P);
766 SpeedMeasure(P, InitDensityTime, StopTimeDo);
767 InitPsiEnergyCalculation(P, Occupied); // go through all orbitals calculating kinetic and non-local
768 StartLocalPsiNo = R->ActualLocalPsiNo;
769 do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
770 CalculateDensityEnergy(P, 0);
771 UpdateActualPsiNo(P, Occupied);
772 } while (R->ActualLocalPsiNo != StartLocalPsiNo);
773 CalculateIonsEnergy(P);
774 EnergyAllReduce(P);
775 SpeedMeasure(P, InitSimTime, StopTimeDo);
776 R->LevS->Step++;
777 EnergyOutput(P,0);
[487182]778 }
[6df7db]779 if ((I->StructOpt) || ((P->Call.ReadSrcFiles != DoReadAllSrcDensities) && (P->Call.ReadSrcFiles != DoReadOccupiedSrcDensities))) { // otherwise minimise oneself
[4931e0]780 if(P->Call.out[LeaderOut]) fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[Occupied]);
[a0bcf1]781 while (*Stop != 1) { // loop testing condition over all Psis
782 // in the following loop, we have two cases:
783 // 1) still far away and just guessing: Use the normal CalculateNewWave() to improve Psi
784 // 2) closer (DoBrent=-1): use brent line search instead
785 // and due to these two cases, we also have two ifs inside each in order to catch stepping from one case
786 // to the other - due to decreasing DoBrent and/or stepping to the next Psi (which may not yet be DoBrent==1)
787
788 // case 1)
789 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
790 //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
[487182]791 if (R->DoBrent == 1) {
792 memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
793 //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
794 f_m = P->Lat.E->TotalEnergy[0]; // grab first value
795 m = 0.;
796 }
[a0bcf1]797 CalculateNewWave(P,NULL);
798 if ((R->DoBrent == 1) && (fabs(Lat->E->delta[0]) < M_PI/4.))
799 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent--;
800 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) {
801 UpdateActualPsiNo(P, Occupied);
802 UpdateEnergyArray(P);
803 CalculateEnergy(P); // just to get a sensible delta
804 if ((R->ActualLocalPsiNo != R->OldActualLocalPsiNo) && (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1)) {
805 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
806 // if we stepped on to a new Psi, which is already down at DoBrent=1 unlike the last one,
807 // then an up-to-date gradient is missing for the following Brent line search
[487182]808 if(P->Call.out[MinOut]) fprintf(stderr,"(%i) We stepped on to a new Psi, which is already in the Brent regime ...re-calc delta\n", P->Par.me);
[a0bcf1]809 memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
810 //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
811 f_m = P->Lat.E->TotalEnergy[0]; // grab first value
812 m = 0.;
813 DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
814 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
815 CalculateNewWave(P,NULL);
816 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
817 }
818 //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, m, f_m);
819 }
820 }
821
822 // case 2)
823 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) {
824 R->PsiStep=R->MaxPsiStep; // no more fresh gradients from this point for current ActualLocalPsiNo
825 a = b = 0.5*fabs(Lat->E->delta[0]);
826 // we have a meaningful first minimum guess from above CalculateNewWave() resp. from end of this if of last step: Lat->E->delta[0]
827 source = LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
828 oldsource = LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo];
829 //SetArrayToDouble0((double *)source,LevS->MaxG*2);
830 do {
831 a -= fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
832 if (a < -M_PI/2.) a = -M_PI/2.;// for this to work we need the pre-estimation which leads us into a nice regime (without gradient being the better _initial_ guess for a Psi)
833 dcos = cos(a);
834 dsin = sin(a);
835 for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
836 //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
837 c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
838 c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
839 }
840 CalculateEnergy(P);
841 f_a = P->Lat.E->TotalEnergy[0]; // grab second value at left border
842 //fprintf(stderr,"(%i) fnl(%lg) = %lg, Check ConDir[0] = %lg+i%lg, source[0] = %lg+i%lg, oldsource[0] = %lg+i%lg, TotDens[0] = %lg\n", P->Par.me, a, f_a, ConDir[0].re, ConDir[0].im, source[0].re, source[0].im, oldsource[0].re, oldsource[0].im, R->Lev0->Dens->DensityArray[TotalDensity][0]);
843 } while (f_a < f_m);
844
845 //SetArrayToDouble0((double *)source,LevS->MaxG*2);
846 do {
847 b += fabs(Lat->E->delta[0]) == 0 ? 0.1 : fabs(Lat->E->delta[0]);
848 if (b > M_PI/2.) b = M_PI/2.;
849 dcos = cos(b);
850 dsin = sin(b);
851 for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
852 //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
853 c_re(source[g]) = c_re(oldsource[g])*dcos + c_re(ConDir[g])*dsin;
854 c_im(source[g]) = c_im(oldsource[g])*dcos + c_im(ConDir[g])*dsin;
855 }
856 CalculateEnergy(P);
857 f_b = P->Lat.E->TotalEnergy[0]; // grab second value at left border
858 //fprintf(stderr,"(%i) fnl(%lg) = %lg\n", P->Par.me, b, f_b);
859 } while (f_b < f_m);
860
861 memcpy(source, oldsource, ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
862 //fprintf(stderr,"(%i) Psi %i at %p retrieved from OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
863 CalculateEnergy(P);
864
[4931e0]865 if(P->Call.out[ValueOut]) fprintf(stderr,"(%i) Preparing brent with f(a) (%lg,%lg)\t f(b) (%lg,%lg)\t f(m) (%lg,%lg) ...\n", P->Par.me,a,f_a,b,f_b,m,f_m);
[a0bcf1]866 iter=0;
867 gsl_min_fminimizer_set_with_values (s, &F, m, f_m, a, f_a, b, f_b);
[4931e0]868 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) using %s method\n",P->Par.me, gsl_min_fminimizer_name (s));
869 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) %5s [%9s, %9s] %9s %9s\n",P->Par.me, "iter", "lower", "upper", "min", "err(est)");
870 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me, iter, a, b, m, b - a);
[a0bcf1]871 do {
872 iter++;
873 status = gsl_min_fminimizer_iterate (s);
874
875 m = gsl_min_fminimizer_x_minimum (s);
876 a = gsl_min_fminimizer_x_lower (s);
877 b = gsl_min_fminimizer_x_upper (s);
878
879 status = gsl_min_test_interval (a, b, 0.001, 0.0);
880
881 if (status == GSL_SUCCESS)
[4931e0]882 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) Converged:\n",P->Par.me);
[a0bcf1]883
[4931e0]884 if(P->Call.out[ValueOut]) fprintf (stderr,"(%i) %5d [%.7f, %.7f] %.7f %.7f\n",P->Par.me,
[a0bcf1]885 iter, a, b, m, b - a);
886 } while (status == GSL_CONTINUE && iter < max_iter);
887 CalculateNewWave(P,&m);
888 TestGramSch(P,LevS,Psi,Occupied);
889 UpdateActualPsiNo(P, Occupied); // step on due setting to MaxPsiStep further above
890 UpdateEnergyArray(P);
891 CalculateEnergy(P);
892 //fprintf(stderr,"(%i) Final value for Psi %i: %lg\n", P->Par.me, R->ActualLocalPsiNo, P->Lat.E->TotalEnergy[0]);
893 R->MinStopStep = R->ActualMaxMinStopStep; // check stop condition every time
894 if (*SuperStop != 1)
895 *SuperStop = CheckCPULIM(P);
896 *Stop = CalculateMinimumStop(P, *SuperStop);
897 R->OldActualLocalPsiNo = R->ActualLocalPsiNo;
898 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent == 1) { // new wave function means new gradient!
899 DoBrent = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent;
900 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = 2;
901 //SetArrayToDouble0((double *)LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo],LevS->MaxG*2);
902 memcpy(LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], ElementSize*LevS->MaxG*sizeof(double)); // restore old Psi from OldPsi
903 //fprintf(stderr,"(%i) Psi %i at %p stored in OldPsi at %p: Old[0] %lg+i%lg\n", P->Par.me, R->ActualLocalPsiNo, LevS->LPsi->LocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo], LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].re, LevS->LPsi->OldLocalPsi[R->ActualLocalPsiNo][0].im);
904 f_m = P->Lat.E->TotalEnergy[0]; // grab first value
905 m = 0.;
906 CalculateNewWave(P,NULL);
907 Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent = DoBrent;
908 }
909 }
910
911 if (Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].DoBrent != 1) { // otherwise the following checks eliminiate stop=1 from above
912 if (*SuperStop != 1)
913 *SuperStop = CheckCPULIM(P);
914 *Stop = CalculateMinimumStop(P, *SuperStop);
915 }
916 /*EnergyOutput(P, Stop);*/
917 P->Speed.Steps++;
918 R->LevS->Step++;
919 /*ControlNativeDensity(P);*/
920 //fprintf(stderr,"(%i) Stop %i\n",P->Par.me, Stop);
921 }
[5a538b]922 if (*SuperStop == 1) OutputVisSrcFiles(P, Occupied); // is now done after localization (ComputeMLWF())
[a0bcf1]923 }
924 TestGramSch(P,R->LevS,Psi, Occupied);
925}
926
927/** Minimisation of the PsiTagType#UnOccupied orbitals in the field of the occupied ones.
928 * Assuming RunStruct#ActualLocalPsiNo is currenlty still an occupied wave function, we stop onward to the first
929 * unoccupied and reset RunStruct#OldActualLocalPsiNo. Then it is checked whether CallOptions#ReadSrcFiles is set
930 * and thus coefficients for the level have to be read from file and afterwards initialized.
931 *
932 * Then follows the main loop, until a stop condition is met:
933 * -# CalculateNewWave()\n
934 * Over a conjugate gradient method the next (minimal) wave function is sought for.
935 * -# UpdateActualPsiNo()\n
936 * Switch local Psi to next one.
937 * -# UpdateEnergyArray()\n
938 * Shift archived energy values to make space for next one.
939 * -# UpdateDensityCalculation(), SpeedMeasure()'d in DensityTime\n
940 * Calculate TotalLocalDensity of LocalPsis and gather results as TotalDensity.
941 * -# UpdatePsiEnergyCalculation()\n
942 * Calculate kinetic and non-local energy contributons from the Psis.
943 * -# CalculateGapEnergy()\n
944 * Calculate Gap energies (Hartreepotential, Pseudo) and the gradient.
945 * -# EnergyAllReduce()\n
946 * Gather PsiEnergy results from all processes and sum up together with all other contributions to TotalEnergy.
947 * -# CheckCPULIM()\n
948 * Check if external signal has been received (e.g. end of time slit on cluster), break operation at next possible moment.
949 * -# CalculateMinimumStop()\n
950 * Evaluates stop condition if desired precision or steps or ... have been reached. Otherwise go to
951 * CalculateNewWave().
952 *
953 * Afterwards, the coefficients are written to file by OutputVisSrcFiles() if desired. Orthonormality is tested, we step
954 * back to the occupied wave functions and the densities are re-initialized.
955 * \param *P Problem at hand
956 * \param *Stop flag to determine if epsilon stop conditions have met
957 * \param *SuperStop flag to determinte whether external signal's required end of calculations
958 */
959static void MinimiseUnoccupied (struct Problem *P, int *Stop, int *SuperStop) {
960 struct RunStruct *R = &P->R;
961 struct Lattice *Lat = &P->Lat;
962 struct Psis *Psi = &Lat->Psi;
963 int StartLocalPsiNo;
964
965 *Stop = 0;
966 R->PsiStep = R->MaxPsiStep; // in case it's zero from CalculateForce()
967 UpdateActualPsiNo(P, UnOccupied); // step on to next unoccupied one
968 R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset, otherwise OldActualLocalPsiNo still points to occupied wave function
969 UpdateGramSchOldActualPsiNo(P,Psi);
[d6f7f3]970 if ((P->Call.ReadSrcFiles == DoReadAllSrcDensities) && ReadSrcPsiDensity(P,UnOccupied,1, R->LevSNo)) {
[a0bcf1]971 SpeedMeasure(P, InitSimTime, StartTimeDo);
[4931e0]972 if(P->Call.out[MinOut]) fprintf(stderr, "(%i) Re-initializing %s psi array from source file of recent calculation\n", P->Par.me, R->MinimisationName[R->CurrentMin]);
[a0bcf1]973 ReadSrcPsiDensity(P, UnOccupied, 0, R->LevSNo);
[d6f7f3]974 if (P->Call.ReadSrcFiles < DoReadAndMinimise) {
[a0bcf1]975 ResetGramSchTagType(P, Psi, UnOccupied, IsOrthonormal); // loaded values are orthonormal
976 SpeedMeasure(P, DensityTime, StartTimeDo);
977 InitDensityCalculation(P);
978 SpeedMeasure(P, DensityTime, StopTimeDo);
979 InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
980 //CalculateDensityEnergy(P, 0);
981 StartLocalPsiNo = R->ActualLocalPsiNo;
982 do { // otherwise OnePsiElementAddData#Lambda is calculated only for current Psi not for all
983 CalculateGapEnergy(P);
984 UpdateActualPsiNo(P, Occupied);
985 } while (R->ActualLocalPsiNo != StartLocalPsiNo);
986 EnergyAllReduce(P);
987 }
988 SpeedMeasure(P, InitSimTime, StopTimeDo);
989 }
[d6f7f3]990 if (P->Call.ReadSrcFiles != DoReadAllSrcDensities) {
[a0bcf1]991 SpeedMeasure(P, InitSimTime, StartTimeDo);
992 ResetGramSchTagType(P, Psi, UnOccupied, NotOrthogonal);
993 SpeedMeasure(P, GramSchTime, StartTimeDo);
994 GramSch(P, R->LevS, Psi, Orthonormalize);
995 SpeedMeasure(P, GramSchTime, StopTimeDo);
996 SpeedMeasure(P, InitDensityTime, StartTimeDo);
997 InitDensityCalculation(P);
998 SpeedMeasure(P, InitDensityTime, StopTimeDo);
999 InitPsiEnergyCalculation(P,UnOccupied); // go through all orbitals calculating kinetic and non-local
1000 //CalculateDensityEnergy(P, 0);
1001 CalculateGapEnergy(P);
1002 EnergyAllReduce(P);
1003 SpeedMeasure(P, InitSimTime, StopTimeDo);
1004 R->LevS->Step++;
1005 EnergyOutput(P,0);
[4931e0]1006 if(P->Call.out[LeaderOut]) fprintf(stderr,"(%i)Beginning minimisation of type %s ...\n", P->Par.me, R->MinimisationName[R->CurrentMin]);
[a0bcf1]1007 while (*Stop != 1) {
1008 CalculateNewWave(P,NULL);
1009 UpdateActualPsiNo(P, UnOccupied);
1010 /* New */
1011 UpdateEnergyArray(P);
1012 SpeedMeasure(P, DensityTime, StartTimeDo);
1013 UpdateDensityCalculation(P);
1014 SpeedMeasure(P, DensityTime, StopTimeDo);
1015 UpdatePsiEnergyCalculation(P);
1016 //CalculateDensityEnergy(P, 0);
1017 CalculateGapEnergy(P); //calculates XC, HGDensity, afterwards gradient, where V_xc is added upon HGDensity
1018 EnergyAllReduce(P);
1019 if (*SuperStop != 1)
1020 *SuperStop = CheckCPULIM(P);
1021 *Stop = CalculateMinimumStop(P, *SuperStop);
1022 /*EnergyOutput(P, Stop);*/
1023 P->Speed.Steps++;
1024 R->LevS->Step++;
1025 /*ControlNativeDensity(P);*/
1026 }
1027 OutputVisSrcFiles(P, UnOccupied);
1028// if (!TestReadnWriteSrcDensity(P,UnOccupied))
1029// Error(SomeError,"TestReadnWriteSrcDensity failed!");
1030 }
1031 TestGramSch(P,R->LevS,Psi, UnOccupied);
1032 ResetGramSchTagType(P, Psi, UnOccupied, NotUsedToOrtho);
1033 // re-calculate Occupied values (in preparation for perturbed ones)
1034 UpdateActualPsiNo(P, Occupied); // step on to next occupied one
1035 SpeedMeasure(P, DensityTime, StartTimeDo);
1036 InitDensityCalculation(P); // re-init densities to occupied standard
1037 SpeedMeasure(P, DensityTime, StopTimeDo);
1038// InitPsiEnergyCalculation(P,Occupied);
1039// CalculateDensityEnergy(P, 0);
1040// EnergyAllReduce(P);
1041}
1042
1043
1044/** Calculate the forces.
1045 * From RunStruct::LevSNo downto RunStruct::InitLevSNo the following routines are called in a loop:
1046 * -# In case of RunStruct#DoSeparated another loop begins for the unoccupied states with some reinitalization
1047 * before and afterwards. The loop however is much the same as the one above.
1048 * -# ChangeToLevUp()\n
1049 * Repeat the loop or when the above stop is reached, the level is changed and the loop repeated.
1050 *
1051 * Afterwards comes the actual force and energy calculation by calling:
1052 * -# ControlNativeDensity()\n
1053 * Checks if the density still reproduces particle number.
1054 * -# CalculateIonLocalForce(), SpeedMeasure()'d in LocFTime\n
1055 * Calculale local part of force acting on Ions.
1056 * -# CalculateIonNonLocalForce(), SpeedMeasure()'d in NonLocFTime\n
1057 * Calculale local part of force acting on Ions.
1058 * -# CalculateEwald()\n
1059 * Calculate Ewald force acting on Ions.
1060 * -# CalculateIonForce()\n
1061 * Sum up those three contributions.
1062 * -# CorrectForces()\n
1063 * Shifts center of gravity of all forces for each Ion, so that the cell itself remains at rest.
1064 * -# GetOuterStop()
1065 * Calculates a mean force per Ion.
1066 * \param *P Problem at hand
1067 * \return 1 - cpulim received, break operation, 0 - continue as normal
1068 */
1069int CalculateForce(struct Problem *P)
1070{
1071 struct RunStruct *R = &P->R;
1072 struct Lattice *Lat = &P->Lat;
1073 struct Psis *Psi = &Lat->Psi;
1074 struct LatticeLevel *LevS = R->LevS;
1075 struct FileData *F = &P->Files;
1076 struct Ions *I = &P->Ion;
1077 int Stop=0, SuperStop = 0, OuterStop = 0;
1078 //int i, j;
[5712cb]1079 SpeedMeasure(P, SimTime, StartTimeDo);
1080 if ((F->DoOutVis == 2) || (P->Call.ForcesFile == NULL)) { // if we want to draw those pretty density pictures, we have to solve the ground state in any case
1081 while ((R->LevSNo > R->InitLevSNo) || (!Stop && R->LevSNo == R->InitLevSNo)) {
1082 // occupied
[333e84]1083 R->PsiStep = R->MaxPsiStep; // reset in-Psi-minimisation-counter, so that we really advance to the next wave function
[5712cb]1084 R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // reset OldActualLocalPsiNo, as it might still point to a perturbed wave function from last level
1085 UpdateGramSchOldActualPsiNo(P,Psi);
1086 ControlNativeDensity(P);
1087 MinimiseOccupied(P, &Stop, &SuperStop);
1088 if (!I->StructOpt) {
[6df7db]1089 if (((P->Call.ReadSrcFiles != DoReadAllSrcDensities) && (P->Call.ReadSrcFiles != DoReadOccupiedSrcDensities)) || (!ParseWannierFile(P))) { // only localize and store if they have just been minimised (hence don't come solely from file), otherwise read stored values from file (if possible)
[5712cb]1090 SpeedMeasure(P, WannierTime, StartTimeDo);
1091 ComputeMLWF(P); // localization of orbitals
1092 SpeedMeasure(P, WannierTime, StopTimeDo);
1093 // if (!TestReadnWriteSrcDensity(P,Occupied))
1094 // Error(SomeError,"TestReadnWriteSrcDensity failed!");
1095 }
[6df7db]1096 // join Wannier orbital to groups with common centres under certain conditions
1097 //debug (P,"Changing Wannier Centres according to CommonWannier");
1098 ChangeWannierCentres(P);
1099 OutputVisSrcFiles(P, Occupied); // rewrite now localized orbitals
1100
1101
[a0bcf1]1102// // plot psi cuts
1103// for (i=0; i < Psi->MaxPsiOfType; i++) // go through all wave functions (here without the extra ones for each process)
1104// if ((Psi->AllPsiStatus[i].PsiType == Occupied) && (Psi->AllPsiStatus[i].my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi))
1105// for (j=0;j<NDIM;j++) {
1106// //fprintf(stderr,"(%i) Plotting Psi %i/%i cut axis %i at coordinate %lg \n",P->Par.me, i, Psi->AllPsiStatus[i].MyGlobalNo, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j]);
1107// CalculateOneDensityR(Lat, R->LevS, R->Lev0->Dens, R->LevS->LPsi->LocalPsi[Psi->AllPsiStatus[i].MyLocalNo], R->Lev0->Dens->DensityArray[ActualDensity], R->FactorDensityR, 0);
1108// PlotSrcPlane(P, j, Lat->Psi.AddData[Psi->AllPsiStatus[i].MyLocalNo].WannierCentre[j], Psi->AllPsiStatus[i].MyGlobalNo, R->Lev0->Dens->DensityArray[ActualDensity]);
1109// }
1110
[5712cb]1111 // unoccupied calc
1112 if (R->DoUnOccupied) {
1113 MinimiseUnoccupied(P, &Stop, &SuperStop);
[a0bcf1]1114 }
[5712cb]1115 // hamiltonian
1116 CalculateHamiltonian(P); // lambda_{kl} needed (and for bandgap after UnOccupied)
1117
1118 //TestSawtooth(P, 0);
1119 //TestSawtooth(P, 1);
1120 //TestSawtooth(P, 2);
1121
1122 // perturbed calc
1123 if ((R->DoPerturbation)) { // && R->LevSNo <= R->InitLevSNo) {
1124 AllocCurrentDensity(R->Lev0->Dens);// lock current density arrays
1125 MinimisePerturbed(P, &Stop, &SuperStop); // herein InitDensityCalculation() is called, thus no need to call it beforehand
1126
1127 SpeedMeasure(P, CurrDensTime, StartTimeDo);
1128 if (SuperStop != 1) {
1129 if ((R->DoFullCurrent == 1) || ((R->DoFullCurrent == 2) && (CheckOrbitalOverlap(P) == 1))) { //test to check whether orbitals have mutual overlap and thus \\DeltaJ_{xc} must not be dropped
1130 R->DoFullCurrent = 1; // set to 1 if it was 2 but Check...() yielded necessity
[963310a]1131 //debug(P,"Filling with Delta j ...");
[5712cb]1132 FillDeltaCurrentDensity(P);
[963310a]1133 }
[5712cb]1134 }
1135 SpeedMeasure(P, CurrDensTime, StopTimeDo);
1136 TestCurrent(P,0);
1137 TestCurrent(P,1);
1138 TestCurrent(P,2);
[963310a]1139 if (F->DoOutCurr && R->Lev0->LevelNo == 0) // only output in uppermost level)
[5712cb]1140 OutputCurrentDensity(P);
[963310a]1141 if (R->VectorPlane != -1)
[5712cb]1142 PlotVectorPlane(P,R->VectorPlane,R->VectorCut);
1143 CalculateMagneticSusceptibility(P);
1144 debug(P,"Normal calculation of shielding over R-space");
[cc9c36]1145 CalculateMagneticMoment(P);
[5712cb]1146 CalculateChemicalShieldingByReciprocalCurrentDensity(P);
1147 SpeedMeasure(P, CurrDensTime, StopTimeDo);
1148 DisAllocCurrentDensity(R->Lev0->Dens); // unlock current density arrays
1149 } // end of if perturbation
[a0bcf1]1150 InitDensityCalculation(P); // all unperturbed(!) wave functions've "changed" from ComputeMLWF(), thus reinit density
[5712cb]1151 } else // end of if StructOpt or MaxOuterStep
1152 OutputVisSrcFiles(P, Occupied); // in structopt or MD write for every level
[a0bcf1]1153
[5712cb]1154 if ((!I->StructOpt) && (!R->MaxOuterStep)) // print intermediate levels energy results if we don't do MD or StructOpt
[963310a]1155 EnergyOutput(P, 1);
[5712cb]1156 // next level
1157 ChangeToLevUp(P, &Stop);
1158 //if (isnan(LevS->LPsi->LocalPsi[R->ActualLocalPsiNo][0].re)) { fprintf(stderr,"(%i) WARNING in ChangeToLevUp(): LPsi->LocalPsi[%i]_[%i] = NaN!\n", P->Par.me, R->ActualLocalPsiNo, 0); Error(SomeError, "NaN-Fehler!"); }
1159 LevS = R->LevS; // re-set pointer that's changed from LevUp
1160 }
1161 SpeedMeasure(P, SimTime, StopTimeDo);
1162 ControlNativeDensity(P);
[2026d4]1163 TestGramSch(P,LevS,Psi, Occupied);
1164 // necessary for correct ionic forces ...
1165 SpeedMeasure(P, LocFTime, StartTimeDo);
1166 CalculateIonLocalForce(P);
1167 SpeedMeasure(P, LocFTime, StopTimeDo);
1168 SpeedMeasure(P, NonLocFTime, StartTimeDo);
1169 CalculateIonNonLocalForce(P);
1170 SpeedMeasure(P, NonLocFTime, StopTimeDo);
1171 CalculateEwald(P, 1);
1172 CalculateIonForce(P);
[a0bcf1]1173 }
[5712cb]1174 if (P->Call.ForcesFile != NULL) { // if we parse forces from file, values are written over (in case of DoOutVis)
1175 fprintf(stderr, "Parsing Forces from file.\n");
[53b5b6]1176 ParseIonForce(P);
[5712cb]1177 //CalculateIonForce(P);
[2026d4]1178 }
[a0bcf1]1179 CorrectForces(P);
1180 // ... on output of densities
1181 if (F->DoOutOrbitals) { // output of each orbital
1182 debug(P,"OutputVisAllOrbital");
1183 OutputVisAllOrbital(P,0,1,Occupied);
1184 }
[5712cb]1185 //OutputNorm(P);
[2026d4]1186 //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
[5712cb]1187 //OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
[2026d4]1188 /*TestGramSch(P, R->LevS, &P->Lat.Psi); */
[a0bcf1]1189 GetOuterStop(P);
1190 //fprintf(stderr,"(%i) DoubleG: %p, CArray[22]: %p, OldLocalPsi: %p\n", P->Par.me, R->LevS->DoubleG, R->Lev0->Dens->DensityCArray[22], R->LevS->LPsi->OldLocalPsi);
1191 if (SuperStop) OuterStop = 1;
1192 return OuterStop;
1193}
1194
[2026d4]1195/** Checks whether the given positions \a *v have changed wrt stored in IonData structure.
1196 * \param *P Problem at hand
1197 * \param *v gsl_vector storing new positions
1198 */
1199int CheckForChangedPositions(struct Problem *P, const gsl_vector *v)
1200{
1201 struct Ions *I = &P->Ion;
1202 int is,ia,k, index=0;
1203 int diff = 0;
1204 double *R_ion;
1205 for (is=0; is < I->Max_Types; is++) // for all elements
1206 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1207 R_ion = &I->I[is].R[NDIM*ia];
1208 for (k=0;k<NDIM;k++) { // for all dimensions
1209 if (fabs(R_ion[k] - gsl_vector_get (v, index++)) > MYEPSILON)
1210 diff++;
1211 }
1212 }
1213 return diff;
1214}
1215
1216/** Wrapper for CalculateForce() for simplex minimisation of total energy.
1217 * \param *v vector with degrees of freedom
1218 * \param *params additional arguments, here Problem at hand
1219 */
1220double StructOpt_func(const gsl_vector *v, void *params)
1221{
1222 struct Problem *P = (struct Problem *)params;
1223 struct RunStruct *R = &P->R;
1224 struct Ions *I = &P->Ion;
1225 struct Energy *E = P->Lat.E;
1226 int i;
1227 double *R_ion, *R_old, *R_old_old;//, *FIon;
1228 //double norm = 0.;
1229 int is,ia,k,index = 0;
1230 int OuterStop;
1231 double diff = 0., tmp;
1232 debug (P, "StructOpt_func");
1233 if (CheckForChangedPositions(P,v)) {
1234 // update ion positions from vector coordinates
1235 for (is=0; is < I->Max_Types; is++) // for all elements
1236 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1237 R_ion = &I->I[is].R[NDIM*ia];
1238 R_old = &I->I[is].R_old[NDIM*ia];
1239 R_old_old = &I->I[is].R_old_old[NDIM*ia];
1240 tmp = 0.;
1241 for (k=0;k<NDIM;k++) { // for all dimensions
1242 R_old_old[k] = R_old[k];
1243 R_old[k] = R_ion[k];
1244 tmp += (R_ion[k]-gsl_vector_get (v, index))*(R_ion[k]-gsl_vector_get (v, index));
1245 R_ion[k] = gsl_vector_get (v, index++);
1246 }
1247 diff += sqrt(tmp);
1248 }
1249 if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Summed Difference to former position %lg\n", P->Par.me, diff);
1250 // recalculate ionic forces (do electronic minimisation)
1251 R->OuterStep++;
1252 R->NewRStep++;
1253 UpdateWaveAfterIonMove(P);
1254 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1255 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1256 UpdateToNewWaves(P);
1257 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1258 OuterStop = CalculateForce(P);
1259 //UpdateIonsU(P);
1260 //CorrectVelocity(P);
1261 //CalculateEnergyIonsU(P);
1262 /* if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
1263 ScaleTemp(P);*/
1264 if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
1265 OutputVisSrcFiles(P, Occupied);
1266 if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
1267 /* // recalculate density for the specific wave function ...
1268 CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
1269 // ... and output (wherein ActualDensity is used instead of TotalDensity)
1270 OutputVis(P);
1271 OutputIonForce(P);
1272 EnergyOutput(P, 1);*/
1273 }
1274 }
1275 if (P->Par.me == 0) fprintf(stderr,"(%i) TE %e\n",P->Par.me, E->TotalEnergy[0]);
1276 return E->TotalEnergy[0];
1277}
1278
[a0bcf1]1279/** Wrapper for CalculateForce() for simplex minimisation of ionic forces.
1280 * \param *v vector with degrees of freedom
1281 * \param *params additional arguments, here Problem at hand
1282 */
[f915e1]1283double StructOpt_f(const gsl_vector *v, void *params)
[a0bcf1]1284{
1285 struct Problem *P = (struct Problem *)params;
1286 struct RunStruct *R = &P->R;
1287 struct Ions *I = &P->Ion;
1288 struct Energy *E = P->Lat.E;
1289 int i;
[27a5bf]1290 double *R_ion, *R_old, *R_old_old;//, *FIon;
1291 //double norm = 0.;
1292 int is,ia,k,index = 0;
[a0bcf1]1293 int OuterStop;
[27a5bf]1294 double diff = 0., tmp;
1295 //debug (P, "StructOpt_f");
1296 if (CheckForChangedPositions(P,v)) {
1297 // update ion positions from vector coordinates
1298 for (is=0; is < I->Max_Types; is++) // for all elements
1299 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1300 R_ion = &I->I[is].R[NDIM*ia];
1301 R_old = &I->I[is].R_old[NDIM*ia];
1302 R_old_old = &I->I[is].R_old_old[NDIM*ia];
1303 tmp = 0.;
1304 for (k=0;k<NDIM;k++) { // for all dimensions
1305 R_old_old[k] = R_old[k];
1306 R_old[k] = R_ion[k];
1307 tmp += (R_ion[k]-gsl_vector_get (v, index))*(R_ion[k]-gsl_vector_get (v, index));
1308 R_ion[k] = gsl_vector_get (v, index++);
1309 }
1310 diff += sqrt(tmp);
1311 }
1312 if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Summed Difference to former position %lg\n", P->Par.me, diff);
1313 // recalculate ionic forces (do electronic minimisation)
1314 //R->OuterStep++;
1315 R->NewRStep++;
1316 UpdateWaveAfterIonMove(P);
1317 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1318 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1319 UpdateToNewWaves(P);
1320 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1321 OuterStop = CalculateForce(P);
1322 //UpdateIonsU(P);
1323 //CorrectVelocity(P);
1324 //CalculateEnergyIonsU(P);
1325 /* if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
1326 ScaleTemp(P);*/
1327 if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
1328 OutputVisSrcFiles(P, Occupied);
1329 /*if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
1330 // recalculate density for the specific wave function ...
1331 CalculateOneDensityR(Lat, LevS, Dens0, PsiDat, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
1332 // ... and output (wherein ActualDensity is used instead of TotalDensity)
1333 OutputVis(P);
1334 OutputIonForce(P);
1335 EnergyOutput(P, 1);
1336 }*/
[a0bcf1]1337 }
[27a5bf]1338 GetOuterStop(P);
1339 //if (P->Call.out[LeaderOut] && (P->Par.me == 0)) fprintf(stderr,"(%i) Absolute Force summed over all Ions %e\n",P->Par.me, norm);
1340 return R->MeanForce[0];
1341 //if (P->Call.out[LeaderOut] && (P->Par.me == 0)) fprintf(stderr,"(%i) Struct_optf returning: %lg\n",P->Par.me,E->TotalEnergy[0]);
1342 //return E->TotalEnergy[0];
[a0bcf1]1343}
1344
[f915e1]1345void StructOpt_df(const gsl_vector *v, void *params, gsl_vector *df)
[a0bcf1]1346{
1347 struct Problem *P = (struct Problem *)params;
1348 struct Ions *I = &P->Ion;
1349 double *FIon;
[27a5bf]1350 int is,ia,k, index=0;
1351 //debug (P, "StructOpt_df");
1352 // look through coordinate vector if positions have changed sind last StructOpt_f call
1353 if (CheckForChangedPositions(P,v)) {// if so, recalc to update forces
1354 debug (P, "Calling StructOpt_f to update");
1355 StructOpt_f(v, params);
1356 }
[a0bcf1]1357 for (is=0; is < I->Max_Types; is++) // for all elements
1358 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1359 FIon = &I->I[is].FIon[NDIM*ia];
1360 for (k=0;k<NDIM;k++) { // for all dimensions
1361 gsl_vector_set (df, index++, FIon[k]);
1362 }
[27a5bf]1363 }
1364 if (P->Call.out[LeaderOut] && (P->Par.me == 0)) {
1365 fprintf(stderr,"(%i) Struct_Optdf returning",P->Par.me);
1366 gsl_vector_fprintf(stderr, df, "%lg");
1367 }
[a0bcf1]1368}
1369
[f915e1]1370void StructOpt_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *df)
[a0bcf1]1371{
[f915e1]1372 *f = StructOpt_f(x, params);
1373 StructOpt_df(x, params, df);
[a0bcf1]1374}
1375
1376
1377/** CG implementation for the structure optimization.
1378 * We follow the example from the GSL manual.
1379 * \param *P Problem at hand
1380 */
1381void UpdateIon_PRCG(struct Problem *P)
1382{
[27a5bf]1383 //struct RunStruct *Run = &P->R;
[a0bcf1]1384 struct Ions *I = &P->Ion;
1385 size_t np = NDIM*I->Max_TotalIons; // d.o.f = number of ions times number of dimensions
1386 int is, ia, k, index;
1387 double *R;
1388
1389 const gsl_multimin_fdfminimizer_type *T;
1390 gsl_multimin_fdfminimizer *s;
1391 gsl_vector *x;
1392 gsl_multimin_function_fdf minex_func;
1393
1394 size_t iter = 0;
1395 int status;
1396
1397 /* Starting point */
1398 x = gsl_vector_alloc (np);
[27a5bf]1399 //fprintf(stderr,"(%i) d.o.f. = %i\n", P->Par.me, (int)np);
[a0bcf1]1400
1401 index=0;
1402 for (is=0; is < I->Max_Types; is++) // for all elements
1403 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1404 R = &I->I[is].R[NDIM*ia];
1405 for (k=0;k<NDIM;k++) // for all dimensions
1406 gsl_vector_set (x, index++, R[k]);
1407 }
1408
1409 /* Initialize method and iterate */
[f915e1]1410 minex_func.f = &StructOpt_f;
1411 minex_func.df = &StructOpt_df;
1412 minex_func.fdf = &StructOpt_fdf;
[a0bcf1]1413 minex_func.n = np;
1414 minex_func.params = (void *)P;
1415
1416 T = gsl_multimin_fdfminimizer_conjugate_pr;
1417 s = gsl_multimin_fdfminimizer_alloc (T, np);
1418
[27a5bf]1419 gsl_multimin_fdfminimizer_set (s, &minex_func, x, 0.1, 0.001);
[a0bcf1]1420
[27a5bf]1421 fprintf(stderr,"(%i) Commencing Structure optimization with PRCG: dof %d\n", P->Par.me,(int)np);
[a0bcf1]1422 do {
1423 iter++;
1424 status = gsl_multimin_fdfminimizer_iterate(s);
1425
1426 if (status)
1427 break;
1428
[27a5bf]1429 status = gsl_multimin_test_gradient (s->gradient, 1e-2);
[a0bcf1]1430
1431 if (status == GSL_SUCCESS)
1432 if (P->Par.me == 0) fprintf (stderr,"(%i) converged to minimum at\n", P->Par.me);
1433
[53b5b6]1434 if (P->Call.out[NormalOut]) fprintf(stderr,"(%i) Commencing '%s' step %i ... \n",P->Par.me, gsl_multimin_fdfminimizer_name(s), P->R.StructOptStep);
[4931e0]1435 if ((P->Call.out[NormalOut]) && (P->Par.me == 0)) fprintf (stderr, "(%i) %5d %10.5f\n", P->Par.me, (int)iter, s->f);
[27a5bf]1436 //gsl_vector_fprintf(stderr, s->dx, "%lg");
1437 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
[774ae8]1438 OutputIonCoordinates(P, 0);
[27a5bf]1439 P->R.StructOptStep++;
1440 } while ((status == GSL_CONTINUE) && (P->R.StructOptStep < P->R.MaxStructOptStep));
[a0bcf1]1441
1442 gsl_vector_free(x);
1443 gsl_multimin_fdfminimizer_free (s);
1444}
1445
[27a5bf]1446/** Simplex implementation for the structure optimization.
1447 * We follow the example from the GSL manual.
1448 * \param *P Problem at hand
1449 */
1450void UpdateIon_Simplex(struct Problem *P)
1451{
1452 struct RunStruct *Run = &P->R;
1453 struct Ions *I = &P->Ion;
1454 size_t np = NDIM*I->Max_TotalIons; // d.o.f = number of ions times number of dimensions
1455 int is, ia, k, index;
1456 double *R;
1457
1458 const gsl_multimin_fminimizer_type *T;
1459 gsl_multimin_fminimizer *s;
1460 gsl_vector *x, *ss;
1461 gsl_multimin_function minex_func;
1462
1463 size_t iter = 0;
1464 int status;
1465 double size;
1466
1467 ss = gsl_vector_alloc (np);
1468 gsl_vector_set_all(ss, .2);
1469 /* Starting point */
1470 x = gsl_vector_alloc (np);
1471 //fprintf(stderr,"(%i) d.o.f. = %i\n", P->Par.me, (int)np);
1472
1473 index=0;
1474 for (is=0; is < I->Max_Types; is++) // for all elements
1475 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // for all ions of element
1476 R = &I->I[is].R[NDIM*ia];
1477 for (k=0;k<NDIM;k++) // for all dimensions
1478 gsl_vector_set (x, index++, R[k]);
1479 }
1480
1481 /* Initialize method and iterate */
1482 minex_func.f = &StructOpt_f;
1483 minex_func.n = np;
1484 minex_func.params = (void *)P;
1485
1486 T = gsl_multimin_fminimizer_nmsimplex;
1487 s = gsl_multimin_fminimizer_alloc (T, np);
1488
1489 gsl_multimin_fminimizer_set (s, &minex_func, x, ss);
1490
1491 fprintf(stderr,"(%i) Commencing Structure optimization with NM simplex: dof %d\n", P->Par.me, (int)np);
1492 do {
1493 iter++;
1494 status = gsl_multimin_fminimizer_iterate(s);
1495
1496 if (status)
1497 break;
1498
1499 size = gsl_multimin_fminimizer_size (s);
1500 status = gsl_multimin_test_size (size, 1e-4);
1501
1502 if (status == GSL_SUCCESS)
1503 if (P->Par.me == 0) fprintf (stderr,"(%i) converged to minimum at\n", P->Par.me);
1504
1505 if (P->Call.out[MinOut]) fprintf(stderr,"(%i) Commencing '%s' step %i ... \n",P->Par.me, gsl_multimin_fminimizer_name(s), P->R.StructOptStep);
1506 if ((P->Call.out[MinOut]) && (P->Par.me == 0)) fprintf (stderr, "(%i) %5d %10.5f %10.5f\n", P->Par.me, (int)iter, s->fval, size);
1507 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
[774ae8]1508 OutputIonCoordinates(P, 0);
[27a5bf]1509 P->R.StructOptStep++;
1510 } while ((status == GSL_CONTINUE) && (Run->OuterStep < Run->MaxOuterStep));
1511
1512 gsl_vector_free(x);
1513 gsl_vector_free(ss);
1514 gsl_multimin_fminimizer_free (s);
1515}
1516
[f915e1]1517/** Implementation of various thermostats.
1518 * All these thermostats apply an additional force which has the following forms:
1519 * -# Woodcock
1520 * \f$p_i \rightarrow \sqrt{\frac{T_0}{T}} \cdot p_i\f$
1521 * -# Gaussian
1522 * \f$ \frac{ \sum_i \frac{p_i}{m_i} \frac{\partial V}{\partial q_i}} {\sum_i \frac{p^2_i}{m_i}} \cdot p_i\f$
1523 * -# Langevin
1524 * \f$p_{i,n} \rightarrow \sqrt{1-\alpha^2} p_{i,0} + \alpha p_r\f$
1525 * -# Berendsen
1526 * \f$p_i \rightarrow \left [ 1+ \frac{\delta t}{\tau_T} \left ( \frac{T_0}{T} \right ) \right ]^{\frac{1}{2}} \cdot p_i\f$
1527 * -# Nose-Hoover
1528 * \f$\zeta p_i \f$ with \f$\frac{\partial \zeta}{\partial t} = \frac{1}{M_s} \left ( \sum^N_{i=1} \frac{p_i^2}{m_i} - g k_B T \right )\f$
1529 * These Thermostats either simply rescale the velocities, thus Thermostats() should be called after UpdateIonsU(), and/or
1530 * have a constraint force acting additionally on the ions. In the latter case, the ion speeds have to be modified
1531 * belatedly and the constraint force set.
1532 * \param *P Problem at hand
1533 * \param i which of the thermostats to take: 0 - none, 1 - Woodcock, 2 - Gaussian, 3 - Langevin, 4 - Berendsen, 5 - Nose-Hoover
1534 * \sa InitThermostat()
1535 */
1536void Thermostats(struct Problem *P, enum thermostats i)
1537{
1538 struct FileData *Files = &P->Files;
1539 struct Ions *I = &P->Ion;
1540 int is, ia, d;
1541 double *U;
1542 double a, ekin = 0.;
1543 double E = 0., F = 0.;
1544 double delta_alpha = 0.;
1545 const int delta_t = P->R.delta_t;
1546 double ScaleTempFactor;
1547 double sigma;
1548 gsl_rng * r;
1549 const gsl_rng_type * T;
1550
1551 // calculate current temperature
1552 CalculateEnergyIonsU(P); // Temperature now in I->ActualTemp
1553 ScaleTempFactor = P->R.TargetTemp/I->ActualTemp;
1554 //if ((P->Par.me == 0) && (I->ActualTemp < MYEPSILON)) fprintf(stderr,"Thermostat: (1) I->ActualTemp = %lg",I->ActualTemp);
1555 if (Files->MeOutMes) fprintf(Files->TemperatureFile, "%d\t%lg",P->R.OuterStep, I->ActualTemp);
1556
1557 // differentating between the various thermostats
1558 switch(i) {
1559 case None:
1560 debug(P, "Applying no thermostat...");
1561 break;
1562 case Woodcock:
1563 if ((P->R.ScaleTempStep > 0) && ((P->R.OuterStep-1) % P->R.ScaleTempStep == 0)) {
1564 debug(P, "Applying Woodcock thermostat...");
1565 for (is=0; is < I->Max_Types; is++) {
1566 a = 0.5*I->I[is].IonMass;
1567 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1568 U = &I->I[is].U[NDIM*ia];
1569 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1570 for (d=0; d<NDIM; d++) {
1571 U[d] *= sqrt(ScaleTempFactor);
1572 ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
1573 }
1574 }
1575 }
1576 }
1577 break;
1578 case Gaussian:
1579 debug(P, "Applying Gaussian thermostat...");
1580 for (is=0; is < I->Max_Types; is++) { // sum up constraint constant
1581 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1582 U = &I->I[is].U[NDIM*ia];
1583 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1584 for (d=0; d<NDIM; d++) {
1585 F += U[d] * I->I[is].FIon[d+NDIM*ia];
1586 E += U[d]*U[d]*I->I[is].IonMass;
1587 }
1588 }
1589 }
1590 if (P->Call.out[ValueOut]) fprintf(stderr, "(%i) Gaussian Least Constraint constant is %lg\n", P->Par.me, F/E);
1591 for (is=0; is < I->Max_Types; is++) { // apply constraint constant on constraint force and on velocities
1592 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1593 U = &I->I[is].U[NDIM*ia];
1594 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1595 for (d=0; d<NDIM; d++) {
1596 I->I[is].FConstraint[d+NDIM*ia] = (F/E) * (U[d]*I->I[is].IonMass);
1597 U[d] += delta_t/I->I[is].IonMass * (I->I[is].FConstraint[d+NDIM*ia]);
1598 ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
1599 }
1600 }
1601 }
1602 break;
1603 case Langevin:
1604 debug(P, "Applying Langevin thermostat...");
1605 // init random number generator
1606 gsl_rng_env_setup();
1607 T = gsl_rng_default;
1608 r = gsl_rng_alloc (T);
1609 // Go through each ion
1610 for (is=0; is < I->Max_Types; is++) {
1611 sigma = sqrt(P->R.TargetTemp/I->I[is].IonMass); // sigma = (k_b T)/m (Hartree/atomicmass = atomiclength/atomictime)
1612 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1613 U = &I->I[is].U[NDIM*ia];
1614 // throw a dice to determine whether it gets hit by a heat bath particle
1615 if (((((rand()/(double)RAND_MAX))*P->R.TempFrequency) < 1.)) { // (I->I[is].IMT[ia] == MoveIon) && even FixedIon moves, only not by other's forces
1616 if (P->Par.me == 0) fprintf(stderr,"(%i) Particle %i,%i was hit (sigma %lg): %lg -> ", P->Par.me, is, ia, sigma, sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]));
1617 // pick three random numbers from a Boltzmann distribution around the desired temperature T for each momenta axis
1618 for (d=0; d<NDIM; d++) {
1619 U[d] = gsl_ran_gaussian (r, sigma);
1620 }
1621 if (P->Par.me == 0) fprintf(stderr,"%lg\n", sqrt(U[0]*U[0]+U[1]*U[1]+U[2]*U[2]));
1622 }
1623 for (d=0; d<NDIM; d++)
1624 ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
1625 }
1626 }
1627 break;
1628 case Berendsen:
1629 debug(P, "Applying Berendsen-VanGunsteren thermostat...");
1630 for (is=0; is < I->Max_Types; is++) {
1631 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1632 U = &I->I[is].U[NDIM*ia];
1633 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1634 for (d=0; d<NDIM; d++) {
1635 U[d] *= sqrt(1+(P->R.delta_t/P->R.TempFrequency)*(ScaleTempFactor-1));
1636 ekin += 0.5*I->I[is].IonMass * U[d]*U[d];
1637 }
1638 }
1639 }
1640 break;
1641 case NoseHoover:
1642 debug(P, "Applying Nose-Hoover thermostat...");
1643 // dynamically evolve alpha (the additional degree of freedom)
1644 delta_alpha = 0.;
1645 for (is=0; is < I->Max_Types; is++) { // sum up constraint constant
1646 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1647 U = &I->I[is].U[NDIM*ia];
1648 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1649 for (d=0; d<NDIM; d++) {
1650 delta_alpha += U[d]*U[d]*I->I[is].IonMass;
1651 }
1652 }
1653 }
1654 delta_alpha = (delta_alpha - (3.*I->Max_TotalIons+1.) * P->R.TargetTemp)/(P->R.HooverMass*Units2Electronmass);
1655 P->R.alpha += delta_alpha*delta_t;
1656 if (P->Par.me == 0) fprintf(stderr,"(%i) alpha = %lg * %i = %lg\n", P->Par.me, delta_alpha, delta_t, P->R.alpha);
1657 // apply updated alpha as additional force
1658 for (is=0; is < I->Max_Types; is++) { // apply constraint constant on constraint force and on velocities
1659 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1660 U = &I->I[is].U[NDIM*ia];
1661 if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
1662 for (d=0; d<NDIM; d++) {
1663 I->I[is].FConstraint[d+NDIM*ia] = - P->R.alpha * (U[d] * I->I[is].IonMass);
1664 U[d] += delta_t/I->I[is].IonMass * (I->I[is].FConstraint[d+NDIM*ia]);
1665 ekin += (0.5*I->I[is].IonMass) * U[d]*U[d];
1666 }
1667 }
1668 }
1669 break;
1670 }
1671 I->EKin = ekin;
1672 I->ActualTemp = (2./(3.*I->Max_TotalIons)*I->EKin);
1673 //if ((P->Par.me == 0) && (I->ActualTemp < MYEPSILON)) fprintf(stderr,"Thermostat: (2) I->ActualTemp = %lg",I->ActualTemp);
1674 if (Files->MeOutMes) { fprintf(Files->TemperatureFile, "\t%lg\n", I->ActualTemp); fflush(Files->TemperatureFile); }
1675}
1676
[a0bcf1]1677/** Does the Molecular Dynamics Calculations.
1678 * All of the following is SpeedMeasure()'d in SimTime.
1679 * Initialization by calling:
1680 * -# CorrectVelocity()\n
1681 * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
1682 * -# CalculateEnergyIonsU(), SpeedMeasure()'d in TimeTypes#InitSimTime\n
1683 * Calculates kinetic energy of "movable" Ions.
1684 * -# CalculateForce()\n
1685 * Does the minimisation, calculates densities, then energies and finally the forces.
1686 * -# OutputVisSrcFiles()\n
1687 * If desired, so-far made calculations are stored to file for later restarting.
1688 * -# OutputIonForce()\n
1689 * Write ion forces to file.
1690 * -# EnergyOutput()\n
1691 * Write calculated energies to screen or file.
1692 *
1693 * The simulation phase begins:
1694 * -# UpdateIonsR()\n
1695 * Move Ions according to the calculated force.
1696 * -# UpdateWaveAfterIonMove()\n
1697 * Update wave functions by averaging LocalPsi coefficients after the Ions have been shifted.
1698 * -# UpdateToNewWaves()\n
1699 * Update after wave functions have changed.
1700 * -# CalculateForce()\n
1701 * Does the minimisation, calculates densities, then energies and finally the forces.
1702 * -# UpdateIonsU()\n
1703 * Change ion's velocities according to the calculated acting force.
1704 * -# CorrectVelocity()\n
1705 * Shifts center of gravity of Ions momenta, so that the cell itself remains at rest.
1706 * -# CalculateEnergyIonsU()\n
1707 * Calculates kinetic energy of "movable" Ions.
1708 * -# ScaleTemp()\n
1709 * The temperature is scaled, so the systems energy remains constant (they must not gain momenta out of nothing)
1710 * -# OutputVisSrcFiles()\n
1711 * If desired, so-far made calculations are stored to file for later restarting.
1712 * -# OutputVis()\n
1713 * Visulization data for OpenDX is written at certain steps if desired.
1714 * -# OutputIonForce()\n
1715 * Write ion forces to file.
1716 * -# EnergyOutput()\n
1717 * Write calculated energies to screen or file.
1718 *
1719 * After the ground state is found:
1720 * -# CalculateUnOccupied()\n
1721 * Energies of unoccupied orbitals - that have been left out completely so far -
1722 * are calculated.
1723 * -# TestGramSch()\n
1724 * Test if orbitals are still orthogonal.
1725 * -# CalculateHamiltonian()\n
1726 * Construct Hamiltonian and calculate Eigenvalues.
1727 * -# ComputeMLWF()\n
1728 * Localize orbital wave functions.
1729 *
1730 * \param *P Problem at hand
1731 */
1732void CalculateMD(struct Problem *P)
1733{
1734 struct RunStruct *R = &P->R;
1735 struct Ions *I = &P->Ion;
[27a5bf]1736 struct Energy *E = P->Lat.E;
[a0bcf1]1737 int OuterStop = 0;
[27a5bf]1738 int i;
1739
[a0bcf1]1740 SpeedMeasure(P, SimTime, StartTimeDo);
[27a5bf]1741 // initial calculations (bring density on BO surface and output start energies, coordinates, densities, ...)
[a0bcf1]1742 SpeedMeasure(P, InitSimTime, StartTimeDo);
1743 R->OuterStep = 0;
1744 CorrectVelocity(P);
1745 CalculateEnergyIonsU(P);
1746 OuterStop = CalculateForce(P);
[27a5bf]1747 //R->OuterStep++;
[a0bcf1]1748 P->Speed.InitSteps++;
1749 SpeedMeasure(P, InitSimTime, StopTimeDo);
[27a5bf]1750
[774ae8]1751 OutputIonCoordinates(P, 1);
[27a5bf]1752 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
[a0bcf1]1753 OutputIonForce(P);
1754 EnergyOutput(P, 1);
[27a5bf]1755
1756 // if desired perform beforehand a structure relaxation/optimization
1757 if (I->StructOpt) {
1758 debug(P,"Commencing minimisation on ionic structure ...");
1759 R->StructOptStep = 0;
1760 //UpdateIon_PRCG(P);
1761 //UpdateIon_Simplex(P);
1762 while ((R->MeanForce[0] > 1e-4) && (R->StructOptStep < R->MaxStructOptStep)) {
1763 R->StructOptStep++;
[774ae8]1764 OutputIonCoordinates(P, 1);
[27a5bf]1765 UpdateIons(P);
1766 UpdateWaveAfterIonMove(P);
1767 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1768 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1769 UpdateToNewWaves(P);
1770 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1771 OuterStop = CalculateForce(P);
1772 CalculateEnergyIonsU(P);
1773 if ((R->StructOptStep-1) % P->R.OutSrcStep == 0)
1774 OutputVisSrcFiles(P, Occupied);
1775 if ((R->StructOptStep-1) % P->R.OutVisStep == 0) {
1776 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
1777 OutputIonForce(P);
1778 EnergyOutput(P, 1);
1779 }
1780 if (P->Par.me == 0) fprintf(stderr,"(%i) Mean force is %lg\n", P->Par.me, R->MeanForce[0]);
1781 }
[774ae8]1782 OutputIonCoordinates(P, 1);
[a0bcf1]1783 }
[ae0078]1784 if ((I->StructOpt) && (!OuterStop) && (R->DoPerturbation)) { // do one last perturbation if desired calculation
[a0bcf1]1785 I->StructOpt = 0;
1786 OuterStop = CalculateForce(P);
1787 }
[27a5bf]1788
1789 // and now begin with the molecular dynamics simulation
1790 debug(P,"Commencing MD simulation ...");
1791 while (!OuterStop && R->OuterStep < R->MaxOuterStep) {
[a0bcf1]1792 R->OuterStep++;
[27a5bf]1793 if (P->Par.me == 0) {
1794 if (R->OuterStep > 1) fprintf(stderr,"\b\b\b\b\b\b\b\b\b\b\b\b");
1795 fprintf(stderr,"Time: %f fs\r", R->t*Atomictime2Femtoseconds);
1796 fflush(stderr);
[a0bcf1]1797 }
1798 OuterStop = CalculateForce(P);
[27a5bf]1799 P->R.t += P->R.delta_t; // increase current time by delta_t
1800 R->NewRStep++;
1801
[a0bcf1]1802 UpdateIonsU(P);
1803 CorrectVelocity(P);
[27a5bf]1804 Thermostats(P, I->Thermostat);
[a0bcf1]1805 CalculateEnergyIonsU(P);
[27a5bf]1806
1807 UpdateIonsR(P);
[774ae8]1808 OutputIonCoordinates(P, 1);
[27a5bf]1809
1810 UpdateWaveAfterIonMove(P);
1811 for (i=MAXOLD-1; i > 0; i--) // store away old energies
1812 E->TotalEnergyOuter[i] = E->TotalEnergyOuter[i-1];
1813 UpdateToNewWaves(P);
1814 E->TotalEnergyOuter[0] = E->TotalEnergy[0];
1815 //if ((P->R.ScaleTempStep > 0) && ((R->OuterStep-1) % P->R.ScaleTempStep == 0))
1816 // ScaleTemp(P);
[a0bcf1]1817 if ((R->OuterStep-1) % P->R.OutSrcStep == 0)
1818 OutputVisSrcFiles(P, Occupied);
1819 if ((R->OuterStep-1) % P->R.OutVisStep == 0) {
[27a5bf]1820 OutputVis(P, P->R.Lev0->Dens->DensityArray[TotalDensity]);
1821 OutputIonForce(P);
1822 EnergyOutput(P, 1);
[a0bcf1]1823 }
[27a5bf]1824 ResetForces(P);
1825 }
[a0bcf1]1826 SpeedMeasure(P, SimTime, StopTimeDo);
1827 CloseOutputFiles(P);
1828}
Note: See TracBrowser for help on using the repository browser.