1 | /** \file perturbed.c
|
---|
2 | * Perturbation calculation due to external magnetic field.
|
---|
3 | *
|
---|
4 | * Central function is MinimisePerturbed() wherein the actual minimisation of the two different operators with each
|
---|
5 | * three components takes place subsequently. Helpful routines are CalculatePerturbationOperator_P() - which applies a
|
---|
6 | * specified component of p on the current wave function - and CalculatePerturbationOperator_RxP() - which does the
|
---|
7 | * same for the RxP operator.
|
---|
8 | * The actual minimisation loop FindPerturbedMinimum() depends on the same routines also used for the occupied orbitals,
|
---|
9 | * however with a different energy functional and derivatives, evaluated in Calculate1stPerturbedDerivative() and
|
---|
10 | * Calculate2ndPerturbedDerivative(). InitPerturbedEnergyCalculation() calculates the total energy functional
|
---|
11 | * perturbed in second order for all wave functions, UpdatePerturbedEnergyCalculation() just updates the one
|
---|
12 | * for the wave function after it has been minimised during the line search. Both use CalculatePerturbedEnergy() which
|
---|
13 | * evaluates the energy functional (and the gradient if specified).
|
---|
14 | * Finally, FillCurrentDensity() evaluates the current density at a given point in space using the perturbed
|
---|
15 | * wave functions. Afterwards by calling CalculateMagneticSusceptibility() or
|
---|
16 | * CalculateChemicalShieldingByReciprocalCurrentDensity() susceptibility respectively shielding tensor are possible uses
|
---|
17 | * of this current density.
|
---|
18 | *
|
---|
19 | * There are also some test routines: TestCurrent() checks whether the integrated current is zero in each component.
|
---|
20 | * test_fft_symmetry() tests the "pulling out imaginary unit" before fourier transformation on a given wave function.
|
---|
21 | * CheckOrbitalOverlap() outputs the overlap matrix for the wave functions of a given minimisation state, this might
|
---|
22 | * be important for the additional \f$\Delta J{ij}\f$ contribution to the current density, which is non-zero for
|
---|
23 | * non-zero mutual overlap, which is evaluated if FillDeltaCurrentDensity() is called.
|
---|
24 | *
|
---|
25 | * Finally, there are also some smaller routines: truedist() gives the correct relative distance between two points
|
---|
26 | * in the unit cell under periodic boundary conditions with minimum image convention. ApplyTotalHamiltonian() returns
|
---|
27 | * the hamiltonian applied to a given wave function. sawtooth() is a sawtooth implementation which is needed in order
|
---|
28 | * to avoid flipping of position eigenvalues for nodes close to or on the cell boundary. CalculateOverlap()
|
---|
29 | * is used in the energy functional derivatives, keeping an overlap table between perturbed wave functions up to date.
|
---|
30 | * fft_Psi() is very similar to CalculateOneDensityR(), it does the extension of the wave function to the upper level
|
---|
31 | * RunStruct#Lev0 while fouriertransforming it to real space. cross() gives correct indices in evaluating a vector cross
|
---|
32 | * product. AllocCurrentDensity() and DisAllocCurrentDensity() mark the current density arrays as currently being in use or not.
|
---|
33 | *
|
---|
34 | Project: ParallelCarParrinello
|
---|
35 | \author Frederik Heber
|
---|
36 | \date 2006
|
---|
37 |
|
---|
38 | */
|
---|
39 |
|
---|
40 | #include <stdlib.h>
|
---|
41 | #include <stdio.h>
|
---|
42 | #include <math.h>
|
---|
43 | #include <string.h>
|
---|
44 | #include <time.h>
|
---|
45 | #include <gsl/gsl_matrix.h>
|
---|
46 | #include <gsl/gsl_eigen.h>
|
---|
47 | #include <gsl/gsl_complex.h>
|
---|
48 | #include <gsl/gsl_complex_math.h>
|
---|
49 | #include <gsl/gsl_sort_vector.h>
|
---|
50 | #include <gsl/gsl_linalg.h>
|
---|
51 | #include <gsl/gsl_multimin.h>
|
---|
52 |
|
---|
53 | #include "data.h"
|
---|
54 | #include "density.h"
|
---|
55 | #include "energy.h"
|
---|
56 | #include "excor.h"
|
---|
57 | #include "errors.h"
|
---|
58 | #include "grad.h"
|
---|
59 | #include "gramsch.h"
|
---|
60 | #include "mergesort2.h"
|
---|
61 | #include "helpers.h"
|
---|
62 | #include "init.h"
|
---|
63 | #include "myfft.h"
|
---|
64 | #include "mymath.h"
|
---|
65 | #include "output.h"
|
---|
66 | #include "pcp.h"
|
---|
67 | #include "perturbed.h"
|
---|
68 | #include "run.h"
|
---|
69 | #include "wannier.h"
|
---|
70 |
|
---|
71 |
|
---|
72 | /** Minimisation of the PsiTypeTag#Perturbed_RxP0, PsiTypeTag#Perturbed_P0 and other orbitals.
|
---|
73 | * For each of the above PsiTypeTag we go through the following before the minimisation loop:
|
---|
74 | * -# ResetGramSchTagType() resets current type that is to be minimised to NotOrthogonal.
|
---|
75 | * -# UpdateActualPsiNo() steps on to next perturbed of current PsiTypeTag type.
|
---|
76 | * -# GramSch() orthonormalizes perturbed wave functions.
|
---|
77 | * -# TestGramSch() tests if orthonormality was achieved.
|
---|
78 | * -# InitDensityCalculation() gathers densities from all wave functions (and all processes), within SpeedMeasure() DensityTime.
|
---|
79 | * -# InitPerturbedEnergyCalculation() performs initial calculation of the perturbed energy functional.
|
---|
80 | * -# RunStruct#OldActualLocalPsiNo is set to RunStruct#ActualLocalPsiNo, immediately followed by UpdateGramSchOldActualPsiNo()
|
---|
81 | * to bring info on all processes on par.
|
---|
82 | * -# UpdatePerturbedEnergyCalculation() re-calculates Gradient and GradientTypes#H1cGradient for RunStruct#ActualLocalPsiNo
|
---|
83 | * -# EnergyAllReduce() gathers various energy terms and sums up into Energy#TotalEnergy.
|
---|
84 | *
|
---|
85 | * And during the minimisation loop:
|
---|
86 | * -# FindPerturbedMinimum() performs the gradient conjugation, the line search and wave function update.
|
---|
87 | * -# UpdateActualPsiNo() steps on to the next wave function, orthonormalizing by GramSch() if necessary.
|
---|
88 | * -# UpdateEnergyArray() shifts TotalEnergy values to make space for new one.
|
---|
89 | * -# There is no density update as the energy function does not depend on the changing perturbed density but only on the fixed
|
---|
90 | * unperturbed one.
|
---|
91 | * -# UpdatePerturbedEnergyCalculation() re-calculates the perturbed energy of the changed wave function.
|
---|
92 | * -# EnergyAllReduce() gathers energy terms and sums up.
|
---|
93 | * -# CheckCPULIM() checks if external Stop signal has been given.
|
---|
94 | * -# CalculateMinimumStop() checks whether we have dropped below a certain minimum change during minimisation of total energy.
|
---|
95 | * -# finally step counters LatticeLevel#Step and SpeedStruct#Steps are increased.
|
---|
96 | *
|
---|
97 | * After the minimisation loop:
|
---|
98 | * -# SetGramSchExtraPsi() removes extra Psis from orthogonaliy check.
|
---|
99 | * -# ResetGramSchTagType() sets GramSchToDoType to NotUsedtoOrtho.
|
---|
100 | *
|
---|
101 | * And after all minimisation runs are done:
|
---|
102 | * -# UpdateActualPsiNo() steps back to PsiTypeTag#Occupied type.
|
---|
103 | *
|
---|
104 | * At the end we return to Occupied wave functions.
|
---|
105 | * \param *P at hand
|
---|
106 | * \param *Stop flag to determine if epsilon stop conditions have met
|
---|
107 | * \param *SuperStop flag to determinte whether external signal's required end of calculations
|
---|
108 | */
|
---|
109 | void MinimisePerturbed (struct Problem *P, int *Stop, int *SuperStop) {
|
---|
110 | struct RunStruct *R = &P->R;
|
---|
111 | struct Lattice *Lat = &P->Lat;
|
---|
112 | struct Psis *Psi = &Lat->Psi;
|
---|
113 | int type, flag = 0;//,i;
|
---|
114 |
|
---|
115 | for (type=Perturbed_P0;type<=Perturbed_RxP2;type++) { // go through each perturbation group separately //
|
---|
116 | *Stop=0; // reset stop flag
|
---|
117 | if(P->Call.out[LeaderOut]) fprintf(stderr,"(%i)Beginning perturbed minimisation of type %s ...\n", P->Par.me, R->MinimisationName[type]);
|
---|
118 | //OutputOrbitalPositions(P, Occupied);
|
---|
119 | R->PsiStep = R->MaxPsiStep; // reset in-Psi-minimisation-counter, so that we really advance to the next wave function
|
---|
120 | UpdateActualPsiNo(P, type); // step on to next perturbed one
|
---|
121 |
|
---|
122 | if(P->Call.out[MinOut]) fprintf(stderr, "(%i) Re-initializing perturbed psi array for type %s ", P->Par.me, R->MinimisationName[type]);
|
---|
123 | if (P->Call.ReadSrcFiles && (flag = ReadSrcPsiDensity(P,type,1, R->LevS->LevelNo))) {// in flag store whether stored Psis are readible or not
|
---|
124 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
125 | if(P->Call.out[MinOut]) fprintf(stderr,"from source file of recent calculation\n");
|
---|
126 | ReadSrcPsiDensity(P,type, 0, R->LevS->LevelNo);
|
---|
127 | ResetGramSchTagType(P, Psi, type, IsOrthogonal); // loaded values are orthonormal
|
---|
128 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
129 | //InitDensityCalculation(P);
|
---|
130 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
131 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // needed otherwise called routines in function below crash
|
---|
132 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
133 | InitPerturbedEnergyCalculation(P, 1); // go through all orbitals calculate each H^{(0)}-eigenvalue, recalc HGDensity, cause InitDensityCalc zero'd it
|
---|
134 | UpdatePerturbedEnergyCalculation(P); // H1cGradient and Gradient must be current ones
|
---|
135 | EnergyAllReduce(P); // gather energies for minimum search
|
---|
136 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
137 | }
|
---|
138 | if ((P->Call.ReadSrcFiles != 1) || (!flag)) { // read and don't minimise only if SrcPsi were parsable!
|
---|
139 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
140 | ResetGramSchTagType(P, Psi, type, NotOrthogonal); // perturbed now shall be orthonormalized
|
---|
141 | if ((P->Call.ReadSrcFiles != 2) || (!flag)) {
|
---|
142 | if (R->LevSNo == Lat->MaxLevel-1) { // is it the starting level? (see InitRunLevel())
|
---|
143 | if(P->Call.out[MinOut]) fprintf(stderr, "randomly.\n");
|
---|
144 | InitPsisValue(P, Psi->TypeStartIndex[type], Psi->TypeStartIndex[type+1]); // initialize perturbed array for this run
|
---|
145 | } else {
|
---|
146 | if(P->Call.out[MinOut]) fprintf(stderr, "from source file of last level.\n");
|
---|
147 | ReadSrcPerturbedPsis(P, type);
|
---|
148 | }
|
---|
149 | }
|
---|
150 | SpeedMeasure(P, InitGramSchTime, StartTimeDo);
|
---|
151 | GramSch(P, R->LevS, Psi, Orthogonalize);
|
---|
152 | SpeedMeasure(P, InitGramSchTime, StopTimeDo);
|
---|
153 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
154 | //InitDensityCalculation(P);
|
---|
155 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
156 | InitPerturbedEnergyCalculation(P, 1); // go through all orbitals calculate each H^{(0)}-eigenvalue, recalc HGDensity, cause InitDensityCalc zero'd it
|
---|
157 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // needed otherwise called routines in function below crash
|
---|
158 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
159 | UpdatePerturbedEnergyCalculation(P); // H1cGradient and Gradient must be current ones
|
---|
160 | EnergyAllReduce(P); // gather energies for minimum search
|
---|
161 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
162 | R->LevS->Step++;
|
---|
163 | EnergyOutput(P,0);
|
---|
164 | while (*Stop != 1) {
|
---|
165 | //debug(P,"FindPerturbedMinimum");
|
---|
166 | FindPerturbedMinimum(P); // find minimum
|
---|
167 | //debug(P,"UpdateActualPsiNo");
|
---|
168 | UpdateActualPsiNo(P, type); // step on to next perturbed Psi
|
---|
169 | //debug(P,"UpdateEnergyArray");
|
---|
170 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
171 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
172 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
173 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
174 | //ControlNativeDensity(P); // check total density (summed up PertMixed must be zero!)
|
---|
175 | //printf ("(%i,%i,%i)S(%i,%i,%i):\t %5d %10.5f\n",P->Par.my_color_comm_ST,P->Par.me_comm_ST, P->Par.me_comm_ST_PsiT, R->MinStep, R->ActualLocalPsiNo, R->PsiStep, (int)iter, s_multi->f);
|
---|
176 | if (*SuperStop != 1)
|
---|
177 | *SuperStop = CheckCPULIM(P);
|
---|
178 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
179 | P->Speed.Steps++; // step on
|
---|
180 | R->LevS->Step++;
|
---|
181 | }
|
---|
182 | // now release normalization condition and minimize wrt to norm
|
---|
183 | if(P->Call.out[MinOut]) fprintf(stderr,"(%i) Writing %s srcpsi to disk\n", P->Par.me, R->MinimisationName[type]);
|
---|
184 | OutputSrcPsiDensity(P, type);
|
---|
185 | // if (!TestReadnWriteSrcDensity(P,type))
|
---|
186 | // Error(SomeError,"TestReadnWriteSrcDensity failed!");
|
---|
187 | }
|
---|
188 |
|
---|
189 | TestGramSch(P,R->LevS,Psi, type); // functions are orthonormal?
|
---|
190 | // calculate current density summands
|
---|
191 | //if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Filling current density grid ...\n",P->Par.me);
|
---|
192 | SpeedMeasure(P, CurrDensTime, StartTimeDo);
|
---|
193 | if (*SuperStop != 1) {
|
---|
194 | if ((R->DoFullCurrent == 1) || ((R->DoFullCurrent == 2) && (CheckOrbitalOverlap(P) == 1))) { //test to check whether orbitals have mutual overlap and thus \\DeltaJ_{xc} must not be dropped
|
---|
195 | R->DoFullCurrent = 1; // set to 1 if it was 2 but Check...() yielded necessity
|
---|
196 | //debug(P,"Filling with Delta j ...");
|
---|
197 | //FillDeltaCurrentDensity(P);
|
---|
198 | }// else
|
---|
199 | //debug(P,"There is no overlap between orbitals.");
|
---|
200 | //debug(P,"Filling with j ...");
|
---|
201 | FillCurrentDensity(P);
|
---|
202 | }
|
---|
203 | SpeedMeasure(P, CurrDensTime, StopTimeDo);
|
---|
204 |
|
---|
205 | SetGramSchExtraPsi(P,Psi,NotUsedToOrtho); // remove extra Psis from orthogonality check
|
---|
206 | ResetGramSchTagType(P, Psi, type, NotUsedToOrtho); // remove this group from the check for the next minimisation group as well!
|
---|
207 | }
|
---|
208 | UpdateActualPsiNo(P, Occupied); // step on back to an occupied one
|
---|
209 | }
|
---|
210 |
|
---|
211 | /** Tests overlap matrix between each pair of orbitals for non-diagonal form.
|
---|
212 | * We simply check whether the overlap matrix Psis#lambda has off-diagonal entries greater MYEPSILON or not.
|
---|
213 | * \param *P Problem at hand
|
---|
214 | * \note The routine is meant as atest criteria if \f$\Delta J_[ij]\f$ contribution is necessary, as it is only non-zero if
|
---|
215 | * there is mutual overlap between the two orbitals.
|
---|
216 | */
|
---|
217 | int CheckOrbitalOverlap(struct Problem *P)
|
---|
218 | {
|
---|
219 | struct Lattice *Lat = &P->Lat;
|
---|
220 | struct Psis *Psi = &Lat->Psi;
|
---|
221 | int i,j;
|
---|
222 | int counter = 0;
|
---|
223 |
|
---|
224 | // output matrix
|
---|
225 | if (P->Par.me == 0) fprintf(stderr, "(%i) S_ij =\n", P->Par.me);
|
---|
226 | for (i=0;i<Psi->NoOfPsis;i++) {
|
---|
227 | for (j=0;j<Psi->NoOfPsis;j++) {
|
---|
228 | if (fabs(Psi->lambda[i][j]) > MYEPSILON) counter++;
|
---|
229 | if (P->Par.me == 0) fprintf(stderr, "%e\t", Psi->lambda[i][j]); //Overlap[i][j]
|
---|
230 | }
|
---|
231 | if (P->Par.me == 0) fprintf(stderr, "\n");
|
---|
232 | }
|
---|
233 |
|
---|
234 | fprintf(stderr, "(%i) CheckOverlap: %i overlaps found.\t", P->Par.me, counter);
|
---|
235 | if (counter > 0) return (1);
|
---|
236 | else return(0);
|
---|
237 | }
|
---|
238 |
|
---|
239 | /** Initialization of perturbed energy.
|
---|
240 | * For each local wave function of the current minimisation type RunStruct#CurrentMin it is called:
|
---|
241 | * - CalculateNonLocalEnergyNoRT(): for the coefficient-dependent form factors
|
---|
242 | * - CalculatePerturbedEnergy(): for the perturbed energy, yet without gradient calculation
|
---|
243 | * - CalculateOverlap(): for the overlap between the perturbed wave functions of the current RunStruct#CurrentMin state.
|
---|
244 | *
|
---|
245 | * Afterwards for the two types AllPsiEnergyTypes#Perturbed1_0Energy and AllPsiEnergyTypes#Perturbed0_1Energy the
|
---|
246 | * energy contribution from each wave function is added up in Energy#AllLocalPsiEnergy.
|
---|
247 | * \param *P Problem at hand
|
---|
248 | * \param first state whether it is the first (1) or successive call (0), which avoids some initial calculations.
|
---|
249 | * \sa UpdatePerturbedEnergy()
|
---|
250 | * \note Afterwards EnergyAllReduce() must be called.
|
---|
251 | */
|
---|
252 | void InitPerturbedEnergyCalculation(struct Problem *P, const int first)
|
---|
253 | {
|
---|
254 | struct Lattice *Lat = &(P->Lat);
|
---|
255 | int p,i;
|
---|
256 | const enum PsiTypeTag state = P->R.CurrentMin;
|
---|
257 | for (p=Lat->Psi.TypeStartIndex[state]; p < Lat->Psi.TypeStartIndex[state+1]; p++) {
|
---|
258 | //if (p < 0 || p >= Lat->Psi.LocalNo) Error(SomeError,"InitPerturbedEnergyCalculation: p out of range");
|
---|
259 | //CalculateNonLocalEnergyNoRT(P, p); // recalculating non-local form factors which are coefficient dependent!
|
---|
260 | CalculatePsiEnergy(P,p,1);
|
---|
261 | CalculatePerturbedEnergy(P, p, 0, first);
|
---|
262 | CalculateOverlap(P, p, state);
|
---|
263 | }
|
---|
264 | for (i=0; i<= Perturbed0_1Energy; i++) {
|
---|
265 | Lat->E->AllLocalPsiEnergy[i] = 0.0;
|
---|
266 | for (p=0; p < Lat->Psi.LocalNo; p++)
|
---|
267 | if (P->Lat.Psi.LocalPsiStatus[p].PsiType == state)
|
---|
268 | Lat->E->AllLocalPsiEnergy[i] += Lat->E->PsiEnergy[i][p];
|
---|
269 | }
|
---|
270 | }
|
---|
271 |
|
---|
272 |
|
---|
273 | /** Updating of perturbed energy.
|
---|
274 | * For current and former (if not the same) local wave function RunStruct#ActualLocal, RunStruct#OldActualLocalPsiNo it is called:
|
---|
275 | * - CalculateNonLocalEnergyNoRT(): for the form factors
|
---|
276 | * - CalculatePerturbedEnergy(): for the perturbed energy, gradient only for RunStruct#ActualLocal
|
---|
277 | * - CalculatePerturbedOverlap(): for the overlap between the perturbed wave functions
|
---|
278 | *
|
---|
279 | * Afterwards for the two types AllPsiEnergyTypes#Perturbed1_0Energy and AllPsiEnergyTypes#Perturbed0_1Energy the
|
---|
280 | * energy contribution from each wave function is added up in Energy#AllLocalPsiEnergy.
|
---|
281 | * \param *P Problem at hand
|
---|
282 | * \sa CalculatePerturbedEnergy() called from here.
|
---|
283 | * \note Afterwards EnergyAllReduce() must be called.
|
---|
284 | */
|
---|
285 | void UpdatePerturbedEnergyCalculation(struct Problem *P)
|
---|
286 | {
|
---|
287 | struct Lattice *Lat = &(P->Lat);
|
---|
288 | struct Psis *Psi = &Lat->Psi;
|
---|
289 | struct RunStruct *R = &P->R;
|
---|
290 | const enum PsiTypeTag state = R->CurrentMin;
|
---|
291 | int p = R->ActualLocalPsiNo;
|
---|
292 | const int p_old = R->OldActualLocalPsiNo;
|
---|
293 | int i;
|
---|
294 |
|
---|
295 | if (p != p_old) {
|
---|
296 | //if (p_old < 0 || p_old >= Lat->Psi.LocalNo) Error(SomeError,"UpdatePerturbedEnergyCalculation: p_old out of range");
|
---|
297 | //CalculateNonLocalEnergyNoRT(P, p_old);
|
---|
298 | CalculatePsiEnergy(P,p_old,0);
|
---|
299 | CalculatePerturbedEnergy(P, p_old, 0, 0);
|
---|
300 | CalculateOverlap(P, p_old, state);
|
---|
301 | }
|
---|
302 | //if (p < 0 || p >= Lat->Psi.LocalNo) Error(SomeError,"InitPerturbedEnergyCalculation: p out of range");
|
---|
303 | // recalculating non-local form factors which are coefficient dependent!
|
---|
304 | //CalculateNonLocalEnergyNoRT(P,p);
|
---|
305 | CalculatePsiEnergy(P,p,0);
|
---|
306 | CalculatePerturbedEnergy(P, p, 1, 0);
|
---|
307 | CalculateOverlap(P, p, state);
|
---|
308 |
|
---|
309 | for (i=0; i<= Perturbed0_1Energy; i++) {
|
---|
310 | Lat->E->AllLocalPsiEnergy[i] = 0.0;
|
---|
311 | for (p=0; p < Psi->LocalNo; p++)
|
---|
312 | if (Psi->LocalPsiStatus[p].PsiType == state)
|
---|
313 | Lat->E->AllLocalPsiEnergy[i] += Lat->E->PsiEnergy[i][p];
|
---|
314 | }
|
---|
315 | }
|
---|
316 |
|
---|
317 | /** Calculates gradient and evaluates second order perturbed energy functional for specific wave function.
|
---|
318 | * The in second order perturbed energy functional reads as follows.
|
---|
319 | * \f[
|
---|
320 | * E^{(2)} = \sum_{kl} \langle \varphi_k^{(1)} | H^{(0)} \delta_{kl} - \lambda_{kl} | \varphi_l^{(1)} \rangle
|
---|
321 | * + \underbrace{\langle \varphi_l^{(0)} | H^{(1)} | \varphi_l^{(1)} \rangle + \langle \varphi_l^{(1)} | H^{(1)} | \varphi_l^{(0)} \rangle}_{2 {\cal R} \langle \varphi_l^{(1)} | H^{(1)} | \varphi_l^{(0)} \rangle}
|
---|
322 | * \f]
|
---|
323 | * And the gradient
|
---|
324 | * \f[
|
---|
325 | * \widetilde{\varphi}_k^{(1)} = - \sum_l ({\cal H}^{(0)} \delta_{kl} - \lambda_{kl} | \varphi_l^{(1)} \rangle + {\cal H}^{(1)} | \varphi_k^{(0)} \rangle
|
---|
326 | * \f]
|
---|
327 | * First, the HGDensity is recalculated if \a first says so - see ApplyTotalHamiltonian().
|
---|
328 | *
|
---|
329 | * Next, we need the perturbation hamiltonian acting on both the respective occupied and current wave function,
|
---|
330 | * see perturbed.c for respective function calls.
|
---|
331 | *
|
---|
332 | * Finally, the scalar product between the wave function and Hc_Gradient yields the eigenvalue of the hamiltonian,
|
---|
333 | * which is summed up over all reciprocal grid vectors and stored in OnePsiElementAddData#Lambda. The Gradient is
|
---|
334 | * the inverse of Hc_Gradient and with the following summation over all perturbed wave functions (MPI exchange of
|
---|
335 | * non-local coefficients) the gradient is computed. Here we need Psis#lambda, which is computed in CalculateHamiltonian().
|
---|
336 | *
|
---|
337 | * Also \f${\cal H}^{(1)} | \varphi_l^{(0)} \rangle\f$ is stored in GradientTypes#H1cGradient.
|
---|
338 | * \param *P Problem at hand, contains RunStruct, Lattice, LatticeLevel RunStruct#LevS
|
---|
339 | * \param l offset of perturbed wave function within Psi#LocalPsiStatus (\f$\varphi_l^{(1)}\f$)
|
---|
340 | * \param DoGradient (1 = yes, 0 = no) whether gradient shall be calculated or not
|
---|
341 | * \param first recaculate HGDensity (1) or not (0)
|
---|
342 | * \note DensityTypes#ActualPsiDensity must be recent for gradient calculation!
|
---|
343 | * \sa CalculateGradientNoRT() - same procedure for evaluation of \f${\cal H}^{(0)}| \varphi_l^{(1)} \rangle\f$
|
---|
344 | * \note without the simplification of \f$2 {\cal R} \langle \varphi_l^{(1)} | H^{(1)} | \varphi_l^{(0)} \rangle\f$ the
|
---|
345 | * calculation would be impossible due to non-local nature of perturbed wave functions. The position operator would
|
---|
346 | * be impossible to apply in a sensible manner.
|
---|
347 | */
|
---|
348 | void CalculatePerturbedEnergy(struct Problem *P, const int l, const int DoGradient, const int first)
|
---|
349 | {
|
---|
350 | struct Lattice *Lat = &P->Lat;
|
---|
351 | struct Psis *Psi = &Lat->Psi;
|
---|
352 | struct Energy *E = Lat->E;
|
---|
353 | struct PseudoPot *PP = &P->PP;
|
---|
354 | struct RunStruct *R = &P->R;
|
---|
355 | struct LatticeLevel *LevS = R->LevS;
|
---|
356 | const int state = R->CurrentMin;
|
---|
357 | const int l_normal = Psi->TypeStartIndex[Occupied] + (l - Psi->TypeStartIndex[state]); // offset l to \varphi_l^{(0)}
|
---|
358 | const int ActNum = l - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[l].my_color_comm_ST_Psi;
|
---|
359 | int g, i, m, j;
|
---|
360 | double lambda, Lambda;
|
---|
361 | double RElambda10, RELambda10;
|
---|
362 | const fftw_complex *source = LevS->LPsi->LocalPsi[l];
|
---|
363 | fftw_complex *grad = P->Grad.GradientArray[ActualGradient];
|
---|
364 | fftw_complex *Hc_grad = P->Grad.GradientArray[HcGradient];
|
---|
365 | fftw_complex *H1c_grad = P->Grad.GradientArray[H1cGradient];
|
---|
366 | fftw_complex *TempPsi_0 = H1c_grad;
|
---|
367 | fftw_complex *varphi_1, *varphi_0;
|
---|
368 | struct OnePsiElement *OnePsiB, *LOnePsiB;
|
---|
369 | fftw_complex *LPsiDatB=NULL;
|
---|
370 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
371 | int RecvSource;
|
---|
372 | MPI_Status status;
|
---|
373 |
|
---|
374 | // ============ Calculate H^(0) psi^(1) =============================
|
---|
375 | //if (Hc_grad != P->Grad.GradientArray[HcGradient]) Error(SomeError,"CalculatePerturbedEnergy: Hc_grad corrupted");
|
---|
376 | SetArrayToDouble0((double *)Hc_grad,2*R->InitLevS->MaxG);
|
---|
377 | ApplyTotalHamiltonian(P,source,Hc_grad, PP->fnl[l], 1, first);
|
---|
378 |
|
---|
379 | // ============ ENERGY FUNCTIONAL Evaluation PART 1 ================
|
---|
380 | //if (l_normal < 0 || l_normal >= Psi->LocalNo) Error(SomeError,"CalculatePerturbedEnergy: l_normal out of range");
|
---|
381 | varphi_0 = LevS->LPsi->LocalPsi[l_normal];
|
---|
382 | //if (l < 0 || l >= Psi->LocalNo) Error(SomeError,"CalculatePerturbedEnergy: l out of range");
|
---|
383 | varphi_1 = LevS->LPsi->LocalPsi[l];
|
---|
384 | //if (TempPsi_0 != P->Grad.GradientArray[H1cGradient]) Error(SomeError,"CalculatePerturbedEnergy: TempPsi_0 corrupted");
|
---|
385 | SetArrayToDouble0((double *)TempPsi_0,2*R->InitLevS->MaxG);
|
---|
386 | switch (state) {
|
---|
387 | case Perturbed_P0:
|
---|
388 | CalculatePerturbationOperator_P(P,varphi_0,TempPsi_0,0); // \nabla_0 | \varphi_l^{(0)} \rangle
|
---|
389 | break;
|
---|
390 | case Perturbed_P1:
|
---|
391 | CalculatePerturbationOperator_P(P,varphi_0,TempPsi_0,1); // \nabla_1 | \varphi_l^{(0)} \rangle
|
---|
392 | break;
|
---|
393 | case Perturbed_P2:
|
---|
394 | CalculatePerturbationOperator_P(P,varphi_0,TempPsi_0,2); // \nabla_1 | \varphi_l^{(0)} \rangle
|
---|
395 | break;
|
---|
396 | case Perturbed_RxP0:
|
---|
397 | CalculatePerturbationOperator_RxP(P,varphi_0,TempPsi_0,l_normal,0); // r \times \nabla | \varphi_l^{(0)} \rangle
|
---|
398 | break;
|
---|
399 | case Perturbed_RxP1:
|
---|
400 | CalculatePerturbationOperator_RxP(P,varphi_0,TempPsi_0,l_normal,1); // r \times \nabla | \varphi_l^{(0)} \rangle
|
---|
401 | break;
|
---|
402 | case Perturbed_RxP2:
|
---|
403 | CalculatePerturbationOperator_RxP(P,varphi_0,TempPsi_0,l_normal,2); // r \times \nabla | \varphi_l^{(0)} \rangle
|
---|
404 | break;
|
---|
405 | default:
|
---|
406 | fprintf(stderr,"(%i) CalculatePerturbedEnergy called whilst not within perturbation run: CurrentMin = %i !\n",P->Par.me, R->CurrentMin);
|
---|
407 | break;
|
---|
408 | }
|
---|
409 |
|
---|
410 | // ============ GRADIENT and EIGENVALUE Evaluation Part 1==============
|
---|
411 | lambda = 0.0;
|
---|
412 | if ((DoGradient) && (grad != NULL)) {
|
---|
413 | g = 0;
|
---|
414 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
415 | lambda += Hc_grad[0].re*source[0].re;
|
---|
416 | //if (grad != P->Grad.GradientArray[ActualGradient]) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
417 | grad[0].re = -(Hc_grad[0].re + TempPsi_0[0].re);
|
---|
418 | grad[0].im = -(Hc_grad[0].im + TempPsi_0[0].im);
|
---|
419 | g++;
|
---|
420 | }
|
---|
421 | for (;g<LevS->MaxG;g++) {
|
---|
422 | lambda += 2.*(Hc_grad[g].re*source[g].re + Hc_grad[g].im*source[g].im);
|
---|
423 | //if (grad != P->Grad.GradientArray[ActualGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
424 | grad[g].re = -(Hc_grad[g].re + TempPsi_0[g].re);
|
---|
425 | grad[g].im = -(Hc_grad[g].im + TempPsi_0[g].im);
|
---|
426 | }
|
---|
427 |
|
---|
428 | m = -1;
|
---|
429 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
430 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
431 | if (OnePsiB->PsiType == state) { // drop all but the ones of current min state
|
---|
432 | m++; // increase m if it is type-specific wave function
|
---|
433 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
434 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
435 | else
|
---|
436 | LOnePsiB = NULL;
|
---|
437 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
438 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
439 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, PerturbedTag, P->Par.comm_ST_PsiT, &status );
|
---|
440 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
441 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
442 | for (i=0;i<P->Par.Max_me_comm_ST_PsiT;i++)
|
---|
443 | if (i != OnePsiB->my_color_comm_ST_Psi)
|
---|
444 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, i, PerturbedTag, P->Par.comm_ST_PsiT);
|
---|
445 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
446 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
447 |
|
---|
448 | g = 0;
|
---|
449 | if (LevS->GArray[0].GSq == 0.0) { // perform the summation
|
---|
450 | //if (grad != P->Grad.GradientArray[ActualGradient]) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
451 | grad[0].re += Lat->Psi.lambda[ActNum][m]*LPsiDatB[0].re;
|
---|
452 | grad[0].im += Lat->Psi.lambda[ActNum][m]*LPsiDatB[0].im;
|
---|
453 | g++;
|
---|
454 | }
|
---|
455 | for (;g<LevS->MaxG;g++) {
|
---|
456 | //if (grad != P->Grad.GradientArray[ActualGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
457 | grad[g].re += Lat->Psi.lambda[ActNum][m]*LPsiDatB[g].re;
|
---|
458 | grad[g].im += Lat->Psi.lambda[ActNum][m]*LPsiDatB[g].im;
|
---|
459 | }
|
---|
460 | }
|
---|
461 | }
|
---|
462 | } else {
|
---|
463 | lambda = GradSP(P,LevS,Hc_grad,source);
|
---|
464 | }
|
---|
465 | MPI_Allreduce ( &lambda, &Lambda, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
466 | //fprintf(stderr,"(%i) Lambda[%i] = %lg\n",P->Par.me, l, Lambda);
|
---|
467 | //if (l < 0 || l >= Psi->LocalNo) Error(SomeError,"CalculatePerturbedEnergy: l out of range");
|
---|
468 | Lat->Psi.AddData[l].Lambda = Lambda;
|
---|
469 |
|
---|
470 | // ============ ENERGY FUNCTIONAL Evaluation PART 2 ================
|
---|
471 | // varphi_1 jas negative symmetry, returning TempPsi_0 from CalculatePerturbedOperator also, thus real part of scalar product
|
---|
472 | // "-" due to purely imaginary wave function is on left hand side, thus becomes complex conjugated: i -> -i
|
---|
473 | // (-i goes into pert. op., "-" remains when on right hand side)
|
---|
474 | RElambda10 = GradSP(P,LevS,varphi_1,TempPsi_0) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * Psi->LocalPsiStatus[l_normal].PsiFactor);
|
---|
475 | //RElambda01 = -GradSP(P,LevS,varphi_0,TempPsi_1) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * Psi->LocalPsiStatus[l_normal].PsiFactor);
|
---|
476 |
|
---|
477 | MPI_Allreduce ( &RElambda10, &RELambda10, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
478 | //MPI_Allreduce ( &RElambda01, &RELambda01, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
479 |
|
---|
480 | //if (l < 0 || l >= Psi->LocalNo) Error(SomeError,"CalculatePerturbedEnergy: l out of range");
|
---|
481 | E->PsiEnergy[Perturbed1_0Energy][l] = RELambda10;
|
---|
482 | E->PsiEnergy[Perturbed0_1Energy][l] = RELambda10;
|
---|
483 | // if (P->Par.me == 0) {
|
---|
484 | // fprintf(stderr,"RE.Lambda10[%i-%i] = %lg\t RE.Lambda01[%i-%i] = %lg\n", l, l_normal, RELambda10, l_normal, l, RELambda01);
|
---|
485 | // }
|
---|
486 | // GradImSP() is only applicable to a product of wave functions with uneven symmetry!
|
---|
487 | // Otherwise, due to the nature of symmetry, a sum over only half of the coefficients will in most cases not result in zero!
|
---|
488 | }
|
---|
489 |
|
---|
490 | /** Applies \f$H^{(0)}\f$ to a given \a source.
|
---|
491 | * The DensityTypes#HGDensity is computed, the exchange potential added and the
|
---|
492 | * whole multiplied - coefficient by coefficient - with the current wave function, taken from its density coefficients,
|
---|
493 | * on the upper LatticeLevel (RunStruct#Lev0), which (DensityTypes#ActualPsiDensity) is updated beforehand.
|
---|
494 | * After an inverse fft (now G-dependent) the non-local potential is added and
|
---|
495 | * within the reciprocal basis set, the kinetic energy can be evaluated easily.
|
---|
496 | * \param *P Problem at hand
|
---|
497 | * \param *source pointer to source coefficient array, \f$| \varphi(G) \rangle\f$
|
---|
498 | * \param *dest pointer to dest coefficient array,\f$H^{(0)} | \varphi(G) \rangle\f$
|
---|
499 | * \param **fnl pointer to non-local form factor array
|
---|
500 | * \param PsiFactor occupation number of orbital
|
---|
501 | * \param first 1 - Re-calculate DensityTypes#HGDensity, 0 - don't
|
---|
502 | * \sa CalculateConDirHConDir() - same procedure
|
---|
503 | */
|
---|
504 | void ApplyTotalHamiltonian(struct Problem *P, const fftw_complex *source, fftw_complex *dest, fftw_complex ***fnl, const double PsiFactor, const int first) {
|
---|
505 | struct Lattice *Lat = &P->Lat;
|
---|
506 | struct RunStruct *R = &P->R;
|
---|
507 | struct LatticeLevel *LevS = R->LevS;
|
---|
508 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
509 | struct Density *Dens0 = Lev0->Dens;
|
---|
510 | struct fft_plan_3d *plan = Lat->plan;
|
---|
511 | struct PseudoPot *PP = &P->PP;
|
---|
512 | struct Ions *I = &P->Ion;
|
---|
513 | fftw_complex *work = Dens0->DensityCArray[TempDensity];
|
---|
514 | fftw_real *HGcR = Dens0->DensityArray[HGcDensity];
|
---|
515 | fftw_complex *HGcRC = (fftw_complex*)HGcR;
|
---|
516 | fftw_complex *HGC = Dens0->DensityCArray[HGDensity];
|
---|
517 | fftw_real *HGCR = (fftw_real *)HGC;
|
---|
518 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
519 | fftw_real *PsiCR = (fftw_real *)PsiC;
|
---|
520 | //const fftw_complex *dest_bak = dest;
|
---|
521 | int nx,ny,nz,iS,i0;
|
---|
522 | const int Nx = LevS->Plan0.plan->local_nx;
|
---|
523 | const int Ny = LevS->Plan0.plan->N[1];
|
---|
524 | const int Nz = LevS->Plan0.plan->N[2];
|
---|
525 | const int NUpx = LevS->NUp[0];
|
---|
526 | const int NUpy = LevS->NUp[1];
|
---|
527 | const int NUpz = LevS->NUp[2];
|
---|
528 | const double HGcRCFactor = 1./LevS->MaxN;
|
---|
529 | int g, Index, i, it;
|
---|
530 | fftw_complex vp,rp,rhog,TotalPsiDensity;
|
---|
531 | double Fac;
|
---|
532 |
|
---|
533 | if (first) {
|
---|
534 | // recalculate HGDensity
|
---|
535 | //if (HGC != Dens0->DensityCArray[HGDensity]) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
536 | SetArrayToDouble0((double *)HGC,2*Dens0->TotalSize);
|
---|
537 | g=0;
|
---|
538 | if (Lev0->GArray[0].GSq == 0.0) {
|
---|
539 | Index = Lev0->GArray[0].Index;
|
---|
540 | c_re(vp) = 0.0;
|
---|
541 | c_im(vp) = 0.0;
|
---|
542 | for (it = 0; it < I->Max_Types; it++) {
|
---|
543 | c_re(vp) += (c_re(I->I[it].SFactor[0])*PP->phi_ps_loc[it][0]);
|
---|
544 | c_im(vp) += (c_im(I->I[it].SFactor[0])*PP->phi_ps_loc[it][0]);
|
---|
545 | }
|
---|
546 | //if (HGC != Dens0->DensityCArray[HGDensity] || Index<0 || Index>=Dens0->LocalSizeC) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
547 | c_re(HGC[Index]) = c_re(vp);
|
---|
548 | c_re(TotalPsiDensity) = c_re(Dens0->DensityCArray[TotalDensity][Index]);
|
---|
549 | c_im(TotalPsiDensity) = c_im(Dens0->DensityCArray[TotalDensity][Index]);
|
---|
550 |
|
---|
551 | g++;
|
---|
552 | }
|
---|
553 | for (; g < Lev0->MaxG; g++) {
|
---|
554 | Index = Lev0->GArray[g].Index;
|
---|
555 | Fac = 4.*PI/(Lev0->GArray[g].GSq);
|
---|
556 | c_re(vp) = 0.0;
|
---|
557 | c_im(vp) = 0.0;
|
---|
558 | c_re(rp) = 0.0;
|
---|
559 | c_im(rp) = 0.0;
|
---|
560 | for (it = 0; it < I->Max_Types; it++) {
|
---|
561 | c_re(vp) += (c_re(I->I[it].SFactor[g])*PP->phi_ps_loc[it][g]);
|
---|
562 | c_im(vp) += (c_im(I->I[it].SFactor[g])*PP->phi_ps_loc[it][g]);
|
---|
563 | c_re(rp) += (c_re(I->I[it].SFactor[g])*PP->FacGauss[it][g]);
|
---|
564 | c_im(rp) += (c_im(I->I[it].SFactor[g])*PP->FacGauss[it][g]);
|
---|
565 | } // rp = n^{Gauss)(G)
|
---|
566 |
|
---|
567 | // n^{tot} = n^0 + \lambda n^1 + ...
|
---|
568 | //if (isnan(c_re(Dens0->DensityCArray[TotalDensity][Index]))) { fprintf(stderr,"(%i) WARNING in CalculatePerturbedEnergy(): TotalDensity[%i] = NaN!\n", P->Par.me, Index); Error(SomeError, "NaN-Fehler!"); }
|
---|
569 | c_re(TotalPsiDensity) = c_re(Dens0->DensityCArray[TotalDensity][Index]);
|
---|
570 | c_im(TotalPsiDensity) = c_im(Dens0->DensityCArray[TotalDensity][Index]);
|
---|
571 |
|
---|
572 | c_re(rhog) = c_re(TotalPsiDensity)*R->HGcFactor+c_re(rp);
|
---|
573 | c_im(rhog) = c_im(TotalPsiDensity)*R->HGcFactor+c_im(rp);
|
---|
574 | // rhog = n(G) + n^{Gauss}(G), rhoe = n(G)
|
---|
575 | //if (HGC != Dens0->DensityCArray[HGDensity] || Index<0 || Index>=Dens0->LocalSizeC) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
576 | c_re(HGC[Index]) = c_re(vp)+Fac*c_re(rhog);
|
---|
577 | c_im(HGC[Index]) = c_im(vp)+Fac*c_im(rhog);
|
---|
578 | }
|
---|
579 | //
|
---|
580 | for (i=0; i<Lev0->MaxDoubleG; i++) {
|
---|
581 | //if (HGC != Dens0->DensityCArray[HGDensity] || Lev0->DoubleG[2*i+1]<0 || Lev0->DoubleG[2*i+1]>Dens0->LocalSizeC || Lev0->DoubleG[2*i]<0 || Lev0->DoubleG[2*i]>Dens0->LocalSizeC) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
582 | HGC[Lev0->DoubleG[2*i+1]].re = HGC[Lev0->DoubleG[2*i]].re;
|
---|
583 | HGC[Lev0->DoubleG[2*i+1]].im = -HGC[Lev0->DoubleG[2*i]].im;
|
---|
584 | }
|
---|
585 | }
|
---|
586 | // ============ GRADIENT and EIGENVALUE Evaluation Part 1==============
|
---|
587 | // \lambda_l^{(1)} = \langle \varphi_l^{(1)} | H^{(0)} | \varphi_l^{(1)} \rangle and gradient calculation
|
---|
588 | SpeedMeasure(P, LocTime, StartTimeDo);
|
---|
589 | // back-transform HGDensity: (G) -> (R)
|
---|
590 | //if (HGC != Dens0->DensityCArray[HGDensity]) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
591 | if (first) fft_3d_complex_to_real(plan, Lev0->LevelNo, FFTNF1, HGC, work);
|
---|
592 | // evaluate exchange potential with this density, add up onto HGCR
|
---|
593 | //if (HGCR != (fftw_real *)Dens0->DensityCArray[HGDensity]) Error(SomeError,"ApplyTotalHamiltonian: HGCR corrupted");
|
---|
594 | if (first) CalculateXCPotentialNoRT(P, HGCR); // add V^{xc} on V^H + V^{ps}
|
---|
595 | // make sure that ActualPsiDensity is recent
|
---|
596 | CalculateOneDensityR(Lat, LevS, Dens0, source, Dens0->DensityArray[ActualDensity], R->FactorDensityR*PsiFactor, 1);
|
---|
597 | for (nx=0;nx<Nx;nx++)
|
---|
598 | for (ny=0;ny<Ny;ny++)
|
---|
599 | for (nz=0;nz<Nz;nz++) {
|
---|
600 | i0 = nz*NUpz+Nz*NUpz*(ny*NUpy+Ny*NUpy*nx*NUpx);
|
---|
601 | iS = nz+Nz*(ny+Ny*nx);
|
---|
602 | //if (HGcR != Dens0->DensityArray[HGcDensity] || iS<0 || iS>=LevS->Dens->LocalSizeR) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
603 | HGcR[iS] = HGCR[i0]*PsiCR[i0]; /* Matrix Vector Mult */
|
---|
604 | }
|
---|
605 | // (R) -> (G)
|
---|
606 | //if (HGcRC != (fftw_complex *)Dens0->DensityArray[HGcDensity]) Error(SomeError,"ApplyTotalHamiltonian: HGcRC corrupted");
|
---|
607 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcRC, work);
|
---|
608 | SpeedMeasure(P, LocTime, StopTimeDo);
|
---|
609 | /* NonLocalPP */
|
---|
610 | SpeedMeasure(P, NonLocTime, StartTimeDo);
|
---|
611 | //if (dest != dest_bak) Error(SomeError,"ApplyTotalHamiltonian: dest corrupted");
|
---|
612 | CalculateAddNLPot(P, dest, fnl, PsiFactor); // wave function hidden in form factors fnl, also resets Hc_grad beforehand
|
---|
613 | SpeedMeasure(P, NonLocTime, StopTimeDo);
|
---|
614 |
|
---|
615 | /* create final vector */
|
---|
616 | for (g=0;g<LevS->MaxG;g++) {
|
---|
617 | Index = LevS->GArray[g].Index; /* FIXME - factoren */
|
---|
618 | //if (dest != dest_bak || g<0 || g>=LevS->MaxG) Error(SomeError,"ApplyTotalHamiltonian: dest corrupted");
|
---|
619 | dest[g].re += PsiFactor*(HGcRC[Index].re*HGcRCFactor + 0.5*LevS->GArray[g].GSq*source[g].re);
|
---|
620 | dest[g].im += PsiFactor*(HGcRC[Index].im*HGcRCFactor + 0.5*LevS->GArray[g].GSq*source[g].im);
|
---|
621 | }
|
---|
622 | }
|
---|
623 |
|
---|
624 | #define stay_above 0.001 //!< value above which the coefficient of the wave function will always remain
|
---|
625 |
|
---|
626 | /** Finds the minimum of perturbed energy in regards of actual wave function.
|
---|
627 | * The following happens step by step:
|
---|
628 | * -# The Gradient is copied into GradientTypes#GraSchGradient (which is nothing but a pointer to
|
---|
629 | * one array in LPsiDat) and orthonormalized via GramSch() to all occupied wave functions
|
---|
630 | * except to the current perturbed one.
|
---|
631 | * -# Then comes pre-conditioning, analogous to CalculatePreConGrad().
|
---|
632 | * -# The Gradient is projected onto the current perturbed wave function and this is subtracted, i.e.
|
---|
633 | * vector is the conjugate gradient.
|
---|
634 | * -# Finally, Calculate1stPerturbedDerivative() and Calculate2ndPerturbedDerivative() are called and
|
---|
635 | * with these results and the current total energy, CalculateDeltaI() finds the parameter for the one-
|
---|
636 | * dimensional minimisation. The current wave function is set to newly found minimum and approximated
|
---|
637 | * total energy is printed.
|
---|
638 | *
|
---|
639 | * \param *P Problem at hand
|
---|
640 | * \sa CalculateNewWave() and functions therein
|
---|
641 | */
|
---|
642 | void FindPerturbedMinimum(struct Problem *P)
|
---|
643 | {
|
---|
644 | struct Lattice *Lat = &P->Lat;
|
---|
645 | struct RunStruct *R = &P->R;
|
---|
646 | struct Psis *Psi = &Lat->Psi;
|
---|
647 | struct PseudoPot *PP = &P->PP;
|
---|
648 | struct LatticeLevel *LevS = R->LevS;
|
---|
649 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
650 | struct Density *Dens = Lev0->Dens;
|
---|
651 | struct Energy *En = Lat->E;
|
---|
652 | struct FileData *F = &P->Files;
|
---|
653 | int g,p,i;
|
---|
654 | int step = R->PsiStep;
|
---|
655 | double *GammaDiv = &Lat->Psi.AddData[R->ActualLocalPsiNo].Gamma;
|
---|
656 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
657 | fftw_complex *source = LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
|
---|
658 | fftw_complex *grad = P->Grad.GradientArray[ActualGradient];
|
---|
659 | fftw_complex *GradOrtho = P->Grad.GradientArray[GraSchGradient];
|
---|
660 | fftw_complex *PCgrad = P->Grad.GradientArray[PreConGradient];
|
---|
661 | fftw_complex *PCOrtho = P->Grad.GradientArray[GraSchGradient];
|
---|
662 | fftw_complex *ConDir = P->Grad.GradientArray[ConDirGradient];
|
---|
663 | fftw_complex *ConDir_old = P->Grad.GradientArray[OldConDirGradient];
|
---|
664 | fftw_complex *Ortho = P->Grad.GradientArray[GraSchGradient];
|
---|
665 | const fftw_complex *Hc_grad = P->Grad.GradientArray[HcGradient];
|
---|
666 | const fftw_complex *H1c_grad = P->Grad.GradientArray[H1cGradient];
|
---|
667 | fftw_complex *HConDir = Dens->DensityCArray[ActualDensity];
|
---|
668 | const double PsiFactor = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor;
|
---|
669 | //double Lambda = Lat->Psi.AddData[R->ActualLocalPsiNo].Lambda;
|
---|
670 | double T;
|
---|
671 | double x, K; //, dK;
|
---|
672 | double dS[2], S[2], Gamma, GammaDivOld = *GammaDiv;
|
---|
673 | double LocalSP, PsiSP;
|
---|
674 | double dEdt0, ddEddt0, ConDirHConDir, ConDirConDir;//, sourceHsource;
|
---|
675 | double E0, E, delta;
|
---|
676 | //double E0, E, dE, ddE, delta, dcos, dsin;
|
---|
677 | //double EI, dEI, ddEI, deltaI, dcosI, dsinI;
|
---|
678 | //double HartreeddEddt0, XCddEddt0;
|
---|
679 | double d[4],D[4], Diff;
|
---|
680 | const int Num = Psi->NoOfPsis;
|
---|
681 |
|
---|
682 | // ORTHOGONALIZED-GRADIENT
|
---|
683 | for (g=0;g<LevS->MaxG;g++) {
|
---|
684 | //if (GradOrtho != P->Grad.GradientArray[GraSchGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: GradOrtho corrupted");
|
---|
685 | GradOrtho[g].re = grad[g].re; //+Lambda*source[g].re;
|
---|
686 | GradOrtho[g].im = grad[g].im; //+Lambda*source[g].im;
|
---|
687 | }
|
---|
688 | // include the ExtraPsi (which is the GraSchGradient!)
|
---|
689 | SetGramSchExtraPsi(P, Psi, NotOrthogonal);
|
---|
690 | // exclude the minimised Psi
|
---|
691 | SetGramSchActualPsi(P, Psi, NotUsedToOrtho);
|
---|
692 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
693 | // makes conjugate gradient orthogonal to all other orbits
|
---|
694 | //fprintf(stderr,"CalculateCGGradient: GramSch() for extra orbital\n");
|
---|
695 | GramSch(P, LevS, Psi, Orthogonalize);
|
---|
696 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
697 | //if (grad != P->Grad.GradientArray[ActualGradient]) Error(SomeError,"FindPerturbedMinimum: grad corrupted");
|
---|
698 | memcpy(grad, GradOrtho, ElementSize*LevS->MaxG*sizeof(double));
|
---|
699 | //memcpy(PCOrtho, GradOrtho, ElementSize*LevS->MaxG*sizeof(double));
|
---|
700 |
|
---|
701 | // PRE-CONDITION-GRADIENT
|
---|
702 | //if (fabs(T) < MYEPSILON) T = 1;
|
---|
703 | T = 0.;
|
---|
704 | for (i=0;i<Num;i++)
|
---|
705 | T += Psi->lambda[i][i];
|
---|
706 | for (g=0;g<LevS->MaxG;g++) {
|
---|
707 | x = .5*LevS->GArray[g].GSq;
|
---|
708 | // FIXME: Good way of accessing reciprocal Lev0 Density coefficients on LevS! (not so trivial)
|
---|
709 | //x += sqrt(Dens->DensityCArray[HGDensity][g].re*Dens->DensityCArray[HGDensity][g].re+Dens->DensityCArray[HGDensity][g].im*Dens->DensityCArray[HGDensity][g].im);
|
---|
710 | x -= T/(double)Num;
|
---|
711 | K = x/(x*x+stay_above*stay_above);
|
---|
712 | //if (PCOrtho != P->Grad.GradientArray[GraSchGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: PCOrtho corrupted");
|
---|
713 | c_re(PCOrtho[g]) = K*c_re(grad[g]);
|
---|
714 | c_im(PCOrtho[g]) = K*c_im(grad[g]);
|
---|
715 | }
|
---|
716 | SetGramSchExtraPsi(P, Psi, NotOrthogonal);
|
---|
717 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
718 | // preconditioned direction is orthogonalized
|
---|
719 | //fprintf(stderr,"CalculatePreConGrad: GramSch() for extra orbital\n");
|
---|
720 | GramSch(P, LevS, Psi, Orthogonalize);
|
---|
721 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
722 | //if (PCgrad != P->Grad.GradientArray[PreConGradient]) Error(SomeError,"FindPerturbedMinimum: PCgrad corrupted");
|
---|
723 | memcpy(PCgrad, PCOrtho, ElementSize*LevS->MaxG*sizeof(double));
|
---|
724 |
|
---|
725 | //debug(P, "Before ConDir");
|
---|
726 | //fprintf(stderr,"|(%i)|^2 = %lg\t |PCgrad|^2 = %lg\t |PCgrad,(%i)| = %lg\n", R->ActualLocalPsiNo, GradSP(P,LevS,source,source),GradSP(P,LevS,PCgrad,PCgrad), R->ActualLocalPsiNo, GradSP(P,LevS,PCgrad,source));
|
---|
727 | // CONJUGATE-GRADIENT
|
---|
728 | LocalSP = GradSP(P, LevS, PCgrad, grad);
|
---|
729 | MPI_Allreduce ( &LocalSP, &PsiSP, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
730 | *GammaDiv = dS[0] = PsiSP;
|
---|
731 | dS[1] = GammaDivOld;
|
---|
732 | S[0]=dS[0]; S[1]=dS[1];
|
---|
733 | /*MPI_Allreduce ( dS, S, 2, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);*/
|
---|
734 | if (step) { // only in later steps is the scalar product used, but always condir stored in oldcondir and Ortho (working gradient)
|
---|
735 | if (fabs(S[1]) < MYEPSILON) fprintf(stderr,"CalculateConDir: S[1] = %lg\n",S[1]);
|
---|
736 | Gamma = S[0]/S[1];
|
---|
737 | if (fabs(S[1]) < MYEPSILON) {
|
---|
738 | if (fabs(S[0]) < MYEPSILON)
|
---|
739 | Gamma = 1.0;
|
---|
740 | else
|
---|
741 | Gamma = 0.0;
|
---|
742 | }
|
---|
743 | for (g=0; g < LevS->MaxG; g++) {
|
---|
744 | //if (ConDir != P->Grad.GradientArray[ConDirGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
745 | c_re(ConDir[g]) = c_re(PCgrad[g]) + Gamma*c_re(ConDir_old[g]);
|
---|
746 | c_im(ConDir[g]) = c_im(PCgrad[g]) + Gamma*c_im(ConDir_old[g]);
|
---|
747 | //if (ConDir_old != P->Grad.GradientArray[OldConDirGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: ConDir_old corrupted");
|
---|
748 | c_re(ConDir_old[g]) = c_re(ConDir[g]);
|
---|
749 | c_im(ConDir_old[g]) = c_im(ConDir[g]);
|
---|
750 | //if (Ortho != P->Grad.GradientArray[GraSchGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: Ortho corrupted");
|
---|
751 | c_re(Ortho[g]) = c_re(ConDir[g]);
|
---|
752 | c_im(Ortho[g]) = c_im(ConDir[g]);
|
---|
753 | }
|
---|
754 | } else {
|
---|
755 | Gamma = 0.0;
|
---|
756 | for (g=0; g < LevS->MaxG; g++) {
|
---|
757 | //if (ConDir != P->Grad.GradientArray[ConDirGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
758 | c_re(ConDir[g]) = c_re(PCgrad[g]);
|
---|
759 | c_im(ConDir[g]) = c_im(PCgrad[g]);
|
---|
760 | //if (ConDir_old != P->Grad.GradientArray[OldConDirGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: ConDir_old corrupted");
|
---|
761 | c_re(ConDir_old[g]) = c_re(ConDir[g]);
|
---|
762 | c_im(ConDir_old[g]) = c_im(ConDir[g]);
|
---|
763 | //if (Ortho != P->Grad.GradientArray[GraSchGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: Ortho corrupted");
|
---|
764 | c_re(Ortho[g]) = c_re(ConDir[g]);
|
---|
765 | c_im(Ortho[g]) = c_im(ConDir[g]);
|
---|
766 | }
|
---|
767 | }
|
---|
768 | // orthonormalize
|
---|
769 | SetGramSchExtraPsi(P, Psi, NotOrthogonal);
|
---|
770 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
771 | //fprintf(stderr,"CalculateConDir: GramSch() for extra orbital\n");
|
---|
772 | GramSch(P, LevS, Psi, Orthogonalize);
|
---|
773 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
774 | //if (ConDir != P->Grad.GradientArray[ConDirGradient]) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
775 | memcpy(ConDir, Ortho, ElementSize*LevS->MaxG*sizeof(double));
|
---|
776 | //debug(P, "Before LineSearch");
|
---|
777 | //fprintf(stderr,"|(%i)|^2 = %lg\t |ConDir|^2 = %lg\t |ConDir,(%i)| = %lg\n", R->ActualLocalPsiNo, GradSP(P,LevS,source,source),GradSP(P,LevS,ConDir,ConDir), R->ActualLocalPsiNo, GradSP(P,LevS,ConDir,source));
|
---|
778 | SetGramSchActualPsi(P, Psi, IsOrthogonal);
|
---|
779 |
|
---|
780 | //fprintf(stderr,"(%i) Testing conjugate gradient for Orthogonality ...\n", P->Par.me);
|
---|
781 | //TestForOrth(P,LevS,ConDir);
|
---|
782 |
|
---|
783 | // ONE-DIMENSIONAL LINE-SEARCH
|
---|
784 |
|
---|
785 | // ========= dE / dt | 0 ============
|
---|
786 | p = Lat->Psi.TypeStartIndex[Occupied] + (R->ActualLocalPsiNo - Lat->Psi.TypeStartIndex[R->CurrentMin]);
|
---|
787 | //if (Hc_grad != P->Grad.GradientArray[HcGradient]) Error(SomeError,"FindPerturbedMinimum: Hc_grad corrupted");
|
---|
788 | //if (H1c_grad != P->Grad.GradientArray[H1cGradient]) Error(SomeError,"FindPerturbedMinimum: H1c_grad corrupted");
|
---|
789 | d[0] = Calculate1stPerturbedDerivative(P, LevS->LPsi->LocalPsi[p], source, ConDir, Hc_grad, H1c_grad);
|
---|
790 | //CalculateConDirHConDir(P, ConDir, PsiFactor, &d[1], &d[2], &d[3]);
|
---|
791 | //if (ConDir != P->Grad.GradientArray[ConDirGradient]) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
792 | CalculateCDfnl(P, ConDir, PP->CDfnl); // calculate needed non-local form factors
|
---|
793 | //if (HConDir != Dens->DensityCArray[ActualDensity]) Error(SomeError,"FindPerturbedMinimum: HConDir corrupted");
|
---|
794 | SetArrayToDouble0((double *)HConDir,Dens->TotalSize*2);
|
---|
795 | //if (ConDir != P->Grad.GradientArray[ConDirGradient]) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
796 | ApplyTotalHamiltonian(P,ConDir,HConDir, PP->CDfnl, PsiFactor, 0); // applies H^(0) with total perturbed density!
|
---|
797 | d[1] = GradSP(P,LevS,ConDir,HConDir);
|
---|
798 | d[2] = GradSP(P,LevS,ConDir,ConDir);
|
---|
799 | d[3] = 0.;
|
---|
800 |
|
---|
801 | // gather results
|
---|
802 | MPI_Allreduce ( &d, &D, 4, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
803 | // ========== ddE / ddt | 0 =========
|
---|
804 | dEdt0 = D[0];
|
---|
805 | for (i=MAXOLD-1; i > 0; i--)
|
---|
806 | En->dEdt0[i] = En->dEdt0[i-1];
|
---|
807 | En->dEdt0[0] = dEdt0;
|
---|
808 | ConDirHConDir = D[1];
|
---|
809 | ConDirConDir = D[2];
|
---|
810 | ddEddt0 = 0.0;
|
---|
811 | //if (ConDir != P->Grad.GradientArray[ConDirGradient]) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
812 | //if (H1c_grad != P->Grad.GradientArray[H1cGradient]) Error(SomeError,"FindPerturbedMinimum: H1c_grad corrupted");
|
---|
813 | ddEddt0 = Calculate2ndPerturbedDerivative(P, LevS->LPsi->LocalPsi[p], source, ConDir, Lat->Psi.AddData[R->ActualLocalPsiNo].Lambda * Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor, ConDirHConDir, ConDirConDir);
|
---|
814 |
|
---|
815 | for (i=MAXOLD-1; i > 0; i--)
|
---|
816 | En->ddEddt0[i] = En->ddEddt0[i-1];
|
---|
817 | En->ddEddt0[0] = ddEddt0;
|
---|
818 | E0 = En->TotalEnergy[0];
|
---|
819 | // delta
|
---|
820 | //if (isnan(E0)) { fprintf(stderr,"(%i) WARNING in CalculateLineSearch(): E0_%i[%i] = NaN!\n", P->Par.me, i, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
821 | //if (isnan(dEdt0)) { fprintf(stderr,"(%i) WARNING in CalculateLineSearch(): dEdt0_%i[%i] = NaN!\n", P->Par.me, i, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
822 | //if (isnan(ddEddt0)) { fprintf(stderr,"(%i) WARNING in CalculateLineSearch(): ddEddt0_%i[%i] = NaN!\n", P->Par.me, i, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
823 |
|
---|
824 | ////deltaI = CalculateDeltaI(E0, dEdt0, ddEddt0,
|
---|
825 | //// &EI, &dEI, &ddEI, &dcosI, &dsinI);
|
---|
826 | ////delta = deltaI; E = EI; dE = dEI; ddE = ddEI; dcos = dcosI; dsin = dsinI;
|
---|
827 | if (ddEddt0 > 0) {
|
---|
828 | delta = - dEdt0/ddEddt0;
|
---|
829 | E = E0 + delta * dEdt0 + delta*delta/2. * ddEddt0;
|
---|
830 | } else {
|
---|
831 | delta = 0.;
|
---|
832 | E = E0;
|
---|
833 | fprintf(stderr,"(%i) Taylor approximation leads not to minimum!\n",P->Par.me);
|
---|
834 | }
|
---|
835 |
|
---|
836 | // shift energy delta values
|
---|
837 | for (i=MAXOLD-1; i > 0; i--) {
|
---|
838 | En->delta[i] = En->delta[i-1];
|
---|
839 | En->ATE[i] = En->ATE[i-1];
|
---|
840 | }
|
---|
841 | // store new one
|
---|
842 | En->delta[0] = delta;
|
---|
843 | En->ATE[0] = E;
|
---|
844 | if (En->TotalEnergy[1] != 0.)
|
---|
845 | Diff = fabs(En->TotalEnergy[1] - E0)/(En->TotalEnergy[1] - E0)*fabs((E0 - En->ATE[1])/E0);
|
---|
846 | else
|
---|
847 | Diff = 0.;
|
---|
848 | R->Diffcount += pow(Diff,2);
|
---|
849 |
|
---|
850 | // reinstate actual density (only needed for UpdateDensityCalculation) ...
|
---|
851 | //CalculateOneDensityR(Lat, LevS, Dens, source, Dens->DensityArray[ActualDensity], R->FactorDensityR*Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor, 1);
|
---|
852 | // ... before changing actual local Psi
|
---|
853 | for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
|
---|
854 | //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
|
---|
855 | //if (source != LevS->LPsi->LocalPsi[R->ActualLocalPsiNo] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: source corrupted");
|
---|
856 | ////c_re(source[g]) = c_re(source[g])*dcos + c_re(ConDir[g])*dsin;
|
---|
857 | ////c_im(source[g]) = c_im(source[g])*dcos + c_im(ConDir[g])*dsin;
|
---|
858 | c_re(source[g]) = c_re(source[g]) + c_re(ConDir[g])*delta;
|
---|
859 | c_im(source[g]) = c_im(source[g]) + c_im(ConDir[g])*delta;
|
---|
860 | }
|
---|
861 | if (P->Call.out[StepLeaderOut]) {
|
---|
862 | fprintf(stderr, "(%i,%i,%i)S(%i,%i,%i):\tTE: %e\tATE: %e\t Diff: %e\t --- d: %e\tdEdt0: %e\tddEddt0: %e\n",P->Par.my_color_comm_ST,P->Par.me_comm_ST, P->Par.me_comm_ST_PsiT, R->MinStep, R->ActualLocalPsiNo, R->PsiStep, E0, E, Diff,delta, dEdt0, ddEddt0);
|
---|
863 | //fprintf(stderr, "(%i,%i,%i)S(%i,%i,%i):\tp0: %e p1: %e p2: %e \tATE: %e\t Diff: %e\t --- d: %e\tdEdt0: %e\tddEddt0: %e\n",P->Par.my_color_comm_ST,P->Par.me_comm_ST, P->Par.me_comm_ST_PsiT, R->MinStep, R->ActualLocalPsiNo, R->PsiStep, En->parts[0], En->parts[1], En->parts[2], E, Diff,delta, dEdt0, ddEddt0);
|
---|
864 | }
|
---|
865 | if (P->Par.me == 0) {
|
---|
866 | fprintf(F->MinimisationFile, "%i\t%i\t%i\t%e\t%e\t%e\t%e\t%e\n",R->MinStep, R->ActualLocalPsiNo, R->PsiStep, E0, E, delta, dEdt0, ddEddt0);
|
---|
867 | fflush(F->MinimisationFile);
|
---|
868 | }
|
---|
869 | }
|
---|
870 |
|
---|
871 | /** Applies perturbation operator \f$\nabla_{index}\f$ to \a *source.
|
---|
872 | * As wave functions are stored in the reciprocal basis set, the application is straight-forward,
|
---|
873 | * for every G vector, the by \a index specified component is multiplied with the respective
|
---|
874 | * coefficient. Afterwards, 1/i is applied by flipping real and imaginary components (and an additional minus sign on the new imaginary term).
|
---|
875 | * \param *P Problem at hand
|
---|
876 | * \param *source complex coefficients of wave function \f$\varphi(G)\f$
|
---|
877 | * \param *dest returned complex coefficients of wave function \f$\widehat{p}_{index}|\varphi(G)\f$
|
---|
878 | * \param index_g vectorial index of operator to be applied
|
---|
879 | */
|
---|
880 | void CalculatePerturbationOperator_P(struct Problem *P, const fftw_complex *source, fftw_complex *dest, const int index_g)
|
---|
881 | {
|
---|
882 | struct RunStruct *R = &P->R;
|
---|
883 | struct LatticeLevel *LevS = R->LevS;
|
---|
884 | //const fftw_complex *dest_bak = dest;
|
---|
885 | int g = 0;
|
---|
886 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
887 | //if (dest != dest_bak) Error(SomeError,"CalculatePerturbationOperator_P: dest corrupted");
|
---|
888 | dest[0].re = LevS->GArray[0].G[index_g]*source[0].im;
|
---|
889 | dest[0].im = -LevS->GArray[0].G[index_g]*source[0].re;
|
---|
890 | g++;
|
---|
891 | }
|
---|
892 | for (;g<LevS->MaxG;g++) {
|
---|
893 | //if (dest != dest_bak || g<0 || g>=LevS->MaxG) Error(SomeError,"CalculatePerturbationOperator_P: g out of range");
|
---|
894 | dest[g].re = LevS->GArray[g].G[index_g]*source[g].im;
|
---|
895 | dest[g].im = -LevS->GArray[g].G[index_g]*source[g].re;
|
---|
896 | }
|
---|
897 | // don't put dest[0].im = 0! Otherwise real parts of perturbed01/10 are not the same anymore!
|
---|
898 | }
|
---|
899 |
|
---|
900 | /** Applies perturbation operator \f$\widehat{r}_{index}\f$ to \a *source.
|
---|
901 | * The \a *source wave function is blown up onto upper level LatticeLevel RunStruct#Lev0, fourier
|
---|
902 | * transformed. Afterwards, for each point on the real mesh the coefficient is multiplied times the real
|
---|
903 | * vector pointing within the cell to the mesh point, yet on LatticeLevel RunStruct#LevS. The new wave
|
---|
904 | * function is inverse fourier transformed and the resulting reciprocal coefficients stored in *dest.
|
---|
905 | * \param *P Problem at hand
|
---|
906 | * \param *source source coefficients
|
---|
907 | * \param *source2 second source coefficients, e.g. in the evaluation of a scalar product
|
---|
908 | * \param *dest destination coefficienta array, is overwrittten!
|
---|
909 | * \param index_r index of real vector.
|
---|
910 | * \param wavenr index of respective PsiTypeTag#Occupied(!) OnePsiElementAddData for the needed Wanner centre of the wave function.
|
---|
911 | */
|
---|
912 | void CalculatePerturbationOperator_R(struct Problem *P, const fftw_complex *source, fftw_complex *dest, const fftw_complex *source2, const int index_r, const int wavenr)
|
---|
913 | {
|
---|
914 | struct Lattice *Lat = &P->Lat;
|
---|
915 | struct RunStruct *R = &P->R;
|
---|
916 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
917 | struct LatticeLevel *LevS = R->LevS;
|
---|
918 | struct Density *Dens0 = Lev0->Dens;
|
---|
919 | struct fft_plan_3d *plan = Lat->plan;
|
---|
920 | fftw_complex *TempPsi = Dens0->DensityCArray[Temp2Density];
|
---|
921 | fftw_real *TempPsiR = (fftw_real *) TempPsi;
|
---|
922 | fftw_complex *workC = Dens0->DensityCArray[TempDensity];
|
---|
923 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
924 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
925 | fftw_complex *tempdestRC = (fftw_complex *)Dens0->DensityArray[TempDensity];
|
---|
926 | fftw_complex *posfac, *destsnd, *destrcv;
|
---|
927 | double x[NDIM], X[NDIM], fac[NDIM], Wcentre[NDIM];
|
---|
928 | const int k_normal = Lat->Psi.TypeStartIndex[Occupied] + (wavenr - Lat->Psi.TypeStartIndex[R->CurrentMin]);
|
---|
929 | int n[NDIM], n0, g, Index, pos, iS, i0;
|
---|
930 | int N[NDIM], NUp[NDIM];
|
---|
931 | const int N0 = LevS->Plan0.plan->local_nx;
|
---|
932 | N[0] = LevS->Plan0.plan->N[0];
|
---|
933 | N[1] = LevS->Plan0.plan->N[1];
|
---|
934 | N[2] = LevS->Plan0.plan->N[2];
|
---|
935 | NUp[0] = LevS->NUp[0];
|
---|
936 | NUp[1] = LevS->NUp[1];
|
---|
937 | NUp[2] = LevS->NUp[2];
|
---|
938 | Wcentre[0] = Lat->Psi.AddData[k_normal].WannierCentre[0];
|
---|
939 | Wcentre[1] = Lat->Psi.AddData[k_normal].WannierCentre[1];
|
---|
940 | Wcentre[2] = Lat->Psi.AddData[k_normal].WannierCentre[2];
|
---|
941 | // init pointers and values
|
---|
942 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
943 | const double FFTFactor = 1./LevS->MaxN;
|
---|
944 | double vector;
|
---|
945 | //double result, Result;
|
---|
946 |
|
---|
947 | // blow up source coefficients
|
---|
948 | LockDensityArray(Dens0,TempDensity,real); // tempdestRC
|
---|
949 | LockDensityArray(Dens0,Temp2Density,imag); // TempPsi
|
---|
950 | LockDensityArray(Dens0,ActualPsiDensity,imag); // PsiC
|
---|
951 | //if (tempdestRC != (fftw_complex *)Dens0->DensityArray[TempDensity]) Error(SomeError,"CalculatePerturbationOperator_R: tempdestRC corrupted");
|
---|
952 | SetArrayToDouble0((double *)tempdestRC ,Dens0->TotalSize*2);
|
---|
953 | //if (TempPsi != Dens0->DensityCArray[Temp2Density]) Error(SomeError,"CalculatePerturbationOperator_R: TempPsi corrupted");
|
---|
954 | SetArrayToDouble0((double *)TempPsi ,Dens0->TotalSize*2);
|
---|
955 | //if (PsiC != Dens0->DensityCArray[ActualPsiDensity]) Error(SomeError,"CalculatePerturbationOperator_R: PsiC corrupted");
|
---|
956 | SetArrayToDouble0((double *)PsiC,Dens0->TotalSize*2);
|
---|
957 | for (g=0; g<LevS->MaxG; g++) {
|
---|
958 | Index = LevS->GArray[g].Index;
|
---|
959 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*g];
|
---|
960 | destrcv = &tempdestRC[LevS->MaxNUp*Index];
|
---|
961 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
962 | //if (destrcv != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->LocalSizeC) Error(SomeError,"CalculatePerturbationOperator_R: destrcv corrupted");
|
---|
963 | destrcv [pos].re = (( source[g].re)*posfac[pos].re-(source[g].im)*posfac[pos].im);
|
---|
964 | destrcv [pos].im = (( source[g].re)*posfac[pos].im+(source[g].im)*posfac[pos].re);
|
---|
965 | }
|
---|
966 | }
|
---|
967 | for (g=0; g<LevS->MaxDoubleG; g++) {
|
---|
968 | destsnd = &tempdestRC [LevS->DoubleG[2*g]*LevS->MaxNUp];
|
---|
969 | destrcv = &tempdestRC [LevS->DoubleG[2*g+1]*LevS->MaxNUp];
|
---|
970 | for (pos=0; pos<LevS->MaxNUp; pos++) {
|
---|
971 | //if (destrcv != &tempdestRC [LevS->DoubleG[2*g+1]*LevS->MaxNUp] || LevS->DoubleG[2*g]*LevS->MaxNUp+pos<0 || LevS->DoubleG[2*g]*LevS->MaxNUp+pos>=Dens0->LocalSizeC|| LevS->DoubleG[2*g+1]*LevS->MaxNUp+pos<0 || LevS->DoubleG[2*g+1]*LevS->MaxNUp+pos>=Dens0->LocalSizeC) Error(SomeError,"CalculatePerturbationOperator_R: destrcv corrupted");
|
---|
972 | destrcv [pos].re = destsnd [pos].re;
|
---|
973 | destrcv [pos].im = -destsnd [pos].im;
|
---|
974 | }
|
---|
975 | }
|
---|
976 | // fourier transform blown up wave function
|
---|
977 | //if (tempdestRC != (fftw_complex *)Dens0->DensityArray[TempDensity]) Error(SomeError,"CalculatePerturbationOperator_R: tempdestRC corrupted");
|
---|
978 | //if (workC != Dens0->DensityCArray[TempDensity]) Error(SomeError,"CalculatePerturbationOperator_R: workC corrupted");
|
---|
979 | fft_3d_complex_to_real(plan,LevS->LevelNo, FFTNFUp, tempdestRC , workC);
|
---|
980 | //if (tempdestRC != (fftw_complex *)Dens0->DensityArray[TempDensity]) Error(SomeError,"CalculatePerturbationOperator_R: tempdestRC corrupted");
|
---|
981 | //if (TempPsiR != (fftw_real *)Dens0->DensityCArray[Temp2Density]) Error(SomeError,"CalculatePerturbationOperator_R: TempPsiR corrupted");
|
---|
982 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC ,TempPsiR );
|
---|
983 | UnLockDensityArray(Dens0,TempDensity,real); // TempdestRC
|
---|
984 |
|
---|
985 | //result = 0.;
|
---|
986 | // for every point on the real grid multiply with component of position vector
|
---|
987 | for (n0=0; n0<N0; n0++)
|
---|
988 | for (n[1]=0; n[1]<N[1]; n[1]++)
|
---|
989 | for (n[2]=0; n[2]<N[2]; n[2]++) {
|
---|
990 | n[0] = n0 + N0 * myPE;
|
---|
991 | fac[0] = (double)(n[0])/(double)((N[0]));
|
---|
992 | fac[1] = (double)(n[1])/(double)((N[1]));
|
---|
993 | fac[2] = (double)(n[2])/(double)((N[2]));
|
---|
994 | RMat33Vec3(x,Lat->RealBasis,fac);
|
---|
995 | iS = n[2] + N[2]*(n[1] + N[1]*n0); // mind splitting of x axis due to multiple processes
|
---|
996 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
997 | //PsiCR[iS] = ((double)n[0]/(double)N[0]*Lat->RealBasis[0] - fabs(Wcentre[0]))*TempPsiR[i0] - ((double)n[1]/(double)N[1]*Lat->RealBasis[4] - fabs(Wcentre[1]))*TempPsi2R[i0];
|
---|
998 | //fprintf(stderr,"(%i) R[%i] = (%lg,%lg,%lg)\n",P->Par.me, i0, x[0], x[1], x[2]);
|
---|
999 | //else fprintf(stderr,"(%i) WCentre[%i] = %e \n",P->Par.me, index_r, Wcentre[index_r]);
|
---|
1000 | MinImageConv(Lat,x, Wcentre, X);
|
---|
1001 | vector = sawtooth(Lat,X[index_r],index_r);
|
---|
1002 | //vector = 1.;//sin((double)(n[index_r])/(double)((N[index_r]))*2*PI);
|
---|
1003 | PsiCR[iS] = vector * TempPsiR[i0];
|
---|
1004 | //fprintf(stderr,"(%i) vector(%i/%i,%i/%i,%i/%i): %lg\tx[%i] = %e\tWcentre[%i] = %e\tTempPsiR[%i] = %e\tPsiCR[%i] = %e\n",P->Par.me, n[0], N[0], n[1], N[1], n[2], N[2], vector, index_r, x[index_r],index_r, Wcentre[index_r],i0,TempPsiR[i0],iS,PsiCR[iS]);
|
---|
1005 |
|
---|
1006 | //truedist(Lat,x[cross(index_r,2)],Wcentre[cross(index_r,2)],cross(index_r,2)) * TempPsiR[i0];
|
---|
1007 | //tmp += truedist(Lat,x[index_r],WCentre[index_r],index_r) * RealPhiR[i0];
|
---|
1008 | //tmp += sawtooth(Lat,truedist(Lat,x[index_r],WCentre[index_r],index_r), index_r)*RealPhiR[i0];
|
---|
1009 | //(Fehler mit falschem Ort ist vor dieser Stelle!): ueber result = RealPhiR[i0] * (x[index_r]) * RealPhiR[i0]; gecheckt
|
---|
1010 | //result += TempPsiR[i0] * PsiCR[iS];
|
---|
1011 | }
|
---|
1012 | UnLockDensityArray(Dens0,Temp2Density,imag); // TempPsi
|
---|
1013 | //MPI_Allreduce( &result, &Result, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
1014 | //if (P->Par.me == 0) fprintf(stderr,"(%i) PerturbationOpertator_R: %e\n",P->Par.me, Result/LevS->MaxN);
|
---|
1015 | // inverse fourier transform
|
---|
1016 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
1017 | //fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, Psi2C, workC);
|
---|
1018 |
|
---|
1019 | // copy to destination array
|
---|
1020 | for (g=0; g<LevS->MaxG; g++) {
|
---|
1021 | Index = LevS->GArray[g].Index;
|
---|
1022 | dest[g].re = ( PsiC[Index].re)*FFTFactor;
|
---|
1023 | dest[g].im = ( PsiC[Index].im)*FFTFactor;
|
---|
1024 | }
|
---|
1025 | UnLockDensityArray(Dens0,ActualPsiDensity,imag); //PsiC
|
---|
1026 | //if (LevS->GArray[0].GSq == 0)
|
---|
1027 | // dest[0].im = 0; // imaginary of G=0 is zero
|
---|
1028 | }
|
---|
1029 | /*
|
---|
1030 | {
|
---|
1031 | struct RunStruct *R = &P->R;
|
---|
1032 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
1033 | struct LatticeLevel *LevS = R->LevS;
|
---|
1034 | struct Lattice *Lat = &P->Lat;
|
---|
1035 | struct fft_plan_3d *plan = Lat->plan;
|
---|
1036 | struct Density *Dens0 = Lev0->Dens;
|
---|
1037 | fftw_complex *tempdestRC = Dens0->DensityCArray[TempDensity];
|
---|
1038 | fftw_real *tempdestR = (fftw_real *) tempdestRC;
|
---|
1039 | fftw_complex *work = Dens0->DensityCArray[Temp2Density];
|
---|
1040 | fftw_complex *PsiC = (fftw_complex *) Dens0->DensityCArray[ActualPsiDensity];;
|
---|
1041 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
1042 | fftw_real *RealPhiR = (fftw_real *) Dens0->DensityArray[Temp2Density];
|
---|
1043 | fftw_complex *posfac, *destsnd, *destrcv;
|
---|
1044 | double x[NDIM], fac[NDIM], WCentre[NDIM];
|
---|
1045 | int n[NDIM], N0, n0, g, Index, pos, iS, i0;
|
---|
1046 |
|
---|
1047 | // init pointers and values
|
---|
1048 | int myPE = P->Par.me_comm_ST_Psi;
|
---|
1049 | double FFTFactor = 1./LevS->MaxN;
|
---|
1050 | int N[NDIM], NUp[NDIM];
|
---|
1051 | N[0] = LevS->Plan0.plan->N[0];
|
---|
1052 | N[1] = LevS->Plan0.plan->N[1];
|
---|
1053 | N[2] = LevS->Plan0.plan->N[2];
|
---|
1054 | NUp[0] = LevS->NUp[0];
|
---|
1055 | NUp[1] = LevS->NUp[1];
|
---|
1056 | NUp[2] = LevS->NUp[2];
|
---|
1057 | N0 = LevS->Plan0.plan->local_nx;
|
---|
1058 | wavenr = Lat->Psi.TypeStartIndex[Occupied] + (wavenr - Lat->Psi.TypeStartIndex[R->CurrentMin]);
|
---|
1059 | Wcentre[0] = Lat->Psi.AddData[wavenr].WannierCentre[0];
|
---|
1060 | Wcentre[1] = Lat->Psi.AddData[wavenr].WannierCentre[1];
|
---|
1061 | Wcentre[2] = Lat->Psi.AddData[wavenr].WannierCentre[2];
|
---|
1062 |
|
---|
1063 | // blow up source coefficients
|
---|
1064 | SetArrayToDouble0((double *)tempdestRC,Dens0->TotalSize*2);
|
---|
1065 | SetArrayToDouble0((double *)RealPhiR,Dens0->TotalSize*2);
|
---|
1066 | SetArrayToDouble0((double *)PsiC,Dens0->TotalSize*2);
|
---|
1067 | for (g=0; g<LevS->MaxG; g++) {
|
---|
1068 | Index = LevS->GArray[g].Index;
|
---|
1069 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*g];
|
---|
1070 | destrcv = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1071 | for (pos=0; pos<LevS->MaxNUp; pos++) {
|
---|
1072 | destrcv[pos].re = (( source[g].re)*posfac[pos].re-( source[g].im)*posfac[pos].im);
|
---|
1073 | destrcv[pos].im = (( source[g].re)*posfac[pos].im+( source[g].im)*posfac[pos].re);
|
---|
1074 | }
|
---|
1075 | }
|
---|
1076 | for (g=0; g<LevS->MaxDoubleG; g++) {
|
---|
1077 | destsnd = &tempdestRC[LevS->DoubleG[2*g]*LevS->MaxNUp];
|
---|
1078 | destrcv = &tempdestRC[LevS->DoubleG[2*g+1]*LevS->MaxNUp];
|
---|
1079 | for (pos=0; pos<LevS->MaxNUp; pos++) {
|
---|
1080 | destrcv[pos].re = destsnd[pos].re;
|
---|
1081 | destrcv[pos].im = -destsnd[pos].im;
|
---|
1082 | }
|
---|
1083 | }
|
---|
1084 |
|
---|
1085 | // fourier transform blown up wave function
|
---|
1086 | fft_3d_complex_to_real(plan,LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
1087 | DensityRTransformPos(LevS,tempdestR,RealPhiR);
|
---|
1088 |
|
---|
1089 | //fft_Psi(P,source,RealPhiR,0,0);
|
---|
1090 |
|
---|
1091 | // for every point on the real grid multiply with component of position vector
|
---|
1092 | for (n0=0; n0<N0; n0++)
|
---|
1093 | for (n[1]=0; n[1]<N[1]; n[1]++)
|
---|
1094 | for (n[2]=0; n[2]<N[2]; n[2]++) {
|
---|
1095 | n[0] = n0 + N0 * myPE;
|
---|
1096 | fac[0] = (double)(n[0])/(double)((N[0]));
|
---|
1097 | fac[1] = (double)(n[1])/(double)((N[1]));
|
---|
1098 | fac[2] = (double)(n[2])/(double)((N[2]));
|
---|
1099 | RMat33Vec3(x,Lat->RealBasis,fac);
|
---|
1100 | iS = n[2] + N[2]*(n[1] + N[1]*n0); // mind splitting of x axis due to multiple processes
|
---|
1101 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
1102 | //PsiCR[iS] = (x[index_r]) * RealPhiR[i0]; //- WCentre[index_r]
|
---|
1103 | PsiCR[iS] = truedist(Lat,x[index_r],WCentre[index_r],index_r) * RealPhiR[i0];
|
---|
1104 | //PsiCR[iS] = truedist(Lat,x[index_r],0.,index_r) * RealPhiR[i0];
|
---|
1105 | //PsiCR[iS] = sawtooth(Lat,truedist(Lat,x[index_r],WCentre[index_r],index_r), index_r)*RealPhiR[i0];
|
---|
1106 | //(Fehler mit falschem Ort ist vor dieser Stelle!): ueber result = RealPhiR[i0] * (x[index_r]) * RealPhiR[i0]; gecheckt
|
---|
1107 | }
|
---|
1108 |
|
---|
1109 | // inverse fourier transform
|
---|
1110 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, PsiC, work);
|
---|
1111 |
|
---|
1112 | // copy to destination array
|
---|
1113 | for (g=0; g<LevS->MaxG; g++) {
|
---|
1114 | Index = LevS->GArray[g].Index;
|
---|
1115 | dest[g].re = ( PsiC[Index].re)*FFTFactor;
|
---|
1116 | dest[g].im = ( PsiC[Index].im)*FFTFactor;
|
---|
1117 | if (LevS->GArray[g].GSq == 0)
|
---|
1118 | dest[g].im = 0; // imaginary of G=0 is zero
|
---|
1119 | }
|
---|
1120 | }*/
|
---|
1121 |
|
---|
1122 | /** Prints the positions of all unperturbed orbitals to screen.
|
---|
1123 | * \param *P Problem at hand
|
---|
1124 | * \param type PsiTypeTag specifying group of orbitals
|
---|
1125 | * \sa CalculatePerturbationOperator_R()
|
---|
1126 | */
|
---|
1127 | void OutputOrbitalPositions(struct Problem *P, const enum PsiTypeTag type)
|
---|
1128 | {
|
---|
1129 | struct Lattice *Lat = &P->Lat;
|
---|
1130 | struct Psis *Psi = &Lat->Psi;
|
---|
1131 | struct RunStruct *R = &P->R;
|
---|
1132 | struct LatticeLevel *LevS = R->LevS;
|
---|
1133 | fftw_complex *temp = LevS->LPsi->TempPsi;
|
---|
1134 | fftw_complex *source;
|
---|
1135 | int wavenr, index;
|
---|
1136 | double result[NDIM], Result[NDIM];
|
---|
1137 | //double imsult[NDIM], Imsult[NDIM];
|
---|
1138 | double norm[NDIM], Norm[NDIM];
|
---|
1139 | //double imnorm[NDIM], imNorm[NDIM];
|
---|
1140 | double Wcentre[NDIM];
|
---|
1141 |
|
---|
1142 | // for every unperturbed wave function
|
---|
1143 | for (wavenr=Psi->TypeStartIndex[type]; wavenr<Psi->TypeStartIndex[type+1]; wavenr++) {
|
---|
1144 | source = LevS->LPsi->LocalPsi[wavenr];
|
---|
1145 | Wcentre[0] = Psi->AddData[wavenr].WannierCentre[0];
|
---|
1146 | Wcentre[1] = Psi->AddData[wavenr].WannierCentre[1];
|
---|
1147 | Wcentre[2] = Psi->AddData[wavenr].WannierCentre[2];
|
---|
1148 | for (index=0; index<NDIM; index++) {
|
---|
1149 | SetArrayToDouble0((double *)temp,2*R->InitLevS->MaxG);
|
---|
1150 | // apply position operator
|
---|
1151 | CalculatePerturbationOperator_R(P,source,temp,source,index, wavenr + Psi->TypeStartIndex[R->CurrentMin]);
|
---|
1152 | // take scalar product
|
---|
1153 | result[index] = GradSP(P,LevS,source,temp);
|
---|
1154 | //imsult[index] = GradImSP(P,LevS,source,temp);
|
---|
1155 | norm[index] = GradSP(P,LevS,source,source);
|
---|
1156 | //imnorm[index] = GradImSP(P,LevS,source,source);
|
---|
1157 | MPI_Allreduce( result, Result, NDIM, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
1158 | //MPI_Allreduce( imsult, Imsult, NDIM, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
1159 | MPI_Allreduce( norm, Norm, NDIM, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
1160 | //MPI_Allreduce( imnorm, imNorm, NDIM, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
1161 | }
|
---|
1162 | // print output to stderr
|
---|
1163 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Position of Orbital %i: (%e,%e,%e)\n",P->Par.me, wavenr, Result[0]/Norm[0]+Wcentre[0], Result[1]/Norm[1]+Wcentre[1], Result[2]/Norm[2]+Wcentre[2]);
|
---|
1164 | //fprintf(stderr,"(%i) Position of Orbital %i wrt Wannier: (%e,%e,%e)\n",P->Par.me, wavenr, Result[0]/Norm[0], Result[1]/Norm[1], Result[2]/Norm[2]);
|
---|
1165 | //fprintf(stderr,"(%i) with Norm: (%e,%e,%e) + i (%e,%e,%e)\n",P->Par.me, Norm[0], Norm[1], Norm[2], imNorm[0], imNorm[1], imNorm[2]);
|
---|
1166 | //if (P->Par.me == 0) fprintf(stderr,"(%i) Position of Orbital %i: (%e,%e,%e)\n",P->Par.me, wavenr, Result[0]/Norm[0], Result[1]/Norm[1], Result[2]/Norm[2]);
|
---|
1167 | }
|
---|
1168 | }
|
---|
1169 |
|
---|
1170 | #define borderstart 0.9
|
---|
1171 |
|
---|
1172 | /** Applies perturbation operator \f$(\widehat{r} \times \nabla)_{index}\f$ to \a *source.
|
---|
1173 | * The source is fourier-transformed by transforming it to a density (on the next higher level RunStruct#Lev0)
|
---|
1174 | * and at the same time multiply it with the respective component of the reciprocal G vector - the momentum. This
|
---|
1175 | * is done by callinf fft_Psi(). Thus we get \f$\nabla_k | \varphi (R) \rangle\f$.
|
---|
1176 | *
|
---|
1177 | * Next, we apply the two of three components of the position operator r, which ones stated by cross(), while going
|
---|
1178 | * in a loop through every point of the grid. In order to do this sensibly, truedist() is used to map the coordinates
|
---|
1179 | * onto -L/2...L/2, by subtracting the OneElementPsiAddData#WannierCentre R and wrapping. Also, due to the breaking up
|
---|
1180 | * of the x axis into equally sized chunks for each coefficient sharing process, we need to step only over local
|
---|
1181 | * x-axis grid points, however shift them to the global position when being used as position. In the end, we get
|
---|
1182 | * \f$\epsilon_{index,j,k} (\widehat{r}-R)_j \nabla_k | \varphi (R) \rangle\f$.
|
---|
1183 | *
|
---|
1184 | * One last fft brings the wave function back to reciprocal basis and it is copied to \a *dest.
|
---|
1185 | * \param *P Problem at hand
|
---|
1186 | * \param *source complex coefficients of wave function \f$\varphi(G)\f$
|
---|
1187 | * \param *dest returned complex coefficients of wave function \f$(\widehat{r} \times \widehat{p})_{index}|\varphi(G)\rangle\f$
|
---|
1188 | * \param phi0nr number within LocalPsi of the unperturbed pendant of the given perturbed wavefunction \a *source.
|
---|
1189 | * \param index_rxp index desired of the vector product
|
---|
1190 | * \sa CalculateConDirHConDir() - the procedure of fft and inverse fft is very similar.
|
---|
1191 | */
|
---|
1192 | void CalculatePerturbationOperator_RxP(struct Problem *P, const fftw_complex *source, fftw_complex *dest, const int phi0nr, const int index_rxp)
|
---|
1193 |
|
---|
1194 | {
|
---|
1195 | struct Lattice *Lat = &P->Lat;
|
---|
1196 | struct RunStruct *R = &P->R;
|
---|
1197 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
1198 | struct LatticeLevel *LevS = R->LevS;
|
---|
1199 | struct Density *Dens0 = Lev0->Dens;
|
---|
1200 | struct fft_plan_3d *plan = Lat->plan;
|
---|
1201 | fftw_complex *TempPsi = Dens0->DensityCArray[Temp2Density];
|
---|
1202 | fftw_real *TempPsiR = (fftw_real *) TempPsi;
|
---|
1203 | fftw_complex *TempPsi2 = (fftw_complex *)Dens0->DensityArray[Temp2Density];
|
---|
1204 | fftw_real *TempPsi2R = (fftw_real *) TempPsi2;
|
---|
1205 | fftw_complex *workC = Dens0->DensityCArray[TempDensity];
|
---|
1206 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
1207 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
1208 | double x[NDIM], X[NDIM], fac[NDIM], *Wcentre;
|
---|
1209 | int n[NDIM], n0, g, Index, iS, i0; //pos,
|
---|
1210 | const int *N, *NUp;
|
---|
1211 | const int N0 = LevS->Plan0.plan->local_nx;
|
---|
1212 | N = LevS->Plan0.plan->N;
|
---|
1213 | NUp = LevS->NUp;
|
---|
1214 | Wcentre = Lat->Psi.AddData[phi0nr].WannierCentre;
|
---|
1215 | // init pointers and values
|
---|
1216 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
1217 | const double FFTFactor = 1./LevS->MaxN; //
|
---|
1218 | // double max[NDIM], max_psi[NDIM];
|
---|
1219 | // double max_n[NDIM];
|
---|
1220 | int index[4];
|
---|
1221 | // double smooth, wall[NDIM];
|
---|
1222 | // for (g=0;g<NDIM;g++) {
|
---|
1223 | // max[g] = 0.;
|
---|
1224 | // max_psi[g] = 0.;
|
---|
1225 | // max_n[g] = -1.;
|
---|
1226 | // }
|
---|
1227 |
|
---|
1228 | //fprintf(stderr,"(%i) Wannier[%i] (%2.13e, %2.13e, %2.13e)\n", P->Par.me, phi0nr, 10.-Wcentre[0], 10.-Wcentre[1], 10.-Wcentre[2]);
|
---|
1229 | for (g=0;g<4;g++)
|
---|
1230 | index[g] = cross(index_rxp,g);
|
---|
1231 |
|
---|
1232 | // blow up source coefficients
|
---|
1233 | LockDensityArray(Dens0,Temp2Density,imag); // TempPsi
|
---|
1234 | LockDensityArray(Dens0,Temp2Density,real); // TempPsi2
|
---|
1235 | LockDensityArray(Dens0,ActualPsiDensity,imag); // PsiC
|
---|
1236 |
|
---|
1237 | fft_Psi(P,source,TempPsiR ,index[1],7);
|
---|
1238 | fft_Psi(P,source,TempPsi2R,index[3],7);
|
---|
1239 |
|
---|
1240 | //result = 0.;
|
---|
1241 | // for every point on the real grid multiply with component of position vector
|
---|
1242 | for (n0=0; n0<N0; n0++)
|
---|
1243 | for (n[1]=0; n[1]<N[1]; n[1]++)
|
---|
1244 | for (n[2]=0; n[2]<N[2]; n[2]++) {
|
---|
1245 | n[0] = n0 + N0 * myPE;
|
---|
1246 | fac[0] = (double)(n[0])/(double)((N[0]));
|
---|
1247 | fac[1] = (double)(n[1])/(double)((N[1]));
|
---|
1248 | fac[2] = (double)(n[2])/(double)((N[2]));
|
---|
1249 | RMat33Vec3(x,Lat->RealBasis,fac);
|
---|
1250 | // fac[0] = (fac[0] > .9) ? fac[0]-0.9 : 0.;
|
---|
1251 | // fac[1] = (fac[1] > .9) ? fac[1]-0.9 : 0.;
|
---|
1252 | // fac[2] = (fac[2] > .9) ? fac[2]-0.9 : 0.;
|
---|
1253 | // RMat33Vec3(wall,Lat->RealBasis,fac);
|
---|
1254 | // smooth = exp(wall[0]*wall[0]+wall[1]*wall[1]+wall[2]*wall[2]); // smoothing near the borders of the virtual cell
|
---|
1255 | iS = n[2] + N[2]*(n[1] + N[1]*n0); // mind splitting of x axis due to multiple processes
|
---|
1256 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
1257 |
|
---|
1258 | // if (fabs(truedist(Lat,x[index[1]],Wcentre[index[1]],index[1])) >= borderstart * sqrt(Lat->RealBasisSQ[index[1]])/2.)
|
---|
1259 | // if (max[index[1]] < sawtooth(Lat,truedist(Lat,x[index[1]],Wcentre[index[1]],index[1]),index[1]) * TempPsiR [i0]) {
|
---|
1260 | // max[index[1]] = sawtooth(Lat,truedist(Lat,x[index[1]],Wcentre[index[1]],index[1]),index[1]) * TempPsiR [i0];
|
---|
1261 | // max_psi[index[1]] = TempPsiR [i0];
|
---|
1262 | // max_n[index[1]] = truedist(Lat,x[index[1]],Wcentre[index[1]],index[1]);
|
---|
1263 | // }
|
---|
1264 | //
|
---|
1265 | // if (fabs(truedist(Lat,x[index[3]],Wcentre[index[3]],index[3])) >= borderstart * sqrt(Lat->RealBasisSQ[index[3]])/2.)
|
---|
1266 | // if (max[index[3]] < sawtooth(Lat,truedist(Lat,x[index[3]],Wcentre[index[3]],index[3]),index[3]) * TempPsiR [i0]) {
|
---|
1267 | // max[index[3]] = sawtooth(Lat,truedist(Lat,x[index[3]],Wcentre[index[3]],index[3]),index[3]) * TempPsiR [i0];
|
---|
1268 | // max_psi[index[3]] = TempPsiR [i0];
|
---|
1269 | // max_n[index[3]] = truedist(Lat,x[index[3]],Wcentre[index[3]],index[3]);
|
---|
1270 | // }
|
---|
1271 |
|
---|
1272 | MinImageConv(Lat, x, Wcentre, X);
|
---|
1273 | PsiCR[iS] = //vector * TempPsiR[i0];
|
---|
1274 | sawtooth(Lat,X[index[0]],index[0]) * TempPsiR [i0]
|
---|
1275 | -sawtooth(Lat,X[index[2]],index[2]) * TempPsi2R[i0];
|
---|
1276 | // ShiftGaugeOrigin(P,X,index[0]) * TempPsiR [i0]
|
---|
1277 | // -ShiftGaugeOrigin(P,X,index[2]) * TempPsi2R[i0];
|
---|
1278 | // PsiCR[iS] = (x[index[0]] - Wcentre[index[0]]) * TempPsiR [i0] - (x[index[2]] - Wcentre[index[2]]) * TempPsi2R[i0];
|
---|
1279 | }
|
---|
1280 | //if (P->Par.me == 0) fprintf(stderr,"(%i) PerturbationOpertator_R(xP): %e\n",P->Par.me, Result/LevS->MaxN);
|
---|
1281 | UnLockDensityArray(Dens0,Temp2Density,imag); // TempPsi
|
---|
1282 | UnLockDensityArray(Dens0,Temp2Density,real); // TempPsi2
|
---|
1283 |
|
---|
1284 | // // print maximum values
|
---|
1285 | // fprintf (stderr,"(%i) RxP: Maximum values = (",P->Par.me);
|
---|
1286 | // for (g=0;g<NDIM;g++)
|
---|
1287 | // fprintf(stderr,"%lg\t", max[g]);
|
---|
1288 | // fprintf(stderr,"\b)\t(");
|
---|
1289 | // for (g=0;g<NDIM;g++)
|
---|
1290 | // fprintf(stderr,"%lg\t", max_psi[g]);
|
---|
1291 | // fprintf(stderr,"\b)\t");
|
---|
1292 | // fprintf (stderr,"at (");
|
---|
1293 | // for (g=0;g<NDIM;g++)
|
---|
1294 | // fprintf(stderr,"%lg\t", max_n[g]);
|
---|
1295 | // fprintf(stderr,"\b)\n");
|
---|
1296 |
|
---|
1297 | // inverse fourier transform
|
---|
1298 | //if (PsiC != Dens0->DensityCArray[ActualPsiDensity]) Error(SomeError,"CalculatePerturbationOperator_RxP: PsiC corrupted");
|
---|
1299 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
1300 |
|
---|
1301 | // copy to destination array
|
---|
1302 | SetArrayToDouble0((double *)dest, 2*R->InitLevS->MaxG);
|
---|
1303 | for (g=0; g<LevS->MaxG; g++) {
|
---|
1304 | Index = LevS->GArray[g].Index;
|
---|
1305 | dest[g].re += ( PsiC[Index].re)*FFTFactor; // factor confirmed, see grad.c:CalculateConDirHConDir()
|
---|
1306 | dest[g].im += ( PsiC[Index].im)*FFTFactor;
|
---|
1307 | //fprintf(stderr,"(%i) PsiC[(%lg,%lg,%lg)] = %lg +i %lg\n", P->Par.me, LevS->GArray[g].G[0], LevS->GArray[g].G[1], LevS->GArray[g].G[2], dest[g].re, dest[g].im);
|
---|
1308 | }
|
---|
1309 | UnLockDensityArray(Dens0,ActualPsiDensity,imag); // PsiC
|
---|
1310 | //if (LevS->GArray[0].GSq == 0.)
|
---|
1311 | //dest[0].im = 0.; // don't do this, see ..._P()
|
---|
1312 | }
|
---|
1313 |
|
---|
1314 | /** Applies perturbation operator \f$-(\nabla \times \widehat{r})_{index}\f$ to \a *source.
|
---|
1315 | * Is analogous to CalculatePerturbationOperator_RxP(), only the order is reversed, first position operator, then
|
---|
1316 | * momentum operator
|
---|
1317 | * \param *P Problem at hand
|
---|
1318 | * \param *source complex coefficients of wave function \f$\varphi(G)\f$
|
---|
1319 | * \param *dest returned complex coefficients of wave function \f$(\widehat{r} \times \widehat{p})_{index}|\varphi(G)\rangle\f$
|
---|
1320 | * \param phi0nr number within LocalPsi of the unperturbed pendant of the given perturbed wavefunction \a *source.
|
---|
1321 | * \param index_pxr index of position operator
|
---|
1322 | * \note Only third component is important due to initial rotiation of cell such that B field is aligned with z axis.
|
---|
1323 | * \sa CalculateConDirHConDir() - the procedure of fft and inverse fft is very similar.
|
---|
1324 | * \bug routine is not tested (but should work), as it offers no advantage over CalculatePerturbationOperator_RxP()
|
---|
1325 | */
|
---|
1326 | void CalculatePerturbationOperator_PxR(struct Problem *P, const fftw_complex *source, fftw_complex *dest, const int phi0nr, const int index_pxr)
|
---|
1327 |
|
---|
1328 | {
|
---|
1329 | struct Lattice *Lat = &P->Lat;
|
---|
1330 | struct RunStruct *R = &P->R;
|
---|
1331 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
1332 | struct LatticeLevel *LevS = R->LevS;
|
---|
1333 | struct Density *Dens0 = Lev0->Dens;
|
---|
1334 | struct fft_plan_3d *plan = Lat->plan;
|
---|
1335 | fftw_complex *TempPsi = Dens0->DensityCArray[Temp2Density];
|
---|
1336 | fftw_real *TempPsiR = (fftw_real *) TempPsi;
|
---|
1337 | fftw_complex *workC = Dens0->DensityCArray[TempDensity];
|
---|
1338 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
1339 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
1340 | fftw_complex *Psi2C = Dens0->DensityCArray[ActualDensity];
|
---|
1341 | fftw_real *Psi2CR = (fftw_real *) Psi2C;
|
---|
1342 | fftw_complex *tempdestRC = (fftw_complex *)Dens0->DensityArray[Temp2Density];
|
---|
1343 | fftw_complex *posfac, *destsnd, *destrcv;
|
---|
1344 | double x[NDIM], X[NDIM], fac[NDIM], Wcentre[NDIM];
|
---|
1345 | int n[NDIM], n0, g, Index, pos, iS, i0;
|
---|
1346 | int N[NDIM], NUp[NDIM];
|
---|
1347 | const int N0 = LevS->Plan0.plan->local_nx;
|
---|
1348 | N[0] = LevS->Plan0.plan->N[0];
|
---|
1349 | N[1] = LevS->Plan0.plan->N[1];
|
---|
1350 | N[2] = LevS->Plan0.plan->N[2];
|
---|
1351 | NUp[0] = LevS->NUp[0];
|
---|
1352 | NUp[1] = LevS->NUp[1];
|
---|
1353 | NUp[2] = LevS->NUp[2];
|
---|
1354 | Wcentre[0] = Lat->Psi.AddData[phi0nr].WannierCentre[0];
|
---|
1355 | Wcentre[1] = Lat->Psi.AddData[phi0nr].WannierCentre[1];
|
---|
1356 | Wcentre[2] = Lat->Psi.AddData[phi0nr].WannierCentre[2];
|
---|
1357 | // init pointers and values
|
---|
1358 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
1359 | const double FFTFactor = 1./LevS->MaxN;
|
---|
1360 |
|
---|
1361 | // blow up source coefficients
|
---|
1362 | SetArrayToDouble0((double *)tempdestRC ,Dens0->TotalSize*2);
|
---|
1363 | SetArrayToDouble0((double *)TempPsi ,Dens0->TotalSize*2);
|
---|
1364 | SetArrayToDouble0((double *)PsiC,Dens0->TotalSize*2);
|
---|
1365 | SetArrayToDouble0((double *)Psi2C,Dens0->TotalSize*2);
|
---|
1366 | for (g=0; g<LevS->MaxG; g++) {
|
---|
1367 | Index = LevS->GArray[g].Index;
|
---|
1368 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*g];
|
---|
1369 | destrcv = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1370 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1371 | destrcv [pos].re = (( source[g].re)*posfac[pos].re-( source[g].im)*posfac[pos].im);
|
---|
1372 | destrcv [pos].im = (( source[g].re)*posfac[pos].im+( source[g].im)*posfac[pos].re);
|
---|
1373 | }
|
---|
1374 | }
|
---|
1375 | for (g=0; g<LevS->MaxDoubleG; g++) {
|
---|
1376 | destsnd = &tempdestRC [LevS->DoubleG[2*g]*LevS->MaxNUp];
|
---|
1377 | destrcv = &tempdestRC [LevS->DoubleG[2*g+1]*LevS->MaxNUp];
|
---|
1378 | for (pos=0; pos<LevS->MaxNUp; pos++) {
|
---|
1379 | destrcv [pos].re = destsnd [pos].re;
|
---|
1380 | destrcv [pos].im = -destsnd [pos].im;
|
---|
1381 | }
|
---|
1382 | }
|
---|
1383 | // fourier transform blown up wave function
|
---|
1384 | fft_3d_complex_to_real(plan,LevS->LevelNo, FFTNFUp, tempdestRC , workC);
|
---|
1385 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC ,TempPsiR );
|
---|
1386 |
|
---|
1387 | //fft_Psi(P,source,TempPsiR ,cross(index_pxr,1),7);
|
---|
1388 | //fft_Psi(P,source,TempPsi2R,cross(index_pxr,3),7);
|
---|
1389 |
|
---|
1390 | //result = 0.;
|
---|
1391 | // for every point on the real grid multiply with component of position vector
|
---|
1392 | for (n0=0; n0<N0; n0++)
|
---|
1393 | for (n[1]=0; n[1]<N[1]; n[1]++)
|
---|
1394 | for (n[2]=0; n[2]<N[2]; n[2]++) {
|
---|
1395 | n[0] = n0 + N0 * myPE;
|
---|
1396 | fac[0] = (double)(n[0])/(double)((N[0]));
|
---|
1397 | fac[1] = (double)(n[1])/(double)((N[1]));
|
---|
1398 | fac[2] = (double)(n[2])/(double)((N[2]));
|
---|
1399 | RMat33Vec3(x,Lat->RealBasis,fac);
|
---|
1400 | iS = n[2] + N[2]*(n[1] + N[1]*n0); // mind splitting of x axis due to multiple processes
|
---|
1401 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
1402 | // PsiCR[iS] = sawtooth(Lat,X[cross(index_pxr,1)],cross(index_pxr,1)) * TempPsiR[i0];
|
---|
1403 | // Psi2CR[iS] = sawtooth(Lat,X[cross(index_pxr,3)],cross(index_pxr,3)) * TempPsiR[i0];
|
---|
1404 | MinImageConv(Lat,x,Wcentre,X);
|
---|
1405 | PsiCR[iS] = ShiftGaugeOrigin(P,X,cross(index_pxr,1)) * TempPsiR[i0];
|
---|
1406 | Psi2CR[iS] = ShiftGaugeOrigin(P,X,cross(index_pxr,3)) * TempPsiR[i0];
|
---|
1407 | }
|
---|
1408 |
|
---|
1409 | // inverse fourier transform
|
---|
1410 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
1411 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, Psi2C, workC);
|
---|
1412 |
|
---|
1413 | // copy to destination array
|
---|
1414 | for (g=0; g<LevS->MaxG; g++) {
|
---|
1415 | Index = LevS->GArray[g].Index;
|
---|
1416 | dest[g].re = -LevS->GArray[g].G[cross(index_pxr,0)]*( PsiC[Index].im)*FFTFactor;
|
---|
1417 | dest[g].im = -LevS->GArray[g].G[cross(index_pxr,0)]*(-PsiC[Index].re)*FFTFactor;
|
---|
1418 | dest[g].re -= -LevS->GArray[g].G[cross(index_pxr,2)]*( Psi2C[Index].im)*FFTFactor;
|
---|
1419 | dest[g].im -= -LevS->GArray[g].G[cross(index_pxr,2)]*(-Psi2C[Index].re)*FFTFactor;
|
---|
1420 | }
|
---|
1421 | if (LevS->GArray[0].GSq == 0.)
|
---|
1422 | dest[0].im = 0.; // don't do this, see ..._P()
|
---|
1423 | }
|
---|
1424 |
|
---|
1425 | /** Evaluates first derivative of perturbed energy functional with respect to minimisation parameter \f$\Theta\f$.
|
---|
1426 | * \f[
|
---|
1427 | * \frac{\delta {\cal E}^{(2)}} {\delta \Theta} =
|
---|
1428 | * 2 {\cal R} \langle \widetilde{\varphi}_i^{(1)} | {\cal H}^{(0)} | \varphi_i^{(1)} \rangle
|
---|
1429 | * - \sum_l \lambda_{il} \langle \widetilde{\varphi}_i^{(1)} | \varphi_l^{(1)} \rangle
|
---|
1430 | * - \sum_k \lambda_{ki} \langle \varphi_k^{(1)} | \widetilde{\varphi}_i^{(1)} \rangle
|
---|
1431 | * + 2 {\cal R} \langle \widetilde{\varphi}_i^{(1)} | {\cal H}^{(1)} | \varphi_i^{(0)} \rangle
|
---|
1432 | * \f]
|
---|
1433 | *
|
---|
1434 | * The summation over all Psis has again to be done with an MPI exchange of non-local coefficients, as the conjugate
|
---|
1435 | * directions are not the same in situations where PePGamma > 1 (Psis split up among processes = multiple minimisation)
|
---|
1436 | * \param *P Problem at hand
|
---|
1437 | * \param source0 unperturbed wave function \f$\varphi_l^{(0)}\f$
|
---|
1438 | * \param source perturbed wave function \f$\varphi_l^{(1)} (G)\f$
|
---|
1439 | * \param ConDir normalized conjugate direction \f$\widetilde{\varphi}_l^{(1)} (G)\f$
|
---|
1440 | * \param Hc_grad complex coefficients of \f$H^{(0)} | \varphi_l^{(1)} (G) \rangle\f$, see GradientArray#HcGradient
|
---|
1441 | * \param H1c_grad complex coefficients of \f$H^{(1)} | \varphi_l^{(0)} (G) \rangle\f$, see GradientArray#H1cGradient
|
---|
1442 | * \sa CalculateLineSearch() - used there, \sa CalculateConDirHConDir() - same principles
|
---|
1443 | * \warning The MPI_Allreduce for the scalar product in the end has not been done and must not have been done for given
|
---|
1444 | * parameters yet!
|
---|
1445 | */
|
---|
1446 | double Calculate1stPerturbedDerivative(struct Problem *P, const fftw_complex *source0, const fftw_complex *source, const fftw_complex *ConDir, const fftw_complex *Hc_grad, const fftw_complex *H1c_grad)
|
---|
1447 | {
|
---|
1448 | struct RunStruct *R = &P->R;
|
---|
1449 | struct Psis *Psi = &P->Lat.Psi;
|
---|
1450 | struct LatticeLevel *LevS = R->LevS;
|
---|
1451 | double result = 0., E0 = 0., Elambda = 0., E1 = 0.;//, E2 = 0.;
|
---|
1452 | int i,m,j;
|
---|
1453 | const int state = R->CurrentMin;
|
---|
1454 | //const int l_normal = R->ActualLocalPsiNo - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[Occupied];
|
---|
1455 | const int ActNum = R->ActualLocalPsiNo - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[R->ActualLocalPsiNo].my_color_comm_ST_Psi;
|
---|
1456 | //int l = R->ActualLocalPsiNo;
|
---|
1457 | //int l_normal = Psi->TypeStartIndex[Occupied] + (l - Psi->TypeStartIndex[state]); // offset l to \varphi_l^{(0)}
|
---|
1458 | struct OnePsiElement *OnePsiB, *LOnePsiB;
|
---|
1459 | //fftw_complex *HConGrad = LevS->LPsi->TempPsi;
|
---|
1460 | fftw_complex *LPsiDatB=NULL;
|
---|
1461 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
1462 | int RecvSource;
|
---|
1463 | MPI_Status status;
|
---|
1464 |
|
---|
1465 | //CalculateCDfnl(P,ConDir,PP->CDfnl);
|
---|
1466 | //ApplyTotalHamiltonian(P,ConDir,HConDir, PP->CDfnl, 1, 0);
|
---|
1467 | //E0 = (GradSP(P, LevS, ConDir, Hc_grad) + GradSP(P, LevS, source, HConDir)) * Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor;
|
---|
1468 | E0 = 2.*GradSP(P, LevS, ConDir, Hc_grad) * Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor;
|
---|
1469 | result = E0;
|
---|
1470 | //fprintf(stderr,"(%i) 1st: E0 = \t\t%lg\n", P->Par.me, E0);
|
---|
1471 |
|
---|
1472 | m = -1;
|
---|
1473 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
1474 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
1475 | if (OnePsiB->PsiType == state) { // drop all but the ones of current min state
|
---|
1476 | m++; // increase m if it is type-specific wave function
|
---|
1477 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
1478 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
1479 | else
|
---|
1480 | LOnePsiB = NULL;
|
---|
1481 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
1482 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
1483 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, PerturbedTag, P->Par.comm_ST_PsiT, &status );
|
---|
1484 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
1485 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
1486 | for (i=0;i<P->Par.Max_me_comm_ST_PsiT;i++)
|
---|
1487 | if (i != OnePsiB->my_color_comm_ST_Psi)
|
---|
1488 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, i, PerturbedTag, P->Par.comm_ST_PsiT);
|
---|
1489 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
1490 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
1491 |
|
---|
1492 | Elambda -= 2.*Psi->lambda[ActNum][m]*GradSP(P, LevS, ConDir, LPsiDatB) * OnePsiB->PsiFactor; // lambda is symmetric
|
---|
1493 | }
|
---|
1494 | }
|
---|
1495 | result += Elambda;
|
---|
1496 | //fprintf(stderr,"(%i) 1st: Elambda = \t%lg\n", P->Par.me, Elambda);
|
---|
1497 |
|
---|
1498 | E1 = 2.*GradSP(P,LevS,ConDir,H1c_grad) * sqrt(Psi->AllPsiStatus[ActNum].PsiFactor*Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor);
|
---|
1499 | result += E1;
|
---|
1500 | //fprintf(stderr,"(%i) 1st: E1 = \t\t%lg\n", P->Par.me, E1);
|
---|
1501 |
|
---|
1502 | return result;
|
---|
1503 | }
|
---|
1504 |
|
---|
1505 |
|
---|
1506 | /** Evaluates second derivative of perturbed energy functional with respect to minimisation parameter \f$\Theta\f$.
|
---|
1507 | * \f[
|
---|
1508 | * \frac{\delta^2 {\cal E}^{(2)}} {\delta \Theta^2} =
|
---|
1509 | * 2 \bigl( \langle \widetilde{\varphi}_l^{(1)} | {\cal H}^{(0)} | \widetilde{\varphi}_l^{(1)} \rangle
|
---|
1510 | * - \langle \varphi_l^{(1)} | {\cal H}^{(0)} | \varphi_l^{(1)} \rangle \bigr )
|
---|
1511 | * + 2 \sum_{i,i \neq l } \lambda_{il} \langle \varphi_i^{(1)} | \varphi_l^{(1)} \rangle
|
---|
1512 | * - 2 {\cal R} \langle \varphi_l^{(1)} | {\cal H}^{(1)} | \varphi_l^{(0)} \rangle
|
---|
1513 | * \f]
|
---|
1514 | *
|
---|
1515 | * The energy eigenvalues of \a ConDir and \a source must be supplied, they can be calculated via CalculateConDirHConDir() and/or
|
---|
1516 | * by the due to CalculatePerturbedEnergy() already present OnePsiElementAddData#Lambda eigenvalue. The summation over the
|
---|
1517 | * unperturbed lambda within the scalar product of perturbed wave functions is evaluated with Psis#lambda and Psis#Overlap.
|
---|
1518 | * Afterwards, the ConDir density is calculated and also the i-th perturbed density to first degree. With these in a sum over
|
---|
1519 | * all real mesh points the exchange-correlation first and second derivatives and also the Hartree potential ones can be calculated
|
---|
1520 | * and summed up.
|
---|
1521 | * \param *P Problem at hand
|
---|
1522 | * \param source0 unperturbed wave function \f$\varphi_l^{(0)}\f$
|
---|
1523 | * \param source wave function \f$\varphi_l^{(1)}\f$
|
---|
1524 | * \param ConDir conjugated direction \f$\widetilde{\varphi}_l^{(1)}\f$
|
---|
1525 | * \param sourceHsource eigenvalue of wave function \f$\langle \varphi_l^{(1)} | H^{(0)} | \varphi_l^{(1)}\rangle\f$
|
---|
1526 | * \param ConDirHConDir perturbed eigenvalue of conjugate direction \f$\langle \widetilde{\varphi}_l^{(1)} | H^{(0)} | \widetilde{\varphi}_l^{(1)}\rangle\f$
|
---|
1527 | * \param ConDirConDir norm of conjugate direction \f$\langle \widetilde{\varphi}_l^{(1)} | \widetilde{\varphi}_l^{(1)}\rangle\f$
|
---|
1528 | * \warning No MPI_AllReduce() takes place, parameters have to be reduced already.
|
---|
1529 | */
|
---|
1530 | double Calculate2ndPerturbedDerivative(struct Problem *P, const fftw_complex *source0,const fftw_complex *source, const fftw_complex *ConDir,const double sourceHsource, const double ConDirHConDir, const double ConDirConDir)
|
---|
1531 | {
|
---|
1532 | struct RunStruct *R = &P->R;
|
---|
1533 | struct Psis *Psi = &P->Lat.Psi;
|
---|
1534 | //struct Lattice *Lat = &P->Lat;
|
---|
1535 | //struct Energy *E = Lat->E;
|
---|
1536 | double result = 0.;
|
---|
1537 | double Con0 = 0., Elambda = 0.;//, E0 = 0., E1 = 0.;
|
---|
1538 | //int i;
|
---|
1539 | const int state = R->CurrentMin;
|
---|
1540 | //const int l_normal = R->ActualLocalPsiNo - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[Occupied];
|
---|
1541 | const int ActNum = R->ActualLocalPsiNo - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[R->ActualLocalPsiNo].my_color_comm_ST_Psi;
|
---|
1542 |
|
---|
1543 | Con0 = 2.*ConDirHConDir;
|
---|
1544 | result += Con0;
|
---|
1545 | ////E0 = -2.*sourceHsource;
|
---|
1546 | ////result += E0;
|
---|
1547 | ////E1 = -E->PsiEnergy[Perturbed1_0Energy][R->ActualLocalPsiNo] - E->PsiEnergy[Perturbed0_1Energy][R->ActualLocalPsiNo];
|
---|
1548 | ////result += E1;
|
---|
1549 | //fprintf(stderr,"(%i) 2nd: E1 = \t%lg\n", P->Par.me, E1);
|
---|
1550 |
|
---|
1551 | ////for (i=0;i<Lat->Psi.NoOfPsis;i++) {
|
---|
1552 | //// if (i != ActNum) Elambda += Psi->lambda[i][ActNum]*Psi->Overlap[i][ActNum]+ Psi->lambda[ActNum][i]*Psi->Overlap[ActNum][i]; // overlap contains PsiFactor
|
---|
1553 | ////}
|
---|
1554 | ////Elambda = Psi->lambda[ActNum][ActNum]*Psi->Overlap[ActNum][ActNum];
|
---|
1555 | Elambda = 2.*Psi->lambda[ActNum][ActNum]*ConDirConDir;
|
---|
1556 | result -= Elambda;
|
---|
1557 |
|
---|
1558 | //fprintf(stderr,"(%i) 2ndPerturbedDerivative: Result = Con0 + E0 + E1 + Elambda + dEdt0_XC + ddEddt0_XC + dEdt0_H + ddEddt0_H = %lg + %lg + %lg + %lg + %lg + %lg + %lg + %lg = %lg\n", P->Par.me, Con0, E0, E1, Elambda, VolumeFactorR*dEdt0_XC, VolumeFactorR*ddEddt0_XC, dEdt0_H, ddEddt0_H, result);
|
---|
1559 |
|
---|
1560 | return (result);
|
---|
1561 | }
|
---|
1562 |
|
---|
1563 | /** Returns index of specific component in 3x3 cross product.
|
---|
1564 | * \param i vector product component index, ranging from 0..NDIM
|
---|
1565 | * \param j index specifies which one of the four vectors in x*y - y*x, ranging from 0..3 (0,1 positive sign, 2,3 negative sign)
|
---|
1566 | * \return Component 0..2 of vector to be taken to evaluate a vector product
|
---|
1567 | * \sa crossed() - is the same but vice versa, return value must be specified, \a i is returned.
|
---|
1568 | */
|
---|
1569 | inline int cross(int i, int j)
|
---|
1570 | {
|
---|
1571 | const int matrix[NDIM*4] = {1,2,2,1,2,0,0,2,0,1,1,0};
|
---|
1572 | if (i>=0 && i<NDIM && j>=0 && j<4)
|
---|
1573 | return (matrix[i*4+j]);
|
---|
1574 | else {
|
---|
1575 | Error(SomeError,"cross: i or j out of range!");
|
---|
1576 | return (0);
|
---|
1577 | }
|
---|
1578 | }
|
---|
1579 |
|
---|
1580 | /** Returns index of resulting vector component in 3x3 cross product.
|
---|
1581 | * In the column specified by the \a j index \a i is looked for and the found row index returned.
|
---|
1582 | * \param i vector component index, ranging from 0..NDIM
|
---|
1583 | * \param j index specifies which one of the four vectors in x*y - y*x, ranging from 0..3 (0,1 positive sign, 2,3 negative sign)
|
---|
1584 | * \return Component 0..2 of resulting vector
|
---|
1585 | * \sa cross() - is the same but vice versa, return value must be specified, \a i is returned.
|
---|
1586 | */
|
---|
1587 | inline int crossed(int i, int j)
|
---|
1588 | {
|
---|
1589 | const int matrix[NDIM*4] = {1,2,2,1,2,0,0,2,0,1,1,0};
|
---|
1590 | int k;
|
---|
1591 | if (i>=0 && i<NDIM && j>=0 && j<4) {
|
---|
1592 | for (k=0;k<NDIM;k++)
|
---|
1593 | if (matrix[4*k+j] == i) return(k);
|
---|
1594 | Error(SomeError,"crossed: given component not found!");
|
---|
1595 | return(-1);
|
---|
1596 | } else {
|
---|
1597 | Error(SomeError,"crossed: i or j out of range!");
|
---|
1598 | return (-1);
|
---|
1599 | }
|
---|
1600 | }
|
---|
1601 |
|
---|
1602 | #define Nsin 16 //!< should be dependent on MaxG/MaxN per axis!
|
---|
1603 |
|
---|
1604 | /** Returns sawtooth shaped profile for position operator within cell.
|
---|
1605 | * This is a mapping from -L/2...L/2 (L = length of unit cell derived from Lattice#RealBasisSQ) to -L/2 to L/2 with a smooth transition:
|
---|
1606 | * \f[
|
---|
1607 | * f(x): x \rightarrow \left \{
|
---|
1608 | * \begin{array}{l}
|
---|
1609 | * -\frac{L}{2} \cdot \sin \left ( \frac{x}{0,05\cdot L} \cdot \frac{\pi}{2} \right ), 0<x<0,05\cdot L \\
|
---|
1610 | * (x - 0,05\cdot L) \cdot \frac{10}{9} - \frac{L}{2}, 0,05\cdot L \leq x<0,95\cdot L \\
|
---|
1611 | * \frac{L}{2} \cdot \cos \left ( \frac{x-0,95\cdot L}{0,05\cdot L} \cdot \frac{\pi}{2} \right), 0,95\cdot L<x<L
|
---|
1612 | * \end{array} \right \}
|
---|
1613 | * \f]
|
---|
1614 | * \param *Lat pointer to Lattice structure for Lattice#RealBasisSQ
|
---|
1615 | * \param L parameter x
|
---|
1616 | * \param index component index for Lattice#RealBasisSQ
|
---|
1617 | */
|
---|
1618 | inline double sawtooth(struct Lattice *Lat, double L, const int index)
|
---|
1619 | {
|
---|
1620 | double axis = sqrt(Lat->RealBasisSQ[index]);
|
---|
1621 | double sawstart = Lat->SawtoothStart;
|
---|
1622 | double sawend = 1. - sawstart;
|
---|
1623 | double sawfactor = (sawstart+sawend)/(sawend-sawstart);
|
---|
1624 | //return(L);
|
---|
1625 |
|
---|
1626 | //fprintf(stderr, "sawstart: %e\tsawend: %e\tsawfactor: %e\tL: %e\n", sawstart, sawend, sawfactor, L);
|
---|
1627 | // transform and return (sawtooth profile checked, 04.08.06)
|
---|
1628 | L += axis/2.; // transform to 0 ... L
|
---|
1629 | if (L < (sawstart*axis)) return (-axis/(2*sawfactor)*sin(L/(sawstart*axis)*PI/2.)); // first smooth transition from 0 ... -L/2
|
---|
1630 | if (L > (sawend*axis)) return ( axis/(2*sawfactor)*cos((L-sawend*axis)/(sawstart*axis)*PI/2.)); // second smooth transition from +L/2 ... 0
|
---|
1631 | //fprintf(stderr,"L %e\t sawstart %e\t sawend %e\t sawfactor %e\t axis%e\n", L, sawstart, sawend, sawfactor, axis);
|
---|
1632 | //return ((L - sawstart*axis) - axis/(2*sawfactor)); // area in between scale to -L/2 ... +L/2
|
---|
1633 | return (L - axis/2); // area in between return as it was
|
---|
1634 | }
|
---|
1635 |
|
---|
1636 | /** Shifts the origin of the gauge according to the CSDGT method.
|
---|
1637 | * \f[
|
---|
1638 | * d(r) = r - \sum_{I_s,I_a} (r-R_{I_s,I_a}) exp{(-\alpha_{I_s,I_a}(r-R_{I_s,I_a})^4)}
|
---|
1639 | * \f]
|
---|
1640 | * This trafo is necessary as the current otherweise (CSGT) sensitively depends on the current around
|
---|
1641 | * the core region inadequately/only moderately well approximated by a plane-wave-pseudo-potential-method.
|
---|
1642 | * \param *P Problem at hand, containing Lattice and Ions
|
---|
1643 | * \param r coordinate vector
|
---|
1644 | * \param index index of the basis vector
|
---|
1645 | * \return \f$d(r)\f$
|
---|
1646 | * \note Continuous Set of Damped Gauge Transformations according to Keith and Bader
|
---|
1647 | */
|
---|
1648 | inline double ShiftGaugeOrigin(struct Problem *P, double r[NDIM], const int index)
|
---|
1649 | {
|
---|
1650 | struct Ions *I = &P->Ion;
|
---|
1651 | struct Lattice *Lat = &P->Lat;
|
---|
1652 | double x[NDIM], tmp;
|
---|
1653 | int is,ia, i;
|
---|
1654 |
|
---|
1655 | // loop over all ions to calculate the sum
|
---|
1656 | for(i=0;i<NDIM;i++)
|
---|
1657 | x[i] = r[i];
|
---|
1658 | for (is=0; is < I->Max_Types; is++)
|
---|
1659 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++)
|
---|
1660 | for(i=0;i<NDIM;i++) {
|
---|
1661 | tmp = (r[i] - I->I[is].R[NDIM*ia]);
|
---|
1662 | x[i] -= tmp*exp(- I->I[is].alpha[ia] * tpow(tmp,4));
|
---|
1663 | }
|
---|
1664 |
|
---|
1665 | return(sawtooth(Lat,x[index],index)); // still use sawtooth due to the numerical instability around the border region of the cell
|
---|
1666 | }
|
---|
1667 |
|
---|
1668 | /** Print sawtooth() for each node along one axis.
|
---|
1669 | * \param *P Problem at hand, containing RunStruct, Lattice and LatticeLevel RunStruct#LevS
|
---|
1670 | * \param index index of axis
|
---|
1671 | */
|
---|
1672 | void TestSawtooth(struct Problem *P, const int index)
|
---|
1673 | {
|
---|
1674 | struct RunStruct *R = &P->R;
|
---|
1675 | struct LatticeLevel *LevS = R->LevS;
|
---|
1676 | struct Lattice *Lat =&P->Lat;
|
---|
1677 | double x[NDIM];
|
---|
1678 | double n[NDIM];
|
---|
1679 | int N[NDIM];
|
---|
1680 | N[0] = LevS->Plan0.plan->N[0];
|
---|
1681 | N[1] = LevS->Plan0.plan->N[1];
|
---|
1682 | N[2] = LevS->Plan0.plan->N[2];
|
---|
1683 |
|
---|
1684 | n[0] = n[1] = n[2] = 0.;
|
---|
1685 | for (n[index]=0;n[index]<N[index];n[index]++) {
|
---|
1686 | n[index] = (double)n[index]/(double)N[index] * sqrt(Lat->RealBasisSQ[index]);
|
---|
1687 | //fprintf(stderr,"(%i) x %e\t Axis/2 %e\n",P->Par.me, x, sqrt(Lat->RealBasisSQ[index])/2. );
|
---|
1688 | MinImageConv(Lat, n, Lat->RealBasisCenter, x);
|
---|
1689 | fprintf(stderr,"%e\t%e\n", n[index], sawtooth(Lat,n[index],index));
|
---|
1690 | }
|
---|
1691 | }
|
---|
1692 |
|
---|
1693 | /** Secures minimum image convention between two given points \a R[] and \a r[] within periodic boundary.
|
---|
1694 | * Each distance component within a periodic boundary must always be between -L/2 ... L/2
|
---|
1695 | * \param *Lat pointer to Lattice structure
|
---|
1696 | * \param R[] first vector, NDIM, each must be between 0...L
|
---|
1697 | * \param r[] second vector, NDIM, each must be between 0...L
|
---|
1698 | * \param result[] return vector
|
---|
1699 | */
|
---|
1700 | inline void MinImageConv(struct Lattice *Lat, const double R[NDIM], const double r[NDIM], double *result)
|
---|
1701 | {
|
---|
1702 | //double axis = Lat->RealBasisQ[index];
|
---|
1703 | double x[NDIM], X[NDIM], Result[NDIM];
|
---|
1704 | int i;
|
---|
1705 |
|
---|
1706 | for(i=0;i<NDIM;i++)
|
---|
1707 | result[i] = x[i] = x[i] = 0.;
|
---|
1708 | //fprintf(stderr, "R = (%lg, %lg, %lg), r = (%lg, %lg, %lg)\n", R[0], R[1], R[2], r[0], r[1], r[2]);
|
---|
1709 | RMat33Vec3(X, Lat->ReciBasis, R); // transform both to [0,1]^3
|
---|
1710 | RMat33Vec3(x, Lat->ReciBasis, r);
|
---|
1711 | //fprintf(stderr, "X = (%lg, %lg, %lg), x = (%lg, %lg, %lg)\n", X[0], X[1], X[2], x[0], x[1], x[2]);
|
---|
1712 | for(i=0;i<NDIM;i++) {
|
---|
1713 | // if (fabs(X[i]) > 1.)
|
---|
1714 | // fprintf(stderr,"X[%i] > 1. : %lg!\n", i, X[i]);
|
---|
1715 | // if (fabs(x[i]) > 1.)
|
---|
1716 | // fprintf(stderr,"x[%i] > 1. : %lg!\n", i, x[i]);
|
---|
1717 | if (fabs(Result[i] = X[i] - x[i] + 2.*PI) < PI) { }
|
---|
1718 | else if (fabs(Result[i] = X[i] - x[i]) <= PI) { }
|
---|
1719 | else if (fabs(Result[i] = X[i] - x[i] - 2.*PI) < PI) { }
|
---|
1720 | else Error(SomeError, "MinImageConv: None of the three cases applied!");
|
---|
1721 | }
|
---|
1722 | for(i=0;i<NDIM;i++) // ReciBasis is not true inverse, but times 2.*PI
|
---|
1723 | Result[i] /= 2.*PI;
|
---|
1724 | RMat33Vec3(result, Lat->RealBasis, Result);
|
---|
1725 | }
|
---|
1726 |
|
---|
1727 | /** Linear interpolation for coordinate \a R that lies between grid nodes of \a *grid.
|
---|
1728 | * \param *P Problem at hand
|
---|
1729 | * \param *Lat Lattice structure for grid axis
|
---|
1730 | * \param *Lev LatticeLevel structure for grid axis node counts
|
---|
1731 | * \param R[] coordinate vector
|
---|
1732 | * \param *grid grid with fixed nodes
|
---|
1733 | * \return linearly interpolated value of \a *grid for position \a R[NDIM]
|
---|
1734 | */
|
---|
1735 | double LinearInterpolationBetweenGrid(struct Problem *P, struct Lattice *Lat, struct LatticeLevel *Lev, double R[NDIM], fftw_real *grid)
|
---|
1736 | {
|
---|
1737 | double x[2][NDIM];
|
---|
1738 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
1739 | int N[NDIM];
|
---|
1740 | const int N0 = Lev->Plan0.plan->local_nx;
|
---|
1741 | N[0] = Lev->Plan0.plan->N[0];
|
---|
1742 | N[1] = Lev->Plan0.plan->N[1];
|
---|
1743 | N[2] = Lev->Plan0.plan->N[2];
|
---|
1744 | int g;
|
---|
1745 | double n[NDIM];
|
---|
1746 | int k[2][NDIM];
|
---|
1747 | double sigma;
|
---|
1748 |
|
---|
1749 | RMat33Vec3(n, Lat->ReciBasis, &R[0]); // transform real coordinates to [0,1]^3 vector
|
---|
1750 | for (g=0;g<NDIM;g++) {
|
---|
1751 | // k[i] are right and left nearest neighbour node to true position
|
---|
1752 | k[0][g] = floor(n[g]/(2.*PI)*(double)N[g]); // n[2] is floor grid
|
---|
1753 | k[1][g] = ceil(n[g]/(2.*PI)*(double)N[g]); // n[1] is ceil grid
|
---|
1754 | // x[i] give weights of left and right neighbours (the nearer the true point is to one, the closer its weight to 1)
|
---|
1755 | x[0][g] = (k[1][g] - n[g]/(2.*PI)*(double)N[g]);
|
---|
1756 | x[1][g] = 1. - x[0][g];
|
---|
1757 | //fprintf(stderr,"(%i) n = %lg, n_floor[%i] = %i\tn_ceil[%i] = %i --- x_floor[%i] = %e\tx_ceil[%i] = %e\n",P->Par.me, n[g], g,k[0][g], g,k[1][g], g,x[0][g], g,x[1][g]);
|
---|
1758 | }
|
---|
1759 | sigma = 0.;
|
---|
1760 | for (g=0;g<2;g++) { // interpolate linearly between adjacent grid points per axis
|
---|
1761 | if ((k[g][0] >= N0*myPE) && (k[g][0] < N0*(myPE+1))) {
|
---|
1762 | //fprintf(stderr,"(%i) grid[%i]: sigma = %e\n", P->Par.me, k[g][2]+N[2]*(k[g][1]+N[1]*(k[g][0]-N0*myPE)), sigma);
|
---|
1763 | sigma += (x[g][0]*x[0][1]*x[0][2])*grid[k[0][2]+N[2]*(k[0][1]+N[1]*(k[g][0]-N0*myPE))]*mu0; // if it's local and factor from inverse fft
|
---|
1764 | //fprintf(stderr,"(%i) grid[%i]: sigma += %e * %e \n", P->Par.me, k[g][2]+N[2]*(k[g][1]+N[1]*(k[g][0]-N0*myPE)), (x[g][0]*x[0][1]*x[0][2]), grid[k[0][2]+N[2]*(k[0][1]+N[1]*(k[g][0]-N0*myPE))]*mu0);
|
---|
1765 | sigma += (x[g][0]*x[0][1]*x[1][2])*grid[k[1][2]+N[2]*(k[0][1]+N[1]*(k[g][0]-N0*myPE))]*mu0; // if it's local and factor from inverse fft
|
---|
1766 | //fprintf(stderr,"(%i) grid[%i]: sigma += %e * %e \n", P->Par.me, k[g][2]+N[2]*(k[g][1]+N[1]*(k[g][0]-N0*myPE)), (x[g][0]*x[0][1]*x[1][2]), grid[k[1][2]+N[2]*(k[0][1]+N[1]*(k[g][0]-N0*myPE))]*mu0);
|
---|
1767 | sigma += (x[g][0]*x[1][1]*x[0][2])*grid[k[0][2]+N[2]*(k[1][1]+N[1]*(k[g][0]-N0*myPE))]*mu0; // if it's local and factor from inverse fft
|
---|
1768 | //fprintf(stderr,"(%i) grid[%i]: sigma += %e * %e \n", P->Par.me, k[g][2]+N[2]*(k[g][1]+N[1]*(k[g][0]-N0*myPE)), (x[g][0]*x[1][1]*x[0][2]), grid[k[0][2]+N[2]*(k[1][1]+N[1]*(k[g][0]-N0*myPE))]*mu0);
|
---|
1769 | sigma += (x[g][0]*x[1][1]*x[1][2])*grid[k[1][2]+N[2]*(k[1][1]+N[1]*(k[g][0]-N0*myPE))]*mu0; // if it's local and factor from inverse fft
|
---|
1770 | //fprintf(stderr,"(%i) grid[%i]: sigma += %e * %e \n", P->Par.me, k[g][2]+N[2]*(k[g][1]+N[1]*(k[g][0]-N0*myPE)), (x[g][0]*x[1][1]*x[1][2]), grid[k[1][2]+N[2]*(k[1][1]+N[1]*(k[g][0]-N0*myPE))]*mu0);
|
---|
1771 | }
|
---|
1772 | }
|
---|
1773 | return sigma;
|
---|
1774 | }
|
---|
1775 |
|
---|
1776 | /** Linear Interpolation from all eight corners of the box that singles down to a point on the lower level.
|
---|
1777 | * \param *P Problem at hand
|
---|
1778 | * \param *Lev LatticeLevel structure for node numbers
|
---|
1779 | * \param upperNode Node around which to interpolate
|
---|
1780 | * \param *upperGrid array of grid points
|
---|
1781 | * \return summed up and then averaged octant around \a upperNode
|
---|
1782 | */
|
---|
1783 | double LinearPullDownFromUpperLevel(struct Problem *P, struct LatticeLevel *Lev, int upperNode, fftw_real *upperGrid)
|
---|
1784 | {
|
---|
1785 | const int N0 = Lev->Plan0.plan->local_nx;
|
---|
1786 | const int N1 = Lev->Plan0.plan->N[1];
|
---|
1787 | const int N2 = Lev->Plan0.plan->N[2];
|
---|
1788 | double lowerGrid = 0.;
|
---|
1789 | int nr=1;
|
---|
1790 | lowerGrid += upperGrid[upperNode];
|
---|
1791 | if (upperNode % N0 != N0-1) {
|
---|
1792 | lowerGrid += upperGrid[upperNode+1];
|
---|
1793 | nr++;
|
---|
1794 | if (upperNode % N1 != N1-1) {
|
---|
1795 | lowerGrid += upperGrid[upperNode + 0 + N2*(1 + N1*1)];
|
---|
1796 | nr++;
|
---|
1797 | if (upperNode % N2 != N2-1) {
|
---|
1798 | lowerGrid += upperGrid[upperNode + 1 + N2*(1 + N1*1)];
|
---|
1799 | nr++;
|
---|
1800 | }
|
---|
1801 | }
|
---|
1802 | if (upperNode % N2 != N2-1) {
|
---|
1803 | lowerGrid += upperGrid[upperNode + 1 + N2*(0 + N1*1)];
|
---|
1804 | nr++;
|
---|
1805 | }
|
---|
1806 | }
|
---|
1807 | if (upperNode % N1 != N1-1) {
|
---|
1808 | lowerGrid += upperGrid[upperNode + 0 + N2*(1 + N1*0)];
|
---|
1809 | nr++;
|
---|
1810 | if (upperNode % N2 != N2-1) {
|
---|
1811 | lowerGrid += upperGrid[upperNode + 1 + N2*(1 + N1*0)];
|
---|
1812 | nr++;
|
---|
1813 | }
|
---|
1814 | }
|
---|
1815 | if (upperNode % N2 != N2-1) {
|
---|
1816 | lowerGrid += upperGrid[upperNode + 1 + N2*(0 + N1*0)];
|
---|
1817 | nr++;
|
---|
1818 | }
|
---|
1819 | return (lowerGrid/(double)nr);
|
---|
1820 | }
|
---|
1821 |
|
---|
1822 | /** Evaluates the 1-stern in order to evaluate the first derivative on the grid.
|
---|
1823 | * \param *P Problem at hand
|
---|
1824 | * \param *Lev Level to interpret the \a *density on
|
---|
1825 | * \param *density array with gridded values
|
---|
1826 | * \param *n 3 vector with indices on the grid
|
---|
1827 | * \param axis axis along which is derived
|
---|
1828 | * \param myPE number of processes who share the density
|
---|
1829 | * \return [+1/2 -1/2] of \a *n
|
---|
1830 | */
|
---|
1831 | double FirstDiscreteDerivative(struct Problem *P, struct LatticeLevel *Lev, fftw_real *density, int *n, int axis, int myPE)
|
---|
1832 | {
|
---|
1833 | int *N = Lev->Plan0.plan->N; // maximum nodes per axis
|
---|
1834 | const int N0 = Lev->Plan0.plan->local_nx; // special local number due to parallel split up
|
---|
1835 | double ret[NDIM], Ret[NDIM]; // return value local/global
|
---|
1836 | int i;
|
---|
1837 |
|
---|
1838 | for (i=0;i<NDIM;i++) {
|
---|
1839 | ret[i] = Ret[i] = 0.;
|
---|
1840 | }
|
---|
1841 | if (((n[0]+1)%N[0] >= N0*myPE) && ((n[0]+1)%N[0] < N0*(myPE+1))) // next cell belongs to this process
|
---|
1842 | ret[0] += 1./2. * (density[n[2]+N[2]*(n[1]+N[1]*(n[0]+1-N0*myPE))]);
|
---|
1843 | if (((n[0]-1)%N[0] >= N0*myPE) && ((n[0]-1)%N[0] < N0*(myPE+1))) // previous cell belongs to this process
|
---|
1844 | ret[0] -= 1./2. * (density[n[2]+N[2]*(n[1]+N[1]*(n[0]-1-N0*myPE))]);
|
---|
1845 | if ((n[0] >= N0*myPE) && (n[0] < N0*(myPE+1))) {
|
---|
1846 | ret[1] += 1./2. * (density[n[2]+N[2]*((n[1]+1)%N[1] + N[1]*(n[0]%N0))]);
|
---|
1847 | ret[1] -= 1./2. * (density[n[2]+N[2]*((n[1]-1)%N[1] + N[1]*(n[0]%N0))]);
|
---|
1848 | }
|
---|
1849 | if ((n[0] >= N0*myPE) && (n[0] < N0*(myPE+1))) {
|
---|
1850 | ret[2] += 1./2. * (density[(n[2]+1)%N[2] + N[2]*(n[1]+N[1]*(n[0]%N0))]);
|
---|
1851 | ret[2] -= 1./2. * (density[(n[2]-1)%N[2] + N[2]*(n[1]+N[1]*(n[0]%N0))]);
|
---|
1852 | }
|
---|
1853 |
|
---|
1854 | if (MPI_Allreduce(ret, Ret, 3, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi) != MPI_SUCCESS)
|
---|
1855 | Error(SomeError, "FirstDiscreteDerivative: MPI_Allreduce failure!");
|
---|
1856 |
|
---|
1857 | for (i=0;i<NDIM;i++) // transform from node count to [0,1]^3
|
---|
1858 | Ret[i] *= N[i];
|
---|
1859 | RMat33Vec3(ret, P->Lat.ReciBasis, Ret); // this actually divides it by mesh length in real coordinates
|
---|
1860 | //fprintf(stderr, "(%i) sum at (%i,%i,%i) : %lg\n",P->Par.me, n[0],n[1],n[2], ret[axis]);
|
---|
1861 | return ret[axis]; ///(P->Lat.RealBasisQ[axis]/N[axis]);
|
---|
1862 | }
|
---|
1863 |
|
---|
1864 | /** Fouriertransforms given \a source.
|
---|
1865 | * By the use of the symmetry parameter an additional imaginary unit and/or the momentum operator can
|
---|
1866 | * be applied at the same time.
|
---|
1867 | * \param *P Problem at hand
|
---|
1868 | * \param *Psi source array of reciprocal coefficients
|
---|
1869 | * \param *PsiR destination array, becoming filled with real coefficients
|
---|
1870 | * \param index_g component of G vector (only needed for symmetry=4..7)
|
---|
1871 | * \param symmetry 0 - do nothing, 1 - factor by "-1", 2 - factor by "i", 3 - factor by "1/i = -i", from 4 to 7 the same
|
---|
1872 | * but additionally with momentum operator
|
---|
1873 | */
|
---|
1874 | void fft_Psi(struct Problem *P, const fftw_complex *Psi, fftw_real *PsiR, const int index_g, const int symmetry)
|
---|
1875 | {
|
---|
1876 | struct Lattice *Lat = &P->Lat;
|
---|
1877 | struct RunStruct *R = &P->R;
|
---|
1878 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
1879 | struct LatticeLevel *LevS = R->LevS;
|
---|
1880 | struct Density *Dens0 = Lev0->Dens;
|
---|
1881 | struct fft_plan_3d *plan = Lat->plan;
|
---|
1882 | fftw_complex *tempdestRC = (fftw_complex *)Dens0->DensityArray[TempDensity];
|
---|
1883 | fftw_complex *work = Dens0->DensityCArray[TempDensity];
|
---|
1884 | fftw_complex *posfac, *destpos, *destRCS, *destRCD;
|
---|
1885 | int i, Index, pos;
|
---|
1886 |
|
---|
1887 | LockDensityArray(Dens0,TempDensity,imag); // tempdestRC
|
---|
1888 | SetArrayToDouble0((double *)tempdestRC, Dens0->TotalSize*2);
|
---|
1889 | SetArrayToDouble0((double *)PsiR, Dens0->TotalSize*2);
|
---|
1890 | switch (symmetry) {
|
---|
1891 | case 0:
|
---|
1892 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is positive
|
---|
1893 | Index = LevS->GArray[i].Index;
|
---|
1894 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
1895 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1896 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1897 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
1898 | destpos[pos].re = (Psi[i].re)*posfac[pos].re-(Psi[i].im)*posfac[pos].im;
|
---|
1899 | destpos[pos].im = (Psi[i].re)*posfac[pos].im+(Psi[i].im)*posfac[pos].re;
|
---|
1900 | }
|
---|
1901 | }
|
---|
1902 | break;
|
---|
1903 | case 1:
|
---|
1904 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is - positive
|
---|
1905 | Index = LevS->GArray[i].Index;
|
---|
1906 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
1907 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1908 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1909 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
1910 | destpos[pos].re = -((Psi[i].re)*posfac[pos].re-(Psi[i].im)*posfac[pos].im);
|
---|
1911 | destpos[pos].im = -((Psi[i].re)*posfac[pos].im+(Psi[i].im)*posfac[pos].re);
|
---|
1912 | }
|
---|
1913 | }
|
---|
1914 | break;
|
---|
1915 | case 2:
|
---|
1916 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is negative
|
---|
1917 | Index = LevS->GArray[i].Index;
|
---|
1918 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
1919 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1920 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1921 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
1922 | destpos[pos].re = (-Psi[i].im)*posfac[pos].re-(Psi[i].re)*posfac[pos].im;
|
---|
1923 | destpos[pos].im = (-Psi[i].im)*posfac[pos].im+(Psi[i].re)*posfac[pos].re;
|
---|
1924 | }
|
---|
1925 | }
|
---|
1926 | break;
|
---|
1927 | case 3:
|
---|
1928 | for (i=0;i<LevS->MaxG;i++) { // incoming is negative, outgoing is positive
|
---|
1929 | Index = LevS->GArray[i].Index;
|
---|
1930 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
1931 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1932 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1933 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
1934 | destpos[pos].re = (Psi[i].im)*posfac[pos].re-(-Psi[i].re)*posfac[pos].im;
|
---|
1935 | destpos[pos].im = (Psi[i].im)*posfac[pos].im+(-Psi[i].re)*posfac[pos].re;
|
---|
1936 | }
|
---|
1937 | }
|
---|
1938 | break;
|
---|
1939 | case 4:
|
---|
1940 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is positive
|
---|
1941 | Index = LevS->GArray[i].Index;
|
---|
1942 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
1943 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1944 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1945 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
1946 | destpos[pos].re = LevS->GArray[i].G[index_g]*((Psi[i].re)*posfac[pos].re-(Psi[i].im)*posfac[pos].im);
|
---|
1947 | destpos[pos].im = LevS->GArray[i].G[index_g]*((Psi[i].re)*posfac[pos].im+(Psi[i].im)*posfac[pos].re);
|
---|
1948 | }
|
---|
1949 | }
|
---|
1950 | break;
|
---|
1951 | case 5:
|
---|
1952 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is - positive
|
---|
1953 | Index = LevS->GArray[i].Index;
|
---|
1954 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
1955 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1956 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1957 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
1958 | destpos[pos].re = -LevS->GArray[i].G[index_g]*((Psi[i].re)*posfac[pos].re-(Psi[i].im)*posfac[pos].im);
|
---|
1959 | destpos[pos].im = -LevS->GArray[i].G[index_g]*((Psi[i].re)*posfac[pos].im+(Psi[i].im)*posfac[pos].re);
|
---|
1960 | }
|
---|
1961 | }
|
---|
1962 | break;
|
---|
1963 | case 6:
|
---|
1964 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is negative
|
---|
1965 | Index = LevS->GArray[i].Index;
|
---|
1966 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
1967 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1968 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1969 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
1970 | destpos[pos].re = LevS->GArray[i].G[index_g]*((-Psi[i].im)*posfac[pos].re-(Psi[i].re)*posfac[pos].im);
|
---|
1971 | destpos[pos].im = LevS->GArray[i].G[index_g]*((-Psi[i].im)*posfac[pos].im+(Psi[i].re)*posfac[pos].re);
|
---|
1972 | }
|
---|
1973 | }
|
---|
1974 | break;
|
---|
1975 | case 7:
|
---|
1976 | for (i=0;i<LevS->MaxG;i++) { // incoming is negative, outgoing is positive
|
---|
1977 | Index = LevS->GArray[i].Index;
|
---|
1978 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
1979 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
1980 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1981 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
1982 | destpos[pos].re = LevS->GArray[i].G[index_g]*((Psi[i].im)*posfac[pos].re-(-Psi[i].re)*posfac[pos].im);
|
---|
1983 | destpos[pos].im = LevS->GArray[i].G[index_g]*((Psi[i].im)*posfac[pos].im+(-Psi[i].re)*posfac[pos].re);
|
---|
1984 | }
|
---|
1985 | }
|
---|
1986 | break;
|
---|
1987 | }
|
---|
1988 | for (i=0; i<LevS->MaxDoubleG; i++) {
|
---|
1989 | destRCS = &tempdestRC[LevS->DoubleG[2*i]*LevS->MaxNUp];
|
---|
1990 | destRCD = &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp];
|
---|
1991 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
1992 | //if (destRCD != &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp] || LevS->DoubleG[2*i+1]*LevS->MaxNUp+pos<0 || LevS->DoubleG[2*i+1]*LevS->MaxNUp+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destRCD corrupted");
|
---|
1993 | destRCD[pos].re = destRCS[pos].re;
|
---|
1994 | destRCD[pos].im = -destRCS[pos].im;
|
---|
1995 | }
|
---|
1996 | }
|
---|
1997 | fft_3d_complex_to_real(plan, LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
1998 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC, PsiR);
|
---|
1999 | UnLockDensityArray(Dens0,TempDensity,imag); // tempdestRC
|
---|
2000 | }
|
---|
2001 |
|
---|
2002 | /** Locks all NDIM_NDIM current density arrays
|
---|
2003 | * \param Dens0 Density structure to be locked (in the current parts)
|
---|
2004 | */
|
---|
2005 | void AllocCurrentDensity(struct Density *Dens0) {
|
---|
2006 | // real
|
---|
2007 | LockDensityArray(Dens0,CurrentDensity0,real); // CurrentDensity[B_index]
|
---|
2008 | LockDensityArray(Dens0,CurrentDensity1,real); // CurrentDensity[B_index]
|
---|
2009 | LockDensityArray(Dens0,CurrentDensity2,real); // CurrentDensity[B_index]
|
---|
2010 | LockDensityArray(Dens0,CurrentDensity3,real); // CurrentDensity[B_index]
|
---|
2011 | LockDensityArray(Dens0,CurrentDensity4,real); // CurrentDensity[B_index]
|
---|
2012 | LockDensityArray(Dens0,CurrentDensity5,real); // CurrentDensity[B_index]
|
---|
2013 | LockDensityArray(Dens0,CurrentDensity6,real); // CurrentDensity[B_index]
|
---|
2014 | LockDensityArray(Dens0,CurrentDensity7,real); // CurrentDensity[B_index]
|
---|
2015 | LockDensityArray(Dens0,CurrentDensity8,real); // CurrentDensity[B_index]
|
---|
2016 | // imaginary
|
---|
2017 | LockDensityArray(Dens0,CurrentDensity0,imag); // CurrentDensity[B_index]
|
---|
2018 | LockDensityArray(Dens0,CurrentDensity1,imag); // CurrentDensity[B_index]
|
---|
2019 | LockDensityArray(Dens0,CurrentDensity2,imag); // CurrentDensity[B_index]
|
---|
2020 | LockDensityArray(Dens0,CurrentDensity3,imag); // CurrentDensity[B_index]
|
---|
2021 | LockDensityArray(Dens0,CurrentDensity4,imag); // CurrentDensity[B_index]
|
---|
2022 | LockDensityArray(Dens0,CurrentDensity5,imag); // CurrentDensity[B_index]
|
---|
2023 | LockDensityArray(Dens0,CurrentDensity6,imag); // CurrentDensity[B_index]
|
---|
2024 | LockDensityArray(Dens0,CurrentDensity7,imag); // CurrentDensity[B_index]
|
---|
2025 | LockDensityArray(Dens0,CurrentDensity8,imag); // CurrentDensity[B_index]
|
---|
2026 | }
|
---|
2027 |
|
---|
2028 | /** Reset and unlocks all NDIM_NDIM current density arrays
|
---|
2029 | * \param Dens0 Density structure to be unlocked/resetted (in the current parts)
|
---|
2030 | */
|
---|
2031 | void DisAllocCurrentDensity(struct Density *Dens0) {
|
---|
2032 | //int i;
|
---|
2033 | // real
|
---|
2034 | // for(i=0;i<NDIM*NDIM;i++)
|
---|
2035 | // SetArrayToDouble0((double *)Dens0->DensityArray[i], Dens0->TotalSize*2);
|
---|
2036 | UnLockDensityArray(Dens0,CurrentDensity0,real); // CurrentDensity[B_index]
|
---|
2037 | UnLockDensityArray(Dens0,CurrentDensity1,real); // CurrentDensity[B_index]
|
---|
2038 | UnLockDensityArray(Dens0,CurrentDensity2,real); // CurrentDensity[B_index]
|
---|
2039 | UnLockDensityArray(Dens0,CurrentDensity3,real); // CurrentDensity[B_index]
|
---|
2040 | UnLockDensityArray(Dens0,CurrentDensity4,real); // CurrentDensity[B_index]
|
---|
2041 | UnLockDensityArray(Dens0,CurrentDensity5,real); // CurrentDensity[B_index]
|
---|
2042 | UnLockDensityArray(Dens0,CurrentDensity6,real); // CurrentDensity[B_index]
|
---|
2043 | UnLockDensityArray(Dens0,CurrentDensity7,real); // CurrentDensity[B_index]
|
---|
2044 | UnLockDensityArray(Dens0,CurrentDensity8,real); // CurrentDensity[B_index]
|
---|
2045 | // imaginary
|
---|
2046 | // for(i=0;i<NDIM*NDIM;i++)
|
---|
2047 | // SetArrayToDouble0((double *)Dens0->DensityCArray[i], Dens0->TotalSize*2);
|
---|
2048 | UnLockDensityArray(Dens0,CurrentDensity0,imag); // CurrentDensity[B_index]
|
---|
2049 | UnLockDensityArray(Dens0,CurrentDensity1,imag); // CurrentDensity[B_index]
|
---|
2050 | UnLockDensityArray(Dens0,CurrentDensity2,imag); // CurrentDensity[B_index]
|
---|
2051 | UnLockDensityArray(Dens0,CurrentDensity3,imag); // CurrentDensity[B_index]
|
---|
2052 | UnLockDensityArray(Dens0,CurrentDensity4,imag); // CurrentDensity[B_index]
|
---|
2053 | UnLockDensityArray(Dens0,CurrentDensity5,imag); // CurrentDensity[B_index]
|
---|
2054 | UnLockDensityArray(Dens0,CurrentDensity6,imag); // CurrentDensity[B_index]
|
---|
2055 | UnLockDensityArray(Dens0,CurrentDensity7,imag); // CurrentDensity[B_index]
|
---|
2056 | UnLockDensityArray(Dens0,CurrentDensity8,imag); // CurrentDensity[B_index]
|
---|
2057 | }
|
---|
2058 |
|
---|
2059 | // these defines safe-guard same symmetry for same kind of wave function
|
---|
2060 | #define Psi0symmetry 0 // //0 //0 //0 // regard psi0 as real
|
---|
2061 | #define Psi1symmetry 0 // //3 //0 //0 // regard psi0 as real
|
---|
2062 | #define Psip0symmetry 6 //6 //6 //6 //6 // momentum times "i" due to operation on left hand
|
---|
2063 | #define Psip1symmetry 7 //7 //4 //6 //7 // momentum times "-i" as usual (right hand)
|
---|
2064 |
|
---|
2065 | /** Evaluates the 3x3 current density arrays.
|
---|
2066 | * The formula we want to evaluate is as follows
|
---|
2067 | * \f[
|
---|
2068 | * j_k(r) = \langle \psi_k^{(0)} | \Bigl ( p|r'\rangle\langle r' | + | r' \rangle \langle r' | p \Bigr )
|
---|
2069 | \Bigl [ | \psi_k^{(r\times p )} \rangle - r' \times | \psi_k^{(p)} \rangle \Bigr ] \cdot B.
|
---|
2070 | * \f]
|
---|
2071 | * Most of the DensityTypes-arrays are locked for temporary use. Pointers are set to their
|
---|
2072 | * start address and afterwards the current density arrays locked and reset'ed. Then for every
|
---|
2073 | * unperturbed wave function we do:
|
---|
2074 | * -# FFT unperturbed p-perturbed and rxp-perturbed wave function
|
---|
2075 | * -# FFT wave function with applied momentum operator for all three indices
|
---|
2076 | * -# For each index of the momentum operator:
|
---|
2077 | * -# FFT p-perturbed wave function
|
---|
2078 | * -# For every index of the external field:
|
---|
2079 | * -# FFT rxp-perturbed wave function
|
---|
2080 | * -# Evaluate current density for these momentum index and external field indices
|
---|
2081 | *
|
---|
2082 | * Afterwards the temporary densities are unlocked and the density ones gathered from all Psi-
|
---|
2083 | * sharing processes.
|
---|
2084 | *
|
---|
2085 | * \param *P Problem at hand, containing Lattice and RunStruct
|
---|
2086 | */
|
---|
2087 | void FillCurrentDensity(struct Problem *P)
|
---|
2088 | {
|
---|
2089 | struct Lattice *Lat = &P->Lat;
|
---|
2090 | struct RunStruct *R = &P->R;
|
---|
2091 | struct Psis *Psi = &Lat->Psi;
|
---|
2092 | struct LatticeLevel *LevS = R->LevS;
|
---|
2093 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
2094 | struct Density *Dens0 = Lev0->Dens;
|
---|
2095 | fftw_complex *Psi0;
|
---|
2096 | fftw_real *Psi0R, *Psip0R;
|
---|
2097 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
2098 | fftw_real *Psi1R;
|
---|
2099 | fftw_real *Psip1R;
|
---|
2100 | fftw_real *tempArray; // intendedly the same
|
---|
2101 | double r_bar[NDIM], x[NDIM], X[NDIM], fac[NDIM];
|
---|
2102 | double Current;//, current;
|
---|
2103 | const double UnitsFactor = 1.; ///LevS->MaxN; // 1/N (from ff-backtransform)
|
---|
2104 | int i, index, B_index;
|
---|
2105 | int k, j, i0;
|
---|
2106 | int n[NDIM], n0;
|
---|
2107 | int *N;
|
---|
2108 | N = Lev0->Plan0.plan->N;
|
---|
2109 | const int N0 = Lev0->Plan0.plan->local_nx;
|
---|
2110 | //int ActNum;
|
---|
2111 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
2112 | const int type = R->CurrentMin;
|
---|
2113 | MPI_Status status;
|
---|
2114 | int cross_lookup_1[4], cross_lookup_3[4], l_1 = 0, l_3 = 0;
|
---|
2115 | double Factor;//, factor;
|
---|
2116 |
|
---|
2117 | //fprintf(stderr,"(%i) FactoR %e\n", P->Par.me, R->FactorDensityR);
|
---|
2118 |
|
---|
2119 | // Init values and pointers
|
---|
2120 | if (P->Call.out[PsiOut]) {
|
---|
2121 | fprintf(stderr,"(%i) LockArray: ", P->Par.me);
|
---|
2122 | for(i=0;i<MaxDensityTypes;i++)
|
---|
2123 | fprintf(stderr,"(%i,%i) ",Dens0->LockArray[i],Dens0->LockCArray[i]);
|
---|
2124 | fprintf(stderr,"\n");
|
---|
2125 | }
|
---|
2126 | LockDensityArray(Dens0,Temp2Density,real); // Psi1R
|
---|
2127 | LockDensityArray(Dens0,Temp2Density,imag); // Psip1R and tempArray
|
---|
2128 | LockDensityArray(Dens0,GapDensity,real); // Psi0R
|
---|
2129 | LockDensityArray(Dens0,GapLocalDensity,real); // Psip0R
|
---|
2130 |
|
---|
2131 | Psi0R = (fftw_real *)Dens0->DensityArray[GapDensity];
|
---|
2132 | Psip0R = (fftw_real *)Dens0->DensityArray[GapLocalDensity];
|
---|
2133 | Psi1R = (fftw_real *)Dens0->DensityArray[Temp2Density];
|
---|
2134 | tempArray = Psip1R = (fftw_real *)Dens0->DensityCArray[Temp2Density];
|
---|
2135 | SetArrayToDouble0((double *)Psi0R,Dens0->TotalSize*2);
|
---|
2136 | SetArrayToDouble0((double *)Psip0R,Dens0->TotalSize*2);
|
---|
2137 | SetArrayToDouble0((double *)Psi1R,Dens0->TotalSize*2);
|
---|
2138 | SetArrayToDouble0((double *)Psip1R,Dens0->TotalSize*2);
|
---|
2139 |
|
---|
2140 | if (P->Call.out[PsiOut]) {
|
---|
2141 | fprintf(stderr,"(%i) LockArray: ", P->Par.me);
|
---|
2142 | for(i=0;i<MaxDensityTypes;i++)
|
---|
2143 | fprintf(stderr,"(%i,%i) ",Dens0->LockArray[i],Dens0->LockCArray[i]);
|
---|
2144 | fprintf(stderr,"\n");
|
---|
2145 | }
|
---|
2146 |
|
---|
2147 | // don't put the following stuff into a for loop, they might not be continuous! (preprocessor values: CurrentDensity...)
|
---|
2148 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
2149 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
2150 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
2151 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
2152 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
2153 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
2154 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
2155 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
2156 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
2157 |
|
---|
2158 | // initialize the array if it is the first of all six perturbation run
|
---|
2159 | if ((R->DoFullCurrent == 0) && (R->CurrentMin == Perturbed_P0)) { // reset if FillDelta...() hasn't done it before
|
---|
2160 | debug(P,"resetting CurrentDensity...");
|
---|
2161 | for (B_index=0; B_index<NDIM*NDIM; B_index++) // initialize current density array
|
---|
2162 | SetArrayToDouble0((double *)CurrentDensity[B_index],Dens0->TotalSize*2); // DensityArray is fftw_real, no 2*LocalSizeR here!
|
---|
2163 | }
|
---|
2164 |
|
---|
2165 | switch(type) { // set j (which is linked to the index from derivation wrt to B^{ext})
|
---|
2166 | case Perturbed_P0:
|
---|
2167 | case Perturbed_P1:
|
---|
2168 | case Perturbed_P2:
|
---|
2169 | j = type - Perturbed_P0;
|
---|
2170 | l_1 = crossed(j,1);
|
---|
2171 | l_3 = crossed(j,3);
|
---|
2172 | for(k=0;k<4;k++) {
|
---|
2173 | cross_lookup_1[k] = cross(l_1,k);
|
---|
2174 | cross_lookup_3[k] = cross(l_3,k);
|
---|
2175 | }
|
---|
2176 | break;
|
---|
2177 | case Perturbed_RxP0:
|
---|
2178 | case Perturbed_RxP1:
|
---|
2179 | case Perturbed_RxP2:
|
---|
2180 | j = type - Perturbed_RxP0;
|
---|
2181 | break;
|
---|
2182 | default:
|
---|
2183 | j = 0;
|
---|
2184 | Error(SomeError,"FillCurrentDensity() called while not in perturbed minimisation!");
|
---|
2185 | break;
|
---|
2186 | }
|
---|
2187 |
|
---|
2188 | int wished = -1;
|
---|
2189 | FILE *file = fopen(P->Call.MainParameterFile,"r");
|
---|
2190 | if (!ParseForParameter(0,file,"Orbital",0,1,1,int_type,&wished, 1, optional)) {
|
---|
2191 | if (P->Call.out[ReadOut]) fprintf(stderr,"Desired Orbital missing, using: All!\n");
|
---|
2192 | wished = -1;
|
---|
2193 | } else if (wished != -1) {
|
---|
2194 | if (P->Call.out[ReadOut]) fprintf(stderr,"Desired Orbital is: %i.\n", wished);
|
---|
2195 | } else {
|
---|
2196 | if (P->Call.out[ReadOut]) fprintf(stderr,"Desired Orbital is: All.\n");
|
---|
2197 | }
|
---|
2198 | fclose(file);
|
---|
2199 |
|
---|
2200 | // Commence grid filling
|
---|
2201 | for (k=Psi->TypeStartIndex[Occupied];k<Psi->TypeStartIndex[Occupied+1];k++) // every local wave functions adds up its part of the current
|
---|
2202 | if ((k + P->Par.me_comm_ST_PsiT*(Psi->TypeStartIndex[UnOccupied]-Psi->TypeStartIndex[Occupied]) == wished) || (wished == -1)) { // compare with global number
|
---|
2203 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i)Calculating Current Density Summand of type %s for Psi (%i/%i) ... \n", P->Par.me, R->MinimisationName[type], Psi->LocalPsiStatus[k].MyGlobalNo, k);
|
---|
2204 | //ActNum = k - Psi->TypeStartIndex[Occupied] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[k].my_color_comm_ST_Psi; // global number of unperturbed Psi
|
---|
2205 | Psi0 = LevS->LPsi->LocalPsi[k]; // Local unperturbed psi
|
---|
2206 |
|
---|
2207 | // now some preemptive ffts for the whole grid
|
---|
2208 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Bringing |Psi0> one level up and fftransforming\n", P->Par.me);
|
---|
2209 | fft_Psi(P, Psi0, Psi0R, 0, Psi0symmetry); //0 // 0 //0
|
---|
2210 |
|
---|
2211 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Bringing |Psi1> one level up and fftransforming\n", P->Par.me);
|
---|
2212 | fft_Psi(P, LevS->LPsi->LocalPsi[Psi->TypeStartIndex[type]+k], Psi1R, 0, Psi1symmetry); //3 //0 //0
|
---|
2213 |
|
---|
2214 | for (index=0;index<NDIM;index++) { // for all NDIM components of momentum operator
|
---|
2215 |
|
---|
2216 | if ((P->Call.out[StepLeaderOut]) && (!index)) fprintf(stderr,"(%i) Bringing p|Psi0> one level up and fftransforming\n", P->Par.me);
|
---|
2217 | fft_Psi(P, Psi0, Psip0R, index, Psip0symmetry); //6 //6 //6
|
---|
2218 |
|
---|
2219 | if ((P->Call.out[StepLeaderOut]) && (!index)) fprintf(stderr,"(%i) Bringing p|Psi1> one level up and fftransforming\n", P->Par.me);
|
---|
2220 | fft_Psi(P, LevS->LPsi->LocalPsi[Psi->TypeStartIndex[type]+k], Psip1R, index, Psip1symmetry); //4 //6 //7
|
---|
2221 |
|
---|
2222 | // then for every point on the grid in real space ...
|
---|
2223 |
|
---|
2224 | //if (Psi1R != (fftw_real *)Dens0->DensityArray[Temp2Density] || i0<0 || i0>=Dens0->LocalSizeR) Error(SomeError,"fft_Psi: Psi1R corrupted");
|
---|
2225 | //Psi1R[i0] = (Psi1_rxp_R[j])[i0] - (r_bar[cross(j,0)] * (Psi1_p_R[cross(j,1)])[i0] - r_bar[cross(j,2)] * (Psi1_p_R[cross(j,3)])[i0]); //
|
---|
2226 | //if (Psip1R != (fftw_real *)Dens0->DensityCArray[Temp2Density] || i0<0 || i0>=Dens0->LocalSizeR) Error(SomeError,"fft_Psi: Psip1R corrupted");
|
---|
2227 | //Psip1R[i0] = Psi1_rxp_pR[i0] - (r_bar[cross(j,0)] * (Psi1_p_pR[cross(j,1)])[i0] - r_bar[cross(j,2)] * (Psi1_p_pR[cross(j,3)])[i0]); //
|
---|
2228 |
|
---|
2229 | switch(type) {
|
---|
2230 | case Perturbed_P0:
|
---|
2231 | case Perturbed_P1:
|
---|
2232 | case Perturbed_P2:
|
---|
2233 | /* // evaluate factor to compensate r x normalized phi(r) against normalized phi(rxp)
|
---|
2234 | factor = 0.;
|
---|
2235 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
2236 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
2237 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
2238 | i0 = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
2239 | n[0]=n0 + N0*myPE; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
|
---|
2240 | fac[0] = (double)n[0]/(double)N[0];
|
---|
2241 | fac[1] = (double)n[1]/(double)N[1];
|
---|
2242 | fac[2] = (double)n[2]/(double)N[2];
|
---|
2243 | RMat33Vec3(x, Lat->RealBasis, fac); // relative coordinate times basis matrix gives absolute ones
|
---|
2244 | MinImageConv(Lat, x, Psi->AddData[k].WannierCentre, X)
|
---|
2245 | for (i=0;i<NDIM;i++) // build gauge-translated r_bar evaluation point
|
---|
2246 | r_bar[i] = sawtooth(Lat,X,i);
|
---|
2247 | // ShiftGaugeOrigin(P,X,i);
|
---|
2248 | //truedist(Lat, x[i], Psi->AddData[k].WannierCentre[i], i);
|
---|
2249 | factor += Psi1R[i0] * (r_bar[cross_lookup_1[0]] * Psi1R[i0]);
|
---|
2250 | }
|
---|
2251 | MPI_Allreduce (&factor, &Factor, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
2252 | Factor *= R->FactorDensityR; // discrete integration constant
|
---|
2253 | fprintf(stderr,"(%i) normalization factor of Phi^(RxP%i)_{%i} is %lg\n", P->Par.me, type, k, Factor);
|
---|
2254 | Factor = 1./sqrt(fabs(Factor)); //Factor/fabs(Factor) */
|
---|
2255 | Factor = 1.;
|
---|
2256 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
2257 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
2258 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
2259 | i0 = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
2260 | n[0]=n0 + N0*myPE; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
|
---|
2261 | fac[0] = (double)n[0]/(double)N[0];
|
---|
2262 | fac[1] = (double)n[1]/(double)N[1];
|
---|
2263 | fac[2] = (double)n[2]/(double)N[2];
|
---|
2264 | RMat33Vec3(x, Lat->RealBasis, fac); // relative coordinate times basis matrix gives absolute ones
|
---|
2265 | MinImageConv(Lat, x, Psi->AddData[k].WannierCentre, X);
|
---|
2266 | for (i=0;i<NDIM;i++) // build gauge-translated r_bar evaluation point
|
---|
2267 | r_bar[i] = sawtooth(Lat,X[i],i);
|
---|
2268 | // ShiftGaugeOrigin(P,X,i);
|
---|
2269 | //X[i];
|
---|
2270 | Current = Psip0R[i0] * (r_bar[cross_lookup_1[0]] * Psi1R[i0]);
|
---|
2271 | Current += (Psi0R[i0] * r_bar[cross_lookup_1[0]] * Psip1R[i0]);
|
---|
2272 | Current *= .5 * UnitsFactor * Psi->LocalPsiStatus[k].PsiFactor * R->FactorDensityR; // factor confirmed, see CalculateOneDensityR() and InitDensityCalculation()
|
---|
2273 | ////if (CurrentDensity[index+j*NDIM] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index+j*NDIM] || i0<0 || i0>=Dens0->LocalSizeR || (index+j*NDIM)<0 || (index+j*NDIM)>=NDIM*NDIM) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
2274 | CurrentDensity[index+l_1*NDIM][i0] -= Current; // note: sign of cross product resides in Current itself (here: plus)
|
---|
2275 | Current = - Psip0R[i0] * (r_bar[cross_lookup_3[2]] * Psi1R[i0]);
|
---|
2276 | Current += - (Psi0R[i0] * r_bar[cross_lookup_3[2]] * Psip1R[i0]);
|
---|
2277 | Current *= .5 * UnitsFactor * Psi->LocalPsiStatus[k].PsiFactor * R->FactorDensityR; // factor confirmed, see CalculateOneDensityR() and InitDensityCalculation()
|
---|
2278 | ////if (CurrentDensity[index+j*NDIM] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index+j*NDIM] || i0<0 || i0>=Dens0->LocalSizeR || (index+j*NDIM)<0 || (index+j*NDIM)>=NDIM*NDIM) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
2279 | CurrentDensity[index+l_3*NDIM][i0] -= Current; // note: sign of cross product resides in Current itself (here: minus)
|
---|
2280 | }
|
---|
2281 | break;
|
---|
2282 | case Perturbed_RxP0:
|
---|
2283 | case Perturbed_RxP1:
|
---|
2284 | case Perturbed_RxP2:
|
---|
2285 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
2286 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
2287 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
2288 | i0 = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
2289 | Current = (Psip0R[i0] * Psi1R[i0] + Psi0R[i0] * Psip1R[i0]);
|
---|
2290 | Current *= .5 * UnitsFactor * Psi->LocalPsiStatus[k].PsiFactor * R->FactorDensityR; // factor confirmed, see CalculateOneDensityR() and InitDensityCalculation()
|
---|
2291 | ////if (CurrentDensity[index+j*NDIM] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index+j*NDIM] || i0<0 || i0>=Dens0->LocalSizeR || (index+j*NDIM)<0 || (index+j*NDIM)>=NDIM*NDIM) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
2292 | CurrentDensity[index+j*NDIM][i0] += Current;
|
---|
2293 | }
|
---|
2294 | break;
|
---|
2295 | default:
|
---|
2296 | break;
|
---|
2297 | }
|
---|
2298 | }
|
---|
2299 | //OutputCurrentDensity(P);
|
---|
2300 | }
|
---|
2301 |
|
---|
2302 | //debug(P,"Unlocking arrays");
|
---|
2303 | //debug(P,"GapDensity");
|
---|
2304 | UnLockDensityArray(Dens0,GapDensity,real); // Psi0R
|
---|
2305 | //debug(P,"GapLocalDensity");
|
---|
2306 | UnLockDensityArray(Dens0,GapLocalDensity,real); // Psip0R
|
---|
2307 | //debug(P,"Temp2Density");
|
---|
2308 | UnLockDensityArray(Dens0,Temp2Density,real); // Psi1R
|
---|
2309 |
|
---|
2310 | // if (P->Call.out[StepLeaderOut])
|
---|
2311 | // fprintf(stderr,"\n\n");
|
---|
2312 |
|
---|
2313 | //debug(P,"MPI operation");
|
---|
2314 | // and in the end gather partial densities from other processes
|
---|
2315 | if (type == Perturbed_RxP2) // exchange all (due to shared wave functions) only after last pertubation run
|
---|
2316 | for (index=0;index<NDIM*NDIM;index++) {
|
---|
2317 | //if (tempArray != (fftw_real *)Dens0->DensityCArray[Temp2Density]) Error(SomeError,"FillCurrentDensity: tempArray corrupted");
|
---|
2318 | //debug(P,"tempArray to zero");
|
---|
2319 | SetArrayToDouble0((double *)tempArray, Dens0->TotalSize*2);
|
---|
2320 | ////if (CurrentDensity[index] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index]) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
2321 | //debug(P,"CurrentDensity exchange");
|
---|
2322 | MPI_Allreduce( CurrentDensity[index], tempArray, Dens0->LocalSizeR, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT); // gather results from all wave functions ...
|
---|
2323 | switch(Psi->PsiST) { // ... and also from SpinUp/Downs
|
---|
2324 | default:
|
---|
2325 | //debug(P,"CurrentDensity = tempArray");
|
---|
2326 | for (i=0;i<Dens0->LocalSizeR;i++) {
|
---|
2327 | ////if (CurrentDensity[index] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index] || i<0 || i>=Dens0->LocalSizeR) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
2328 | CurrentDensity[index][i] = tempArray[i];
|
---|
2329 | }
|
---|
2330 | break;
|
---|
2331 | case SpinUp:
|
---|
2332 | //debug(P,"CurrentDensity exchange spinup");
|
---|
2333 | MPI_Sendrecv(tempArray, Dens0->LocalSizeR, MPI_DOUBLE, P->Par.me_comm_ST, CurrentTag1,
|
---|
2334 | CurrentDensity[index], Dens0->LocalSizeR, MPI_DOUBLE, P->Par.me_comm_ST, CurrentTag2, P->Par.comm_STInter, &status );
|
---|
2335 | //debug(P,"CurrentDensity += tempArray");
|
---|
2336 | for (i=0;i<Dens0->LocalSizeR;i++) {
|
---|
2337 | ////if (CurrentDensity[index] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index] || i<0 || i>=Dens0->LocalSizeR) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
2338 | CurrentDensity[index][i] += tempArray[i];
|
---|
2339 | }
|
---|
2340 | break;
|
---|
2341 | case SpinDown:
|
---|
2342 | //debug(P,"CurrentDensity exchange spindown");
|
---|
2343 | MPI_Sendrecv(tempArray, Dens0->LocalSizeR, MPI_DOUBLE, P->Par.me_comm_ST, CurrentTag2,
|
---|
2344 | CurrentDensity[index], Dens0->LocalSizeR, MPI_DOUBLE, P->Par.me_comm_ST, CurrentTag1, P->Par.comm_STInter, &status );
|
---|
2345 | //debug(P,"CurrentDensity += tempArray");
|
---|
2346 | for (i=0;i<Dens0->LocalSizeR;i++) {
|
---|
2347 | ////if (CurrentDensity[index] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index] || i<0 || i>=Dens0->LocalSizeR) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
2348 | CurrentDensity[index][i] += tempArray[i];
|
---|
2349 | }
|
---|
2350 | break;
|
---|
2351 | }
|
---|
2352 | }
|
---|
2353 | //debug(P,"Temp2Density");
|
---|
2354 | UnLockDensityArray(Dens0,Temp2Density,imag); // Psip1R and tempArray
|
---|
2355 | //debug(P,"CurrentDensity end");
|
---|
2356 | }
|
---|
2357 |
|
---|
2358 | /** Structure holding Problem at hand and two indices, defining the greens function to be inverted.
|
---|
2359 | */
|
---|
2360 | struct params
|
---|
2361 | {
|
---|
2362 | struct Problem *P;
|
---|
2363 | int *k;
|
---|
2364 | int *l;
|
---|
2365 | int *iter;
|
---|
2366 | fftw_complex *x_l;
|
---|
2367 | };
|
---|
2368 |
|
---|
2369 | /** Wrapper function to solve G_kl x = b for x.
|
---|
2370 | * \param *x above x
|
---|
2371 | * \param *param additional parameters, here Problem at hand
|
---|
2372 | * \return evaluated to be minimized functional \f$\frac{1}{2}x \cdot Ax - xb\f$ at \a x on return
|
---|
2373 | */
|
---|
2374 | static double DeltaCurrent_f(const gsl_vector * x, void * param)
|
---|
2375 | {
|
---|
2376 | struct Problem *P = ((struct params *)param)->P;
|
---|
2377 | struct RunStruct *R = &P->R;
|
---|
2378 | struct LatticeLevel *LevS = R->LevS;
|
---|
2379 | struct Psis *Psi = &P->Lat.Psi;
|
---|
2380 | struct PseudoPot *PP = &P->PP;
|
---|
2381 | const double PsiFactor = Psi->AllPsiStatus[*((struct params *)param)->k].PsiFactor;
|
---|
2382 | double result = 0.;
|
---|
2383 | fftw_complex *TempPsi = LevS->LPsi->TempPsi;
|
---|
2384 | fftw_complex *TempPsi2 = LevS->LPsi->TempPsi2;
|
---|
2385 | int u;
|
---|
2386 |
|
---|
2387 | //fprintf(stderr,"Evaluating f(%i,%i) for %i-th time\n", *((struct params *)param)->k, *((struct params *)param)->l, *((struct params *)param)->iter);
|
---|
2388 |
|
---|
2389 | // extract gsl_vector
|
---|
2390 | for (u=0;u<LevS->MaxG;u++) {
|
---|
2391 | TempPsi[u].re = gsl_vector_get(x, 2*u);
|
---|
2392 | TempPsi[u].im = gsl_vector_get(x, 2*u+1);
|
---|
2393 | }
|
---|
2394 | // generate fnl
|
---|
2395 | CalculateCDfnl(P, TempPsi, PP->CDfnl); // calculate needed non-local form factors
|
---|
2396 | // Apply Hamiltonian to x
|
---|
2397 | ApplyTotalHamiltonian(P,TempPsi,TempPsi2, PP->CDfnl,PsiFactor,0);
|
---|
2398 | // take scalar product to get eigen value
|
---|
2399 | result = .5 * PsiFactor * (((*((struct params *)param)->k == *((struct params *)param)->l ? GradSP(P,LevS,TempPsi,TempPsi2) : 0.) - Psi->lambda[*((struct params *)param)->k][*((struct params *)param)->l])) - GradSP(P,LevS,TempPsi,LevS->LPsi->LocalPsi[*((struct params *)param)->l]);
|
---|
2400 | return result;
|
---|
2401 | }
|
---|
2402 |
|
---|
2403 | /** Wrapper function to solve G_kl x = b for x.
|
---|
2404 | * \param *x above x
|
---|
2405 | * \param *param additional parameters, here Problem at hand
|
---|
2406 | * \param *g gradient vector on return
|
---|
2407 | * \return error code
|
---|
2408 | */
|
---|
2409 | static void DeltaCurrent_df(const gsl_vector * x, void * param, gsl_vector * g)
|
---|
2410 | {
|
---|
2411 | struct Problem *P = ((struct params *)param)->P;
|
---|
2412 | struct RunStruct *R = &P->R;
|
---|
2413 | struct LatticeLevel *LevS = R->LevS;
|
---|
2414 | struct Psis *Psi = &P->Lat.Psi;
|
---|
2415 | struct PseudoPot *PP = &P->PP;
|
---|
2416 | const double PsiFactor = Psi->AllPsiStatus[*((struct params *)param)->k].PsiFactor;
|
---|
2417 | fftw_complex *TempPsi = LevS->LPsi->TempPsi;
|
---|
2418 | fftw_complex *TempPsi2 = LevS->LPsi->TempPsi2;
|
---|
2419 | fftw_complex *x_l = ((struct params *)param)->x_l;
|
---|
2420 | int u;
|
---|
2421 |
|
---|
2422 | //fprintf(stderr,"Evaluating df(%i,%i) for %i-th time\n", *((struct params *)param)->k, *((struct params *)param)->l, *((struct params *)param)->iter);
|
---|
2423 |
|
---|
2424 | // extract gsl_vector
|
---|
2425 | for (u=0;u<LevS->MaxG;u++) {
|
---|
2426 | TempPsi[u].re = gsl_vector_get(x, 2*u);
|
---|
2427 | TempPsi[u].im = gsl_vector_get(x, 2*u+1);
|
---|
2428 | }
|
---|
2429 | // generate fnl
|
---|
2430 | CalculateCDfnl(P, TempPsi, PP->CDfnl); // calculate needed non-local form factors
|
---|
2431 | // Apply Hamiltonian to x
|
---|
2432 | ApplyTotalHamiltonian(P,TempPsi,TempPsi2, PP->CDfnl,PsiFactor,0);
|
---|
2433 | // put into returning vector
|
---|
2434 | for (u=0;u<LevS->MaxG;u++) {
|
---|
2435 | gsl_vector_set(g, 2*u, TempPsi2[u].re - x_l[u].re);
|
---|
2436 | gsl_vector_set(g, 2*u+1, TempPsi2[u].im - x_l[u].im);
|
---|
2437 | }
|
---|
2438 | }
|
---|
2439 |
|
---|
2440 | /** Wrapper function to solve G_kl x = b for x.
|
---|
2441 | * \param *x above x
|
---|
2442 | * \param *param additional parameters, here Problem at hand
|
---|
2443 | * \param *f evaluated to be minimized functional \f$\frac{1}{2}x \cdot Ax - xb\f$ at \a x on return
|
---|
2444 | * \param *g gradient vector on return
|
---|
2445 | * \return error code
|
---|
2446 | */
|
---|
2447 | static void DeltaCurrent_fdf(const gsl_vector * x, void * param, double * f, gsl_vector * g)
|
---|
2448 | {
|
---|
2449 | struct Problem *P = ((struct params *)param)->P;
|
---|
2450 | struct RunStruct *R = &P->R;
|
---|
2451 | struct LatticeLevel *LevS = R->LevS;
|
---|
2452 | struct Psis *Psi = &P->Lat.Psi;
|
---|
2453 | struct PseudoPot *PP = &P->PP;
|
---|
2454 | const double PsiFactor = Psi->AllPsiStatus[*((struct params *)param)->k].PsiFactor;
|
---|
2455 | fftw_complex *TempPsi = LevS->LPsi->TempPsi;
|
---|
2456 | fftw_complex *TempPsi2 = LevS->LPsi->TempPsi2;
|
---|
2457 | fftw_complex *x_l = ((struct params *)param)->x_l;
|
---|
2458 | int u;
|
---|
2459 |
|
---|
2460 | //fprintf(stderr,"Evaluating fdf(%i,%i) for %i-th time\n", *((struct params *)param)->k, *((struct params *)param)->l, *((struct params *)param)->iter);
|
---|
2461 |
|
---|
2462 | // extract gsl_vector
|
---|
2463 | for (u=0;u<LevS->MaxG;u++) {
|
---|
2464 | TempPsi[u].re = gsl_vector_get(x, 2*u);
|
---|
2465 | TempPsi[u].im = gsl_vector_get(x, 2*u+1);
|
---|
2466 | }
|
---|
2467 | // generate fnl
|
---|
2468 | CalculateCDfnl(P, TempPsi, PP->CDfnl); // calculate needed non-local form factors
|
---|
2469 | // Apply Hamiltonian to x
|
---|
2470 | ApplyTotalHamiltonian(P,TempPsi,TempPsi2, PP->CDfnl,PsiFactor,0);
|
---|
2471 | // put into returning vector
|
---|
2472 | for (u=0;u<LevS->MaxG;u++) {
|
---|
2473 | gsl_vector_set(g, 2*u, TempPsi[u].re - x_l[u].re);
|
---|
2474 | gsl_vector_set(g, 2*u+1, TempPsi[u].im - x_l[u].im);
|
---|
2475 | }
|
---|
2476 |
|
---|
2477 | *f = .5 * PsiFactor * (((*((struct params *)param)->k == *((struct params *)param)->l ? GradSP(P,LevS,TempPsi,TempPsi2) : 0.) - Psi->lambda[*((struct params *)param)->k][*((struct params *)param)->l])) - GradSP(P,LevS,TempPsi,LevS->LPsi->LocalPsi[*((struct params *)param)->l]);
|
---|
2478 | }
|
---|
2479 |
|
---|
2480 | /** Evaluates the \f$\Delta j_k(r')\f$ component of the current density.
|
---|
2481 | * \f[
|
---|
2482 | * \Delta j_k(r') = \frac{e}{m} \sum_l \langle \varphi^{(0)}_k | \left ( p |r'\rangle \langle r'| + | r'\rangle\langle r'|p \right ) {\cal G}_{kl} (d_k - d_l) \times p | \varphi^{(1)}_l \rangle \cdot B
|
---|
2483 | * \f]
|
---|
2484 | * \param *P Problem at hand
|
---|
2485 | * \note result has not yet been MPI_Allreduced for ParallelSimulationData#comm_ST_inter or ParallelSimulationData#comm_ST_PsiT groups!
|
---|
2486 | * \warning the routine is checked but does not yet produce sensible results.
|
---|
2487 | */
|
---|
2488 | void FillDeltaCurrentDensity(struct Problem *P)
|
---|
2489 | {
|
---|
2490 | struct Lattice *Lat = &P->Lat;
|
---|
2491 | struct RunStruct *R = &P->R;
|
---|
2492 | struct Psis *Psi = &Lat->Psi;
|
---|
2493 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
2494 | struct LatticeLevel *LevS = R->LevS;
|
---|
2495 | struct Density *Dens0 = Lev0->Dens;
|
---|
2496 | int i,j,s;
|
---|
2497 | int k,l,u, in, dex, index,i0;
|
---|
2498 | //const int Num = Psi->NoOfPsis;
|
---|
2499 | int RecvSource;
|
---|
2500 | MPI_Status status;
|
---|
2501 | struct OnePsiElement *OnePsiB, *LOnePsiB, *OnePsiA, *LOnePsiA;
|
---|
2502 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
2503 | int n[NDIM], n0;
|
---|
2504 | int N[NDIM];
|
---|
2505 | N[0] = Lev0->Plan0.plan->N[0];
|
---|
2506 | N[1] = Lev0->Plan0.plan->N[1];
|
---|
2507 | N[2] = Lev0->Plan0.plan->N[2];
|
---|
2508 | const int N0 = Lev0->Plan0.plan->local_nx;
|
---|
2509 | fftw_complex *LPsiDatB;
|
---|
2510 | fftw_complex *Psi0, *Psi1;
|
---|
2511 | fftw_real *Psi0R, *Psip0R;
|
---|
2512 | fftw_real *Psi1R, *Psip1R;
|
---|
2513 | fftw_complex *x_l = LevS->LPsi->TempPsi;//, **x_l_bak;
|
---|
2514 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
2515 | int mem_avail, MEM_avail;
|
---|
2516 | double Current;
|
---|
2517 | double X[NDIM];
|
---|
2518 | const double UnitsFactor = 1.;
|
---|
2519 | int cross_lookup[4];
|
---|
2520 | struct params param;
|
---|
2521 | double factor; // temporary factor in Psi1 pre-evaluation
|
---|
2522 |
|
---|
2523 | LockDensityArray(Dens0,GapDensity,real); // Psi0R
|
---|
2524 | LockDensityArray(Dens0,GapLocalDensity,real); // Psip0R
|
---|
2525 | LockDensityArray(Dens0,Temp2Density,imag); // Psi1
|
---|
2526 | LockDensityArray(Dens0,GapUpDensity,real); // Psi1R
|
---|
2527 | LockDensityArray(Dens0,GapDownDensity,real); // Psip1R
|
---|
2528 |
|
---|
2529 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
2530 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
2531 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
2532 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
2533 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
2534 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
2535 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
2536 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
2537 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
2538 |
|
---|
2539 | Psi0R = (fftw_real *)Dens0->DensityArray[GapDensity];
|
---|
2540 | Psip0R = (fftw_real *)Dens0->DensityArray[GapLocalDensity];
|
---|
2541 | Psi1 = (fftw_complex *) Dens0->DensityCArray[Temp2Density];
|
---|
2542 | Psi1R = (fftw_real *)Dens0->DensityArray[GapUpDensity];
|
---|
2543 | Psip1R = (fftw_real *)Dens0->DensityArray[GapDownDensity];
|
---|
2544 |
|
---|
2545 | // if (R->CurrentMin == Perturbed_P0)
|
---|
2546 | // for (B_index=0; B_index<NDIM*NDIM; B_index++) { // initialize current density array
|
---|
2547 | // debug(P,"resetting CurrentDensity...");
|
---|
2548 | // SetArrayToDouble0((double *)CurrentDensity[B_index],Dens0->TotalSize*2); // DensityArray is fftw_real, no 2*LocalSizeR here!
|
---|
2549 | // }
|
---|
2550 | //if (Psi1 != (fftw_complex *) Dens0->DensityCArray[Temp2Density]) Error(SomeError,"FillDeltaCurrentDensity: Psi1 corrupted");
|
---|
2551 | SetArrayToDouble0((double *)Psi1,2*Dens0->TotalSize);
|
---|
2552 |
|
---|
2553 | // gsl_vector *x = gsl_vector_alloc(Num);
|
---|
2554 | // gsl_matrix *G = gsl_matrix_alloc(Num,Num);
|
---|
2555 | // gsl_permutation *p = gsl_permutation_alloc(Num);
|
---|
2556 | //int signum;
|
---|
2557 | // begin of GSL linearer CG solver stuff
|
---|
2558 | int iter, Status;
|
---|
2559 |
|
---|
2560 | const gsl_multimin_fdfminimizer_type *T;
|
---|
2561 | gsl_multimin_fdfminimizer *minset;
|
---|
2562 |
|
---|
2563 | /* Position of the minimum (1,2). */
|
---|
2564 | //double par[2] = { 1.0, 2.0 };
|
---|
2565 |
|
---|
2566 | gsl_vector *x;
|
---|
2567 | gsl_multimin_function_fdf my_func;
|
---|
2568 |
|
---|
2569 | param.P = P;
|
---|
2570 | param.k = &k;
|
---|
2571 | param.l = &l;
|
---|
2572 | param.iter = &iter;
|
---|
2573 | param.x_l = x_l;
|
---|
2574 |
|
---|
2575 | my_func.f = &DeltaCurrent_f;
|
---|
2576 | my_func.df = &DeltaCurrent_df;
|
---|
2577 | my_func.fdf = &DeltaCurrent_fdf;
|
---|
2578 | my_func.n = 2*LevS->MaxG;
|
---|
2579 | my_func.params = (void *)¶m;
|
---|
2580 |
|
---|
2581 | T = gsl_multimin_fdfminimizer_conjugate_pr;
|
---|
2582 | minset = gsl_multimin_fdfminimizer_alloc (T, 2*LevS->MaxG);
|
---|
2583 | x = gsl_vector_alloc (2*LevS->MaxG);
|
---|
2584 | // end of GSL CG stuff
|
---|
2585 |
|
---|
2586 |
|
---|
2587 | // // construct G_kl = - (H^{(0)} \delta_{kl} -\langle \varphi^{(0)}_k |H^{(0)}| \varphi^{(0)}_l|rangle)^{-1} = A^{-1}
|
---|
2588 | // for (k=0;k<Num;k++)
|
---|
2589 | // for (l=0;l<Num;l++)
|
---|
2590 | // gsl_matrix_set(G, k, l, k == l ? 0. : Psi->lambda[k][l]);
|
---|
2591 | // // and decompose G_kl = L U
|
---|
2592 |
|
---|
2593 | mem_avail = MEM_avail = 0;
|
---|
2594 | // x_l_bak = x_l = (fftw_complex **) Malloc(sizeof(fftw_complex *)*Num,"FillDeltaCurrentDensity: *x_l");
|
---|
2595 | // for (i=0;i<Num;i++) {
|
---|
2596 | // x_l[i] = NULL;
|
---|
2597 | // x_l[i] = (fftw_complex *) malloc(sizeof(fftw_complex)*LevS->MaxG);
|
---|
2598 | // if (x_l[i] == NULL) {
|
---|
2599 | // mem_avail = 1; // there was not enough memory for this node
|
---|
2600 | // fprintf(stderr,"(%i) FillDeltaCurrentDensity: x_l[%i] ... insufficient memory.\n",P->Par.me,i);
|
---|
2601 | // }
|
---|
2602 | // }
|
---|
2603 | // MPI_Allreduce(&mem_avail,&MEM_avail,1,MPI_INT,MPI_SUM,P->Par.comm_ST); // sum results from all processes
|
---|
2604 |
|
---|
2605 | if (MEM_avail != 0) { // means at least node couldn't allocate sufficient memory, skipping...
|
---|
2606 | fprintf(stderr,"(%i) FillDeltaCurrentDensity: x_l[], not enough memory: %i! Skipping FillDeltaCurrentDensity evaluation.", P->Par.me, MEM_avail);
|
---|
2607 | } else {
|
---|
2608 | // sum over k and calculate \Delta j_k(r')
|
---|
2609 | k=-1;
|
---|
2610 | for (i=0; i < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; i++) { // go through all wave functions
|
---|
2611 | //fprintf(stderr,"(%i) GlobalNo: %d\tLocalNo: %d\n", P->Par.me,Psi->AllPsiStatus[i].MyGlobalNo,Psi->AllPsiStatus[i].MyLocalNo);
|
---|
2612 | OnePsiA = &Psi->AllPsiStatus[i]; // grab OnePsiA
|
---|
2613 | if (OnePsiA->PsiType == Occupied) { // drop the extra and perturbed ones
|
---|
2614 | k++;
|
---|
2615 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
2616 | LOnePsiA = &Psi->LocalPsiStatus[OnePsiA->MyLocalNo];
|
---|
2617 | else
|
---|
2618 | LOnePsiA = NULL;
|
---|
2619 | if (LOnePsiA != NULL) {
|
---|
2620 | Psi0=LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo];
|
---|
2621 |
|
---|
2622 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Bringing |Psi0> one level up and fftransforming\n", P->Par.me);
|
---|
2623 | //if (Psi0R != (fftw_real *)Dens0->DensityArray[GapDensity]) Error(SomeError,"FillDeltaCurrentDensity: Psi0R corrupted");
|
---|
2624 | fft_Psi(P,Psi0,Psi0R, 0, Psi0symmetry); //0 // 0 //0
|
---|
2625 |
|
---|
2626 | for (in=0;in<NDIM;in++) { // in is the index from derivation wrt to B^{ext}
|
---|
2627 | l = -1;
|
---|
2628 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
2629 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiA
|
---|
2630 | if (OnePsiB->PsiType == Occupied)
|
---|
2631 | l++;
|
---|
2632 | if ((OnePsiB != OnePsiA) && (OnePsiB->PsiType == Occupied)) { // drop the same and the extra ones
|
---|
2633 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
2634 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
2635 | else
|
---|
2636 | LOnePsiB = NULL;
|
---|
2637 | if (LOnePsiB == NULL) { // if it's not local ... receive x from respective process
|
---|
2638 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
2639 | MPI_Recv( x_l, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, HamiltonianTag, P->Par.comm_ST_PsiT, &status );
|
---|
2640 | } else { // .. otherwise setup wave function as x ...
|
---|
2641 | // Evaluate cross product: \epsilon_{ijm} (d_k - d_l)_j p_m | \varphi^{(0)} \rangle = b_i ... and
|
---|
2642 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
2643 | //LPsiDatx=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo+Psi->TypeStartIndex[Perturbed_P0]];
|
---|
2644 | //CalculatePerturbationOperator_P(P,LPsiDatB,LPsiDatB_p0,cross(in,1),0);
|
---|
2645 | //CalculatePerturbationOperator_P(P,LPsiDatB,LPsiDatB_p1,cross(in,3),0);
|
---|
2646 | for (dex=0;dex<4;dex++)
|
---|
2647 | cross_lookup[dex] = cross(in,dex);
|
---|
2648 | MinImageConv(Lat,Psi->AddData[LOnePsiA->MyLocalNo].WannierCentre, Psi->AddData[LOnePsiB->MyLocalNo].WannierCentre,X);
|
---|
2649 | for(s=0;s<LevS->MaxG;s++) {
|
---|
2650 | //if (x_l != x_l_bak || s<0 || s>LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: x_l[] corrupted");
|
---|
2651 | factor = (X[cross_lookup[0]] * LevS->GArray[s].G[cross_lookup[1]] - X[cross_lookup[2]] * LevS->GArray[s].G[cross_lookup[3]]);
|
---|
2652 | x_l[s].re = factor * (-LPsiDatB[s].im); // switched due to factorization with "-i G"
|
---|
2653 | x_l[s].im = factor * (LPsiDatB[s].re);
|
---|
2654 | }
|
---|
2655 | // ... and send it to all other processes (Max_me... - 1)
|
---|
2656 | for (u=0;u<P->Par.Max_me_comm_ST_PsiT;u++)
|
---|
2657 | if (u != OnePsiB->my_color_comm_ST_Psi)
|
---|
2658 | MPI_Send( x_l, LevS->MaxG*ElementSize, MPI_DOUBLE, u, HamiltonianTag, P->Par.comm_ST_PsiT);
|
---|
2659 | } // x_l row is now filled (either by receiving result or evaluating it on its own)
|
---|
2660 | // Solve Ax = b by minimizing 1/2 xAx -xb (gradient is residual Ax - b) with conjugate gradient polak-ribiere
|
---|
2661 |
|
---|
2662 | debug(P,"fill starting point x with values from b");
|
---|
2663 | /* Starting point, x = b */
|
---|
2664 | for (u=0;u<LevS->MaxG;u++) {
|
---|
2665 | gsl_vector_set (x, 2*u, x_l[u].re);
|
---|
2666 | gsl_vector_set (x, 2*u+1, x_l[u].im);
|
---|
2667 | }
|
---|
2668 |
|
---|
2669 | gsl_multimin_fdfminimizer_set (minset, &my_func, x, 0.01, 1e-4);
|
---|
2670 |
|
---|
2671 | fprintf(stderr,"(%i) Start solving for (%i,%i) and index %i\n",P->Par.me, k,l,in);
|
---|
2672 | // start solving
|
---|
2673 | iter = 0;
|
---|
2674 | do
|
---|
2675 | {
|
---|
2676 | iter++;
|
---|
2677 | Status = gsl_multimin_fdfminimizer_iterate (minset);
|
---|
2678 |
|
---|
2679 | if (Status)
|
---|
2680 | break;
|
---|
2681 |
|
---|
2682 | Status = gsl_multimin_test_gradient (minset->gradient, 1e-3);
|
---|
2683 |
|
---|
2684 | if (Status == GSL_SUCCESS)
|
---|
2685 | fprintf (stderr,"(%i) Minimum found after %i iterations.\n", P->Par.me, iter);
|
---|
2686 |
|
---|
2687 | } while (Status == GSL_CONTINUE && iter < 100);
|
---|
2688 |
|
---|
2689 | debug(P,"Put solution into Psi1");
|
---|
2690 | // ... and what do we do now? Put solution into Psi1!
|
---|
2691 | for(s=0;s<LevS->MaxG;s++) {
|
---|
2692 | //if (Psi1 != (fftw_complex *) Dens0->DensityCArray[Temp2Density] || s<0 || s>LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: Psi1 corrupted");
|
---|
2693 | Psi1[s].re = gsl_vector_get (minset->x, 2*s);
|
---|
2694 | Psi1[s].im = gsl_vector_get (minset->x, 2*s+1);
|
---|
2695 | }
|
---|
2696 |
|
---|
2697 | // // Solve A^{-1} b_i = x
|
---|
2698 | // for(s=0;s<LevS->MaxG;s++) {
|
---|
2699 | // // REAL PART
|
---|
2700 | // // retrieve column from gathered matrix
|
---|
2701 | // for(u=0;u<Num;u++)
|
---|
2702 | // gsl_vector_set(x,u,x_l[u][s].re);
|
---|
2703 | //
|
---|
2704 | // // solve: sum_l A_{kl}^(-1) b_l (s) = x_k (s)
|
---|
2705 | // gsl_linalg_LU_svx (G, p, x);
|
---|
2706 | //
|
---|
2707 | // // put solution back into x_l[s]
|
---|
2708 | // for(u=0;u<Num;u++) {
|
---|
2709 | // //if (x_l != x_l_bak || s<0 || s>=LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: x_l[] corrupted");
|
---|
2710 | // x_l[u][s].re = gsl_vector_get(x,u);
|
---|
2711 | // }
|
---|
2712 | //
|
---|
2713 | // // IMAGINARY PART
|
---|
2714 | // // retrieve column from gathered matrix
|
---|
2715 | // for(u=0;u<Num;u++)
|
---|
2716 | // gsl_vector_set(x,u,x_l[u][s].im);
|
---|
2717 | //
|
---|
2718 | // // solve: sum_l A_{kl}^(-1) b_l (s) = x_k (s)
|
---|
2719 | // gsl_linalg_LU_svx (G, p, x);
|
---|
2720 | //
|
---|
2721 | // // put solution back into x_l[s]
|
---|
2722 | // for(u=0;u<Num;u++) {
|
---|
2723 | // //if (x_l != x_l_bak || s<0 || s>=LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: x_l[] corrupted");
|
---|
2724 | // x_l[u][s].im = gsl_vector_get(x,u);
|
---|
2725 | // }
|
---|
2726 | // } // now we have in x_l a vector similar to "Psi1" which we use to evaluate the current density
|
---|
2727 | //
|
---|
2728 | // // evaluate \Delta J_k ... mind the minus sign from G_kl!
|
---|
2729 | // // fill Psi1
|
---|
2730 | // for(s=0;s<LevS->MaxG;s++) {
|
---|
2731 | // //if (Psi1 != (fftw_complex *) Dens0->DensityCArray[Temp2Density] || s<0 || s>LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: Psi1 corrupted");
|
---|
2732 | // Psi1[s].re = x_l[k][s].re;
|
---|
2733 | // Psi1[s].im = x_l[k][s].im;
|
---|
2734 | // }
|
---|
2735 |
|
---|
2736 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Bringing |Psi1> one level up and fftransforming\n", P->Par.me);
|
---|
2737 | //if (Psi1R != (fftw_real *)Dens0->DensityArray[GapUpDensity]) Error(SomeError,"FillDeltaCurrentDensity: Psi1R corrupted");
|
---|
2738 | fft_Psi(P,Psi1,Psi1R, 0, Psi1symmetry); //2 // 0 //0
|
---|
2739 |
|
---|
2740 | for (index=0;index<NDIM;index++) { // for all NDIM components of momentum operator
|
---|
2741 |
|
---|
2742 | if ((P->Call.out[StepLeaderOut]) && (!index)) fprintf(stderr,"(%i) Bringing p|Psi0> one level up and fftransforming\n", P->Par.me);
|
---|
2743 | //if (Psip0R != (fftw_real *)Dens0->DensityArray[GapLocalDensity]) Error(SomeError,"FillDeltaCurrentDensity: Psip0R corrupted");
|
---|
2744 | fft_Psi(P,Psi0,Psip0R, index, Psip0symmetry); //6 //6 //6
|
---|
2745 |
|
---|
2746 | if ((P->Call.out[StepLeaderOut]) && (!index)) fprintf(stderr,"(%i) Bringing p|Psi1> one level up and fftransforming\n", P->Par.me);
|
---|
2747 | //if (Psip1R != (fftw_real *)Dens0->DensityArray[GapDownDensity]) Error(SomeError,"FillDeltaCurrentDensity: Psip1R corrupted");
|
---|
2748 | fft_Psi(P,Psi1,Psip1R, index, Psip1symmetry); //4 //6 //6
|
---|
2749 |
|
---|
2750 | // then for every point on the grid in real space ...
|
---|
2751 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
2752 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
2753 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
2754 | i0 = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
2755 | // and take the product
|
---|
2756 | Current = (Psip0R[i0] * Psi1R[i0] + Psi0R[i0] * Psip1R[i0]);
|
---|
2757 | Current *= 0.5 * UnitsFactor * Psi->AllPsiStatus[OnePsiA->MyGlobalNo].PsiFactor * R->FactorDensityR;
|
---|
2758 | ////if (CurrentDensity[index+in*NDIM] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index+in*NDIM]) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
2759 | //if (i0<0 || i0>=Dens0->LocalSizeR) Error(SomeError,"FillDeltaCurrentDensity: i0 out of range");
|
---|
2760 | //if ((index+in*NDIM)<0 || (index+in*NDIM)>=NDIM*NDIM) Error(SomeError,"FillDeltaCurrentDensity: index out of range");
|
---|
2761 | CurrentDensity[index+in*NDIM][i0] += Current; // minus sign is from G_kl
|
---|
2762 | }
|
---|
2763 | }
|
---|
2764 | }
|
---|
2765 | }
|
---|
2766 | }
|
---|
2767 | }
|
---|
2768 | }
|
---|
2769 | }
|
---|
2770 | }
|
---|
2771 | UnLockDensityArray(Dens0,GapDensity,real); // Psi0R
|
---|
2772 | UnLockDensityArray(Dens0,GapLocalDensity,real); // Psip0R
|
---|
2773 | UnLockDensityArray(Dens0,Temp2Density,imag); // Psi1
|
---|
2774 | UnLockDensityArray(Dens0,GapUpDensity,real); // Psi1R
|
---|
2775 | UnLockDensityArray(Dens0,GapDownDensity,real); // Psip1R
|
---|
2776 | // for (i=0;i<Num;i++)
|
---|
2777 | // if (x_l[i] != NULL) Free(x_l[i], "FillDeltaCurrentDensity: x_l[i]");
|
---|
2778 | // Free(x_l, "FillDeltaCurrentDensity: x_l");
|
---|
2779 | gsl_multimin_fdfminimizer_free (minset);
|
---|
2780 | gsl_vector_free (x);
|
---|
2781 | // gsl_matrix_free(G);
|
---|
2782 | // gsl_permutation_free(p);
|
---|
2783 | // gsl_vector_free(x);
|
---|
2784 | }
|
---|
2785 |
|
---|
2786 |
|
---|
2787 | /** Evaluates the overlap integral between \a state wave functions.
|
---|
2788 | * \f[
|
---|
2789 | * S_{kl} = \langle \varphi_k^{(1)} | \varphi_l^{(1)} \rangle
|
---|
2790 | * \f]
|
---|
2791 | * The scalar product is calculated via GradSP(), MPI_Allreduced among comm_ST_Psi and the result
|
---|
2792 | * stored in Psis#Overlap. The rows have to be MPI exchanged, as otherwise processes will add
|
---|
2793 | * to the TotalEnergy overlaps calculated with old wave functions - they have been minimised after
|
---|
2794 | * the product with exchanged coefficients was taken.
|
---|
2795 | * \param *P Problem at hand
|
---|
2796 | * \param l local number of perturbed wave function.
|
---|
2797 | * \param state PsiTypeTag minimisation state of wave functions to be overlapped
|
---|
2798 | */
|
---|
2799 | void CalculateOverlap(struct Problem *P, const int l, const enum PsiTypeTag state)
|
---|
2800 | {
|
---|
2801 | struct RunStruct *R = &P->R;
|
---|
2802 | struct Lattice *Lat = &(P->Lat);
|
---|
2803 | struct Psis *Psi = &Lat->Psi;
|
---|
2804 | struct LatticeLevel *LevS = R->LevS;
|
---|
2805 | struct OnePsiElement *OnePsiB, *LOnePsiB;
|
---|
2806 | fftw_complex *LPsiDatB=NULL, *LPsiDatA=NULL;
|
---|
2807 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
2808 | int RecvSource;
|
---|
2809 | MPI_Status status;
|
---|
2810 | int i,j,m,p;
|
---|
2811 | //const int l_normal = l - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[Occupied];
|
---|
2812 | const int ActNum = l - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[l].my_color_comm_ST_Psi;
|
---|
2813 | double *sendbuf, *recvbuf;
|
---|
2814 | double tmp,TMP;
|
---|
2815 | const int gsize = P->Par.Max_me_comm_ST_PsiT; //number of processes in PsiT
|
---|
2816 | int p_num; // number of wave functions (for overlap)
|
---|
2817 |
|
---|
2818 | // update overlap table after wave function has changed
|
---|
2819 | LPsiDatA = LevS->LPsi->LocalPsi[l];
|
---|
2820 | m = -1; // to access U matrix element (0..Num-1)
|
---|
2821 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
2822 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
2823 | if (OnePsiB->PsiType == state) { // drop all but the ones of current min state
|
---|
2824 | m++; // increase m if it is non-extra wave function
|
---|
2825 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
2826 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
2827 | else
|
---|
2828 | LOnePsiB = NULL;
|
---|
2829 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
2830 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
2831 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, OverlapTag, P->Par.comm_ST_PsiT, &status );
|
---|
2832 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
2833 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
2834 | for (p=0;p<P->Par.Max_me_comm_ST_PsiT;p++)
|
---|
2835 | if (p != OnePsiB->my_color_comm_ST_Psi)
|
---|
2836 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, p, OverlapTag, P->Par.comm_ST_PsiT);
|
---|
2837 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
2838 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
2839 |
|
---|
2840 | tmp = GradSP(P, LevS, LPsiDatA, LPsiDatB) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * OnePsiB->PsiFactor);
|
---|
2841 | MPI_Allreduce ( &tmp, &TMP, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
2842 | //fprintf(stderr,"(%i) Setting Overlap [%i][%i] = %lg\n",P->Par.me, ActNum,m,TMP);
|
---|
2843 | Psi->Overlap[ActNum][m] = TMP; //= Psi->Overlap[m][ActNum]
|
---|
2844 | }
|
---|
2845 | }
|
---|
2846 |
|
---|
2847 | // exchange newly calculated rows among PsiT
|
---|
2848 | p_num = (m+1) + 1; // number of Psis: one more due to ActNum
|
---|
2849 | sendbuf = (double *) Malloc(p_num * sizeof(double), "CalculateOverlap: sendbuf");
|
---|
2850 | sendbuf[0] = ActNum; // first entry is the global row number
|
---|
2851 | for (i=1;i<p_num;i++)
|
---|
2852 | sendbuf[i] = Psi->Overlap[ActNum][i-1]; // then follow up each entry of overlap row
|
---|
2853 | recvbuf = (double *) Malloc(gsize * p_num * sizeof(double), "CalculateOverlap: recvbuf");
|
---|
2854 | MPI_Allgather(sendbuf, p_num, MPI_DOUBLE, recvbuf, p_num, MPI_DOUBLE, P->Par.comm_ST_PsiT);
|
---|
2855 | Free(sendbuf, "CalculateOverlap: sendbuf");
|
---|
2856 | for (i=0;i<gsize;i++) {// extract results from other processes out of receiving buffer
|
---|
2857 | m = recvbuf[i*p_num]; // m is ActNum of the process whose results we've just received
|
---|
2858 | //fprintf(stderr,"(%i) Received row %i from process %i\n", P->Par.me, m, i);
|
---|
2859 | for (j=1;j<p_num;j++)
|
---|
2860 | Psi->Overlap[m][j-1] = Psi->Overlap[j-1][m] = recvbuf[i*p_num+j]; // put each entry into correspondent Overlap row
|
---|
2861 | }
|
---|
2862 | Free(recvbuf, "CalculateOverlap: recvbuf");
|
---|
2863 | }
|
---|
2864 |
|
---|
2865 |
|
---|
2866 | /** Calculates magnetic susceptibility from known current density.
|
---|
2867 | * The bulk susceptibility tensor can be expressed as a function of the current density.
|
---|
2868 | * \f[
|
---|
2869 | * \chi_{ij} = \frac{\mu_0}{2\Omega} \frac{\delta}{\delta B_i^{ext}} \int_\Omega d^3 r \left (r \times j(r) \right )_j
|
---|
2870 | * \f]
|
---|
2871 | * Thus the integral over real space and subsequent MPI_Allreduce() over results from ParallelSimulationData#comm_ST_Psi is
|
---|
2872 | * straightforward. Tensor is diagonalized afterwards and split into its various sub-tensors of lower rank (e.g., isometric
|
---|
2873 | * value is tensor of rank 0) which are printed to screen and the tensorial elements to file '....chi.csv'
|
---|
2874 | * \param *P Problem at hand
|
---|
2875 | */
|
---|
2876 | void CalculateMagneticSusceptibility(struct Problem *P)
|
---|
2877 | {
|
---|
2878 | struct RunStruct *R = &P->R;
|
---|
2879 | struct Lattice *Lat = &P->Lat;
|
---|
2880 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
2881 | struct Density *Dens0 = R->Lev0->Dens;
|
---|
2882 | struct Ions *I = &P->Ion;
|
---|
2883 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
2884 | int in, dex, i, i0, n0;
|
---|
2885 | int n[NDIM];
|
---|
2886 | const int N0 = Lev0->Plan0.plan->local_nx;
|
---|
2887 | int N[NDIM];
|
---|
2888 | N[0] = Lev0->Plan0.plan->N[0];
|
---|
2889 | N[1] = Lev0->Plan0.plan->N[1];
|
---|
2890 | N[2] = Lev0->Plan0.plan->N[2];
|
---|
2891 | double chi[NDIM*NDIM],Chi[NDIM*NDIM], x[NDIM], X[NDIM], fac[NDIM];
|
---|
2892 | const double discrete_factor = Lat->Volume/Lev0->MaxN;
|
---|
2893 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
2894 | double eta, delta_chi, S, A, iso;
|
---|
2895 | int cross_lookup[4];
|
---|
2896 |
|
---|
2897 | if(P->Call.out[NormalOut]) fprintf(stderr,"(%i)Calculating Magnetic Susceptibility \n", P->Par.me);
|
---|
2898 |
|
---|
2899 | // set pointers onto current density
|
---|
2900 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
2901 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
2902 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
2903 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
2904 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
2905 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
2906 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
2907 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
2908 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
2909 | //for(i=0;i<NDIM;i++) {
|
---|
2910 | // field[i] = Dens0->DensityArray[TempDensity+i];
|
---|
2911 | //LockDensityArray(Dens0,TempDensity+i,real);
|
---|
2912 | // SetArrayToDouble0((double *)field[i],Dens0->TotalSize*2);
|
---|
2913 | //}
|
---|
2914 | gsl_matrix_complex *H = gsl_matrix_complex_calloc(NDIM,NDIM);
|
---|
2915 |
|
---|
2916 |
|
---|
2917 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) magnetic susceptibility tensor \\Chi_ij = \n",P->Par.me);
|
---|
2918 | for (in=0; in<NDIM; in++) { // index i of integrand vector component
|
---|
2919 | for(dex=0;dex<4;dex++) // initialise cross lookup
|
---|
2920 | cross_lookup[dex] = cross(in,dex);
|
---|
2921 | for (dex=0; dex<NDIM; dex++) { // index j of derivation wrt B field
|
---|
2922 | chi[in+dex*NDIM] = 0.;
|
---|
2923 | // do the integration over real space
|
---|
2924 | for(n0=0;n0<N0;n0++)
|
---|
2925 | for(n[1]=0;n[1]<N[1];n[1]++)
|
---|
2926 | for(n[2]=0;n[2]<N[2];n[2]++) {
|
---|
2927 | n[0]=n0 + N0*myPE; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
|
---|
2928 | fac[0] = (double)(n[0])/(double)N[0];
|
---|
2929 | fac[1] = (double)(n[1])/(double)N[1];
|
---|
2930 | fac[2] = (double)(n[2])/(double)N[2];
|
---|
2931 | RMat33Vec3(x, Lat->RealBasis, fac);
|
---|
2932 | i0 = n[2]+N[2]*(n[1]+N[1]*(n0)); // the index of current density must match LocalSizeR!
|
---|
2933 | MinImageConv(Lat,x, Lat->RealBasisCenter, X);
|
---|
2934 | chi[in+dex*NDIM] += X[cross_lookup[0]] * CurrentDensity[dex*NDIM+cross_lookup[1]][i0]; // x[cross(in,0)], Lat->RealBasisCenter[cross_lookup[0]]
|
---|
2935 | chi[in+dex*NDIM] -= X[cross_lookup[2]] * CurrentDensity[dex*NDIM+cross_lookup[3]][i0]; // x[cross(in,2)], Lat->RealBasisCenter[cross_lookup[2]]
|
---|
2936 | // if (in == dex) field[in][i0] =
|
---|
2937 | // truedist(Lat,x[cross_lookup[0]], sqrt(Lat->RealBasisSQ[c[0]])/2.,cross_lookup[0]) * CurrentDensity[dex*NDIM+cross_lookup[1]][i0]
|
---|
2938 | // - truedist(Lat,x[cross_lookup[2]], sqrt(Lat->RealBasisSQ[c[2]])/2.,cross_lookup[2]) * CurrentDensity[dex*NDIM+cross_lookup[3]][i0];
|
---|
2939 | //fprintf(stderr,"(%i) temporary susceptiblity \\chi[%i][%i] += %e * %e = r[%i] * CurrDens[%i][%i] = %e\n",P->Par.me,in,dex,(double)n[cross_lookup[0]]/(double)N[cross_lookup[0]]*(sqrt(Lat->RealBasisSQ[cross_lookup[0]])),CurrentDensity[dex*NDIM+cross_lookup[1]][i0],cross_lookup[0],dex*NDIM+cross_lookup[1],i0,chi[in*NDIM+dex]);
|
---|
2940 | }
|
---|
2941 | chi[in+dex*NDIM] *= mu0*discrete_factor/(2.*Lat->Volume); // integral factor
|
---|
2942 | chi[in+dex*NDIM] *= (-1625.); // empirical gauge factor ... sigh
|
---|
2943 | MPI_Allreduce ( &chi[in+dex*NDIM], &Chi[in+dex*NDIM], 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
2944 | I->I[0].chi[in+dex*NDIM] = Chi[in+dex*NDIM];
|
---|
2945 | Chi[in+dex*NDIM] *= Lat->Volume*loschmidt_constant; // factor for _molar_ susceptibility
|
---|
2946 | if (P->Call.out[ValueOut]) {
|
---|
2947 | fprintf(stderr,"%e\t", Chi[in+dex*NDIM]);
|
---|
2948 | if (dex == NDIM-1) fprintf(stderr,"\n");
|
---|
2949 | }
|
---|
2950 | }
|
---|
2951 | }
|
---|
2952 | // store symmetrized matrix
|
---|
2953 | for (in=0;in<NDIM;in++)
|
---|
2954 | for (dex=0;dex<NDIM;dex++)
|
---|
2955 | gsl_matrix_complex_set(H,in,dex,gsl_complex_rect((Chi[in+dex*NDIM]+Chi[dex+in*NDIM])/2.,0));
|
---|
2956 | // output tensor to file
|
---|
2957 | if (P->Par.me == 0) {
|
---|
2958 | FILE *ChiFile;
|
---|
2959 | char suffixchi[255];
|
---|
2960 | time_t seconds;
|
---|
2961 |
|
---|
2962 | time(&seconds); // get current time
|
---|
2963 | sprintf(&suffixchi[0], ".chi.L%i.csv", Lev0->LevelNo);
|
---|
2964 | OpenFile(P, &ChiFile, suffixchi, "a", P->Call.out[ReadOut]);
|
---|
2965 | fprintf(ChiFile,"# magnetic susceptibility tensor chi[01,02,03,10,11,12,20,21,22], seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
2966 | fprintf(ChiFile,"%lg\t", Lev0->ECut/4.); // ECut is in Rydberg
|
---|
2967 | for (in=0;in<NDIM*NDIM;in++)
|
---|
2968 | fprintf(ChiFile,"%e\t", Chi[in]);
|
---|
2969 | fprintf(ChiFile,"\n");
|
---|
2970 | fclose(ChiFile);
|
---|
2971 | }
|
---|
2972 | // diagonalize chi
|
---|
2973 | gsl_vector *eval = gsl_vector_alloc(NDIM);
|
---|
2974 | gsl_eigen_herm_workspace *w = gsl_eigen_herm_alloc(NDIM);
|
---|
2975 | gsl_eigen_herm(H, eval, w);
|
---|
2976 | gsl_eigen_herm_free(w);
|
---|
2977 | gsl_sort_vector(eval); // sort eigenvalues
|
---|
2978 | // print eigenvalues
|
---|
2979 | iso = 0;
|
---|
2980 | for (i=0;i<NDIM;i++) {
|
---|
2981 | I->I[0].chi_PAS[i] = gsl_vector_get(eval,i);
|
---|
2982 | iso += Chi[i+i*NDIM]/3.;
|
---|
2983 | }
|
---|
2984 | eta = (gsl_vector_get(eval,1)-gsl_vector_get(eval,0))/(gsl_vector_get(eval,2)-iso);
|
---|
2985 | delta_chi = gsl_vector_get(eval,2) - 0.5*(gsl_vector_get(eval,0)+gsl_vector_get(eval,1));
|
---|
2986 | S = (delta_chi*delta_chi)*(1+1./3.*eta*eta);
|
---|
2987 | A = 0.;
|
---|
2988 | for (i=0;i<NDIM;i++) {
|
---|
2989 | in = cross(i,0);
|
---|
2990 | dex = cross(i,1);
|
---|
2991 | A += pow(-1,i)*pow(0.5*(Chi[in+dex*NDIM]-Chi[dex+in*NDIM]),2);
|
---|
2992 | }
|
---|
2993 | if (P->Call.out[ValueOut]) {
|
---|
2994 | fprintf(stderr,"(%i) converted to Principal Axis System\n==================\nDiagonal entries:", P->Par.me);
|
---|
2995 | for (i=0;i<NDIM;i++)
|
---|
2996 | fprintf(stderr,"\t%lg",gsl_vector_get(eval,i));
|
---|
2997 | fprintf(stderr,"\nsusceptib. : %e\n", iso);
|
---|
2998 | fprintf(stderr,"anisotropy : %e\n", delta_chi);
|
---|
2999 | fprintf(stderr,"asymmetry : %e\n", eta);
|
---|
3000 | fprintf(stderr,"S : %e\n", S);
|
---|
3001 | fprintf(stderr,"A : %e\n", A);
|
---|
3002 | fprintf(stderr,"==================\n");
|
---|
3003 | }
|
---|
3004 | // output PAS tensor to file
|
---|
3005 | if (P->Par.me == 0) {
|
---|
3006 | FILE *ChiFile;
|
---|
3007 | char suffixchi[255];
|
---|
3008 | time_t seconds;
|
---|
3009 |
|
---|
3010 | time(&seconds); // get current time
|
---|
3011 | sprintf(&suffixchi[0], ".chi_PAS.csv");
|
---|
3012 | if (Lev0->LevelNo == Lat->MaxLevel-2) {
|
---|
3013 | OpenFile(P, &ChiFile, suffixchi, "w", P->Call.out[ReadOut]);
|
---|
3014 | fprintf(ChiFile,"# magnetic susceptibility tensor chi[00,11,22] Principal Axis System, seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
3015 | fprintf(ChiFile,"# Ecut\tChi_XX\t\tChi_YY\t\tChi_ZZ\tShielding\tanisotropy\tasymmetry\tS\t\tA\n");
|
---|
3016 | } else
|
---|
3017 | OpenFile(P, &ChiFile, suffixchi, "a", P->Call.out[ReadOut]);
|
---|
3018 | fprintf(ChiFile,"%lg\t", Lev0->ECut/4.); // ECut is in Rydberg
|
---|
3019 | for (i=0;i<NDIM;i++)
|
---|
3020 | fprintf(ChiFile,"%e\t", gsl_vector_get(eval,i));
|
---|
3021 | fprintf(ChiFile,"%lg\t%lg\t%lg\t%lg\t%lg\t\n", iso, delta_chi, eta, S, A);
|
---|
3022 | fclose(ChiFile);
|
---|
3023 | }
|
---|
3024 | //for(i=0;i<NDIM;i++)
|
---|
3025 | //UnLockDensityArray(Dens0,TempDensity+i,real);
|
---|
3026 | gsl_vector_free(eval);
|
---|
3027 | gsl_matrix_complex_free(H);
|
---|
3028 | }
|
---|
3029 |
|
---|
3030 | /** Fouriertransforms all nine current density components and calculates shielding tensor.
|
---|
3031 | * \f[
|
---|
3032 | * \sigma_{ij} = \left ( \frac{G}{|G|^2} \times J_i(G) \right )_j
|
---|
3033 | * \f]
|
---|
3034 | * The CurrentDensity has to be fouriertransformed to reciprocal subspace in order to be useful, and the final
|
---|
3035 | * product \f$\sigma_{ij}(G)\f$ has to be back-transformed to real space. However, the shielding is the only evaluated
|
---|
3036 | * at the grid points and not where the real ion position is. The shieldings there are interpolated between the eight
|
---|
3037 | * adjacent grid points by a simple linear weighting. Afterwards follows the same analaysis and printout of the rank-2-tensor
|
---|
3038 | * as in the case of CalculateMagneticShielding().
|
---|
3039 | * \param *P Problem at hand
|
---|
3040 | * \note Lots of arrays are used temporarily during the routine for the fft'ed Current density tensor.
|
---|
3041 | * \note MagneticSusceptibility is needed for G=0-component and thus has to be computed beforehand
|
---|
3042 | */
|
---|
3043 | void CalculateChemicalShieldingByReciprocalCurrentDensity(struct Problem *P)
|
---|
3044 | {
|
---|
3045 | struct RunStruct *R = &P->R;
|
---|
3046 | struct Lattice *Lat = &P->Lat;
|
---|
3047 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
3048 | struct FileData *F = &P->Files;
|
---|
3049 | struct Ions *I = &P->Ion;
|
---|
3050 | struct Density *Dens0 = Lev0->Dens;
|
---|
3051 | struct OneGData *GArray = Lev0->GArray;
|
---|
3052 | struct fft_plan_3d *plan = Lat->plan;
|
---|
3053 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
3054 | fftw_complex *CurrentDensityC[NDIM*NDIM];
|
---|
3055 | fftw_complex *work = (fftw_complex *)Dens0->DensityCArray[TempDensity];
|
---|
3056 | //fftw_complex *sigma_imag = (fftw_complex *)Dens0->DensityCArray[Temp2Density];
|
---|
3057 | //fftw_real *sigma_real = (fftw_real *)sigma_imag;
|
---|
3058 | fftw_complex *sigma_imag[NDIM_NDIM];
|
---|
3059 | fftw_real *sigma_real[NDIM_NDIM];
|
---|
3060 | double sigma,Sigma;
|
---|
3061 | int it, ion, in, dex, g, Index, i;
|
---|
3062 | int *N = Lev0->Plan0.plan->N;
|
---|
3063 | //const double FFTfactor = 1.;///Lev0->MaxN;
|
---|
3064 | double eta, delta_sigma, S, A, iso;
|
---|
3065 | int cross_lookup[4]; // cross lookup table
|
---|
3066 | const double factorDC = R->FactorDensityC;
|
---|
3067 | gsl_matrix_complex *H = gsl_matrix_complex_calloc(NDIM,NDIM);
|
---|
3068 | FILE *SigmaFile;
|
---|
3069 | char suffixsigma[255];
|
---|
3070 |
|
---|
3071 | time_t seconds;
|
---|
3072 | time(&seconds); // get current time
|
---|
3073 |
|
---|
3074 | if(P->Call.out[NormalOut]) fprintf(stderr,"(%i)Calculating Chemical Shielding\n", P->Par.me);
|
---|
3075 |
|
---|
3076 | // inverse Fourier transform current densities
|
---|
3077 | CurrentDensityC[0] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity0];
|
---|
3078 | CurrentDensityC[1] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity1];
|
---|
3079 | CurrentDensityC[2] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity2];
|
---|
3080 | CurrentDensityC[3] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity3];
|
---|
3081 | CurrentDensityC[4] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity4];
|
---|
3082 | CurrentDensityC[5] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity5];
|
---|
3083 | CurrentDensityC[6] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity6];
|
---|
3084 | CurrentDensityC[7] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity7];
|
---|
3085 | CurrentDensityC[8] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity8];
|
---|
3086 | // don't put the following stuff into a for loop, they are not continuous! (preprocessor values CurrentDensity.)
|
---|
3087 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
3088 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
3089 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
3090 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
3091 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
3092 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
3093 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
3094 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
3095 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
3096 |
|
---|
3097 | // inverse Fourier transform current densities
|
---|
3098 | if (P->Call.out[LeaderOut]) fprintf(stderr,"(%i) Transforming and checking J_{ij} (G=0) = 0 for each i,j ... \n",P->Par.me);
|
---|
3099 | for (in=0;in<NDIM*NDIM;in++) {
|
---|
3100 | CalculateOneDensityC(Lat, R->LevS, Dens0, CurrentDensity[in], CurrentDensityC[in], factorDC);
|
---|
3101 | TestReciprocalCurrent(P, CurrentDensityC[in], GArray, in);
|
---|
3102 | }
|
---|
3103 |
|
---|
3104 | // linking pointers to the arrays
|
---|
3105 | for (in=0;in<NDIM*NDIM;in++) {
|
---|
3106 | LockDensityArray(Dens0,in,real); // Psi1R
|
---|
3107 | sigma_imag[in] = (fftw_complex *) Dens0->DensityArray[in];
|
---|
3108 | sigma_real[in] = (fftw_real *) sigma_imag[in];
|
---|
3109 | }
|
---|
3110 |
|
---|
3111 | LockDensityArray(Dens0,TempDensity,imag); // work
|
---|
3112 | LockDensityArray(Dens0,Temp2Density,imag); // tempdestRC and field
|
---|
3113 | // go through reciprocal nodes and calculate shielding tensor sigma
|
---|
3114 | for (in=0; in<NDIM; in++) {// index i of vector component in integrand
|
---|
3115 | for(dex=0;dex<4;dex++) // initialise cross lookup
|
---|
3116 | cross_lookup[dex] = cross(in,dex);
|
---|
3117 | for (dex=0; dex<NDIM; dex++) { // index j of B component derivation in current density tensor
|
---|
3118 | //if (tempdestRC != (fftw_complex *)Dens0->DensityCArray[Temp2Density]) Error(SomeError,"CalculateChemicalShieldingByReciprocalCurrentDensity: tempdestRC corrupted");
|
---|
3119 | SetArrayToDouble0((double *)sigma_imag[in+dex*NDIM],Dens0->TotalSize*2);
|
---|
3120 | for (g=0; g < Lev0->MaxG; g++)
|
---|
3121 | if (GArray[g].GSq > MYEPSILON) { // skip due to divisor
|
---|
3122 | Index = GArray[g].Index; // re = im, im = -re due to "i" in formula
|
---|
3123 | //if (tempdestRC != (fftw_complex *)Dens0->DensityCArray[Temp2Density] || Index<0 || Index>=Dens0->LocalSizeC) Error(SomeError,"CalculateChemicalShieldingByReciprocalCurrentDensity: tempdestRC corrupted");
|
---|
3124 | sigma_imag[in+dex*NDIM][Index].re = GArray[g].G[cross_lookup[0]] * (-CurrentDensityC[dex*NDIM+cross_lookup[1]][Index].im)/GArray[g].GSq;//*FFTfactor;
|
---|
3125 | sigma_imag[in+dex*NDIM][Index].re -= GArray[g].G[cross_lookup[2]] * (-CurrentDensityC[dex*NDIM+cross_lookup[3]][Index].im)/GArray[g].GSq;//*FFTfactor;
|
---|
3126 | sigma_imag[in+dex*NDIM][Index].im = GArray[g].G[cross_lookup[0]] * ( CurrentDensityC[dex*NDIM+cross_lookup[1]][Index].re)/GArray[g].GSq;//*FFTfactor;
|
---|
3127 | sigma_imag[in+dex*NDIM][Index].im -= GArray[g].G[cross_lookup[2]] * ( CurrentDensityC[dex*NDIM+cross_lookup[3]][Index].re)/GArray[g].GSq;//*FFTfactor;
|
---|
3128 | } else { // divergent G=0-component stems from magnetic susceptibility
|
---|
3129 | sigma_imag[in+dex*NDIM][GArray[g].Index].re = 2./3.*I->I[0].chi[in+dex*NDIM];//-4.*M_PI*(0.5*I->I[0].chi[0+0*NDIM]+0.5*I->I[0].chi[1+1*NDIM]+2./3.*I->I[0].chi[2+2*NDIM]);
|
---|
3130 | }
|
---|
3131 | for (g=0; g<Lev0->MaxDoubleG; g++) { // apply symmetry
|
---|
3132 | //if (tempdestRC != (fftw_complex *)Dens0->DensityCArray[Temp2Density] || Lev0->DoubleG[2*g+1]<0 || Lev0->DoubleG[2*g+1]>=Dens0->LocalSizeC) Error(SomeError,"CalculateChemicalShieldingByReciprocalCurrentDensity: tempdestRC corrupted");
|
---|
3133 | sigma_imag[in+dex*NDIM][Lev0->DoubleG[2*g+1]].re = sigma_imag[in+dex*NDIM][Lev0->DoubleG[2*g]].re;
|
---|
3134 | sigma_imag[in+dex*NDIM][Lev0->DoubleG[2*g+1]].im = -sigma_imag[in+dex*NDIM][Lev0->DoubleG[2*g]].im;
|
---|
3135 | }
|
---|
3136 | // fourier transformation of sigma
|
---|
3137 | //if (tempdestRC != (fftw_complex *)Dens0->DensityCArray[Temp2Density]) Error(SomeError,"CalculateChemicalShieldingByReciprocalCurrentDensity: tempdestRC corrupted");
|
---|
3138 | fft_3d_complex_to_real(plan, Lev0->LevelNo, FFTNF1, sigma_imag[in+dex*NDIM], work);
|
---|
3139 |
|
---|
3140 | for (it=0; it < I->Max_Types; it++) { // integration over all types
|
---|
3141 | for (ion=0; ion < I->I[it].Max_IonsOfType; ion++) { // and each ion of type
|
---|
3142 | // read transformed sigma at core position and MPI_Allreduce
|
---|
3143 | sigma = -LinearInterpolationBetweenGrid(P, Lat, Lev0, &I->I[it].R[NDIM*ion], sigma_real[in+dex*NDIM]) * R->FactorDensityR; // factor from inverse fft
|
---|
3144 |
|
---|
3145 | MPI_Allreduce ( &sigma, &Sigma, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum local to total
|
---|
3146 | I->I[it].sigma_rezi[ion][in+dex*NDIM] = Sigma;
|
---|
3147 | }
|
---|
3148 | }
|
---|
3149 | // fabs() all sigma values, as we need them as a positive density: OutputVis plots them in logarithmic scale and
|
---|
3150 | // thus cannot deal with negative values!
|
---|
3151 | for (i=0; i< Dens0->LocalSizeR; i++)
|
---|
3152 | sigma_real[in+dex*NDIM][i] = fabs(sigma_real[in+dex*NDIM][i]);
|
---|
3153 | }
|
---|
3154 | }
|
---|
3155 | UnLockDensityArray(Dens0,TempDensity,imag); // work
|
---|
3156 | UnLockDensityArray(Dens0,Temp2Density,imag); // tempdestRC and field
|
---|
3157 |
|
---|
3158 | // output tensor to file
|
---|
3159 | if (P->Par.me == 0) {
|
---|
3160 | sprintf(&suffixsigma[0], ".sigma_chi_rezi.L%i.csv", Lev0->LevelNo);
|
---|
3161 | OpenFile(P, &SigmaFile, suffixsigma, "a", P->Call.out[ReadOut]);
|
---|
3162 | fprintf(SigmaFile,"# chemical shielding tensor sigma_rezi[01,02,03,10,11,12,20,21,22], seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
3163 | fprintf(SigmaFile,"%lg\t", Lev0->ECut/4.);
|
---|
3164 | for (in=0;in<NDIM;in++)
|
---|
3165 | for (dex=0;dex<NDIM;dex++)
|
---|
3166 | fprintf(SigmaFile,"%e\t", GSL_REAL(gsl_matrix_complex_get(H,in,dex)));
|
---|
3167 | fprintf(SigmaFile,"\n");
|
---|
3168 | fclose(SigmaFile);
|
---|
3169 | }
|
---|
3170 |
|
---|
3171 | gsl_vector *eval = gsl_vector_alloc(NDIM);
|
---|
3172 | gsl_eigen_herm_workspace *w = gsl_eigen_herm_alloc(NDIM);
|
---|
3173 |
|
---|
3174 | for (it=0; it < I->Max_Types; it++) { // integration over all types
|
---|
3175 | for (ion=0; ion < I->I[it].Max_IonsOfType; ion++) { // and each ion of type
|
---|
3176 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Shielding Tensor for Ion %i of element %s \\sigma_ij = \n",P->Par.me, ion, I->I[it].Name);
|
---|
3177 | for (in=0; in<NDIM; in++) { // index i of vector component in integrand
|
---|
3178 | for (dex=0; dex<NDIM; dex++) {// index j of B component derivation in current density tensor
|
---|
3179 | gsl_matrix_complex_set(H,in,dex,gsl_complex_rect((I->I[it].sigma_rezi[ion][in+dex*NDIM]+I->I[it].sigma_rezi[ion][dex+in*NDIM])/2.,0));
|
---|
3180 | if (P->Call.out[ValueOut]) fprintf(stderr,"%e\t", I->I[it].sigma_rezi[ion][in+dex*NDIM]);
|
---|
3181 | }
|
---|
3182 | if (P->Call.out[ValueOut]) fprintf(stderr,"\n");
|
---|
3183 | }
|
---|
3184 | // output tensor to file
|
---|
3185 | if (P->Par.me == 0) {
|
---|
3186 | sprintf(&suffixsigma[0], ".sigma_i%i_%s_rezi.L%i.csv", ion, I->I[it].Symbol, Lev0->LevelNo);
|
---|
3187 | OpenFile(P, &SigmaFile, suffixsigma, "a", P->Call.out[ReadOut]);
|
---|
3188 | fprintf(SigmaFile,"# chemical shielding tensor sigma_rezi[01,02,03,10,11,12,20,21,22], seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
3189 | fprintf(SigmaFile,"%lg\t", Lev0->ECut/4.); // ECut is in Rydberg
|
---|
3190 | for (in=0;in<NDIM;in++)
|
---|
3191 | for (dex=0;dex<NDIM;dex++)
|
---|
3192 | fprintf(SigmaFile,"%e\t", I->I[it].sigma_rezi[ion][in+dex*NDIM]);
|
---|
3193 | fprintf(SigmaFile,"\n");
|
---|
3194 | fclose(SigmaFile);
|
---|
3195 | }
|
---|
3196 | // diagonalize sigma
|
---|
3197 | gsl_eigen_herm(H, eval, w);
|
---|
3198 | gsl_sort_vector(eval); // sort eigenvalues
|
---|
3199 | // print eigenvalues
|
---|
3200 | // if (P->Call.out[ValueOut]) {
|
---|
3201 | // fprintf(stderr,"(%i) diagonal shielding for Ion %i of element %s:", P->Par.me, ion, I->I[it].Name);
|
---|
3202 | // for (in=0;in<NDIM;in++)
|
---|
3203 | // fprintf(stderr,"\t%lg",gsl_vector_get(eval,in));
|
---|
3204 | // fprintf(stderr,"\n\n");
|
---|
3205 | // }
|
---|
3206 | iso = 0.;
|
---|
3207 | for (i=0;i<NDIM;i++) {
|
---|
3208 | I->I[it].sigma_rezi_PAS[ion][i] = gsl_vector_get(eval,i);
|
---|
3209 | iso += I->I[it].sigma_rezi[ion][i+i*NDIM]/3.;
|
---|
3210 | }
|
---|
3211 | eta = (gsl_vector_get(eval,1)-gsl_vector_get(eval,0))/(gsl_vector_get(eval,2)-iso);
|
---|
3212 | delta_sigma = gsl_vector_get(eval,2) - 0.5*(gsl_vector_get(eval,0)+gsl_vector_get(eval,1));
|
---|
3213 | S = (delta_sigma*delta_sigma)*(1+1./3.*eta*eta);
|
---|
3214 | A = 0.;
|
---|
3215 | for (i=0;i<NDIM;i++) {
|
---|
3216 | in = cross(i,0);
|
---|
3217 | dex = cross(i,1);
|
---|
3218 | A += pow(-1,i)*pow(0.5*(I->I[it].sigma_rezi[ion][in+dex*NDIM]-I->I[it].sigma_rezi[ion][dex+in*NDIM]),2);
|
---|
3219 | }
|
---|
3220 | if (P->Call.out[ValueOut]) {
|
---|
3221 | fprintf(stderr,"(%i) converted to Principal Axis System\n==================\nDiagonal entries:", P->Par.me);
|
---|
3222 | for (i=0;i<NDIM;i++)
|
---|
3223 | fprintf(stderr,"\t%lg",gsl_vector_get(eval,i));
|
---|
3224 | fprintf(stderr,"\nshielding : %e\n", iso);
|
---|
3225 | fprintf(stderr,"anisotropy : %e\n", delta_sigma);
|
---|
3226 | fprintf(stderr,"asymmetry : %e\n", eta);
|
---|
3227 | fprintf(stderr,"S : %e\n", S);
|
---|
3228 | fprintf(stderr,"A : %e\n", A);
|
---|
3229 | fprintf(stderr,"==================\n");
|
---|
3230 | }
|
---|
3231 | if (P->Par.me == 0) {
|
---|
3232 | FILE *SigmaFile;
|
---|
3233 | char suffixsigma[255];
|
---|
3234 | sprintf(&suffixsigma[0], ".sigma_i%i_%s_PAS.csv", ion, I->I[it].Symbol);
|
---|
3235 | if (Lev0->LevelNo == Lat->MaxLevel-2) {
|
---|
3236 | OpenFile(P, &SigmaFile, suffixsigma, "w", P->Call.out[ReadOut]);
|
---|
3237 | fprintf(SigmaFile,"# chemical shielding tensor sigma[00,11,22] Principal Axis System, seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
3238 | fprintf(SigmaFile,"# Ecut\tSigma_XX\tSigma_YY\tSigma_ZZ\tShielding\tanisotropy\tasymmetry\tS\t\tA\n");
|
---|
3239 | } else
|
---|
3240 | OpenFile(P, &SigmaFile, suffixsigma, "a", P->Call.out[ReadOut]);
|
---|
3241 | fprintf(SigmaFile,"%lg\t", Lev0->ECut/4.); // ECut is in Rydberg
|
---|
3242 | for (i=0;i<NDIM;i++)
|
---|
3243 | fprintf(SigmaFile,"%lg\t", gsl_vector_get(eval,i));
|
---|
3244 | fprintf(SigmaFile,"%lg\t%lg\t%lg\t%lg\t%lg\t\n", iso, delta_sigma, eta, S, A);
|
---|
3245 | fclose(SigmaFile);
|
---|
3246 | }
|
---|
3247 | }
|
---|
3248 | }
|
---|
3249 |
|
---|
3250 | // Output of magnetic field densities for each direction
|
---|
3251 | for (i=0;i<NDIM*NDIM;i++)
|
---|
3252 | OutputVis(P, sigma_real[i]);
|
---|
3253 | // Diagonalizing the tensor "field" B_ij [r]
|
---|
3254 | fprintf(stderr,"(%i) Diagonalizing B_ij [r] ... \n", P->Par.me);
|
---|
3255 | for (i=0; i< Dens0->LocalSizeR; i++) {
|
---|
3256 | for (in=0; in<NDIM; in++) // index i of vector component in integrand
|
---|
3257 | for (dex=0; dex<NDIM; dex++) { // index j of B component derivation in current density tensor
|
---|
3258 | //fprintf(stderr,"(%i) Setting B_(%i,%i)[%i] ... \n", P->Par.me, in,dex,i);
|
---|
3259 | gsl_matrix_complex_set(H,in,dex,gsl_complex_rect((sigma_real[in+dex*NDIM][i]+sigma_real[dex+in*NDIM][i])/2.,0));
|
---|
3260 | }
|
---|
3261 | gsl_eigen_herm(H, eval, w);
|
---|
3262 | gsl_sort_vector(eval); // sort eigenvalues
|
---|
3263 | for (in=0;in<NDIM;in++)
|
---|
3264 | sigma_real[in][i] = gsl_vector_get(eval,in);
|
---|
3265 | }
|
---|
3266 |
|
---|
3267 | if (Lev0->LevelNo == 0) {
|
---|
3268 | if (!P->Par.me && P->Call.out[NormalOut]) fprintf(stderr,"(%i)Output of NICS map ...\n", P->Par.me);
|
---|
3269 | // Output of magnetic field densities for each direction
|
---|
3270 | //for (i=0;i<NDIM*NDIM;i++)
|
---|
3271 | // OutputVis(P, sigma_real[i]);
|
---|
3272 | // Diagonalizing the tensor "field" B_ij [r]
|
---|
3273 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Diagonalizing B_ij [r] ... \n", P->Par.me);
|
---|
3274 | for (i=0; i< Dens0->LocalSizeR; i++) {
|
---|
3275 | for (in=0; in<NDIM; in++) // index i of vector component in integrand
|
---|
3276 | for (dex=0; dex<NDIM; dex++) { // index j of B component derivation in current density tensor
|
---|
3277 | //fprintf(stderr,"(%i) Setting B_(%i,%i)[%i] ... \n", P->Par.me, in,dex,i);
|
---|
3278 | gsl_matrix_complex_set(H,in,dex,gsl_complex_rect((sigma_real[in+dex*NDIM][i]+sigma_real[dex+in*NDIM][i])/2.,0.));
|
---|
3279 | }
|
---|
3280 | gsl_eigen_herm(H, eval, w);
|
---|
3281 | gsl_sort_vector(eval); // sort eigenvalues
|
---|
3282 | for (in=0;in<NDIM;in++)
|
---|
3283 | sigma_real[in][i] = gsl_vector_get(eval,in);
|
---|
3284 | }
|
---|
3285 | }
|
---|
3286 |
|
---|
3287 | // now absolute the B values (as density scales them by log) and output
|
---|
3288 | if (F->DoOutNICS) {
|
---|
3289 | for (i=0; i< Dens0->LocalSizeR; i++)
|
---|
3290 | for (in=0;in<NDIM;in++)
|
---|
3291 | sigma_real[in][i] = fabs(sigma_real[in][i]);
|
---|
3292 | // Output of diagonalized magnetic field densities for each direction
|
---|
3293 | for (i=0;i<NDIM;i++)
|
---|
3294 | OutputVis(P, sigma_real[i]);
|
---|
3295 | }
|
---|
3296 | for (i=0;i<NDIM*NDIM;i++)
|
---|
3297 | UnLockDensityArray(Dens0,i,real); // sigma_imag/real free
|
---|
3298 |
|
---|
3299 | gsl_eigen_herm_free(w);
|
---|
3300 | gsl_vector_free(eval);
|
---|
3301 | gsl_matrix_complex_free(H);
|
---|
3302 | }
|
---|
3303 |
|
---|
3304 |
|
---|
3305 | /** Calculates the chemical shielding tensor at the positions of the nuclei.
|
---|
3306 | * The chemical shielding tensor at position R is defined as the proportionality factor between the induced and
|
---|
3307 | * the externally applied field.
|
---|
3308 | * \f[
|
---|
3309 | * \sigma_{ij} (R) = \frac{\delta B_j^{ind} (R)}{\delta B_i^{ext}}
|
---|
3310 | * = \frac{\mu_0}{4 \pi} \int d^3 r' \left ( \frac{r'-r}{| r' - r |^3} \times J_i (r') \right )_j
|
---|
3311 | * \f]
|
---|
3312 | * One after another for each nuclear position is the tensor evaluated and the result printed
|
---|
3313 | * to screen. Tensor is diagonalized afterwards.
|
---|
3314 | * \param *P Problem at hand
|
---|
3315 | * \sa CalculateMagneticSusceptibility() - similar calculation, yet without translation to ion centers.
|
---|
3316 | * \warning This routine is out-dated due to being numerically unstable because of the singularity which is not
|
---|
3317 | * considered carefully, recommendend replacement is CalculateChemicalShieldingByReciprocalCurrentDensity().
|
---|
3318 | */
|
---|
3319 | void CalculateChemicalShielding(struct Problem *P)
|
---|
3320 | {
|
---|
3321 | struct RunStruct *R = &P->R;
|
---|
3322 | struct Lattice *Lat = &P->Lat;
|
---|
3323 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
3324 | struct Density *Dens0 = R->Lev0->Dens;
|
---|
3325 | struct Ions *I = &P->Ion;
|
---|
3326 | double sigma[NDIM*NDIM],Sigma[NDIM*NDIM];
|
---|
3327 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
3328 | int it, ion, in, dex, i0, n[NDIM], n0, i;//, *NUp;
|
---|
3329 | double r[NDIM], fac[NDIM], X[NDIM];
|
---|
3330 | const double discrete_factor = Lat->Volume/Lev0->MaxN;
|
---|
3331 | double eta, delta_sigma, S, A, iso;
|
---|
3332 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
3333 | int N[NDIM];
|
---|
3334 | N[0] = Lev0->Plan0.plan->N[0];
|
---|
3335 | N[1] = Lev0->Plan0.plan->N[1];
|
---|
3336 | N[2] = Lev0->Plan0.plan->N[2];
|
---|
3337 | const int N0 = Lev0->Plan0.plan->local_nx;
|
---|
3338 | FILE *SigmaFile;
|
---|
3339 | char suffixsigma[255];
|
---|
3340 | time_t seconds;
|
---|
3341 | time(&seconds); // get current time
|
---|
3342 |
|
---|
3343 | // set pointers onto current density
|
---|
3344 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
3345 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
3346 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
3347 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
3348 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
3349 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
3350 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
3351 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
3352 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
3353 | gsl_matrix_complex *H = gsl_matrix_complex_calloc(NDIM,NDIM);
|
---|
3354 |
|
---|
3355 | for (it=0; it < I->Max_Types; it++) { // integration over all types
|
---|
3356 | for (ion=0; ion < I->I[it].Max_IonsOfType; ion++) { // and each ion of type
|
---|
3357 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Shielding Tensor for Ion %i of element %s \\sigma_ij = \n",P->Par.me, ion, I->I[it].Name);
|
---|
3358 | for (in=0; in<NDIM; in++) {// index i of vector component in integrand
|
---|
3359 | for (dex=0; dex<NDIM; dex++) { // index j of B component derivation in current density tensor
|
---|
3360 | sigma[in+dex*NDIM] = 0.;
|
---|
3361 |
|
---|
3362 | for(n0=0;n0<N0;n0++) // do the integration over real space
|
---|
3363 | for(n[1]=0;n[1]<N[1];n[1]++)
|
---|
3364 | for(n[2]=0;n[2]<N[2];n[2]++) {
|
---|
3365 | n[0]=n0 + N0*myPE; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
|
---|
3366 | fac[0] = (double)n[0]/(double)N[0];
|
---|
3367 | fac[1] = (double)n[1]/(double)N[1];
|
---|
3368 | fac[2] = (double)n[2]/(double)N[2];
|
---|
3369 | RMat33Vec3(r, Lat->RealBasis, fac);
|
---|
3370 | MinImageConv(Lat,r, &(I->I[it].R[NDIM*ion]),X);
|
---|
3371 | i0 = n[2]+N[2]*(n[1]+N[1]*(n0)); // the index of current density must match LocalSizeR!
|
---|
3372 | //z = MinImageConv(Lat,r, I->I[it].R[NDIM*ion],in); // "in" always is missing third component in cross product
|
---|
3373 | sigma[in+dex*NDIM] += (X[cross(in,0)] * CurrentDensity[dex*NDIM+cross(in,1)][i0] - X[cross(in,2)] * CurrentDensity[dex*NDIM+cross(in,3)][i0]);
|
---|
3374 | //if (it == 0 && ion == 0) fprintf(stderr,"(%i) moment[%i][%i] += (%e * %e - %e * %e) = %e\n", P->Par.me, in, dex, x,CurrentDensity[dex*NDIM+cross(in,1)][i0],y,CurrentDensity[dex*NDIM+cross(in,3)][i0],moment[in+dex*NDIM]);
|
---|
3375 | }
|
---|
3376 | sigma[in+dex*NDIM] *= -mu0*discrete_factor/(4.*PI); // due to summation instead of integration
|
---|
3377 | MPI_Allreduce ( &sigma[in+dex*NDIM], &Sigma[in+dex*NDIM], 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
3378 | I->I[it].sigma[ion][in+dex*NDIM] = Sigma[in+dex*NDIM];
|
---|
3379 | if (P->Call.out[ValueOut]) fprintf(stderr," %e", Sigma[in+dex*NDIM]);
|
---|
3380 | }
|
---|
3381 | if (P->Call.out[ValueOut]) fprintf(stderr,"\n");
|
---|
3382 | }
|
---|
3383 | // store symmetrized matrix
|
---|
3384 | for (in=0;in<NDIM;in++)
|
---|
3385 | for (dex=0;dex<NDIM;dex++)
|
---|
3386 | gsl_matrix_complex_set(H,in,dex,gsl_complex_rect((Sigma[in+dex*NDIM]+Sigma[dex+in*NDIM])/2.,0));
|
---|
3387 | // output tensor to file
|
---|
3388 | if (P->Par.me == 0) {
|
---|
3389 | sprintf(&suffixsigma[0], ".sigma_i%i_%s.L%i.csv", ion, I->I[it].Symbol, Lev0->LevelNo);
|
---|
3390 | OpenFile(P, &SigmaFile, suffixsigma, "a", P->Call.out[ReadOut]);
|
---|
3391 | fprintf(SigmaFile,"# chemical shielding tensor sigma[01,02,03,10,11,12,20,21,22], seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
3392 | fprintf(SigmaFile,"%lg\t", P->Lat.ECut/(Lat->LevelSizes[0]*Lat->LevelSizes[0]));
|
---|
3393 | for (in=0;in<NDIM*NDIM;in++)
|
---|
3394 | fprintf(SigmaFile,"%e\t", Sigma[in]);
|
---|
3395 | fprintf(SigmaFile,"\n");
|
---|
3396 | fclose(SigmaFile);
|
---|
3397 | }
|
---|
3398 | // diagonalize sigma
|
---|
3399 | gsl_vector *eval = gsl_vector_alloc(NDIM);
|
---|
3400 | gsl_eigen_herm_workspace *w = gsl_eigen_herm_alloc(NDIM);
|
---|
3401 | gsl_eigen_herm(H, eval, w);
|
---|
3402 | gsl_eigen_herm_free(w);
|
---|
3403 | gsl_sort_vector(eval); // sort eigenvalues
|
---|
3404 | // print eigenvalues
|
---|
3405 | // if (P->Call.out[ValueOut]) {
|
---|
3406 | // fprintf(stderr,"(%i) diagonal shielding for Ion %i of element %s:", P->Par.me, ion, I->I[it].Name);
|
---|
3407 | // for (in=0;in<NDIM;in++)
|
---|
3408 | // fprintf(stderr,"\t%lg",gsl_vector_get(eval,in));
|
---|
3409 | // fprintf(stderr,"\n\n");
|
---|
3410 | // }
|
---|
3411 | // print eigenvalues
|
---|
3412 | iso = 0;
|
---|
3413 | for (i=0;i<NDIM;i++) {
|
---|
3414 | I->I[it].sigma[ion][i] = gsl_vector_get(eval,i);
|
---|
3415 | iso += Sigma[i+i*NDIM]/3.;
|
---|
3416 | }
|
---|
3417 | eta = (gsl_vector_get(eval,1)-gsl_vector_get(eval,0))/(gsl_vector_get(eval,2)-iso);
|
---|
3418 | delta_sigma = gsl_vector_get(eval,2) - 0.5*(gsl_vector_get(eval,0)+gsl_vector_get(eval,1));
|
---|
3419 | S = (delta_sigma*delta_sigma)*(1+1./3.*eta*eta);
|
---|
3420 | A = 0.;
|
---|
3421 | for (i=0;i<NDIM;i++) {
|
---|
3422 | in = cross(i,0);
|
---|
3423 | dex = cross(i,1);
|
---|
3424 | A += pow(-1,i)*pow(0.5*(Sigma[in+dex*NDIM]-Sigma[dex+in*NDIM]),2);
|
---|
3425 | }
|
---|
3426 | if (P->Call.out[ValueOut]) {
|
---|
3427 | fprintf(stderr,"(%i) converted to Principal Axis System\n==================\nDiagonal entries:", P->Par.me);
|
---|
3428 | for (i=0;i<NDIM;i++)
|
---|
3429 | fprintf(stderr,"\t%lg",gsl_vector_get(eval,i));
|
---|
3430 | fprintf(stderr,"\nshielding : %e\n", iso);
|
---|
3431 | fprintf(stderr,"anisotropy : %e\n", delta_sigma);
|
---|
3432 | fprintf(stderr,"asymmetry : %e\n", eta);
|
---|
3433 | fprintf(stderr,"S : %e\n", S);
|
---|
3434 | fprintf(stderr,"A : %e\n", A);
|
---|
3435 | fprintf(stderr,"==================\n");
|
---|
3436 |
|
---|
3437 | }
|
---|
3438 | gsl_vector_free(eval);
|
---|
3439 | }
|
---|
3440 | }
|
---|
3441 |
|
---|
3442 | gsl_matrix_complex_free(H);
|
---|
3443 | }
|
---|
3444 |
|
---|
3445 | /** Test if G=0-component of reciprocal current is 0.
|
---|
3446 | * In most cases we do not reach a numerical sensible zero as in MYEPSILON and remain satisfied as long
|
---|
3447 | * as the integrated current density is very small (e.g. compared to single entries in the current density array)
|
---|
3448 | * \param *P Problem at hand
|
---|
3449 | * \param *CurrentC pointer to reciprocal current density
|
---|
3450 | * \param *GArray pointer to array with G vectors
|
---|
3451 | * \param in index of current component
|
---|
3452 | * \sa TestCurrent() these two tests are equivalent and follow by fourier transformation
|
---|
3453 | */
|
---|
3454 | void TestReciprocalCurrent(struct Problem *P, const fftw_complex *CurrentC, struct OneGData *GArray, int in)
|
---|
3455 | {
|
---|
3456 | double tmp;
|
---|
3457 | tmp = sqrt(CurrentC[0].re*CurrentC[0].re+CurrentC[0].im*CurrentC[0].im);
|
---|
3458 | if ((P->Call.out[LeaderOut]) && (GArray[0].GSq < MYEPSILON)) {
|
---|
3459 | if (in % NDIM == 0) fprintf(stderr,"(%i) ",P->Par.me);
|
---|
3460 | if (tmp > MYEPSILON) {
|
---|
3461 | fprintf(stderr,"J_{%i,%i} = |%e + i%e| < %e ? (%e)\t", in / NDIM, in%NDIM, CurrentC[0].re, CurrentC[0].im, MYEPSILON, tmp - MYEPSILON);
|
---|
3462 | } else {
|
---|
3463 | fprintf(stderr,"J_{%i,%i} ok\t", in / NDIM, in%NDIM);
|
---|
3464 | }
|
---|
3465 | if (in % NDIM == (NDIM-1)) fprintf(stderr,"\n");
|
---|
3466 | }
|
---|
3467 | }
|
---|
3468 |
|
---|
3469 | /** Test if integrated current over cell is 0.
|
---|
3470 | * In most cases we do not reach a numerical sensible zero as in MYEPSILON and remain satisfied as long
|
---|
3471 | * as the integrated current density is very small (e.g. compared to single entries in the current density array)
|
---|
3472 | * \param *P Problem at hand
|
---|
3473 | * \param index index of current component
|
---|
3474 | * \sa CalculateNativeIntDens() for integration of one current tensor component
|
---|
3475 | */
|
---|
3476 | void TestCurrent(struct Problem *P, const int index)
|
---|
3477 | {
|
---|
3478 | struct RunStruct *R = &P->R;
|
---|
3479 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
3480 | struct Density *Dens0 = Lev0->Dens;
|
---|
3481 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
3482 | int in;
|
---|
3483 | double result[NDIM*NDIM], res = 0.;
|
---|
3484 |
|
---|
3485 | // set pointers onto current density array and get number of grid points in each direction
|
---|
3486 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
3487 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
3488 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
3489 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
3490 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
3491 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
3492 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
3493 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
3494 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
3495 | for(in=0;in<NDIM;in++) {
|
---|
3496 | result[in] = CalculateNativeIntDens(P,Lev0,CurrentDensity[in + NDIM*index],R->FactorDensityR);
|
---|
3497 | res += pow(result[in],2.);
|
---|
3498 | }
|
---|
3499 | res = sqrt(res);
|
---|
3500 | // if greater than 0, complain about it
|
---|
3501 | if ((res > MYEPSILON) && (P->Call.out[LeaderOut]))
|
---|
3502 | fprintf(stderr, "(%i) \\int_\\Omega d^3 r j_%i(r) = (%e,%e,%e), %e > %e!\n",P->Par.me, index, result[0], result[1], result[2], res, MYEPSILON);
|
---|
3503 | }
|
---|
3504 |
|
---|
3505 | /** Testing whether re<->im switches (due to symmetry) confuses fft.
|
---|
3506 | * \param *P Problem at hand
|
---|
3507 | * \param l local wave function number
|
---|
3508 | */
|
---|
3509 | void test_fft_symmetry(struct Problem *P, const int l)
|
---|
3510 | {
|
---|
3511 | struct Lattice *Lat = &P->Lat;
|
---|
3512 | struct RunStruct *R = &P->R;
|
---|
3513 | struct LatticeLevel *LevS = R->LevS;
|
---|
3514 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
3515 | struct Density *Dens0 = Lev0->Dens;
|
---|
3516 | struct fft_plan_3d *plan = Lat->plan;
|
---|
3517 | fftw_complex *tempdestRC = (fftw_complex *)Dens0->DensityCArray[Temp2Density];
|
---|
3518 | fftw_complex *work = Dens0->DensityCArray[TempDensity];
|
---|
3519 | fftw_complex *workC = (fftw_complex *)Dens0->DensityArray[TempDensity];
|
---|
3520 | fftw_complex *posfac, *destpos, *destRCS, *destRCD;
|
---|
3521 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
3522 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
3523 | fftw_complex *Psi0 = LevS->LPsi->LocalPsi[l];
|
---|
3524 | fftw_complex *dest = LevS->LPsi->TempPsi;
|
---|
3525 | fftw_real *Psi0R = (fftw_real *)Dens0->DensityArray[Temp2Density];
|
---|
3526 | int i,Index, pos, i0, iS,g; //, NoOfPsis = Psi->TypeStartIndex[UnOccupied] - Psi->TypeStartIndex[Occupied];
|
---|
3527 | int n[NDIM], n0;
|
---|
3528 | const int N0 = LevS->Plan0.plan->local_nx; // we don't want to build global density, but local
|
---|
3529 | int N[NDIM], NUp[NDIM];
|
---|
3530 | N[0] = LevS->Plan0.plan->N[0];
|
---|
3531 | N[1] = LevS->Plan0.plan->N[1];
|
---|
3532 | N[2] = LevS->Plan0.plan->N[2];
|
---|
3533 | NUp[0] = LevS->NUp[0];
|
---|
3534 | NUp[1] = LevS->NUp[1];
|
---|
3535 | NUp[2] = LevS->NUp[2];
|
---|
3536 | //const int k_normal = Lat->Psi.TypeStartIndex[Occupied] + (l - Lat->Psi.TypeStartIndex[R->CurrentMin]);
|
---|
3537 | //const double *Wcentre = Lat->Psi.AddData[k_normal].WannierCentre;
|
---|
3538 | //double x[NDIM], fac[NDIM];
|
---|
3539 | double result1=0., result2=0., result3=0., result4=0.;
|
---|
3540 | double Result1=0., Result2=0., Result3=0., Result4=0.;
|
---|
3541 | const double HGcRCFactor = 1./LevS->MaxN; // factor for inverse fft
|
---|
3542 |
|
---|
3543 |
|
---|
3544 | // fft to real space
|
---|
3545 | SetArrayToDouble0((double *)tempdestRC, Dens0->TotalSize*2);
|
---|
3546 | SetArrayToDouble0((double *)PsiC, Dens0->TotalSize*2);
|
---|
3547 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is positive
|
---|
3548 | Index = LevS->GArray[i].Index;
|
---|
3549 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
3550 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
3551 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
3552 | destpos[pos].re = (Psi0[i].re)*posfac[pos].re-(Psi0[i].im)*posfac[pos].im;
|
---|
3553 | destpos[pos].im = (Psi0[i].re)*posfac[pos].im+(Psi0[i].im)*posfac[pos].re;
|
---|
3554 | //destpos[pos].re = (Psi0[i].im)*posfac[pos].re-(-Psi0[i].re)*posfac[pos].im;
|
---|
3555 | //destpos[pos].im = (Psi0[i].im)*posfac[pos].im+(-Psi0[i].re)*posfac[pos].re;
|
---|
3556 | }
|
---|
3557 | }
|
---|
3558 | for (i=0; i<LevS->MaxDoubleG; i++) {
|
---|
3559 | destRCS = &tempdestRC[LevS->DoubleG[2*i]*LevS->MaxNUp];
|
---|
3560 | destRCD = &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp];
|
---|
3561 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
3562 | destRCD[pos].re = destRCS[pos].re;
|
---|
3563 | destRCD[pos].im = -destRCS[pos].im;
|
---|
3564 | }
|
---|
3565 | }
|
---|
3566 | fft_3d_complex_to_real(plan, LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
3567 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC, Psi0R);
|
---|
3568 |
|
---|
3569 | // apply position operator and do first result
|
---|
3570 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
3571 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
3572 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
3573 | n[0]=n0 + LevS->Plan0.plan->start_nx; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
|
---|
3574 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
3575 | iS = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
3576 | //x[0] += 1; // shifting expectation value of x coordinate from 0 to 1
|
---|
3577 | PsiCR[iS] = Psi0R[i0]; // truedist(Lat, x[0], Wcentre[0],0) *
|
---|
3578 | result1 += PsiCR[iS] * Psi0R[i0];
|
---|
3579 | }
|
---|
3580 | result1 /= LevS->MaxN; // factor due to discrete integration
|
---|
3581 | MPI_Allreduce ( &result1, &Result1, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
3582 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) 1st result: %e\n",P->Par.me, Result1);
|
---|
3583 |
|
---|
3584 | // fft to reciprocal space and do second result
|
---|
3585 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
3586 | SetArrayToDouble0((double *)dest, 2*R->InitLevS->MaxG);
|
---|
3587 | for (g=0; g < LevS->MaxG; g++) {
|
---|
3588 | Index = LevS->GArray[g].Index;
|
---|
3589 | dest[g].re = (Psi0[Index].re)*HGcRCFactor;
|
---|
3590 | dest[g].im = (Psi0[Index].im)*HGcRCFactor;
|
---|
3591 | }
|
---|
3592 | result2 = GradSP(P,LevS,Psi0,dest);
|
---|
3593 | MPI_Allreduce ( &result2, &Result2, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
3594 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) 2nd result: %e\n",P->Par.me, Result2);
|
---|
3595 |
|
---|
3596 | // fft again to real space, this time change symmetry
|
---|
3597 | SetArrayToDouble0((double *)tempdestRC, Dens0->TotalSize*2);
|
---|
3598 | SetArrayToDouble0((double *)PsiC, Dens0->TotalSize*2);
|
---|
3599 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is positive
|
---|
3600 | Index = LevS->GArray[i].Index;
|
---|
3601 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
3602 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
3603 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
3604 | destpos[pos].re = (Psi0[i].im)*posfac[pos].re-(-Psi0[i].re)*posfac[pos].im;
|
---|
3605 | destpos[pos].im = (Psi0[i].im)*posfac[pos].im+(-Psi0[i].re)*posfac[pos].re;
|
---|
3606 | }
|
---|
3607 | }
|
---|
3608 | for (i=0; i<LevS->MaxDoubleG; i++) {
|
---|
3609 | destRCS = &tempdestRC[LevS->DoubleG[2*i]*LevS->MaxNUp];
|
---|
3610 | destRCD = &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp];
|
---|
3611 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
3612 | destRCD[pos].re = destRCS[pos].re;
|
---|
3613 | destRCD[pos].im = -destRCS[pos].im;
|
---|
3614 | }
|
---|
3615 | }
|
---|
3616 | fft_3d_complex_to_real(plan, LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
3617 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC, Psi0R);
|
---|
3618 |
|
---|
3619 | // bring down from Lev0 to LevS
|
---|
3620 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
3621 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
3622 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
3623 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
3624 | iS = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
3625 | PsiCR[iS] = Psi0R[i0]; // truedist(Lat, x[0], Wcentre[0],0) *
|
---|
3626 | result3 += PsiCR[iS] * Psi0R[i0];
|
---|
3627 | }
|
---|
3628 | result3 /= LevS->MaxN; // factor due to discrete integration
|
---|
3629 | MPI_Allreduce ( &result3, &Result3, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
3630 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) 3rd result: %e\n",P->Par.me, Result3);
|
---|
3631 |
|
---|
3632 | // fft back to reciprocal space, change symmetry back and do third result
|
---|
3633 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
3634 | SetArrayToDouble0((double *)dest, 2*R->InitLevS->MaxG);
|
---|
3635 | for (g=0; g < LevS->MaxG; g++) {
|
---|
3636 | Index = LevS->GArray[g].Index;
|
---|
3637 | dest[g].re = (-PsiC[Index].im)*HGcRCFactor;
|
---|
3638 | dest[g].im = ( PsiC[Index].re)*HGcRCFactor;
|
---|
3639 | }
|
---|
3640 | result4 = GradSP(P,LevS,Psi0,dest);
|
---|
3641 | MPI_Allreduce ( &result4, &Result4, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
3642 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) 4th result: %e\n",P->Par.me, Result4);
|
---|
3643 | }
|
---|
3644 |
|
---|
3645 |
|
---|
3646 | /** Test function to check RxP application.
|
---|
3647 | * Checks applied solution to an analytic for a specific and simple wave function -
|
---|
3648 | * where just one coefficient is unequal to zero.
|
---|
3649 | * \param *P Problem at hand
|
---|
3650 | exp(I b G) - I exp(I b G) b G - exp(I a G) + I exp(I a G) a G
|
---|
3651 | -------------------------------------------------------------
|
---|
3652 | 2
|
---|
3653 | G
|
---|
3654 | */
|
---|
3655 | void test_rxp(struct Problem *P)
|
---|
3656 | {
|
---|
3657 | struct RunStruct *R = &P->R;
|
---|
3658 | struct Lattice *Lat = &P->Lat;
|
---|
3659 | //struct LatticeLevel *Lev0 = R->Lev0;
|
---|
3660 | struct LatticeLevel *LevS = R->LevS;
|
---|
3661 | struct OneGData *GA = LevS->GArray;
|
---|
3662 | //struct Density *Dens0 = Lev0->Dens;
|
---|
3663 | fftw_complex *Psi0 = LevS->LPsi->TempPsi;
|
---|
3664 | fftw_complex *Psi2 = P->Grad.GradientArray[GraSchGradient];
|
---|
3665 | fftw_complex *Psi3 = LevS->LPsi->TempPsi2;
|
---|
3666 | int g, g_bar, i, j, k, k_normal = 0;
|
---|
3667 | double tmp, a,b, G;
|
---|
3668 | //const double *Wcentre = Lat->Psi.AddData[k_normal].WannierCentre;
|
---|
3669 | const double discrete_factor = 1.;//Lat->Volume/LevS->MaxN;
|
---|
3670 | fftw_complex integral;
|
---|
3671 |
|
---|
3672 | // reset coefficients
|
---|
3673 | debug (P,"Creating RxP test function.");
|
---|
3674 | SetArrayToDouble0((double *)Psi0,2*R->InitLevS->MaxG);
|
---|
3675 | SetArrayToDouble0((double *)Psi2,2*R->InitLevS->MaxG);
|
---|
3676 |
|
---|
3677 | // pick one which becomes non-zero
|
---|
3678 | g = 3;
|
---|
3679 |
|
---|
3680 | //for (g=0;g<LevS->MaxG;g++) {
|
---|
3681 | Psi0[g].re = 1.;
|
---|
3682 | Psi0[g].im = 0.;
|
---|
3683 | //}
|
---|
3684 | fprintf(stderr,"(%i) G[%i] = (%e,%e,%e) \n",P->Par.me, g, GA[g].G[0], GA[g].G[1], GA[g].G[2]);
|
---|
3685 | i = 0;
|
---|
3686 |
|
---|
3687 | // calculate analytic result
|
---|
3688 | debug (P,"Calculating analytic solution.");
|
---|
3689 | for (g_bar=0;g_bar<LevS->MaxG;g_bar++) {
|
---|
3690 | for (g=0;g<LevS->MaxG;g++) {
|
---|
3691 | if (GA[g].G[i] == GA[g_bar].G[i]) {
|
---|
3692 | j = cross(i,0);
|
---|
3693 | k = cross(i,1);
|
---|
3694 | if (GA[g].G[k] == GA[g_bar].G[k]) {
|
---|
3695 | //b = truedist(Lat, sqrt(Lat->RealBasisSQ[j]), Wcentre[j], j);
|
---|
3696 | b = sqrt(Lat->RealBasisSQ[j]);
|
---|
3697 | //a = truedist(Lat, 0., Wcentre[j], j);
|
---|
3698 | a = 0.;
|
---|
3699 | G = 1; //GA[g].G[k];
|
---|
3700 | if (GA[g].G[j] == GA[g_bar].G[j]) {
|
---|
3701 | Psi2[g_bar].re += G*Psi0[g].re * (.5 * b * b - .5 * a * a) * discrete_factor;
|
---|
3702 | Psi2[g_bar].im += G*Psi0[g].im * (.5 * b * b - .5 * a * a) * discrete_factor;
|
---|
3703 | //if ((G != 0) && ((fabs(Psi0[g].re) > MYEPSILON) || (fabs(Psi0[g].im) > MYEPSILON)))
|
---|
3704 | //fprintf(stderr,"(%i) Psi[%i].re += %e +i %e\n",P->Par.me, g_bar, G*Psi0[g].re * (.5 * b * b - .5 * a * a) * discrete_factor, G*Psi0[g].im * (.5 * b * b - .5 * a * a) * discrete_factor);
|
---|
3705 | } else {
|
---|
3706 | tmp = GA[g].G[j]-GA[g_bar].G[j];
|
---|
3707 | integral.re = (cos(tmp*b)+sin(tmp*b)*b*tmp - cos(tmp*a)-sin(tmp*a)*a*tmp) / (tmp * tmp);
|
---|
3708 | integral.im = (sin(tmp*b)-cos(tmp*b)*b*tmp - sin(tmp*a)+cos(tmp*a)*a*tmp) / (tmp * tmp);
|
---|
3709 | Psi2[g_bar].re += G*(Psi0[g].re*integral.re - Psi0[g].im*integral.im) * discrete_factor;
|
---|
3710 | Psi2[g_bar].im += G*(Psi0[g].re*integral.im + Psi0[g].im*integral.re) * discrete_factor;
|
---|
3711 | //if ((G != 0) && ((fabs(Psi0[g].re) > MYEPSILON) || (fabs(Psi0[g].im) > MYEPSILON)))
|
---|
3712 | //fprintf(stderr,"(%i) Psi[%i].re += %e\tPsi[%i].im += %e \n",P->Par.me, g_bar, G*(Psi0[g].re*integral.re - Psi0[g].im*integral.im) * discrete_factor, g_bar, G*(Psi0[g].re*integral.im + Psi0[g].im*integral.re) * discrete_factor);
|
---|
3713 | }
|
---|
3714 | }
|
---|
3715 | j = cross(i,2);
|
---|
3716 | k = cross(i,3);
|
---|
3717 | if (GA[g].G[k] == GA[g_bar].G[k]) {
|
---|
3718 | //b = truedist(Lat, sqrt(Lat->RealBasisSQ[j]), Wcentre[j], j);
|
---|
3719 | b = sqrt(Lat->RealBasisSQ[j]);
|
---|
3720 | //a = truedist(Lat, 0., Wcentre[j], j);
|
---|
3721 | a = 0.;
|
---|
3722 | G = 1; //GA[g].G[k];
|
---|
3723 | if (GA[g].G[j] == GA[g_bar].G[j]) {
|
---|
3724 | Psi2[g_bar].re += G*Psi0[g].re * (.5 * b * b - .5 * a * a) * discrete_factor;
|
---|
3725 | Psi2[g_bar].im += G*Psi0[g].im * (.5 * b * b - .5 * a * a) * discrete_factor;
|
---|
3726 | //if ((G != 0) && ((fabs(Psi0[g].re) > MYEPSILON) || (fabs(Psi0[g].im) > MYEPSILON)))
|
---|
3727 | //fprintf(stderr,"(%i) Psi[%i].re += %e +i %e\n",P->Par.me, g_bar, G*Psi0[g].re * (.5 * b * b - .5 * a * a) * discrete_factor, G*Psi0[g].im * (.5 * b * b - .5 * a * a) * discrete_factor);
|
---|
3728 | } else {
|
---|
3729 | tmp = GA[g].G[j]-GA[g_bar].G[j];
|
---|
3730 | integral.re = (cos(tmp*b)+sin(tmp*b)*b*tmp - cos(tmp*a)-sin(tmp*a)*a*tmp) / (tmp * tmp);
|
---|
3731 | integral.im = (sin(tmp*b)-cos(tmp*b)*b*tmp - sin(tmp*a)+cos(tmp*a)*a*tmp) / (tmp * tmp);
|
---|
3732 | Psi2[g_bar].re += G*(Psi0[g].re*integral.re - Psi0[g].im*integral.im) * discrete_factor;
|
---|
3733 | Psi2[g_bar].im += G*(Psi0[g].re*integral.im + Psi0[g].im*integral.re) * discrete_factor;
|
---|
3734 | //if ((G != 0) && ((fabs(Psi0[g].re) > MYEPSILON) || (fabs(Psi0[g].im) > MYEPSILON)))
|
---|
3735 | //fprintf(stderr,"(%i) Psi[%i].re += %e\tPsi[%i].im += %e \n",P->Par.me, g_bar, G*(Psi0[g].re*integral.re - Psi0[g].im*integral.im) * discrete_factor, g_bar, G*(Psi0[g].re*integral.im + Psi0[g].im*integral.re) * discrete_factor);
|
---|
3736 | }
|
---|
3737 | }
|
---|
3738 | }
|
---|
3739 | }
|
---|
3740 | }
|
---|
3741 |
|
---|
3742 | // apply rxp
|
---|
3743 | debug (P,"Applying RxP to test function.");
|
---|
3744 | CalculatePerturbationOperator_RxP(P,Psi0,Psi3,k_normal,i);
|
---|
3745 |
|
---|
3746 | // compare both coefficient arrays
|
---|
3747 | debug(P,"Beginning comparison of analytic and Rxp applied solution.");
|
---|
3748 | for (g=0;g<LevS->MaxG;g++) {
|
---|
3749 | if ((fabs(Psi3[g].re-Psi2[g].re) >= MYEPSILON) || (fabs(Psi3[g].im-Psi2[g].im) >= MYEPSILON))
|
---|
3750 | fprintf(stderr,"(%i) Psi3[%i] = %e +i %e != Psi2[%i] = %e +i %e\n",P->Par.me, g, Psi3[g].re, Psi3[g].im, g, Psi2[g].re, Psi2[g].im);
|
---|
3751 | //else
|
---|
3752 | //fprintf(stderr,"(%i) Psi1[%i] == Psi2[%i] = %e +i %e\n",P->Par.me, g, g, Psi1[g].re, Psi1[g].im);
|
---|
3753 | }
|
---|
3754 | fprintf(stderr,"(%i) <0|1> = <0|r|0> == %e +i %e\n",P->Par.me, GradSP(P,LevS,Psi0,Psi3), GradImSP(P,LevS,Psi0,Psi3));
|
---|
3755 | fprintf(stderr,"(%i) <1|1> = |r|ᅵ == %e +i %e\n",P->Par.me, GradSP(P,LevS,Psi3,Psi3), GradImSP(P,LevS,Psi3,Psi3));
|
---|
3756 | fprintf(stderr,"(%i) <0|0> = %e +i %e\n",P->Par.me, GradSP(P,LevS,Psi0,Psi0), GradImSP(P,LevS,Psi0,Psi0));
|
---|
3757 | fprintf(stderr,"(%i) <0|2> = %e +i %e\n",P->Par.me, GradSP(P,LevS,Psi0,Psi2), GradImSP(P,LevS,Psi0,Psi2));
|
---|
3758 | }
|
---|
3759 |
|
---|
3760 |
|
---|
3761 | /** Output of a (X,Y,DX,DY) 2d-vector plot.
|
---|
3762 | * For a printable representation of the induced current two-dimensional vector plots are useful, as three-dimensional
|
---|
3763 | * isospheres are sometimes mis-leading or do not represent the desired flow direction. The routine simply extracts a
|
---|
3764 | * two-dimensional cut orthogonal to one of the lattice axis at a certain node.
|
---|
3765 | * \param *P Problem at hand
|
---|
3766 | * \param B_index direction of B field
|
---|
3767 | * \param n_orth grid node in B_index direction of the plane (the order in which the remaining two coordinate axis
|
---|
3768 | * appear is the same as in a cross product, which is used to determine orthogonality)
|
---|
3769 | */
|
---|
3770 | void PlotVectorPlane(struct Problem *P, int B_index, int n_orth)
|
---|
3771 | {
|
---|
3772 | struct RunStruct *R = &P->R;
|
---|
3773 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
3774 | struct Density *Dens0 = Lev0->Dens;
|
---|
3775 | char filename[255];
|
---|
3776 | char *suchpointer;
|
---|
3777 | FILE *PlotFile = NULL;
|
---|
3778 | const int myPE = P->Par.me_comm_ST;
|
---|
3779 | time_t seconds;
|
---|
3780 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
3781 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
3782 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
3783 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
3784 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
3785 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
3786 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
3787 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
3788 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
3789 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
3790 | time(&seconds); // get current time
|
---|
3791 |
|
---|
3792 | if (!myPE) { // only process 0 writes to file
|
---|
3793 | // open file
|
---|
3794 | sprintf(&filename[0], ".current.L%i.csv", Lev0->LevelNo);
|
---|
3795 | OpenFile(P, &PlotFile, filename, "w", P->Call.out[ReadOut]);
|
---|
3796 | strcpy(filename, ctime(&seconds));
|
---|
3797 | suchpointer = strchr(filename, '\n');
|
---|
3798 | if (suchpointer != NULL)
|
---|
3799 | *suchpointer = '\0';
|
---|
3800 | if (PlotFile != NULL) {
|
---|
3801 | fprintf(PlotFile,"# current vector plot of plane perpendicular to direction e_%i at node %i, seed %i, config %s, run on %s, #cpus %i", B_index, n_orth, R->Seed, P->Files.default_path, filename, P->Par.Max_me_comm_ST_Psi);
|
---|
3802 | fprintf(PlotFile,"\n");
|
---|
3803 | } else { Error(SomeError, "PlotVectorPlane: Opening Plot File"); }
|
---|
3804 | }
|
---|
3805 |
|
---|
3806 | // plot density
|
---|
3807 | if (!P->Par.me_comm_ST_PsiT) // only first wave function group as current density of all psis was gathered
|
---|
3808 | PlotRealDensity(P, Lev0, PlotFile, B_index, n_orth, CurrentDensity[B_index*NDIM+cross(B_index,0)], CurrentDensity[B_index*NDIM+cross(B_index,1)]);
|
---|
3809 |
|
---|
3810 | if (PlotFile != NULL) {
|
---|
3811 | // close file
|
---|
3812 | fclose(PlotFile);
|
---|
3813 | }
|
---|
3814 | }
|
---|
3815 |
|
---|
3816 |
|
---|
3817 | /** Reads psi coefficients of \a type from file and transforms to new level.
|
---|
3818 | * \param *P Problem at hand
|
---|
3819 | * \param type PsiTypeTag of which minimisation group to load from file
|
---|
3820 | * \sa ReadSrcPsiDensity() - reading the coefficients, ChangePsiAndDensToLevUp() - transformation to upper level
|
---|
3821 | */
|
---|
3822 | void ReadSrcPerturbedPsis(struct Problem *P, enum PsiTypeTag type)
|
---|
3823 | {
|
---|
3824 | struct RunStruct *R = &P->R;
|
---|
3825 | struct Lattice *Lat = &P->Lat;
|
---|
3826 | struct LatticeLevel *Lev0 = &P->Lat.Lev[R->Lev0No+1]; // one level higher than current (ChangeLevUp already occurred)
|
---|
3827 | struct LatticeLevel *LevS = &P->Lat.Lev[R->LevSNo+1];
|
---|
3828 | struct Density *Dens = Lev0->Dens;
|
---|
3829 | struct Psis *Psi = &Lat->Psi;
|
---|
3830 | struct fft_plan_3d *plan = Lat->plan;
|
---|
3831 | fftw_complex *work = (fftw_complex *)Dens->DensityCArray[TempDensity];
|
---|
3832 | fftw_complex *tempdestRC = (fftw_complex *)Dens->DensityArray[TempDensity];
|
---|
3833 | fftw_complex *posfac, *destpos, *destRCS, *destRCD;
|
---|
3834 | fftw_complex *source, *source0;
|
---|
3835 | int Index,i,pos;
|
---|
3836 | double factorC = 1./Lev0->MaxN;
|
---|
3837 | int p,g;
|
---|
3838 |
|
---|
3839 | // ================= read coefficients from file to LocalPsi ============
|
---|
3840 | ReadSrcPsiDensity(P, type, 0, R->LevSNo+1);
|
---|
3841 |
|
---|
3842 | // ================= transform to upper level ===========================
|
---|
3843 | // for all local Psis do the usual transformation (completing coefficients for all grid vectors, fft, permutation)
|
---|
3844 | LockDensityArray(Dens, TempDensity, real);
|
---|
3845 | LockDensityArray(Dens, TempDensity, imag);
|
---|
3846 | for (p=Psi->LocalNo-1; p >= 0; p--)
|
---|
3847 | if (Psi->LocalPsiStatus[p].PsiType == type) { // only for the desired type
|
---|
3848 | source = LevS->LPsi->LocalPsi[p];
|
---|
3849 | source0 = Lev0->LPsi->LocalPsi[p];
|
---|
3850 | //fprintf(stderr,"(%i) ReadSrcPerturbedPsis: LevSNo %i\t Lev0No %i\tp %i\t source %p\t source0 %p\n", P->Par.me, LevS->LevelNo, Lev0->LevelNo, p, source, source0);
|
---|
3851 | SetArrayToDouble0((double *)tempdestRC, Dens->TotalSize*2);
|
---|
3852 | for (i=0;i<LevS->MaxG;i++) {
|
---|
3853 | Index = LevS->GArray[i].Index;
|
---|
3854 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
3855 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
3856 | //if (isnan(source[i].re)) { fprintf(stderr,"(%i) WARNING in ReadSrcPerturbedPsis(): source_%i[%i] = NaN!\n", P->Par.me, p, i); Error(SomeError, "NaN-Fehler!"); }
|
---|
3857 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
3858 | destpos[pos].re = source[i].re*posfac[pos].re-source[i].im*posfac[pos].im;
|
---|
3859 | destpos[pos].im = source[i].re*posfac[pos].im+source[i].im*posfac[pos].re;
|
---|
3860 | }
|
---|
3861 | }
|
---|
3862 | for (i=0; i<LevS->MaxDoubleG; i++) {
|
---|
3863 | destRCS = &tempdestRC[LevS->DoubleG[2*i]*LevS->MaxNUp];
|
---|
3864 | destRCD = &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp];
|
---|
3865 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
3866 | destRCD[pos].re = destRCS[pos].re;
|
---|
3867 | destRCD[pos].im = -destRCS[pos].im;
|
---|
3868 | }
|
---|
3869 | }
|
---|
3870 | fft_3d_complex_to_real(plan, LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
3871 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC,(fftw_real *)Dens->DensityCArray[ActualPsiDensity]);
|
---|
3872 | // now we have density in the upper level, fft back to complex and store it as wave function coefficients
|
---|
3873 | fft_3d_real_to_complex(plan, Lev0->LevelNo, FFTNF1, Dens->DensityCArray[ActualPsiDensity], work);
|
---|
3874 | for (g=0; g < Lev0->MaxG; g++) {
|
---|
3875 | Index = Lev0->GArray[g].Index;
|
---|
3876 | source0[g].re = Dens->DensityCArray[ActualPsiDensity][Index].re*factorC;
|
---|
3877 | source0[g].im = Dens->DensityCArray[ActualPsiDensity][Index].im*factorC;
|
---|
3878 | //if (isnan(source0[g].re)) { fprintf(stderr,"(%i) WARNING in ReadSrcPerturbedPsis(): source0_%i[%i] = NaN!\n", P->Par.me, p, g); Error(SomeError, "NaN-Fehler!"); }
|
---|
3879 | }
|
---|
3880 | if (Lev0->GArray[0].GSq == 0.0)
|
---|
3881 | source0[g].im = 0.0;
|
---|
3882 | }
|
---|
3883 | UnLockDensityArray(Dens, TempDensity, real);
|
---|
3884 | UnLockDensityArray(Dens, TempDensity, imag);
|
---|
3885 | // finished.
|
---|
3886 | }
|
---|
3887 |
|
---|
3888 | /** evaluates perturbed energy functional
|
---|
3889 | * \param norm norm of current Psi in functional
|
---|
3890 | * \param *params void-pointer to parameter array
|
---|
3891 | * \return evaluated functional at f(x) with \a norm
|
---|
3892 | */
|
---|
3893 | double perturbed_function (double norm, void *params) {
|
---|
3894 | struct Problem *P = (struct Problem *)params;
|
---|
3895 | int i, n = P->R.LevS->MaxG;
|
---|
3896 | double old_norm = GramSchGetNorm2(P,P->R.LevS,P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo]);
|
---|
3897 | fftw_complex *currentPsi = P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo];
|
---|
3898 | fprintf(stderr,"(%i) perturbed_function: setting norm to %lg ...", P->Par.me, norm);
|
---|
3899 | // set desired norm for current Psi
|
---|
3900 | for (i=0; i< n; i++) {
|
---|
3901 | currentPsi[i].re *= norm/old_norm; // real part
|
---|
3902 | currentPsi[i].im *= norm/old_norm; // imaginary part
|
---|
3903 | }
|
---|
3904 | P->R.PsiStep = 0; // make it not advance to next Psi
|
---|
3905 |
|
---|
3906 | //debug(P,"UpdateActualPsiNo");
|
---|
3907 | UpdateActualPsiNo(P, P->R.CurrentMin); // orthogonalize
|
---|
3908 | //debug(P,"UpdateEnergyArray");
|
---|
3909 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
3910 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
3911 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
3912 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
3913 | /*
|
---|
3914 | for (i=0; i< n; i++) {
|
---|
3915 | currentPsi[i].re /= norm/old_norm; // real part
|
---|
3916 | currentPsi[i].im /= norm/old_norm; // imaginary part
|
---|
3917 | }*/
|
---|
3918 |
|
---|
3919 | fprintf(stderr,"%lg\n", P->Lat.E->TotalEnergy[0]);
|
---|
3920 | return P->Lat.E->TotalEnergy[0]; // and return evaluated functional
|
---|
3921 | }
|
---|
3922 |
|
---|
3923 | /** evaluates perturbed energy functional.
|
---|
3924 | * \param *x current position in functional
|
---|
3925 | * \param *params void-pointer to parameter array
|
---|
3926 | * \return evaluated functional at f(x)
|
---|
3927 | */
|
---|
3928 | double perturbed_f (const gsl_vector *x, void *params) {
|
---|
3929 | struct Problem *P = (struct Problem *)params;
|
---|
3930 | int i, n = P->R.LevS->MaxG*2;
|
---|
3931 | fftw_complex *currentPsi = P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo];
|
---|
3932 | //int diff = 0;
|
---|
3933 | //debug(P,"f");
|
---|
3934 | // put x into current Psi
|
---|
3935 | for (i=0; i< n; i+=2) {
|
---|
3936 | //if ((currentPsi[i/2].re != gsl_vector_get (x, i)) || (currentPsi[i/2].im != gsl_vector_get (x, i+1))) diff++;
|
---|
3937 | currentPsi[i/2].re = gsl_vector_get (x, i); // real part
|
---|
3938 | currentPsi[i/2].im = gsl_vector_get (x, i+1); // imaginary part
|
---|
3939 | }
|
---|
3940 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new currentPsi.\n", P->Par.me, diff);
|
---|
3941 | P->R.PsiStep = 0; // make it not advance to next Psi
|
---|
3942 |
|
---|
3943 | //debug(P,"UpdateActualPsiNo");
|
---|
3944 | UpdateActualPsiNo(P, P->R.CurrentMin); // orthogonalize
|
---|
3945 | //debug(P,"UpdateEnergyArray");
|
---|
3946 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
3947 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
3948 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
3949 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
3950 |
|
---|
3951 | return P->Lat.E->TotalEnergy[0]; // and return evaluated functional
|
---|
3952 | }
|
---|
3953 |
|
---|
3954 | /** evaluates perturbed energy gradient.
|
---|
3955 | * \param *x current position in functional
|
---|
3956 | * \param *params void-pointer to parameter array
|
---|
3957 | * \param *g array for gradient vector on return
|
---|
3958 | */
|
---|
3959 | void perturbed_df (const gsl_vector *x, void *params, gsl_vector *g) {
|
---|
3960 | struct Problem *P = (struct Problem *)params;
|
---|
3961 | int i, n = P->R.LevS->MaxG*2;
|
---|
3962 | fftw_complex *currentPsi = P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo];
|
---|
3963 | fftw_complex *gradient = P->Grad.GradientArray[ActualGradient];
|
---|
3964 | //int diff = 0;
|
---|
3965 | //debug(P,"df");
|
---|
3966 | // put x into current Psi
|
---|
3967 | for (i=0; i< n; i+=2) {
|
---|
3968 | //if ((currentPsi[i/2].re != gsl_vector_get (x, i)) || (currentPsi[i/2].im != gsl_vector_get (x, i+1))) diff++;
|
---|
3969 | currentPsi[i/2].re = gsl_vector_get (x, i); // real part
|
---|
3970 | currentPsi[i/2].im = gsl_vector_get (x, i+1); // imaginary part
|
---|
3971 | }
|
---|
3972 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new currentPsi.\n", P->Par.me, diff);
|
---|
3973 | P->R.PsiStep = 0; // make it not advance to next Psi
|
---|
3974 |
|
---|
3975 | //debug(P,"UpdateActualPsiNo");
|
---|
3976 | UpdateActualPsiNo(P, P->R.CurrentMin); // orthogonalize
|
---|
3977 | //debug(P,"UpdateEnergyArray");
|
---|
3978 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
3979 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
3980 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
3981 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
3982 |
|
---|
3983 | // checkout gradient
|
---|
3984 | //diff = 0;
|
---|
3985 | for (i=0; i< n; i+=2) {
|
---|
3986 | //if ((-gradient[i/2].re != gsl_vector_get (g, i)) || (-gradient[i/2].im != gsl_vector_get (g, i+1))) diff++;
|
---|
3987 | gsl_vector_set (g, i, -gradient[i/2].re); // real part
|
---|
3988 | gsl_vector_set (g, i+1, -gradient[i/2].im); // imaginary part
|
---|
3989 | }
|
---|
3990 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new gradient.\n", P->Par.me, diff);
|
---|
3991 | }
|
---|
3992 |
|
---|
3993 | /** evaluates perturbed energy functional and gradient.
|
---|
3994 | * \param *x current position in functional
|
---|
3995 | * \param *params void-pointer to parameter array
|
---|
3996 | * \param *f pointer to energy function value on return
|
---|
3997 | * \param *g array for gradient vector on return
|
---|
3998 | */
|
---|
3999 | void perturbed_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *g) {
|
---|
4000 | struct Problem *P = (struct Problem *)params;
|
---|
4001 | int i, n = P->R.LevS->MaxG*2;
|
---|
4002 | fftw_complex *currentPsi = P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo];
|
---|
4003 | fftw_complex *gradient = P->Grad.GradientArray[ActualGradient];
|
---|
4004 | //int diff = 0;
|
---|
4005 | //debug(P,"fdf");
|
---|
4006 | // put x into current Psi
|
---|
4007 | for (i=0; i< n; i+=2) {
|
---|
4008 | //if ((currentPsi[i/2].re != gsl_vector_get (x, i)) || (currentPsi[i/2].im != gsl_vector_get (x, i+1))) diff++;
|
---|
4009 | currentPsi[i/2].re = gsl_vector_get (x, i); // real part
|
---|
4010 | currentPsi[i/2].im = gsl_vector_get (x, i+1); // imaginary part
|
---|
4011 | }
|
---|
4012 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new currentPsi.\n", P->Par.me, diff);
|
---|
4013 | P->R.PsiStep = 0; // make it not advance to next Psi
|
---|
4014 |
|
---|
4015 | //debug(P,"UpdateActualPsiNo");
|
---|
4016 | UpdateActualPsiNo(P, P->R.CurrentMin); // orthogonalize
|
---|
4017 | //debug(P,"UpdateEnergyArray");
|
---|
4018 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
4019 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
4020 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
4021 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
4022 |
|
---|
4023 | // checkout gradient
|
---|
4024 | //diff = 0;
|
---|
4025 | for (i=0; i< n; i+=2) {
|
---|
4026 | //if ((-gradient[i/2].re != gsl_vector_get (g, i)) || (-gradient[i/2].im != gsl_vector_get (g, i+1))) diff++;
|
---|
4027 | gsl_vector_set (g, i, -gradient[i/2].re); // real part
|
---|
4028 | gsl_vector_set (g, i+1, -gradient[i/2].im); // imaginary part
|
---|
4029 | }
|
---|
4030 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new gradient.\n", P->Par.me, diff);
|
---|
4031 |
|
---|
4032 | *f = P->Lat.E->TotalEnergy[0]; // and return evaluated functional
|
---|
4033 | }
|
---|
4034 |
|
---|
4035 | /* MinimisePerturbed with all the brent minimisation approach
|
---|
4036 | void MinimisePerturbed (struct Problem *P, int *Stop, int *SuperStop) {
|
---|
4037 | struct RunStruct *R = &P->R;
|
---|
4038 | struct Lattice *Lat = &P->Lat;
|
---|
4039 | struct Psis *Psi = &Lat->Psi;
|
---|
4040 | int type;
|
---|
4041 | //int i;
|
---|
4042 |
|
---|
4043 | // stuff for GSL minimization
|
---|
4044 | //size_t iter;
|
---|
4045 | //int status, Status
|
---|
4046 | int n = R->LevS->MaxG*2;
|
---|
4047 | const gsl_multimin_fdfminimizer_type *T_multi;
|
---|
4048 | const gsl_min_fminimizer_type *T;
|
---|
4049 | gsl_multimin_fdfminimizer *s_multi;
|
---|
4050 | gsl_min_fminimizer *s;
|
---|
4051 | gsl_vector *x;//, *ss;
|
---|
4052 | gsl_multimin_function_fdf my_func;
|
---|
4053 | gsl_function F;
|
---|
4054 | //fftw_complex *currentPsi;
|
---|
4055 | //double a,b,m, f_m, f_a, f_b;
|
---|
4056 | //double old_norm;
|
---|
4057 |
|
---|
4058 | my_func.f = &perturbed_f;
|
---|
4059 | my_func.df = &perturbed_df;
|
---|
4060 | my_func.fdf = &perturbed_fdf;
|
---|
4061 | my_func.n = n;
|
---|
4062 | my_func.params = P;
|
---|
4063 | F.function = &perturbed_function;
|
---|
4064 | F.params = P;
|
---|
4065 |
|
---|
4066 | x = gsl_vector_alloc (n);
|
---|
4067 | //ss = gsl_vector_alloc (Psi->NoOfPsis);
|
---|
4068 | T_multi = gsl_multimin_fdfminimizer_vector_bfgs;
|
---|
4069 | s_multi = gsl_multimin_fdfminimizer_alloc (T_multi, n);
|
---|
4070 | T = gsl_min_fminimizer_brent;
|
---|
4071 | s = gsl_min_fminimizer_alloc (T);
|
---|
4072 |
|
---|
4073 | for (type=Perturbed_P0;type<=Perturbed_RxP2;type++) { // go through each perturbation group separately //
|
---|
4074 | *Stop=0; // reset stop flag
|
---|
4075 | fprintf(stderr,"(%i)Beginning perturbed minimisation of type %s ...\n", P->Par.me, R->MinimisationName[type]);
|
---|
4076 | //OutputOrbitalPositions(P, Occupied);
|
---|
4077 | R->PsiStep = R->MaxPsiStep; // reset in-Psi-minimisation-counter, so that we really advance to the next wave function
|
---|
4078 | UpdateActualPsiNo(P, type); // step on to next perturbed one
|
---|
4079 | fprintf(stderr, "(%i) Re-initializing perturbed psi array for type %s ", P->Par.me, R->MinimisationName[type]);
|
---|
4080 | if (P->Call.ReadSrcFiles && ReadSrcPsiDensity(P,type,1, R->LevSNo)) {
|
---|
4081 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
4082 | fprintf(stderr,"from source file of recent calculation\n");
|
---|
4083 | ReadSrcPsiDensity(P,type, 0, R->LevSNo);
|
---|
4084 | ResetGramSchTagType(P, Psi, type, IsOrthogonal); // loaded values are orthonormal
|
---|
4085 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
4086 | //InitDensityCalculation(P);
|
---|
4087 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
4088 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // needed otherwise called routines in function below crash
|
---|
4089 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
4090 | InitPerturbedEnergyCalculation(P, 1); // go through all orbitals calculate each H^{(0)}-eigenvalue, recalc HGDensity, cause InitDensityCalc zero'd it
|
---|
4091 | UpdatePerturbedEnergyCalculation(P); // H1cGradient and Gradient must be current ones
|
---|
4092 | EnergyAllReduce(P); // gather energies for minimum search
|
---|
4093 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
4094 | }
|
---|
4095 | if (P->Call.ReadSrcFiles != 1) {
|
---|
4096 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
4097 | ResetGramSchTagType(P, Psi, type, NotOrthogonal); // perturbed now shall be orthonormalized
|
---|
4098 | if (P->Call.ReadSrcFiles != 2) {
|
---|
4099 | if (R->LevSNo == Lat->MaxLevel-1) { // is it the starting level? (see InitRunLevel())
|
---|
4100 | fprintf(stderr, "randomly.\n");
|
---|
4101 | InitPsisValue(P, Psi->TypeStartIndex[type], Psi->TypeStartIndex[type+1]); // initialize perturbed array for this run
|
---|
4102 | } else {
|
---|
4103 | fprintf(stderr, "from source file of last level.\n");
|
---|
4104 | ReadSrcPerturbedPsis(P, type);
|
---|
4105 | }
|
---|
4106 | }
|
---|
4107 | SpeedMeasure(P, InitGramSchTime, StartTimeDo);
|
---|
4108 | GramSch(P, R->LevS, Psi, Orthogonalize);
|
---|
4109 | SpeedMeasure(P, InitGramSchTime, StopTimeDo);
|
---|
4110 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
4111 | //InitDensityCalculation(P);
|
---|
4112 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
4113 | InitPerturbedEnergyCalculation(P, 1); // go through all orbitals calculate each H^{(0)}-eigenvalue, recalc HGDensity, cause InitDensityCalc zero'd it
|
---|
4114 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // needed otherwise called routines in function below crash
|
---|
4115 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
4116 | UpdatePerturbedEnergyCalculation(P); // H1cGradient and Gradient must be current ones
|
---|
4117 | EnergyAllReduce(P); // gather energies for minimum search
|
---|
4118 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
4119 | R->LevS->Step++;
|
---|
4120 | EnergyOutput(P,0);
|
---|
4121 | while (*Stop != 1) {
|
---|
4122 | // copy current Psi into starting vector
|
---|
4123 | currentPsi = R->LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
|
---|
4124 | for (i=0; i< n; i+=2) {
|
---|
4125 | gsl_vector_set (x, i, currentPsi[i/2].re); // real part
|
---|
4126 | gsl_vector_set (x, i+1, currentPsi[i/2].im); // imaginary part
|
---|
4127 | }
|
---|
4128 | gsl_multimin_fdfminimizer_set (s_multi, &my_func, x, 0.01, 1e-2);
|
---|
4129 | iter = 0;
|
---|
4130 | status = 0;
|
---|
4131 | do { // look for minimum along current local psi
|
---|
4132 | iter++;
|
---|
4133 | status = gsl_multimin_fdfminimizer_iterate (s_multi);
|
---|
4134 | MPI_Allreduce(&status, &Status, 1, MPI_INT, MPI_MAX, P->Par.comm_ST_Psi);
|
---|
4135 | if (Status)
|
---|
4136 | break;
|
---|
4137 | status = gsl_multimin_test_gradient (s_multi->gradient, 1e-2);
|
---|
4138 | MPI_Allreduce(&status, &Status, 1, MPI_INT, MPI_MAX, P->Par.comm_ST_Psi);
|
---|
4139 | //if (Status == GSL_SUCCESS)
|
---|
4140 | //printf ("Minimum found at:\n");
|
---|
4141 | if (P->Par.me == 0) fprintf (stderr,"(%i,%i,%i)S(%i,%i,%i):\t %5d %10.5f\n",P->Par.my_color_comm_ST,P->Par.me_comm_ST, P->Par.me_comm_ST_PsiT, R->MinStep, R->ActualLocalPsiNo, R->PsiStep, (int)iter, s_multi->f);
|
---|
4142 | //TestGramSch(P,R->LevS,Psi, type); // functions are orthonormal?
|
---|
4143 | } while (Status == GSL_CONTINUE && iter < 3);
|
---|
4144 | // now minimize norm of currentPsi (one-dim)
|
---|
4145 | if (0) {
|
---|
4146 | iter = 0;
|
---|
4147 | status = 0;
|
---|
4148 | m = 1.;
|
---|
4149 | a = MYEPSILON;
|
---|
4150 | b = 100.;
|
---|
4151 | f_a = perturbed_function (a, P);
|
---|
4152 | f_b = perturbed_function (b, P);
|
---|
4153 | f_m = perturbed_function (m, P);
|
---|
4154 | //if ((f_m < f_a) && (f_m < f_b)) {
|
---|
4155 | gsl_min_fminimizer_set (s, &F, m, a, b);
|
---|
4156 | do { // look for minimum along current local psi
|
---|
4157 | iter++;
|
---|
4158 | status = gsl_min_fminimizer_iterate (s);
|
---|
4159 | m = gsl_min_fminimizer_x_minimum (s);
|
---|
4160 | a = gsl_min_fminimizer_x_lower (s);
|
---|
4161 | b = gsl_min_fminimizer_x_upper (s);
|
---|
4162 | status = gsl_min_test_interval (a, b, 0.001, 0.0);
|
---|
4163 | if (status == GSL_SUCCESS)
|
---|
4164 | printf ("Minimum found at:\n");
|
---|
4165 | printf ("%5d [%.7f, %.7f] %.7f %.7f\n",
|
---|
4166 | (int) iter, a, b,
|
---|
4167 | m, b - a);
|
---|
4168 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
4169 | old_norm = GramSchGetNorm2(P,P->R.LevS,P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo]);
|
---|
4170 | for (i=0; i< n; i++) {
|
---|
4171 | currentPsi[i].re *= m/old_norm; // real part
|
---|
4172 | currentPsi[i].im *= m/old_norm; // imaginary part
|
---|
4173 | }
|
---|
4174 | } else debug(P,"Norm not minimizable!");
|
---|
4175 | //P->R.PsiStep = P->R.MaxPsiStep; // make it advance to next Psi
|
---|
4176 | FindPerturbedMinimum(P);
|
---|
4177 | //debug(P,"UpdateActualPsiNo");
|
---|
4178 | UpdateActualPsiNo(P, type); // step on to next perturbed Psi
|
---|
4179 | //debug(P,"UpdateEnergyArray");
|
---|
4180 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
4181 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
4182 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
4183 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
4184 | //ControlNativeDensity(P); // check total density (summed up PertMixed must be zero!)
|
---|
4185 | //printf ("(%i,%i,%i)S(%i,%i,%i):\t %5d %10.5f\n",P->Par.my_color_comm_ST,P->Par.me_comm_ST, P->Par.me_comm_ST_PsiT, R->MinStep, R->ActualLocalPsiNo, R->PsiStep, (int)iter, s_multi->f);
|
---|
4186 | if (*SuperStop != 1)
|
---|
4187 | *SuperStop = CheckCPULIM(P);
|
---|
4188 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
4189 | P->Speed.Steps++; // step on
|
---|
4190 | R->LevS->Step++;
|
---|
4191 | }
|
---|
4192 | // now release normalization condition and minimize wrt to norm
|
---|
4193 | *Stop = 0;
|
---|
4194 | while (*Stop != 1) {
|
---|
4195 | currentPsi = R->LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
|
---|
4196 | iter = 0;
|
---|
4197 | status = 0;
|
---|
4198 | m = 1.;
|
---|
4199 | a = 0.001;
|
---|
4200 | b = 10.;
|
---|
4201 | f_a = perturbed_function (a, P);
|
---|
4202 | f_b = perturbed_function (b, P);
|
---|
4203 | f_m = perturbed_function (m, P);
|
---|
4204 | if ((f_m < f_a) && (f_m < f_b)) {
|
---|
4205 | gsl_min_fminimizer_set (s, &F, m, a, b);
|
---|
4206 | do { // look for minimum along current local psi
|
---|
4207 | iter++;
|
---|
4208 | status = gsl_min_fminimizer_iterate (s);
|
---|
4209 | m = gsl_min_fminimizer_x_minimum (s);
|
---|
4210 | a = gsl_min_fminimizer_x_lower (s);
|
---|
4211 | b = gsl_min_fminimizer_x_upper (s);
|
---|
4212 | status = gsl_min_test_interval (a, b, 0.001, 0.0);
|
---|
4213 | if (status == GSL_SUCCESS)
|
---|
4214 | printf ("Minimum found at:\n");
|
---|
4215 | printf ("%5d [%.7f, %.7f] %.7f %.7f\n",
|
---|
4216 | (int) iter, a, b,
|
---|
4217 | m, b - a);
|
---|
4218 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
4219 | old_norm = GramSchGetNorm2(P,P->R.LevS,P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo]);
|
---|
4220 | for (i=0; i< n; i++) {
|
---|
4221 | currentPsi[i].re *= m/old_norm; // real part
|
---|
4222 | currentPsi[i].im *= m/old_norm; // imaginary part
|
---|
4223 | }
|
---|
4224 | }
|
---|
4225 | P->R.PsiStep = P->R.MaxPsiStep; // make it advance to next Psi
|
---|
4226 | //debug(P,"UpdateActualPsiNo");
|
---|
4227 | UpdateActualPsiNo(P, type); // step on to next perturbed Psi
|
---|
4228 | if (*SuperStop != 1)
|
---|
4229 | *SuperStop = CheckCPULIM(P);
|
---|
4230 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
4231 | P->Speed.Steps++; // step on
|
---|
4232 | R->LevS->Step++;
|
---|
4233 | }
|
---|
4234 | if(P->Call.out[NormalOut]) fprintf(stderr,"(%i) Write %s srcpsi to disk\n", P->Par.me, R->MinimisationName[type]);
|
---|
4235 | OutputSrcPsiDensity(P, type);
|
---|
4236 | // if (!TestReadnWriteSrcDensity(P,type))
|
---|
4237 | // Error(SomeError,"TestReadnWriteSrcDensity failed!");
|
---|
4238 | }
|
---|
4239 |
|
---|
4240 | TestGramSch(P,R->LevS,Psi, type); // functions are orthonormal?
|
---|
4241 | // calculate current density summands
|
---|
4242 | //if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Filling current density grid ...\n",P->Par.me);
|
---|
4243 | SpeedMeasure(P, CurrDensTime, StartTimeDo);
|
---|
4244 | if (*SuperStop != 1) {
|
---|
4245 | if ((R->DoFullCurrent == 1) || ((R->DoFullCurrent == 2) && (CheckOrbitalOverlap(P) == 1))) { //test to check whether orbitals have mutual overlap and thus \\DeltaJ_{xc} must not be dropped
|
---|
4246 | R->DoFullCurrent = 1; // set to 1 if it was 2 but Check...() yielded necessity
|
---|
4247 | //debug(P,"Filling with Delta j ...");
|
---|
4248 | //FillDeltaCurrentDensity(P);
|
---|
4249 | }// else
|
---|
4250 | //debug(P,"There is no overlap between orbitals.");
|
---|
4251 | //debug(P,"Filling with j ...");
|
---|
4252 | FillCurrentDensity(P);
|
---|
4253 | }
|
---|
4254 | SpeedMeasure(P, CurrDensTime, StopTimeDo);
|
---|
4255 |
|
---|
4256 | SetGramSchExtraPsi(P,Psi,NotUsedToOrtho); // remove extra Psis from orthogonality check
|
---|
4257 | ResetGramSchTagType(P, Psi, type, NotUsedToOrtho); // remove this group from the check for the next minimisation group as well!
|
---|
4258 | }
|
---|
4259 | UpdateActualPsiNo(P, Occupied); // step on back to an occupied one
|
---|
4260 |
|
---|
4261 | gsl_multimin_fdfminimizer_free (s_multi);
|
---|
4262 | gsl_min_fminimizer_free (s);
|
---|
4263 | gsl_vector_free (x);
|
---|
4264 | //gsl_vector_free (ss);
|
---|
4265 | }
|
---|
4266 | */
|
---|