[a0bcf1] | 1 | /** \file perturbed.c
|
---|
| 2 | * Perturbation calculation due to external magnetic field.
|
---|
| 3 | *
|
---|
| 4 | * Central function is MinimisePerturbed() wherein the actual minimisation of the two different operators with each
|
---|
| 5 | * three components takes place subsequently. Helpful routines are CalculatePerturbationOperator_P() - which applies a
|
---|
| 6 | * specified component of p on the current wave function - and CalculatePerturbationOperator_RxP() - which does the
|
---|
| 7 | * same for the RxP operator.
|
---|
| 8 | * The actual minimisation loop FindPerturbedMinimum() depends on the same routines also used for the occupied orbitals,
|
---|
| 9 | * however with a different energy functional and derivatives, evaluated in Calculate1stPerturbedDerivative() and
|
---|
| 10 | * Calculate2ndPerturbedDerivative(). InitPerturbedEnergyCalculation() calculates the total energy functional
|
---|
| 11 | * perturbed in second order for all wave functions, UpdatePerturbedEnergyCalculation() just updates the one
|
---|
| 12 | * for the wave function after it has been minimised during the line search. Both use CalculatePerturbedEnergy() which
|
---|
| 13 | * evaluates the energy functional (and the gradient if specified).
|
---|
| 14 | * Finally, FillCurrentDensity() evaluates the current density at a given point in space using the perturbed
|
---|
| 15 | * wave functions. Afterwards by calling CalculateMagneticSusceptibility() or
|
---|
| 16 | * CalculateChemicalShieldingByReciprocalCurrentDensity() susceptibility respectively shielding tensor are possible uses
|
---|
| 17 | * of this current density.
|
---|
| 18 | *
|
---|
| 19 | * There are also some test routines: TestCurrent() checks whether the integrated current is zero in each component.
|
---|
| 20 | * test_fft_symmetry() tests the "pulling out imaginary unit" before fourier transformation on a given wave function.
|
---|
| 21 | * CheckOrbitalOverlap() outputs the overlap matrix for the wave functions of a given minimisation state, this might
|
---|
| 22 | * be important for the additional \f$\Delta J{ij}\f$ contribution to the current density, which is non-zero for
|
---|
| 23 | * non-zero mutual overlap, which is evaluated if FillDeltaCurrentDensity() is called.
|
---|
| 24 | *
|
---|
| 25 | * Finally, there are also some smaller routines: truedist() gives the correct relative distance between two points
|
---|
| 26 | * in the unit cell under periodic boundary conditions with minimum image convention. ApplyTotalHamiltonian() returns
|
---|
| 27 | * the hamiltonian applied to a given wave function. sawtooth() is a sawtooth implementation which is needed in order
|
---|
| 28 | * to avoid flipping of position eigenvalues for nodes close to or on the cell boundary. CalculateOverlap()
|
---|
| 29 | * is used in the energy functional derivatives, keeping an overlap table between perturbed wave functions up to date.
|
---|
| 30 | * fft_Psi() is very similar to CalculateOneDensityR(), it does the extension of the wave function to the upper level
|
---|
| 31 | * RunStruct#Lev0 while fouriertransforming it to real space. cross() gives correct indices in evaluating a vector cross
|
---|
| 32 | * product. AllocCurrentDensity() and DisAllocCurrentDensity() mark the current density arrays as currently being in use or not.
|
---|
| 33 | *
|
---|
| 34 | Project: ParallelCarParrinello
|
---|
| 35 | \author Frederik Heber
|
---|
| 36 | \date 2006
|
---|
| 37 |
|
---|
| 38 | */
|
---|
| 39 |
|
---|
| 40 | #include <stdlib.h>
|
---|
| 41 | #include <stdio.h>
|
---|
| 42 | #include <math.h>
|
---|
| 43 | #include <string.h>
|
---|
| 44 | #include <time.h>
|
---|
| 45 | #include <gsl/gsl_matrix.h>
|
---|
| 46 | #include <gsl/gsl_eigen.h>
|
---|
| 47 | #include <gsl/gsl_complex.h>
|
---|
| 48 | #include <gsl/gsl_complex_math.h>
|
---|
| 49 | #include <gsl/gsl_sort_vector.h>
|
---|
| 50 | #include <gsl/gsl_linalg.h>
|
---|
| 51 | #include <gsl/gsl_multimin.h>
|
---|
| 52 |
|
---|
| 53 | #include "data.h"
|
---|
| 54 | #include "density.h"
|
---|
| 55 | #include "energy.h"
|
---|
| 56 | #include "excor.h"
|
---|
| 57 | #include "errors.h"
|
---|
| 58 | #include "grad.h"
|
---|
| 59 | #include "gramsch.h"
|
---|
| 60 | #include "mergesort2.h"
|
---|
| 61 | #include "helpers.h"
|
---|
| 62 | #include "init.h"
|
---|
| 63 | #include "myfft.h"
|
---|
| 64 | #include "mymath.h"
|
---|
| 65 | #include "output.h"
|
---|
| 66 | #include "pcp.h"
|
---|
| 67 | #include "perturbed.h"
|
---|
| 68 | #include "run.h"
|
---|
| 69 | #include "wannier.h"
|
---|
| 70 |
|
---|
| 71 | /** evaluates perturbed energy functional.
|
---|
| 72 | * \param norm norm of current Psi in functional
|
---|
| 73 | * \param *params void-pointer to parameter array
|
---|
| 74 | * \return evaluated functional at f(x) with \a norm
|
---|
| 75 | */
|
---|
| 76 | double perturbed_function (double norm, void *params) {
|
---|
| 77 | struct Problem *P = (struct Problem *)params;
|
---|
| 78 | int i, n = P->R.LevS->MaxG;
|
---|
| 79 | double old_norm = GramSchGetNorm2(P,P->R.LevS,P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo]);
|
---|
| 80 | fftw_complex *currentPsi = P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo];
|
---|
| 81 | fprintf(stderr,"(%i) perturbed_function: setting norm to %lg ...", P->Par.me, norm);
|
---|
| 82 | // set desired norm for current Psi
|
---|
| 83 | for (i=0; i< n; i++) {
|
---|
| 84 | currentPsi[i].re *= norm/old_norm; // real part
|
---|
| 85 | currentPsi[i].im *= norm/old_norm; // imaginary part
|
---|
| 86 | }
|
---|
| 87 | P->R.PsiStep = 0; // make it not advance to next Psi
|
---|
| 88 |
|
---|
| 89 | //debug(P,"UpdateActualPsiNo");
|
---|
| 90 | UpdateActualPsiNo(P, P->R.CurrentMin); // orthogonalize
|
---|
| 91 | //debug(P,"UpdateEnergyArray");
|
---|
| 92 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
| 93 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
| 94 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
| 95 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
| 96 | /*
|
---|
| 97 | for (i=0; i< n; i++) {
|
---|
| 98 | currentPsi[i].re /= norm/old_norm; // real part
|
---|
| 99 | currentPsi[i].im /= norm/old_norm; // imaginary part
|
---|
| 100 | }*/
|
---|
| 101 |
|
---|
| 102 | fprintf(stderr,"%lg\n", P->Lat.E->TotalEnergy[0]);
|
---|
| 103 | return P->Lat.E->TotalEnergy[0]; // and return evaluated functional
|
---|
| 104 | }
|
---|
| 105 |
|
---|
| 106 | /** evaluates perturbed energy functional.
|
---|
| 107 | * \param *x current position in functional
|
---|
| 108 | * \param *params void-pointer to parameter array
|
---|
| 109 | * \return evaluated functional at f(x)
|
---|
| 110 | */
|
---|
| 111 | double perturbed_f (const gsl_vector *x, void *params) {
|
---|
| 112 | struct Problem *P = (struct Problem *)params;
|
---|
| 113 | int i, n = P->R.LevS->MaxG*2;
|
---|
| 114 | fftw_complex *currentPsi = P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo];
|
---|
| 115 | //int diff = 0;
|
---|
| 116 | //debug(P,"f");
|
---|
| 117 | // put x into current Psi
|
---|
| 118 | for (i=0; i< n; i+=2) {
|
---|
| 119 | //if ((currentPsi[i/2].re != gsl_vector_get (x, i)) || (currentPsi[i/2].im != gsl_vector_get (x, i+1))) diff++;
|
---|
| 120 | currentPsi[i/2].re = gsl_vector_get (x, i); // real part
|
---|
| 121 | currentPsi[i/2].im = gsl_vector_get (x, i+1); // imaginary part
|
---|
| 122 | }
|
---|
| 123 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new currentPsi.\n", P->Par.me, diff);
|
---|
| 124 | P->R.PsiStep = 0; // make it not advance to next Psi
|
---|
| 125 |
|
---|
| 126 | //debug(P,"UpdateActualPsiNo");
|
---|
| 127 | UpdateActualPsiNo(P, P->R.CurrentMin); // orthogonalize
|
---|
| 128 | //debug(P,"UpdateEnergyArray");
|
---|
| 129 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
| 130 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
| 131 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
| 132 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
| 133 |
|
---|
| 134 | return P->Lat.E->TotalEnergy[0]; // and return evaluated functional
|
---|
| 135 | }
|
---|
| 136 |
|
---|
| 137 | /** evaluates perturbed energy gradient.
|
---|
| 138 | * \param *x current position in functional
|
---|
| 139 | * \param *params void-pointer to parameter array
|
---|
| 140 | * \param *g array for gradient vector on return
|
---|
| 141 | */
|
---|
| 142 | void perturbed_df (const gsl_vector *x, void *params, gsl_vector *g) {
|
---|
| 143 | struct Problem *P = (struct Problem *)params;
|
---|
| 144 | int i, n = P->R.LevS->MaxG*2;
|
---|
| 145 | fftw_complex *currentPsi = P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo];
|
---|
| 146 | fftw_complex *gradient = P->Grad.GradientArray[ActualGradient];
|
---|
| 147 | //int diff = 0;
|
---|
| 148 | //debug(P,"df");
|
---|
| 149 | // put x into current Psi
|
---|
| 150 | for (i=0; i< n; i+=2) {
|
---|
| 151 | //if ((currentPsi[i/2].re != gsl_vector_get (x, i)) || (currentPsi[i/2].im != gsl_vector_get (x, i+1))) diff++;
|
---|
| 152 | currentPsi[i/2].re = gsl_vector_get (x, i); // real part
|
---|
| 153 | currentPsi[i/2].im = gsl_vector_get (x, i+1); // imaginary part
|
---|
| 154 | }
|
---|
| 155 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new currentPsi.\n", P->Par.me, diff);
|
---|
| 156 | P->R.PsiStep = 0; // make it not advance to next Psi
|
---|
| 157 |
|
---|
| 158 | //debug(P,"UpdateActualPsiNo");
|
---|
| 159 | UpdateActualPsiNo(P, P->R.CurrentMin); // orthogonalize
|
---|
| 160 | //debug(P,"UpdateEnergyArray");
|
---|
| 161 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
| 162 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
| 163 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
| 164 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
| 165 |
|
---|
| 166 | // checkout gradient
|
---|
| 167 | //diff = 0;
|
---|
| 168 | for (i=0; i< n; i+=2) {
|
---|
| 169 | //if ((-gradient[i/2].re != gsl_vector_get (g, i)) || (-gradient[i/2].im != gsl_vector_get (g, i+1))) diff++;
|
---|
| 170 | gsl_vector_set (g, i, -gradient[i/2].re); // real part
|
---|
| 171 | gsl_vector_set (g, i+1, -gradient[i/2].im); // imaginary part
|
---|
| 172 | }
|
---|
| 173 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new gradient.\n", P->Par.me, diff);
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | /** evaluates perturbed energy functional and gradient.
|
---|
| 177 | * \param *x current position in functional
|
---|
| 178 | * \param *params void-pointer to parameter array
|
---|
| 179 | * \param *f pointer to energy function value on return
|
---|
| 180 | * \param *g array for gradient vector on return
|
---|
| 181 | */
|
---|
| 182 | void perturbed_fdf (const gsl_vector *x, void *params, double *f, gsl_vector *g) {
|
---|
| 183 | struct Problem *P = (struct Problem *)params;
|
---|
| 184 | int i, n = P->R.LevS->MaxG*2;
|
---|
| 185 | fftw_complex *currentPsi = P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo];
|
---|
| 186 | fftw_complex *gradient = P->Grad.GradientArray[ActualGradient];
|
---|
| 187 | //int diff = 0;
|
---|
| 188 | //debug(P,"fdf");
|
---|
| 189 | // put x into current Psi
|
---|
| 190 | for (i=0; i< n; i+=2) {
|
---|
| 191 | //if ((currentPsi[i/2].re != gsl_vector_get (x, i)) || (currentPsi[i/2].im != gsl_vector_get (x, i+1))) diff++;
|
---|
| 192 | currentPsi[i/2].re = gsl_vector_get (x, i); // real part
|
---|
| 193 | currentPsi[i/2].im = gsl_vector_get (x, i+1); // imaginary part
|
---|
| 194 | }
|
---|
| 195 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new currentPsi.\n", P->Par.me, diff);
|
---|
| 196 | P->R.PsiStep = 0; // make it not advance to next Psi
|
---|
| 197 |
|
---|
| 198 | //debug(P,"UpdateActualPsiNo");
|
---|
| 199 | UpdateActualPsiNo(P, P->R.CurrentMin); // orthogonalize
|
---|
| 200 | //debug(P,"UpdateEnergyArray");
|
---|
| 201 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
| 202 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
| 203 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
| 204 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
| 205 |
|
---|
| 206 | // checkout gradient
|
---|
| 207 | //diff = 0;
|
---|
| 208 | for (i=0; i< n; i+=2) {
|
---|
| 209 | //if ((-gradient[i/2].re != gsl_vector_get (g, i)) || (-gradient[i/2].im != gsl_vector_get (g, i+1))) diff++;
|
---|
| 210 | gsl_vector_set (g, i, -gradient[i/2].re); // real part
|
---|
| 211 | gsl_vector_set (g, i+1, -gradient[i/2].im); // imaginary part
|
---|
| 212 | }
|
---|
| 213 | //if (diff) fprintf(stderr,"(%i) %i differences between old and new gradient.\n", P->Par.me, diff);
|
---|
| 214 |
|
---|
| 215 | *f = P->Lat.E->TotalEnergy[0]; // and return evaluated functional
|
---|
| 216 | }
|
---|
| 217 |
|
---|
| 218 | /** Minimisation of the PsiTypeTag#Perturbed_RxP0, PsiTypeTag#Perturbed_P0 and other orbitals.
|
---|
| 219 | * For each of the above PsiTypeTag we go through the following before the minimisation loop:
|
---|
| 220 | * -# ResetGramSchTagType() resets current type that is to be minimised to NotOrthogonal.
|
---|
| 221 | * -# UpdateActualPsiNo() steps on to next perturbed of current PsiTypeTag type.
|
---|
| 222 | * -# GramSch() orthonormalizes perturbed wave functions.
|
---|
| 223 | * -# TestGramSch() tests if orthonormality was achieved.
|
---|
| 224 | * -# InitDensityCalculation() gathers densities from all wave functions (and all processes), within SpeedMeasure() DensityTime.
|
---|
| 225 | * -# InitPerturbedEnergyCalculation() performs initial calculation of the perturbed energy functional.
|
---|
| 226 | * -# RunStruct#OldActualLocalPsiNo is set to RunStruct#ActualLocalPsiNo, immediately followed by UpdateGramSchOldActualPsiNo()
|
---|
| 227 | * to bring info on all processes on par.
|
---|
| 228 | * -# UpdatePerturbedEnergyCalculation() re-calculates Gradient and GradientTypes#H1cGradient for RunStruct#ActualLocalPsiNo
|
---|
| 229 | * -# EnergyAllReduce() gathers various energy terms and sums up into Energy#TotalEnergy.
|
---|
| 230 | *
|
---|
| 231 | * And during the minimisation loop:
|
---|
| 232 | * -# FindPerturbedMinimum() performs the gradient conjugation, the line search and wave function update.
|
---|
| 233 | * -# UpdateActualPsiNo() steps on to the next wave function, orthonormalizing by GramSch() if necessary.
|
---|
| 234 | * -# UpdateEnergyArray() shifts TotalEnergy values to make space for new one.
|
---|
| 235 | * -# There is no density update as the energy function does not depend on the changing perturbed density but only on the fixed
|
---|
| 236 | * unperturbed one.
|
---|
| 237 | * -# UpdatePerturbedEnergyCalculation() re-calculates the perturbed energy of the changed wave function.
|
---|
| 238 | * -# EnergyAllReduce() gathers energy terms and sums up.
|
---|
| 239 | * -# CheckCPULIM() checks if external Stop signal has been given.
|
---|
| 240 | * -# CalculateMinimumStop() checks whether we have dropped below a certain minimum change during minimisation of total energy.
|
---|
| 241 | * -# finally step counters LatticeLevel#Step and SpeedStruct#Steps are increased.
|
---|
| 242 | *
|
---|
| 243 | * After the minimisation loop:
|
---|
| 244 | * -# SetGramSchExtraPsi() removes extra Psis from orthogonaliy check.
|
---|
| 245 | * -# ResetGramSchTagType() sets GramSchToDoType to NotUsedtoOrtho.
|
---|
| 246 | *
|
---|
| 247 | * And after all minimisation runs are done:
|
---|
| 248 | * -# UpdateActualPsiNo() steps back to PsiTypeTag#Occupied type.
|
---|
| 249 | *
|
---|
| 250 | * At the end we return to Occupied wave functions.
|
---|
| 251 | * \param *P at hand
|
---|
| 252 | * \param *Stop flag to determine if epsilon stop conditions have met
|
---|
| 253 | * \param *SuperStop flag to determinte whether external signal's required end of calculations
|
---|
| 254 | */
|
---|
| 255 | void MinimisePerturbed (struct Problem *P, int *Stop, int *SuperStop) {
|
---|
| 256 | struct RunStruct *R = &P->R;
|
---|
| 257 | struct Lattice *Lat = &P->Lat;
|
---|
| 258 | struct Psis *Psi = &Lat->Psi;
|
---|
| 259 | int type;
|
---|
| 260 | //int i;
|
---|
| 261 |
|
---|
| 262 | // stuff for GSL minimization
|
---|
| 263 | //size_t iter;
|
---|
| 264 | //int status, Status
|
---|
| 265 | int n = R->LevS->MaxG*2;
|
---|
| 266 | const gsl_multimin_fdfminimizer_type *T_multi;
|
---|
| 267 | const gsl_min_fminimizer_type *T;
|
---|
| 268 | gsl_multimin_fdfminimizer *s_multi;
|
---|
| 269 | gsl_min_fminimizer *s;
|
---|
| 270 | gsl_vector *x;//, *ss;
|
---|
| 271 | gsl_multimin_function_fdf my_func;
|
---|
| 272 | gsl_function F;
|
---|
| 273 | //fftw_complex *currentPsi;
|
---|
| 274 | //double a,b,m, f_m, f_a, f_b;
|
---|
| 275 | //double old_norm;
|
---|
| 276 |
|
---|
| 277 | my_func.f = &perturbed_f;
|
---|
| 278 | my_func.df = &perturbed_df;
|
---|
| 279 | my_func.fdf = &perturbed_fdf;
|
---|
| 280 | my_func.n = n;
|
---|
| 281 | my_func.params = P;
|
---|
| 282 | F.function = &perturbed_function;
|
---|
| 283 | F.params = P;
|
---|
| 284 |
|
---|
| 285 | x = gsl_vector_alloc (n);
|
---|
| 286 | //ss = gsl_vector_alloc (Psi->NoOfPsis);
|
---|
| 287 | T_multi = gsl_multimin_fdfminimizer_vector_bfgs;
|
---|
| 288 | s_multi = gsl_multimin_fdfminimizer_alloc (T_multi, n);
|
---|
| 289 | T = gsl_min_fminimizer_brent;
|
---|
| 290 | s = gsl_min_fminimizer_alloc (T);
|
---|
| 291 |
|
---|
| 292 | for (type=Perturbed_P0;type<=Perturbed_RxP2;type++) { // go through each perturbation group separately //
|
---|
| 293 | *Stop=0; // reset stop flag
|
---|
| 294 | fprintf(stderr,"(%i)Beginning perturbed minimisation of type %s ...\n", P->Par.me, R->MinimisationName[type]);
|
---|
| 295 | //OutputOrbitalPositions(P, Occupied);
|
---|
| 296 | R->PsiStep = R->MaxPsiStep; // reset in-Psi-minimisation-counter, so that we really advance to the next wave function
|
---|
| 297 | UpdateActualPsiNo(P, type); // step on to next perturbed one
|
---|
| 298 | fprintf(stderr, "(%i) Re-initializing perturbed psi array for type %s ", P->Par.me, R->MinimisationName[type]);
|
---|
| 299 | if (P->Call.ReadSrcFiles && ReadSrcPsiDensity(P,type,1, R->LevSNo)) {
|
---|
| 300 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
| 301 | fprintf(stderr,"from source file of recent calculation\n");
|
---|
| 302 | ReadSrcPsiDensity(P,type, 0, R->LevSNo);
|
---|
| 303 | ResetGramSchTagType(P, Psi, type, IsOrthogonal); // loaded values are orthonormal
|
---|
| 304 | SpeedMeasure(P, DensityTime, StartTimeDo);
|
---|
| 305 | //InitDensityCalculation(P);
|
---|
| 306 | SpeedMeasure(P, DensityTime, StopTimeDo);
|
---|
| 307 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // needed otherwise called routines in function below crash
|
---|
| 308 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
| 309 | InitPerturbedEnergyCalculation(P, 1); // go through all orbitals calculate each H^{(0)}-eigenvalue, recalc HGDensity, cause InitDensityCalc zero'd it
|
---|
| 310 | UpdatePerturbedEnergyCalculation(P); // H1cGradient and Gradient must be current ones
|
---|
| 311 | EnergyAllReduce(P); // gather energies for minimum search
|
---|
| 312 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
| 313 | }
|
---|
| 314 | if (P->Call.ReadSrcFiles != 1) {
|
---|
| 315 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
| 316 | ResetGramSchTagType(P, Psi, type, NotOrthogonal); // perturbed now shall be orthonormalized
|
---|
| 317 | if (P->Call.ReadSrcFiles != 2) {
|
---|
| 318 | if (R->LevSNo == Lat->MaxLevel-1) { // is it the starting level? (see InitRunLevel())
|
---|
| 319 | fprintf(stderr, "randomly.\n");
|
---|
| 320 | InitPsisValue(P, Psi->TypeStartIndex[type], Psi->TypeStartIndex[type+1]); // initialize perturbed array for this run
|
---|
| 321 | } else {
|
---|
| 322 | fprintf(stderr, "from source file of last level.\n");
|
---|
| 323 | ReadSrcPerturbedPsis(P, type);
|
---|
| 324 | }
|
---|
| 325 | }
|
---|
| 326 | SpeedMeasure(P, InitGramSchTime, StartTimeDo);
|
---|
| 327 | GramSch(P, R->LevS, Psi, Orthogonalize);
|
---|
| 328 | SpeedMeasure(P, InitGramSchTime, StopTimeDo);
|
---|
| 329 | SpeedMeasure(P, InitDensityTime, StartTimeDo);
|
---|
| 330 | //InitDensityCalculation(P);
|
---|
| 331 | SpeedMeasure(P, InitDensityTime, StopTimeDo);
|
---|
| 332 | InitPerturbedEnergyCalculation(P, 1); // go through all orbitals calculate each H^{(0)}-eigenvalue, recalc HGDensity, cause InitDensityCalc zero'd it
|
---|
| 333 | R->OldActualLocalPsiNo = R->ActualLocalPsiNo; // needed otherwise called routines in function below crash
|
---|
| 334 | UpdateGramSchOldActualPsiNo(P,Psi);
|
---|
| 335 | UpdatePerturbedEnergyCalculation(P); // H1cGradient and Gradient must be current ones
|
---|
| 336 | EnergyAllReduce(P); // gather energies for minimum search
|
---|
| 337 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
| 338 | R->LevS->Step++;
|
---|
| 339 | EnergyOutput(P,0);
|
---|
| 340 | while (*Stop != 1) {
|
---|
| 341 | /* // copy current Psi into starting vector
|
---|
| 342 | currentPsi = R->LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
|
---|
| 343 | for (i=0; i< n; i+=2) {
|
---|
| 344 | gsl_vector_set (x, i, currentPsi[i/2].re); // real part
|
---|
| 345 | gsl_vector_set (x, i+1, currentPsi[i/2].im); // imaginary part
|
---|
| 346 | }
|
---|
| 347 | gsl_multimin_fdfminimizer_set (s_multi, &my_func, x, 0.01, 1e-2);
|
---|
| 348 | iter = 0;
|
---|
| 349 | status = 0;
|
---|
| 350 | do { // look for minimum along current local psi
|
---|
| 351 | iter++;
|
---|
| 352 | status = gsl_multimin_fdfminimizer_iterate (s_multi);
|
---|
| 353 | MPI_Allreduce(&status, &Status, 1, MPI_INT, MPI_MAX, P->Par.comm_ST_Psi);
|
---|
| 354 | if (Status)
|
---|
| 355 | break;
|
---|
| 356 | status = gsl_multimin_test_gradient (s_multi->gradient, 1e-2);
|
---|
| 357 | MPI_Allreduce(&status, &Status, 1, MPI_INT, MPI_MAX, P->Par.comm_ST_Psi);
|
---|
| 358 | //if (Status == GSL_SUCCESS)
|
---|
| 359 | //printf ("Minimum found at:\n");
|
---|
| 360 | if (P->Par.me == 0) fprintf (stderr,"(%i,%i,%i)S(%i,%i,%i):\t %5d %10.5f\n",P->Par.my_color_comm_ST,P->Par.me_comm_ST, P->Par.me_comm_ST_PsiT, R->MinStep, R->ActualLocalPsiNo, R->PsiStep, (int)iter, s_multi->f);
|
---|
| 361 | //TestGramSch(P,R->LevS,Psi, type); // functions are orthonormal?
|
---|
| 362 | } while (Status == GSL_CONTINUE && iter < 3);
|
---|
| 363 | /* // now minimize norm of currentPsi (one-dim)
|
---|
| 364 | if (0) {
|
---|
| 365 | iter = 0;
|
---|
| 366 | status = 0;
|
---|
| 367 | m = 1.;
|
---|
| 368 | a = MYEPSILON;
|
---|
| 369 | b = 100.;
|
---|
| 370 | f_a = perturbed_function (a, P);
|
---|
| 371 | f_b = perturbed_function (b, P);
|
---|
| 372 | f_m = perturbed_function (m, P);
|
---|
| 373 | //if ((f_m < f_a) && (f_m < f_b)) {
|
---|
| 374 | gsl_min_fminimizer_set (s, &F, m, a, b);
|
---|
| 375 | do { // look for minimum along current local psi
|
---|
| 376 | iter++;
|
---|
| 377 | status = gsl_min_fminimizer_iterate (s);
|
---|
| 378 | m = gsl_min_fminimizer_x_minimum (s);
|
---|
| 379 | a = gsl_min_fminimizer_x_lower (s);
|
---|
| 380 | b = gsl_min_fminimizer_x_upper (s);
|
---|
| 381 | status = gsl_min_test_interval (a, b, 0.001, 0.0);
|
---|
| 382 | if (status == GSL_SUCCESS)
|
---|
| 383 | printf ("Minimum found at:\n");
|
---|
| 384 | printf ("%5d [%.7f, %.7f] %.7f %.7f\n",
|
---|
| 385 | (int) iter, a, b,
|
---|
| 386 | m, b - a);
|
---|
| 387 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
| 388 | old_norm = GramSchGetNorm2(P,P->R.LevS,P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo]);
|
---|
| 389 | for (i=0; i< n; i++) {
|
---|
| 390 | currentPsi[i].re *= m/old_norm; // real part
|
---|
| 391 | currentPsi[i].im *= m/old_norm; // imaginary part
|
---|
| 392 | }
|
---|
| 393 | } else debug(P,"Norm not minimizable!");*/
|
---|
| 394 | //P->R.PsiStep = P->R.MaxPsiStep; // make it advance to next Psi
|
---|
| 395 | FindPerturbedMinimum(P);
|
---|
| 396 | //debug(P,"UpdateActualPsiNo");
|
---|
| 397 | UpdateActualPsiNo(P, type); // step on to next perturbed Psi
|
---|
| 398 | //debug(P,"UpdateEnergyArray");
|
---|
| 399 | UpdateEnergyArray(P); // shift energy values in their array by one
|
---|
| 400 | //debug(P,"UpdatePerturbedEnergyCalculation");
|
---|
| 401 | UpdatePerturbedEnergyCalculation(P); // re-calc energies (which is hopefully lower)
|
---|
| 402 | EnergyAllReduce(P); // gather from all processes and sum up to total energy
|
---|
| 403 | //ControlNativeDensity(P); // check total density (summed up PertMixed must be zero!)
|
---|
| 404 | //printf ("(%i,%i,%i)S(%i,%i,%i):\t %5d %10.5f\n",P->Par.my_color_comm_ST,P->Par.me_comm_ST, P->Par.me_comm_ST_PsiT, R->MinStep, R->ActualLocalPsiNo, R->PsiStep, (int)iter, s_multi->f);
|
---|
| 405 | if (*SuperStop != 1)
|
---|
| 406 | *SuperStop = CheckCPULIM(P);
|
---|
| 407 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
| 408 | P->Speed.Steps++; // step on
|
---|
| 409 | R->LevS->Step++;
|
---|
| 410 | }
|
---|
| 411 | // now release normalization condition and minimize wrt to norm
|
---|
| 412 | /* *Stop = 0;
|
---|
| 413 | while (*Stop != 1) {
|
---|
| 414 | currentPsi = R->LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
|
---|
| 415 | iter = 0;
|
---|
| 416 | status = 0;
|
---|
| 417 | m = 1.;
|
---|
| 418 | a = 0.001;
|
---|
| 419 | b = 10.;
|
---|
| 420 | f_a = perturbed_function (a, P);
|
---|
| 421 | f_b = perturbed_function (b, P);
|
---|
| 422 | f_m = perturbed_function (m, P);
|
---|
| 423 | if ((f_m < f_a) && (f_m < f_b)) {
|
---|
| 424 | gsl_min_fminimizer_set (s, &F, m, a, b);
|
---|
| 425 | do { // look for minimum along current local psi
|
---|
| 426 | iter++;
|
---|
| 427 | status = gsl_min_fminimizer_iterate (s);
|
---|
| 428 | m = gsl_min_fminimizer_x_minimum (s);
|
---|
| 429 | a = gsl_min_fminimizer_x_lower (s);
|
---|
| 430 | b = gsl_min_fminimizer_x_upper (s);
|
---|
| 431 | status = gsl_min_test_interval (a, b, 0.001, 0.0);
|
---|
| 432 | if (status == GSL_SUCCESS)
|
---|
| 433 | printf ("Minimum found at:\n");
|
---|
| 434 | printf ("%5d [%.7f, %.7f] %.7f %.7f\n",
|
---|
| 435 | (int) iter, a, b,
|
---|
| 436 | m, b - a);
|
---|
| 437 | } while (status == GSL_CONTINUE && iter < 100);
|
---|
| 438 | old_norm = GramSchGetNorm2(P,P->R.LevS,P->R.LevS->LPsi->LocalPsi[P->R.ActualLocalPsiNo]);
|
---|
| 439 | for (i=0; i< n; i++) {
|
---|
| 440 | currentPsi[i].re *= m/old_norm; // real part
|
---|
| 441 | currentPsi[i].im *= m/old_norm; // imaginary part
|
---|
| 442 | }
|
---|
| 443 | }
|
---|
| 444 | P->R.PsiStep = P->R.MaxPsiStep; // make it advance to next Psi
|
---|
| 445 | //debug(P,"UpdateActualPsiNo");
|
---|
| 446 | UpdateActualPsiNo(P, type); // step on to next perturbed Psi
|
---|
| 447 | if (*SuperStop != 1)
|
---|
| 448 | *SuperStop = CheckCPULIM(P);
|
---|
| 449 | *Stop = CalculateMinimumStop(P, *SuperStop);
|
---|
| 450 | P->Speed.Steps++; // step on
|
---|
| 451 | R->LevS->Step++;
|
---|
| 452 | }*/
|
---|
| 453 | if(P->Call.out[NormalOut]) fprintf(stderr,"(%i) Write %s srcpsi to disk\n", P->Par.me, R->MinimisationName[type]);
|
---|
| 454 | OutputSrcPsiDensity(P, type);
|
---|
| 455 | // if (!TestReadnWriteSrcDensity(P,type))
|
---|
| 456 | // Error(SomeError,"TestReadnWriteSrcDensity failed!");
|
---|
| 457 | }
|
---|
| 458 |
|
---|
| 459 | TestGramSch(P,R->LevS,Psi, type); // functions are orthonormal?
|
---|
| 460 | // calculate current density summands
|
---|
| 461 | //if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Filling current density grid ...\n",P->Par.me);
|
---|
| 462 | SpeedMeasure(P, CurrDensTime, StartTimeDo);
|
---|
| 463 | if (*SuperStop != 1) {
|
---|
| 464 | if ((R->DoFullCurrent == 1) || ((R->DoFullCurrent == 2) && (CheckOrbitalOverlap(P) == 1))) { //test to check whether orbitals have mutual overlap and thus \\DeltaJ_{xc} must not be dropped
|
---|
| 465 | R->DoFullCurrent = 1; // set to 1 if it was 2 but Check...() yielded necessity
|
---|
| 466 | //debug(P,"Filling with Delta j ...");
|
---|
| 467 | //FillDeltaCurrentDensity(P);
|
---|
| 468 | }// else
|
---|
| 469 | //debug(P,"There is no overlap between orbitals.");
|
---|
| 470 | //debug(P,"Filling with j ...");
|
---|
| 471 | FillCurrentDensity(P);
|
---|
| 472 | }
|
---|
| 473 | SpeedMeasure(P, CurrDensTime, StopTimeDo);
|
---|
| 474 |
|
---|
| 475 | SetGramSchExtraPsi(P,Psi,NotUsedToOrtho); // remove extra Psis from orthogonality check
|
---|
| 476 | ResetGramSchTagType(P, Psi, type, NotUsedToOrtho); // remove this group from the check for the next minimisation group as well!
|
---|
| 477 | }
|
---|
| 478 | UpdateActualPsiNo(P, Occupied); // step on back to an occupied one
|
---|
| 479 |
|
---|
| 480 | gsl_multimin_fdfminimizer_free (s_multi);
|
---|
| 481 | gsl_min_fminimizer_free (s);
|
---|
| 482 | gsl_vector_free (x);
|
---|
| 483 | //gsl_vector_free (ss);
|
---|
| 484 | }
|
---|
| 485 |
|
---|
| 486 | /** Tests overlap matrix between each pair of orbitals for non-diagonal form.
|
---|
| 487 | * We simply check whether the overlap matrix Psis#lambda has off-diagonal entries greater MYEPSILON or not.
|
---|
| 488 | * \param *P Problem at hand
|
---|
| 489 | * \note The routine is meant as atest criteria if \f$\Delta J_[ij]\f$ contribution is necessary, as it is only non-zero if
|
---|
| 490 | * there is mutual overlap between the two orbitals.
|
---|
| 491 | */
|
---|
| 492 | int CheckOrbitalOverlap(struct Problem *P)
|
---|
| 493 | {
|
---|
| 494 | struct Lattice *Lat = &P->Lat;
|
---|
| 495 | struct Psis *Psi = &Lat->Psi;
|
---|
| 496 | int i,j;
|
---|
| 497 | int counter = 0;
|
---|
| 498 |
|
---|
| 499 | // output matrix
|
---|
| 500 | if (P->Par.me == 0) fprintf(stderr, "(%i) S_ij =\n", P->Par.me);
|
---|
| 501 | for (i=0;i<Psi->NoOfPsis;i++) {
|
---|
| 502 | for (j=0;j<Psi->NoOfPsis;j++) {
|
---|
| 503 | if (fabs(Psi->lambda[i][j]) > MYEPSILON) counter++;
|
---|
| 504 | if (P->Par.me == 0) fprintf(stderr, "%e\t", Psi->lambda[i][j]); //Overlap[i][j]
|
---|
| 505 | }
|
---|
| 506 | if (P->Par.me == 0) fprintf(stderr, "\n");
|
---|
| 507 | }
|
---|
| 508 |
|
---|
| 509 | fprintf(stderr, "(%i) CheckOverlap: %i overlaps found.\t", P->Par.me, counter);
|
---|
| 510 | if (counter > 0) return (1);
|
---|
| 511 | else return(0);
|
---|
| 512 | }
|
---|
| 513 |
|
---|
| 514 | /** Initialization of perturbed energy.
|
---|
| 515 | * For each local wave function of the current minimisation type RunStruct#CurrentMin it is called:
|
---|
| 516 | * - CalculateNonLocalEnergyNoRT(): for the coefficient-dependent form factors
|
---|
| 517 | * - CalculatePerturbedEnergy(): for the perturbed energy, yet without gradient calculation
|
---|
| 518 | * - CalculateOverlap(): for the overlap between the perturbed wave functions of the current RunStruct#CurrentMin state.
|
---|
| 519 | *
|
---|
| 520 | * Afterwards for the two types AllPsiEnergyTypes#Perturbed1_0Energy and AllPsiEnergyTypes#Perturbed0_1Energy the
|
---|
| 521 | * energy contribution from each wave function is added up in Energy#AllLocalPsiEnergy.
|
---|
| 522 | * \param *P Problem at hand
|
---|
| 523 | * \param first state whether it is the first (1) or successive call (0), which avoids some initial calculations.
|
---|
| 524 | * \sa UpdatePerturbedEnergy()
|
---|
| 525 | * \note Afterwards EnergyAllReduce() must be called.
|
---|
| 526 | */
|
---|
| 527 | void InitPerturbedEnergyCalculation(struct Problem *P, const int first)
|
---|
| 528 | {
|
---|
| 529 | struct Lattice *Lat = &(P->Lat);
|
---|
| 530 | int p,i;
|
---|
| 531 | const enum PsiTypeTag state = P->R.CurrentMin;
|
---|
| 532 | for (p=Lat->Psi.TypeStartIndex[state]; p < Lat->Psi.TypeStartIndex[state+1]; p++) {
|
---|
| 533 | //if (p < 0 || p >= Lat->Psi.LocalNo) Error(SomeError,"InitPerturbedEnergyCalculation: p out of range");
|
---|
| 534 | CalculateNonLocalEnergyNoRT(P, p); // recalculating non-local form factors which are coefficient dependent!
|
---|
| 535 | CalculatePsiEnergy(P,p,1);
|
---|
| 536 | CalculatePerturbedEnergy(P, p, 0, first);
|
---|
| 537 | CalculateOverlap(P, p, state);
|
---|
| 538 | }
|
---|
| 539 | for (i=0; i<= Perturbed0_1Energy; i++) {
|
---|
| 540 | Lat->E->AllLocalPsiEnergy[i] = 0.0;
|
---|
| 541 | for (p=0; p < Lat->Psi.LocalNo; p++)
|
---|
| 542 | if (P->Lat.Psi.LocalPsiStatus[p].PsiType == state)
|
---|
| 543 | Lat->E->AllLocalPsiEnergy[i] += Lat->E->PsiEnergy[i][p];
|
---|
| 544 | }
|
---|
| 545 | }
|
---|
| 546 |
|
---|
| 547 |
|
---|
| 548 | /** Updating of perturbed energy.
|
---|
| 549 | * For current and former (if not the same) local wave function RunStruct#ActualLocal, RunStruct#OldActualLocalPsiNo it is called:
|
---|
| 550 | * - CalculateNonLocalEnergyNoRT(): for the form factors
|
---|
| 551 | * - CalculatePerturbedEnergy(): for the perturbed energy, gradient only for RunStruct#ActualLocal
|
---|
| 552 | * - CalculatePerturbedOverlap(): for the overlap between the perturbed wave functions
|
---|
| 553 | *
|
---|
| 554 | * Afterwards for the two types AllPsiEnergyTypes#Perturbed1_0Energy and AllPsiEnergyTypes#Perturbed0_1Energy the
|
---|
| 555 | * energy contribution from each wave function is added up in Energy#AllLocalPsiEnergy.
|
---|
| 556 | * \param *P Problem at hand
|
---|
| 557 | * \sa CalculatePerturbedEnergy() called from here.
|
---|
| 558 | * \note Afterwards EnergyAllReduce() must be called.
|
---|
| 559 | */
|
---|
| 560 | void UpdatePerturbedEnergyCalculation(struct Problem *P)
|
---|
| 561 | {
|
---|
| 562 | struct Lattice *Lat = &(P->Lat);
|
---|
| 563 | struct Psis *Psi = &Lat->Psi;
|
---|
| 564 | struct RunStruct *R = &P->R;
|
---|
| 565 | const enum PsiTypeTag state = R->CurrentMin;
|
---|
| 566 | int p = R->ActualLocalPsiNo;
|
---|
| 567 | const int p_old = R->OldActualLocalPsiNo;
|
---|
| 568 | int i;
|
---|
| 569 |
|
---|
| 570 | if (p != p_old) {
|
---|
| 571 | //if (p_old < 0 || p_old >= Lat->Psi.LocalNo) Error(SomeError,"UpdatePerturbedEnergyCalculation: p_old out of range");
|
---|
| 572 | CalculateNonLocalEnergyNoRT(P, p_old);
|
---|
| 573 | CalculatePsiEnergy(P,p_old,0);
|
---|
| 574 | CalculatePerturbedEnergy(P, p_old, 0, 0);
|
---|
| 575 | CalculateOverlap(P, p_old, state);
|
---|
| 576 | }
|
---|
| 577 | //if (p < 0 || p >= Lat->Psi.LocalNo) Error(SomeError,"InitPerturbedEnergyCalculation: p out of range");
|
---|
| 578 | // recalculating non-local form factors which are coefficient dependent!
|
---|
| 579 | CalculateNonLocalEnergyNoRT(P,p);
|
---|
| 580 | CalculatePsiEnergy(P,p,0);
|
---|
| 581 | CalculatePerturbedEnergy(P, p, 1, 0);
|
---|
| 582 | CalculateOverlap(P, p, state);
|
---|
| 583 |
|
---|
| 584 | for (i=0; i<= Perturbed0_1Energy; i++) {
|
---|
| 585 | Lat->E->AllLocalPsiEnergy[i] = 0.0;
|
---|
| 586 | for (p=0; p < Psi->LocalNo; p++)
|
---|
| 587 | if (Psi->LocalPsiStatus[p].PsiType == state)
|
---|
| 588 | Lat->E->AllLocalPsiEnergy[i] += Lat->E->PsiEnergy[i][p];
|
---|
| 589 | }
|
---|
| 590 | }
|
---|
| 591 |
|
---|
| 592 | /** Calculates gradient and evaluates second order perturbed energy functional for specific wave function.
|
---|
| 593 | * The in second order perturbed energy functional reads as follows.
|
---|
| 594 | * \f[
|
---|
| 595 | * E^{(2)} = \sum_{kl} \langle \varphi_k^{(1)} | H^{(0)} \delta_{kl} - \lambda_{kl} | \varphi_l^{(1)} \rangle
|
---|
| 596 | * + \underbrace{\langle \varphi_l^{(0)} | H^{(1)} | \varphi_l^{(1)} \rangle + \langle \varphi_l^{(1)} | H^{(1)} | \varphi_l^{(0)} \rangle}_{2 {\cal R} \langle \varphi_l^{(1)} | H^{(1)} | \varphi_l^{(0)} \rangle}
|
---|
| 597 | * \f]
|
---|
| 598 | * And the gradient
|
---|
| 599 | * \f[
|
---|
| 600 | * \widetilde{\varphi}_k^{(1)} = - \sum_l ({\cal H}^{(0)} \delta_{kl} - \lambda_{kl} | \varphi_l^{(1)} \rangle + {\cal H}^{(1)} | \varphi_k^{(0)} \rangle
|
---|
| 601 | * \f]
|
---|
| 602 | * First, the HGDensity is recalculated if \a first says so - see ApplyTotalHamiltonian().
|
---|
| 603 | *
|
---|
| 604 | * Next, we need the perturbation hamiltonian acting on both the respective occupied and current wave function,
|
---|
| 605 | * see perturbed.c for respective function calls.
|
---|
| 606 | *
|
---|
| 607 | * Finally, the scalar product between the wave function and Hc_Gradient yields the eigenvalue of the hamiltonian,
|
---|
| 608 | * which is summed up over all reciprocal grid vectors and stored in OnePsiElementAddData#Lambda. The Gradient is
|
---|
| 609 | * the inverse of Hc_Gradient and with the following summation over all perturbed wave functions (MPI exchange of
|
---|
| 610 | * non-local coefficients) the gradient is computed. Here we need Psis#lambda, which is computed in CalculateHamiltonian().
|
---|
| 611 | *
|
---|
| 612 | * Also \f${\cal H}^{(1)} | \varphi_l^{(0)} \rangle\f$ is stored in GradientTypes#H1cGradient.
|
---|
| 613 | * \param *P Problem at hand, contains RunStruct, Lattice, LatticeLevel RunStruct#LevS
|
---|
| 614 | * \param l offset of perturbed wave function within Psi#LocalPsiStatus (\f$\varphi_l^{(1)}\f$)
|
---|
| 615 | * \param DoGradient (1 = yes, 0 = no) whether gradient shall be calculated or not
|
---|
| 616 | * \param first recaculate HGDensity (1) or not (0)
|
---|
| 617 | * \note DensityTypes#ActualPsiDensity must be recent for gradient calculation!
|
---|
| 618 | * \sa CalculateGradientNoRT() - same procedure for evaluation of \f${\cal H}^{(0)}| \varphi_l^{(1)} \rangle\f$
|
---|
| 619 | * \note without the simplification of \f$2 {\cal R} \langle \varphi_l^{(1)} | H^{(1)} | \varphi_l^{(0)} \rangle\f$ the
|
---|
| 620 | * calculation would be impossible due to non-local nature of perturbed wave functions. The position operator would
|
---|
| 621 | * be impossible to apply in a sensible manner.
|
---|
| 622 | */
|
---|
| 623 | void CalculatePerturbedEnergy(struct Problem *P, const int l, const int DoGradient, const int first)
|
---|
| 624 | {
|
---|
| 625 | struct Lattice *Lat = &P->Lat;
|
---|
| 626 | struct Psis *Psi = &Lat->Psi;
|
---|
| 627 | struct Energy *E = Lat->E;
|
---|
| 628 | struct PseudoPot *PP = &P->PP;
|
---|
| 629 | struct RunStruct *R = &P->R;
|
---|
| 630 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 631 | const int state = R->CurrentMin;
|
---|
| 632 | const int l_normal = Psi->TypeStartIndex[Occupied] + (l - Psi->TypeStartIndex[state]); // offset l to \varphi_l^{(0)}
|
---|
| 633 | const int ActNum = l - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[l].my_color_comm_ST_Psi;
|
---|
| 634 | int g, i, m, j;
|
---|
| 635 | double lambda, Lambda;
|
---|
| 636 | double RElambda10, RELambda10;
|
---|
| 637 | const fftw_complex *source = LevS->LPsi->LocalPsi[l];
|
---|
| 638 | fftw_complex *grad = P->Grad.GradientArray[ActualGradient];
|
---|
| 639 | fftw_complex *Hc_grad = P->Grad.GradientArray[HcGradient];
|
---|
| 640 | fftw_complex *H1c_grad = P->Grad.GradientArray[H1cGradient];
|
---|
| 641 | fftw_complex *TempPsi_0 = H1c_grad;
|
---|
| 642 | fftw_complex *varphi_1, *varphi_0;
|
---|
| 643 | struct OnePsiElement *OnePsiB, *LOnePsiB;
|
---|
| 644 | fftw_complex *LPsiDatB=NULL;
|
---|
| 645 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
| 646 | int RecvSource;
|
---|
| 647 | MPI_Status status;
|
---|
| 648 |
|
---|
| 649 | // ============ Calculate H^(0) psi^(1) =============================
|
---|
| 650 | //if (Hc_grad != P->Grad.GradientArray[HcGradient]) Error(SomeError,"CalculatePerturbedEnergy: Hc_grad corrupted");
|
---|
| 651 | SetArrayToDouble0((double *)Hc_grad,2*R->InitLevS->MaxG);
|
---|
| 652 | ApplyTotalHamiltonian(P,source,Hc_grad, PP->fnl[l], 1, first);
|
---|
| 653 |
|
---|
| 654 | // ============ ENERGY FUNCTIONAL Evaluation PART 1 ================
|
---|
| 655 | //if (l_normal < 0 || l_normal >= Psi->LocalNo) Error(SomeError,"CalculatePerturbedEnergy: l_normal out of range");
|
---|
| 656 | varphi_0 = LevS->LPsi->LocalPsi[l_normal];
|
---|
| 657 | //if (l < 0 || l >= Psi->LocalNo) Error(SomeError,"CalculatePerturbedEnergy: l out of range");
|
---|
| 658 | varphi_1 = LevS->LPsi->LocalPsi[l];
|
---|
| 659 | //if (TempPsi_0 != P->Grad.GradientArray[H1cGradient]) Error(SomeError,"CalculatePerturbedEnergy: TempPsi_0 corrupted");
|
---|
| 660 | SetArrayToDouble0((double *)TempPsi_0,2*R->InitLevS->MaxG);
|
---|
| 661 | switch (state) {
|
---|
| 662 | case Perturbed_P0:
|
---|
| 663 | CalculatePerturbationOperator_P(P,varphi_0,TempPsi_0,0); // \nabla_0 | \varphi_l^{(0)} \rangle
|
---|
| 664 | break;
|
---|
| 665 | case Perturbed_P1:
|
---|
| 666 | CalculatePerturbationOperator_P(P,varphi_0,TempPsi_0,1); // \nabla_1 | \varphi_l^{(0)} \rangle
|
---|
| 667 | break;
|
---|
| 668 | case Perturbed_P2:
|
---|
| 669 | CalculatePerturbationOperator_P(P,varphi_0,TempPsi_0,2); // \nabla_1 | \varphi_l^{(0)} \rangle
|
---|
| 670 | break;
|
---|
| 671 | case Perturbed_RxP0:
|
---|
| 672 | CalculatePerturbationOperator_RxP(P,varphi_0,TempPsi_0,l_normal,0); // r \times \nabla | \varphi_l^{(0)} \rangle
|
---|
| 673 | break;
|
---|
| 674 | case Perturbed_RxP1:
|
---|
| 675 | CalculatePerturbationOperator_RxP(P,varphi_0,TempPsi_0,l_normal,1); // r \times \nabla | \varphi_l^{(0)} \rangle
|
---|
| 676 | break;
|
---|
| 677 | case Perturbed_RxP2:
|
---|
| 678 | CalculatePerturbationOperator_RxP(P,varphi_0,TempPsi_0,l_normal,2); // r \times \nabla | \varphi_l^{(0)} \rangle
|
---|
| 679 | break;
|
---|
| 680 | default:
|
---|
| 681 | fprintf(stderr,"(%i) CalculatePerturbedEnergy called whilst not within perturbation run: CurrentMin = %i !\n",P->Par.me, R->CurrentMin);
|
---|
| 682 | break;
|
---|
| 683 | }
|
---|
| 684 |
|
---|
| 685 | // ============ GRADIENT and EIGENVALUE Evaluation Part 1==============
|
---|
| 686 | lambda = 0.0;
|
---|
| 687 | if ((DoGradient) && (grad != NULL)) {
|
---|
| 688 | g = 0;
|
---|
| 689 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
| 690 | lambda += Hc_grad[0].re*source[0].re;
|
---|
| 691 | //if (grad != P->Grad.GradientArray[ActualGradient]) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
| 692 | grad[0].re = -(Hc_grad[0].re + TempPsi_0[0].re);
|
---|
| 693 | grad[0].im = -(Hc_grad[0].im + TempPsi_0[0].im);
|
---|
| 694 | g++;
|
---|
| 695 | }
|
---|
| 696 | for (;g<LevS->MaxG;g++) {
|
---|
| 697 | lambda += 2.*(Hc_grad[g].re*source[g].re + Hc_grad[g].im*source[g].im);
|
---|
| 698 | //if (grad != P->Grad.GradientArray[ActualGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
| 699 | grad[g].re = -(Hc_grad[g].re + TempPsi_0[g].re);
|
---|
| 700 | grad[g].im = -(Hc_grad[g].im + TempPsi_0[g].im);
|
---|
| 701 | }
|
---|
| 702 |
|
---|
| 703 | m = -1;
|
---|
| 704 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
| 705 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
| 706 | if (OnePsiB->PsiType == state) { // drop all but the ones of current min state
|
---|
| 707 | m++; // increase m if it is type-specific wave function
|
---|
| 708 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
| 709 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
| 710 | else
|
---|
| 711 | LOnePsiB = NULL;
|
---|
| 712 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
| 713 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
| 714 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, PerturbedTag, P->Par.comm_ST_PsiT, &status );
|
---|
| 715 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
| 716 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
| 717 | for (i=0;i<P->Par.Max_me_comm_ST_PsiT;i++)
|
---|
| 718 | if (i != OnePsiB->my_color_comm_ST_Psi)
|
---|
| 719 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, i, PerturbedTag, P->Par.comm_ST_PsiT);
|
---|
| 720 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
| 721 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
| 722 |
|
---|
| 723 | g = 0;
|
---|
| 724 | if (LevS->GArray[0].GSq == 0.0) { // perform the summation
|
---|
| 725 | //if (grad != P->Grad.GradientArray[ActualGradient]) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
| 726 | grad[0].re += Lat->Psi.lambda[ActNum][m]*LPsiDatB[0].re;
|
---|
| 727 | grad[0].im += Lat->Psi.lambda[ActNum][m]*LPsiDatB[0].im;
|
---|
| 728 | g++;
|
---|
| 729 | }
|
---|
| 730 | for (;g<LevS->MaxG;g++) {
|
---|
| 731 | //if (grad != P->Grad.GradientArray[ActualGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
| 732 | grad[g].re += Lat->Psi.lambda[ActNum][m]*LPsiDatB[g].re;
|
---|
| 733 | grad[g].im += Lat->Psi.lambda[ActNum][m]*LPsiDatB[g].im;
|
---|
| 734 | }
|
---|
| 735 | }
|
---|
| 736 | }
|
---|
| 737 | } else {
|
---|
| 738 | lambda = GradSP(P,LevS,Hc_grad,source);
|
---|
| 739 | }
|
---|
| 740 | MPI_Allreduce ( &lambda, &Lambda, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 741 | //fprintf(stderr,"(%i) Lambda[%i] = %lg\n",P->Par.me, l, Lambda);
|
---|
| 742 | //if (l < 0 || l >= Psi->LocalNo) Error(SomeError,"CalculatePerturbedEnergy: l out of range");
|
---|
| 743 | Lat->Psi.AddData[l].Lambda = Lambda;
|
---|
| 744 |
|
---|
| 745 | // ============ ENERGY FUNCTIONAL Evaluation PART 2 ================
|
---|
| 746 | // varphi_1 jas negative symmetry, returning TempPsi_0 from CalculatePerturbedOperator also, thus real part of scalar product
|
---|
| 747 | // "-" due to purely imaginary wave function is on left hand side, thus becomes complex conjugated: i -> -i
|
---|
| 748 | // (-i goes into pert. op., "-" remains when on right hand side)
|
---|
| 749 | RElambda10 = GradSP(P,LevS,varphi_1,TempPsi_0) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * Psi->LocalPsiStatus[l_normal].PsiFactor);
|
---|
| 750 | //RElambda01 = -GradSP(P,LevS,varphi_0,TempPsi_1) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * Psi->LocalPsiStatus[l_normal].PsiFactor);
|
---|
| 751 |
|
---|
| 752 | MPI_Allreduce ( &RElambda10, &RELambda10, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 753 | //MPI_Allreduce ( &RElambda01, &RELambda01, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 754 |
|
---|
| 755 | //if (l < 0 || l >= Psi->LocalNo) Error(SomeError,"CalculatePerturbedEnergy: l out of range");
|
---|
| 756 | E->PsiEnergy[Perturbed1_0Energy][l] = RELambda10;
|
---|
| 757 | E->PsiEnergy[Perturbed0_1Energy][l] = RELambda10;
|
---|
| 758 | // if (P->Par.me == 0) {
|
---|
| 759 | // fprintf(stderr,"RE.Lambda10[%i-%i] = %lg\t RE.Lambda01[%i-%i] = %lg\n", l, l_normal, RELambda10, l_normal, l, RELambda01);
|
---|
| 760 | // }
|
---|
| 761 | // GradImSP() is only applicable to a product of wave functions with uneven symmetry!
|
---|
| 762 | // Otherwise, due to the nature of symmetry, a sum over only half of the coefficients will in most cases not result in zero!
|
---|
| 763 | }
|
---|
| 764 |
|
---|
| 765 | /** Applies \f$H^{(0)}\f$ to a given \a source.
|
---|
| 766 | * The DensityTypes#HGDensity is computed, the exchange potential added and the
|
---|
| 767 | * whole multiplied - coefficient by coefficient - with the current wave function, taken from its density coefficients,
|
---|
| 768 | * on the upper LatticeLevel (RunStruct#Lev0), which (DensityTypes#ActualPsiDensity) is updated beforehand.
|
---|
| 769 | * After an inverse fft (now G-dependent) the non-local potential is added and
|
---|
| 770 | * within the reciprocal basis set, the kinetic energy can be evaluated easily.
|
---|
| 771 | * \param *P Problem at hand
|
---|
| 772 | * \param *source pointer to source coefficient array, \f$| \varphi(G) \rangle\f$
|
---|
| 773 | * \param *dest pointer to dest coefficient array,\f$H^{(0)} | \varphi(G) \rangle\f$
|
---|
| 774 | * \param **fnl pointer to non-local form factor array
|
---|
| 775 | * \param PsiFactor occupation number of orbital
|
---|
| 776 | * \param first 1 - Re-calculate DensityTypes#HGDensity, 0 - don't
|
---|
| 777 | * \sa CalculateConDirHConDir() - same procedure
|
---|
| 778 | */
|
---|
| 779 | void ApplyTotalHamiltonian(struct Problem *P, const fftw_complex *source, fftw_complex *dest, fftw_complex ***fnl, const double PsiFactor, const int first) {
|
---|
| 780 | struct Lattice *Lat = &P->Lat;
|
---|
| 781 | struct RunStruct *R = &P->R;
|
---|
| 782 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 783 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 784 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 785 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 786 | struct PseudoPot *PP = &P->PP;
|
---|
| 787 | struct Ions *I = &P->Ion;
|
---|
| 788 | fftw_complex *work = Dens0->DensityCArray[TempDensity];
|
---|
| 789 | fftw_real *HGcR = Dens0->DensityArray[HGcDensity];
|
---|
| 790 | fftw_complex *HGcRC = (fftw_complex*)HGcR;
|
---|
| 791 | fftw_complex *HGC = Dens0->DensityCArray[HGDensity];
|
---|
| 792 | fftw_real *HGCR = (fftw_real *)HGC;
|
---|
| 793 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
| 794 | fftw_real *PsiCR = (fftw_real *)PsiC;
|
---|
| 795 | //const fftw_complex *dest_bak = dest;
|
---|
| 796 | int nx,ny,nz,iS,i0;
|
---|
| 797 | const int Nx = LevS->Plan0.plan->local_nx;
|
---|
| 798 | const int Ny = LevS->Plan0.plan->N[1];
|
---|
| 799 | const int Nz = LevS->Plan0.plan->N[2];
|
---|
| 800 | const int NUpx = LevS->NUp[0];
|
---|
| 801 | const int NUpy = LevS->NUp[1];
|
---|
| 802 | const int NUpz = LevS->NUp[2];
|
---|
| 803 | const double HGcRCFactor = 1./LevS->MaxN;
|
---|
| 804 | int g, Index, i, it;
|
---|
| 805 | fftw_complex vp,rp,rhog,TotalPsiDensity;
|
---|
| 806 | double Fac;
|
---|
| 807 |
|
---|
| 808 | if (first) {
|
---|
| 809 | // recalculate HGDensity
|
---|
| 810 | //if (HGC != Dens0->DensityCArray[HGDensity]) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
| 811 | SetArrayToDouble0((double *)HGC,2*Dens0->TotalSize);
|
---|
| 812 | g=0;
|
---|
| 813 | if (Lev0->GArray[0].GSq == 0.0) {
|
---|
| 814 | Index = Lev0->GArray[0].Index;
|
---|
| 815 | c_re(vp) = 0.0;
|
---|
| 816 | c_im(vp) = 0.0;
|
---|
| 817 | for (it = 0; it < I->Max_Types; it++) {
|
---|
| 818 | c_re(vp) += (c_re(I->I[it].SFactor[0])*PP->phi_ps_loc[it][0]);
|
---|
| 819 | c_im(vp) += (c_im(I->I[it].SFactor[0])*PP->phi_ps_loc[it][0]);
|
---|
| 820 | }
|
---|
| 821 | //if (HGC != Dens0->DensityCArray[HGDensity] || Index<0 || Index>=Dens0->LocalSizeC) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
| 822 | c_re(HGC[Index]) = c_re(vp);
|
---|
| 823 | c_re(TotalPsiDensity) = c_re(Dens0->DensityCArray[TotalDensity][Index]);
|
---|
| 824 | c_im(TotalPsiDensity) = c_im(Dens0->DensityCArray[TotalDensity][Index]);
|
---|
| 825 |
|
---|
| 826 | g++;
|
---|
| 827 | }
|
---|
| 828 | for (; g < Lev0->MaxG; g++) {
|
---|
| 829 | Index = Lev0->GArray[g].Index;
|
---|
| 830 | Fac = 4.*PI/(Lev0->GArray[g].GSq);
|
---|
| 831 | c_re(vp) = 0.0;
|
---|
| 832 | c_im(vp) = 0.0;
|
---|
| 833 | c_re(rp) = 0.0;
|
---|
| 834 | c_im(rp) = 0.0;
|
---|
| 835 | for (it = 0; it < I->Max_Types; it++) {
|
---|
| 836 | c_re(vp) += (c_re(I->I[it].SFactor[g])*PP->phi_ps_loc[it][g]);
|
---|
| 837 | c_im(vp) += (c_im(I->I[it].SFactor[g])*PP->phi_ps_loc[it][g]);
|
---|
| 838 | c_re(rp) += (c_re(I->I[it].SFactor[g])*PP->FacGauss[it][g]);
|
---|
| 839 | c_im(rp) += (c_im(I->I[it].SFactor[g])*PP->FacGauss[it][g]);
|
---|
| 840 | } // rp = n^{Gauss)(G)
|
---|
| 841 |
|
---|
| 842 | // n^{tot} = n^0 + \lambda n^1 + ...
|
---|
| 843 | //if (isnan(c_re(Dens0->DensityCArray[TotalDensity][Index]))) { fprintf(stderr,"(%i) WARNING in CalculatePerturbedEnergy(): TotalDensity[%i] = NaN!\n", P->Par.me, Index); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 844 | c_re(TotalPsiDensity) = c_re(Dens0->DensityCArray[TotalDensity][Index]);
|
---|
| 845 | c_im(TotalPsiDensity) = c_im(Dens0->DensityCArray[TotalDensity][Index]);
|
---|
| 846 |
|
---|
| 847 | c_re(rhog) = c_re(TotalPsiDensity)*R->HGcFactor+c_re(rp);
|
---|
| 848 | c_im(rhog) = c_im(TotalPsiDensity)*R->HGcFactor+c_im(rp);
|
---|
| 849 | // rhog = n(G) + n^{Gauss}(G), rhoe = n(G)
|
---|
| 850 | //if (HGC != Dens0->DensityCArray[HGDensity] || Index<0 || Index>=Dens0->LocalSizeC) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
| 851 | c_re(HGC[Index]) = c_re(vp)+Fac*c_re(rhog);
|
---|
| 852 | c_im(HGC[Index]) = c_im(vp)+Fac*c_im(rhog);
|
---|
| 853 | }
|
---|
| 854 | //
|
---|
| 855 | for (i=0; i<Lev0->MaxDoubleG; i++) {
|
---|
| 856 | //if (HGC != Dens0->DensityCArray[HGDensity] || Lev0->DoubleG[2*i+1]<0 || Lev0->DoubleG[2*i+1]>Dens0->LocalSizeC || Lev0->DoubleG[2*i]<0 || Lev0->DoubleG[2*i]>Dens0->LocalSizeC) Error(SomeError,"CalculatePerturbedEnergy: grad corrupted");
|
---|
| 857 | HGC[Lev0->DoubleG[2*i+1]].re = HGC[Lev0->DoubleG[2*i]].re;
|
---|
| 858 | HGC[Lev0->DoubleG[2*i+1]].im = -HGC[Lev0->DoubleG[2*i]].im;
|
---|
| 859 | }
|
---|
| 860 | }
|
---|
| 861 | // ============ GRADIENT and EIGENVALUE Evaluation Part 1==============
|
---|
| 862 | // \lambda_l^{(1)} = \langle \varphi_l^{(1)} | H^{(0)} | \varphi_l^{(1)} \rangle and gradient calculation
|
---|
| 863 | SpeedMeasure(P, LocTime, StartTimeDo);
|
---|
| 864 | // back-transform HGDensity: (G) -> (R)
|
---|
| 865 | //if (HGC != Dens0->DensityCArray[HGDensity]) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
| 866 | if (first) fft_3d_complex_to_real(plan, Lev0->LevelNo, FFTNF1, HGC, work);
|
---|
| 867 | // evaluate exchange potential with this density, add up onto HGCR
|
---|
| 868 | //if (HGCR != (fftw_real *)Dens0->DensityCArray[HGDensity]) Error(SomeError,"ApplyTotalHamiltonian: HGCR corrupted");
|
---|
| 869 | if (first) CalculateXCPotentialNoRT(P, HGCR); // add V^{xc} on V^H + V^{ps}
|
---|
| 870 | // make sure that ActualPsiDensity is recent
|
---|
| 871 | CalculateOneDensityR(Lat, LevS, Dens0, source, Dens0->DensityArray[ActualDensity], R->FactorDensityR*PsiFactor, 1);
|
---|
| 872 | for (nx=0;nx<Nx;nx++)
|
---|
| 873 | for (ny=0;ny<Ny;ny++)
|
---|
| 874 | for (nz=0;nz<Nz;nz++) {
|
---|
| 875 | i0 = nz*NUpz+Nz*NUpz*(ny*NUpy+Ny*NUpy*nx*NUpx);
|
---|
| 876 | iS = nz+Nz*(ny+Ny*nx);
|
---|
| 877 | //if (HGcR != Dens0->DensityArray[HGcDensity] || iS<0 || iS>=LevS->Dens->LocalSizeR) Error(SomeError,"ApplyTotalHamiltonian: HGC corrupted");
|
---|
| 878 | HGcR[iS] = HGCR[i0]*PsiCR[i0]; /* Matrix Vector Mult */
|
---|
| 879 | }
|
---|
| 880 | // (R) -> (G)
|
---|
| 881 | //if (HGcRC != (fftw_complex *)Dens0->DensityArray[HGcDensity]) Error(SomeError,"ApplyTotalHamiltonian: HGcRC corrupted");
|
---|
| 882 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, HGcRC, work);
|
---|
| 883 | SpeedMeasure(P, LocTime, StopTimeDo);
|
---|
| 884 | /* NonLocalPP */
|
---|
| 885 | SpeedMeasure(P, NonLocTime, StartTimeDo);
|
---|
| 886 | //if (dest != dest_bak) Error(SomeError,"ApplyTotalHamiltonian: dest corrupted");
|
---|
| 887 | CalculateAddNLPot(P, dest, fnl, PsiFactor); // wave function hidden in form factors fnl, also resets Hc_grad beforehand
|
---|
| 888 | SpeedMeasure(P, NonLocTime, StopTimeDo);
|
---|
| 889 |
|
---|
| 890 | /* create final vector */
|
---|
| 891 | for (g=0;g<LevS->MaxG;g++) {
|
---|
| 892 | Index = LevS->GArray[g].Index; /* FIXME - factoren */
|
---|
| 893 | //if (dest != dest_bak || g<0 || g>=LevS->MaxG) Error(SomeError,"ApplyTotalHamiltonian: dest corrupted");
|
---|
| 894 | dest[g].re += PsiFactor*(HGcRC[Index].re*HGcRCFactor + 0.5*LevS->GArray[g].GSq*source[g].re);
|
---|
| 895 | dest[g].im += PsiFactor*(HGcRC[Index].im*HGcRCFactor + 0.5*LevS->GArray[g].GSq*source[g].im);
|
---|
| 896 | }
|
---|
| 897 | }
|
---|
| 898 |
|
---|
| 899 | #define stay_above 0.001 //!< value above which the coefficient of the wave function will always remain
|
---|
| 900 |
|
---|
| 901 | /** Finds the minimum of perturbed energy in regards of actual wave function.
|
---|
| 902 | * The following happens step by step:
|
---|
| 903 | * -# The Gradient is copied into GradientTypes#GraSchGradient (which is nothing but a pointer to
|
---|
| 904 | * one array in LPsiDat) and orthonormalized via GramSch() to all occupied wave functions
|
---|
| 905 | * except to the current perturbed one.
|
---|
| 906 | * -# Then comes pre-conditioning, analogous to CalculatePreConGrad().
|
---|
| 907 | * -# The Gradient is projected onto the current perturbed wave function and this is subtracted, i.e.
|
---|
| 908 | * vector is the conjugate gradient.
|
---|
| 909 | * -# Finally, Calculate1stPerturbedDerivative() and Calculate2ndPerturbedDerivative() are called and
|
---|
| 910 | * with these results and the current total energy, CalculateDeltaI() finds the parameter for the one-
|
---|
| 911 | * dimensional minimisation. The current wave function is set to newly found minimum and approximated
|
---|
| 912 | * total energy is printed.
|
---|
| 913 | *
|
---|
| 914 | * \param *P Problem at hand
|
---|
| 915 | * \sa CalculateNewWave() and functions therein
|
---|
| 916 | */
|
---|
| 917 | void FindPerturbedMinimum(struct Problem *P)
|
---|
| 918 | {
|
---|
| 919 | struct Lattice *Lat = &P->Lat;
|
---|
| 920 | struct RunStruct *R = &P->R;
|
---|
| 921 | struct Psis *Psi = &Lat->Psi;
|
---|
| 922 | struct PseudoPot *PP = &P->PP;
|
---|
| 923 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 924 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 925 | struct Density *Dens = Lev0->Dens;
|
---|
| 926 | struct Energy *En = Lat->E;
|
---|
| 927 | struct FileData *F = &P->Files;
|
---|
| 928 | int g,p,i;
|
---|
| 929 | int step = R->PsiStep;
|
---|
| 930 | double *GammaDiv = &Lat->Psi.AddData[R->ActualLocalPsiNo].Gamma;
|
---|
| 931 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
| 932 | fftw_complex *source = LevS->LPsi->LocalPsi[R->ActualLocalPsiNo];
|
---|
| 933 | fftw_complex *grad = P->Grad.GradientArray[ActualGradient];
|
---|
| 934 | fftw_complex *GradOrtho = P->Grad.GradientArray[GraSchGradient];
|
---|
| 935 | fftw_complex *PCgrad = P->Grad.GradientArray[PreConGradient];
|
---|
| 936 | fftw_complex *PCOrtho = P->Grad.GradientArray[GraSchGradient];
|
---|
| 937 | fftw_complex *ConDir = P->Grad.GradientArray[ConDirGradient];
|
---|
| 938 | fftw_complex *ConDir_old = P->Grad.GradientArray[OldConDirGradient];
|
---|
| 939 | fftw_complex *Ortho = P->Grad.GradientArray[GraSchGradient];
|
---|
| 940 | const fftw_complex *Hc_grad = P->Grad.GradientArray[HcGradient];
|
---|
| 941 | const fftw_complex *H1c_grad = P->Grad.GradientArray[H1cGradient];
|
---|
| 942 | fftw_complex *HConDir = Dens->DensityCArray[ActualDensity];
|
---|
| 943 | const double PsiFactor = Lat->Psi.LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor;
|
---|
| 944 | //double Lambda = Lat->Psi.AddData[R->ActualLocalPsiNo].Lambda;
|
---|
| 945 | double T;
|
---|
| 946 | double x, K; //, dK;
|
---|
| 947 | double dS[2], S[2], Gamma, GammaDivOld = *GammaDiv;
|
---|
| 948 | double LocalSP, PsiSP;
|
---|
| 949 | double dEdt0, ddEddt0, ConDirHConDir, ConDirConDir;//, sourceHsource;
|
---|
| 950 | double E0, E, delta;
|
---|
| 951 | //double E0, E, dE, ddE, delta, dcos, dsin;
|
---|
| 952 | //double EI, dEI, ddEI, deltaI, dcosI, dsinI;
|
---|
| 953 | //double HartreeddEddt0, XCddEddt0;
|
---|
| 954 | double d[4],D[4], Diff;
|
---|
| 955 | const int Num = Psi->NoOfPsis;
|
---|
| 956 |
|
---|
| 957 | // ORTHOGONALIZED-GRADIENT
|
---|
| 958 | for (g=0;g<LevS->MaxG;g++) {
|
---|
| 959 | //if (GradOrtho != P->Grad.GradientArray[GraSchGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: GradOrtho corrupted");
|
---|
| 960 | GradOrtho[g].re = grad[g].re; //+Lambda*source[g].re;
|
---|
| 961 | GradOrtho[g].im = grad[g].im; //+Lambda*source[g].im;
|
---|
| 962 | }
|
---|
| 963 | // include the ExtraPsi (which is the GraSchGradient!)
|
---|
| 964 | SetGramSchExtraPsi(P, Psi, NotOrthogonal);
|
---|
| 965 | // exclude the minimised Psi
|
---|
| 966 | SetGramSchActualPsi(P, Psi, NotUsedToOrtho);
|
---|
| 967 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
| 968 | // makes conjugate gradient orthogonal to all other orbits
|
---|
| 969 | //fprintf(stderr,"CalculateCGGradient: GramSch() for extra orbital\n");
|
---|
| 970 | GramSch(P, LevS, Psi, Orthogonalize);
|
---|
| 971 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
| 972 | //if (grad != P->Grad.GradientArray[ActualGradient]) Error(SomeError,"FindPerturbedMinimum: grad corrupted");
|
---|
| 973 | memcpy(grad, GradOrtho, ElementSize*LevS->MaxG*sizeof(double));
|
---|
| 974 | //memcpy(PCOrtho, GradOrtho, ElementSize*LevS->MaxG*sizeof(double));
|
---|
| 975 |
|
---|
| 976 | // PRE-CONDITION-GRADIENT
|
---|
| 977 | //if (fabs(T) < MYEPSILON) T = 1;
|
---|
| 978 | T = 0.;
|
---|
| 979 | for (i=0;i<Num;i++)
|
---|
| 980 | T += Psi->lambda[i][i];
|
---|
| 981 | for (g=0;g<LevS->MaxG;g++) {
|
---|
| 982 | x = .5*LevS->GArray[g].GSq;
|
---|
| 983 | // FIXME: Good way of accessing reciprocal Lev0 Density coefficients on LevS! (not so trivial)
|
---|
| 984 | //x += sqrt(Dens->DensityCArray[HGDensity][g].re*Dens->DensityCArray[HGDensity][g].re+Dens->DensityCArray[HGDensity][g].im*Dens->DensityCArray[HGDensity][g].im);
|
---|
| 985 | x -= T/(double)Num;
|
---|
| 986 | K = x/(x*x+stay_above*stay_above);
|
---|
| 987 | //if (PCOrtho != P->Grad.GradientArray[GraSchGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: PCOrtho corrupted");
|
---|
| 988 | c_re(PCOrtho[g]) = K*c_re(grad[g]);
|
---|
| 989 | c_im(PCOrtho[g]) = K*c_im(grad[g]);
|
---|
| 990 | }
|
---|
| 991 | SetGramSchExtraPsi(P, Psi, NotOrthogonal);
|
---|
| 992 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
| 993 | // preconditioned direction is orthogonalized
|
---|
| 994 | //fprintf(stderr,"CalculatePreConGrad: GramSch() for extra orbital\n");
|
---|
| 995 | GramSch(P, LevS, Psi, Orthogonalize);
|
---|
| 996 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
| 997 | //if (PCgrad != P->Grad.GradientArray[PreConGradient]) Error(SomeError,"FindPerturbedMinimum: PCgrad corrupted");
|
---|
| 998 | memcpy(PCgrad, PCOrtho, ElementSize*LevS->MaxG*sizeof(double));
|
---|
| 999 |
|
---|
| 1000 | //debug(P, "Before ConDir");
|
---|
| 1001 | //fprintf(stderr,"|(%i)|^2 = %lg\t |PCgrad|^2 = %lg\t |PCgrad,(%i)| = %lg\n", R->ActualLocalPsiNo, GradSP(P,LevS,source,source),GradSP(P,LevS,PCgrad,PCgrad), R->ActualLocalPsiNo, GradSP(P,LevS,PCgrad,source));
|
---|
| 1002 | // CONJUGATE-GRADIENT
|
---|
| 1003 | LocalSP = GradSP(P, LevS, PCgrad, grad);
|
---|
| 1004 | MPI_Allreduce ( &LocalSP, &PsiSP, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 1005 | *GammaDiv = dS[0] = PsiSP;
|
---|
| 1006 | dS[1] = GammaDivOld;
|
---|
| 1007 | S[0]=dS[0]; S[1]=dS[1];
|
---|
| 1008 | /*MPI_Allreduce ( dS, S, 2, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT);*/
|
---|
| 1009 | if (step) { // only in later steps is the scalar product used, but always condir stored in oldcondir and Ortho (working gradient)
|
---|
| 1010 | if (fabs(S[1]) < MYEPSILON) fprintf(stderr,"CalculateConDir: S[1] = %lg\n",S[1]);
|
---|
| 1011 | Gamma = S[0]/S[1];
|
---|
| 1012 | if (fabs(S[1]) < MYEPSILON) {
|
---|
| 1013 | if (fabs(S[0]) < MYEPSILON)
|
---|
| 1014 | Gamma = 1.0;
|
---|
| 1015 | else
|
---|
| 1016 | Gamma = 0.0;
|
---|
| 1017 | }
|
---|
| 1018 | for (g=0; g < LevS->MaxG; g++) {
|
---|
| 1019 | //if (ConDir != P->Grad.GradientArray[ConDirGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
| 1020 | c_re(ConDir[g]) = c_re(PCgrad[g]) + Gamma*c_re(ConDir_old[g]);
|
---|
| 1021 | c_im(ConDir[g]) = c_im(PCgrad[g]) + Gamma*c_im(ConDir_old[g]);
|
---|
| 1022 | //if (ConDir_old != P->Grad.GradientArray[OldConDirGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: ConDir_old corrupted");
|
---|
| 1023 | c_re(ConDir_old[g]) = c_re(ConDir[g]);
|
---|
| 1024 | c_im(ConDir_old[g]) = c_im(ConDir[g]);
|
---|
| 1025 | //if (Ortho != P->Grad.GradientArray[GraSchGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: Ortho corrupted");
|
---|
| 1026 | c_re(Ortho[g]) = c_re(ConDir[g]);
|
---|
| 1027 | c_im(Ortho[g]) = c_im(ConDir[g]);
|
---|
| 1028 | }
|
---|
| 1029 | } else {
|
---|
| 1030 | Gamma = 0.0;
|
---|
| 1031 | for (g=0; g < LevS->MaxG; g++) {
|
---|
| 1032 | //if (ConDir != P->Grad.GradientArray[ConDirGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
| 1033 | c_re(ConDir[g]) = c_re(PCgrad[g]);
|
---|
| 1034 | c_im(ConDir[g]) = c_im(PCgrad[g]);
|
---|
| 1035 | //if (ConDir_old != P->Grad.GradientArray[OldConDirGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: ConDir_old corrupted");
|
---|
| 1036 | c_re(ConDir_old[g]) = c_re(ConDir[g]);
|
---|
| 1037 | c_im(ConDir_old[g]) = c_im(ConDir[g]);
|
---|
| 1038 | //if (Ortho != P->Grad.GradientArray[GraSchGradient] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: Ortho corrupted");
|
---|
| 1039 | c_re(Ortho[g]) = c_re(ConDir[g]);
|
---|
| 1040 | c_im(Ortho[g]) = c_im(ConDir[g]);
|
---|
| 1041 | }
|
---|
| 1042 | }
|
---|
| 1043 | // orthonormalize
|
---|
| 1044 | SetGramSchExtraPsi(P, Psi, NotOrthogonal);
|
---|
| 1045 | SpeedMeasure(P, GramSchTime, StartTimeDo);
|
---|
| 1046 | //fprintf(stderr,"CalculateConDir: GramSch() for extra orbital\n");
|
---|
| 1047 | GramSch(P, LevS, Psi, Orthogonalize);
|
---|
| 1048 | SpeedMeasure(P, GramSchTime, StopTimeDo);
|
---|
| 1049 | //if (ConDir != P->Grad.GradientArray[ConDirGradient]) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
| 1050 | memcpy(ConDir, Ortho, ElementSize*LevS->MaxG*sizeof(double));
|
---|
| 1051 | //debug(P, "Before LineSearch");
|
---|
| 1052 | //fprintf(stderr,"|(%i)|^2 = %lg\t |ConDir|^2 = %lg\t |ConDir,(%i)| = %lg\n", R->ActualLocalPsiNo, GradSP(P,LevS,source,source),GradSP(P,LevS,ConDir,ConDir), R->ActualLocalPsiNo, GradSP(P,LevS,ConDir,source));
|
---|
| 1053 | SetGramSchActualPsi(P, Psi, IsOrthogonal);
|
---|
| 1054 |
|
---|
| 1055 | //fprintf(stderr,"(%i) Testing conjugate gradient for Orthogonality ...\n", P->Par.me);
|
---|
| 1056 | //TestForOrth(P,LevS,ConDir);
|
---|
| 1057 |
|
---|
| 1058 | // ONE-DIMENSIONAL LINE-SEARCH
|
---|
| 1059 |
|
---|
| 1060 | // ========= dE / dt | 0 ============
|
---|
| 1061 | p = Lat->Psi.TypeStartIndex[Occupied] + (R->ActualLocalPsiNo - Lat->Psi.TypeStartIndex[R->CurrentMin]);
|
---|
| 1062 | //if (Hc_grad != P->Grad.GradientArray[HcGradient]) Error(SomeError,"FindPerturbedMinimum: Hc_grad corrupted");
|
---|
| 1063 | //if (H1c_grad != P->Grad.GradientArray[H1cGradient]) Error(SomeError,"FindPerturbedMinimum: H1c_grad corrupted");
|
---|
| 1064 | d[0] = Calculate1stPerturbedDerivative(P, LevS->LPsi->LocalPsi[p], source, ConDir, Hc_grad, H1c_grad);
|
---|
| 1065 | //CalculateConDirHConDir(P, ConDir, PsiFactor, &d[1], &d[2], &d[3]);
|
---|
| 1066 | //if (ConDir != P->Grad.GradientArray[ConDirGradient]) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
| 1067 | CalculateCDfnl(P, ConDir, PP->CDfnl); // calculate needed non-local form factors
|
---|
| 1068 | //if (HConDir != Dens->DensityCArray[ActualDensity]) Error(SomeError,"FindPerturbedMinimum: HConDir corrupted");
|
---|
| 1069 | SetArrayToDouble0((double *)HConDir,Dens->TotalSize*2);
|
---|
| 1070 | //if (ConDir != P->Grad.GradientArray[ConDirGradient]) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
| 1071 | ApplyTotalHamiltonian(P,ConDir,HConDir, PP->CDfnl, PsiFactor, 0); // applies H^(0) with total perturbed density!
|
---|
| 1072 | d[1] = GradSP(P,LevS,ConDir,HConDir);
|
---|
| 1073 | d[2] = GradSP(P,LevS,ConDir,ConDir);
|
---|
| 1074 | d[3] = 0.;
|
---|
| 1075 |
|
---|
| 1076 | // gather results
|
---|
| 1077 | MPI_Allreduce ( &d, &D, 4, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 1078 | // ========== ddE / ddt | 0 =========
|
---|
| 1079 | dEdt0 = D[0];
|
---|
| 1080 | for (i=MAXOLD-1; i > 0; i--)
|
---|
| 1081 | En->dEdt0[i] = En->dEdt0[i-1];
|
---|
| 1082 | En->dEdt0[0] = dEdt0;
|
---|
| 1083 | ConDirHConDir = D[1];
|
---|
| 1084 | ConDirConDir = D[2];
|
---|
| 1085 | ddEddt0 = 0.0;
|
---|
| 1086 | //if (ConDir != P->Grad.GradientArray[ConDirGradient]) Error(SomeError,"FindPerturbedMinimum: ConDir corrupted");
|
---|
| 1087 | //if (H1c_grad != P->Grad.GradientArray[H1cGradient]) Error(SomeError,"FindPerturbedMinimum: H1c_grad corrupted");
|
---|
| 1088 | ddEddt0 = Calculate2ndPerturbedDerivative(P, LevS->LPsi->LocalPsi[p], source, ConDir, Lat->Psi.AddData[R->ActualLocalPsiNo].Lambda * Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor, ConDirHConDir, ConDirConDir);
|
---|
| 1089 |
|
---|
| 1090 | for (i=MAXOLD-1; i > 0; i--)
|
---|
| 1091 | En->ddEddt0[i] = En->ddEddt0[i-1];
|
---|
| 1092 | En->ddEddt0[0] = ddEddt0;
|
---|
| 1093 | E0 = En->TotalEnergy[0];
|
---|
| 1094 | // delta
|
---|
| 1095 | //if (isnan(E0)) { fprintf(stderr,"(%i) WARNING in CalculateLineSearch(): E0_%i[%i] = NaN!\n", P->Par.me, i, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 1096 | //if (isnan(dEdt0)) { fprintf(stderr,"(%i) WARNING in CalculateLineSearch(): dEdt0_%i[%i] = NaN!\n", P->Par.me, i, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 1097 | //if (isnan(ddEddt0)) { fprintf(stderr,"(%i) WARNING in CalculateLineSearch(): ddEddt0_%i[%i] = NaN!\n", P->Par.me, i, 0); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 1098 |
|
---|
| 1099 | ////deltaI = CalculateDeltaI(E0, dEdt0, ddEddt0,
|
---|
| 1100 | //// &EI, &dEI, &ddEI, &dcosI, &dsinI);
|
---|
| 1101 | ////delta = deltaI; E = EI; dE = dEI; ddE = ddEI; dcos = dcosI; dsin = dsinI;
|
---|
| 1102 | if (ddEddt0 > 0) {
|
---|
| 1103 | delta = - dEdt0/ddEddt0;
|
---|
| 1104 | E = E0 + delta * dEdt0 + delta*delta/2. * ddEddt0;
|
---|
| 1105 | } else {
|
---|
| 1106 | delta = 0.;
|
---|
| 1107 | E = E0;
|
---|
| 1108 | fprintf(stderr,"(%i) Taylor approximation leads not to minimum!\n",P->Par.me);
|
---|
| 1109 | }
|
---|
| 1110 |
|
---|
| 1111 | // shift energy delta values
|
---|
| 1112 | for (i=MAXOLD-1; i > 0; i--) {
|
---|
| 1113 | En->delta[i] = En->delta[i-1];
|
---|
| 1114 | En->ATE[i] = En->ATE[i-1];
|
---|
| 1115 | }
|
---|
| 1116 | // store new one
|
---|
| 1117 | En->delta[0] = delta;
|
---|
| 1118 | En->ATE[0] = E;
|
---|
| 1119 | if (En->TotalEnergy[1] != 0.)
|
---|
| 1120 | Diff = fabs(En->TotalEnergy[1] - E0)/(En->TotalEnergy[1] - E0)*fabs((E0 - En->ATE[1])/E0);
|
---|
| 1121 | else
|
---|
| 1122 | Diff = 0.;
|
---|
| 1123 | R->Diffcount += pow(Diff,2);
|
---|
| 1124 |
|
---|
| 1125 | // reinstate actual density (only needed for UpdateDensityCalculation) ...
|
---|
| 1126 | //CalculateOneDensityR(Lat, LevS, Dens, source, Dens->DensityArray[ActualDensity], R->FactorDensityR*Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor, 1);
|
---|
| 1127 | // ... before changing actual local Psi
|
---|
| 1128 | for (g = 0; g < LevS->MaxG; g++) { // Here all coefficients are updated for the new found wave function
|
---|
| 1129 | //if (isnan(ConDir[g].re)) { fprintf(stderr,"WARNGING: CalculateLineSearch(): ConDir_%i(%i) = NaN!\n", R->ActualLocalPsiNo, g); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 1130 | //if (source != LevS->LPsi->LocalPsi[R->ActualLocalPsiNo] || g<0 || g>=LevS->MaxG) Error(SomeError,"FindPerturbedMinimum: source corrupted");
|
---|
| 1131 | ////c_re(source[g]) = c_re(source[g])*dcos + c_re(ConDir[g])*dsin;
|
---|
| 1132 | ////c_im(source[g]) = c_im(source[g])*dcos + c_im(ConDir[g])*dsin;
|
---|
| 1133 | c_re(source[g]) = c_re(source[g]) + c_re(ConDir[g])*delta;
|
---|
| 1134 | c_im(source[g]) = c_im(source[g]) + c_im(ConDir[g])*delta;
|
---|
| 1135 | }
|
---|
| 1136 | if (P->Call.out[StepLeaderOut]) {
|
---|
| 1137 | fprintf(stderr, "(%i,%i,%i)S(%i,%i,%i):\tTE: %e\tATE: %e\t Diff: %e\t --- d: %e\tdEdt0: %e\tddEddt0: %e\n",P->Par.my_color_comm_ST,P->Par.me_comm_ST, P->Par.me_comm_ST_PsiT, R->MinStep, R->ActualLocalPsiNo, R->PsiStep, E0, E, Diff,delta, dEdt0, ddEddt0);
|
---|
| 1138 | //fprintf(stderr, "(%i,%i,%i)S(%i,%i,%i):\tp0: %e p1: %e p2: %e \tATE: %e\t Diff: %e\t --- d: %e\tdEdt0: %e\tddEddt0: %e\n",P->Par.my_color_comm_ST,P->Par.me_comm_ST, P->Par.me_comm_ST_PsiT, R->MinStep, R->ActualLocalPsiNo, R->PsiStep, En->parts[0], En->parts[1], En->parts[2], E, Diff,delta, dEdt0, ddEddt0);
|
---|
| 1139 | }
|
---|
| 1140 | if (P->Par.me == 0) {
|
---|
| 1141 | fprintf(F->MinimisationFile, "%i\t%i\t%i\t%e\t%e\t%e\t%e\t%e\n",R->MinStep, R->ActualLocalPsiNo, R->PsiStep, E0, E, delta, dEdt0, ddEddt0);
|
---|
| 1142 | fflush(F->MinimisationFile);
|
---|
| 1143 | }
|
---|
| 1144 | }
|
---|
| 1145 |
|
---|
| 1146 | /** Applies perturbation operator \f$\nabla_{index}\f$ to \a *source.
|
---|
| 1147 | * As wave functions are stored in the reciprocal basis set, the application is straight-forward,
|
---|
| 1148 | * for every G vector, the by \a index specified component is multiplied with the respective
|
---|
| 1149 | * coefficient. Afterwards, 1/i is applied by flipping real and imaginary components (and an additional minus sign on the new imaginary term).
|
---|
| 1150 | * \param *P Problem at hand
|
---|
| 1151 | * \param *source complex coefficients of wave function \f$\varphi(G)\f$
|
---|
| 1152 | * \param *dest returned complex coefficients of wave function \f$\widehat{p}_{index}|\varphi(G)\f$
|
---|
| 1153 | * \param index_g vectorial index of operator to be applied
|
---|
| 1154 | */
|
---|
| 1155 | void CalculatePerturbationOperator_P(struct Problem *P, const fftw_complex *source, fftw_complex *dest, const int index_g)
|
---|
| 1156 | {
|
---|
| 1157 | struct RunStruct *R = &P->R;
|
---|
| 1158 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1159 | //const fftw_complex *dest_bak = dest;
|
---|
| 1160 | int g = 0;
|
---|
| 1161 | if (LevS->GArray[0].GSq == 0.0) {
|
---|
| 1162 | //if (dest != dest_bak) Error(SomeError,"CalculatePerturbationOperator_P: dest corrupted");
|
---|
| 1163 | dest[0].re = LevS->GArray[0].G[index_g]*source[0].im;
|
---|
| 1164 | dest[0].im = -LevS->GArray[0].G[index_g]*source[0].re;
|
---|
| 1165 | g++;
|
---|
| 1166 | }
|
---|
| 1167 | for (;g<LevS->MaxG;g++) {
|
---|
| 1168 | //if (dest != dest_bak || g<0 || g>=LevS->MaxG) Error(SomeError,"CalculatePerturbationOperator_P: g out of range");
|
---|
| 1169 | dest[g].re = LevS->GArray[g].G[index_g]*source[g].im;
|
---|
| 1170 | dest[g].im = -LevS->GArray[g].G[index_g]*source[g].re;
|
---|
| 1171 | }
|
---|
| 1172 | // don't put dest[0].im = 0! Otherwise real parts of perturbed01/10 are not the same anymore!
|
---|
| 1173 | }
|
---|
| 1174 |
|
---|
| 1175 | /** Applies perturbation operator \f$\widehat{r}_{index}\f$ to \a *source.
|
---|
| 1176 | * The \a *source wave function is blown up onto upper level LatticeLevel RunStruct#Lev0, fourier
|
---|
| 1177 | * transformed. Afterwards, for each point on the real mesh the coefficient is multiplied times the real
|
---|
| 1178 | * vector pointing within the cell to the mesh point, yet on LatticeLevel RunStruct#LevS. The new wave
|
---|
| 1179 | * function is inverse fourier transformed and the resulting reciprocal coefficients stored in *dest.
|
---|
| 1180 | * \param *P Problem at hand
|
---|
| 1181 | * \param *source source coefficients
|
---|
| 1182 | * \param *source2 second source coefficients, e.g. in the evaluation of a scalar product
|
---|
| 1183 | * \param *dest destination coefficienta array, is overwrittten!
|
---|
| 1184 | * \param index_r index of real vector.
|
---|
| 1185 | * \param wavenr index of respective PsiTypeTag#Occupied(!) OnePsiElementAddData for the needed Wanner centre of the wave function.
|
---|
| 1186 | */
|
---|
| 1187 | void CalculatePerturbationOperator_R(struct Problem *P, const fftw_complex *source, fftw_complex *dest, const fftw_complex *source2, const int index_r, const int wavenr)
|
---|
| 1188 | {
|
---|
| 1189 | struct Lattice *Lat = &P->Lat;
|
---|
| 1190 | struct RunStruct *R = &P->R;
|
---|
| 1191 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 1192 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1193 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 1194 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 1195 | fftw_complex *TempPsi = Dens0->DensityCArray[Temp2Density];
|
---|
| 1196 | fftw_real *TempPsiR = (fftw_real *) TempPsi;
|
---|
| 1197 | fftw_complex *workC = Dens0->DensityCArray[TempDensity];
|
---|
| 1198 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
| 1199 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
| 1200 | fftw_complex *tempdestRC = (fftw_complex *)Dens0->DensityArray[TempDensity];
|
---|
| 1201 | fftw_complex *posfac, *destsnd, *destrcv;
|
---|
| 1202 | double x[NDIM], fac[NDIM], Wcentre[NDIM];
|
---|
| 1203 | const int k_normal = Lat->Psi.TypeStartIndex[Occupied] + (wavenr - Lat->Psi.TypeStartIndex[R->CurrentMin]);
|
---|
| 1204 | int n[NDIM], n0, g, Index, pos, iS, i0;
|
---|
| 1205 | int N[NDIM], NUp[NDIM];
|
---|
| 1206 | const int N0 = LevS->Plan0.plan->local_nx;
|
---|
| 1207 | N[0] = LevS->Plan0.plan->N[0];
|
---|
| 1208 | N[1] = LevS->Plan0.plan->N[1];
|
---|
| 1209 | N[2] = LevS->Plan0.plan->N[2];
|
---|
| 1210 | NUp[0] = LevS->NUp[0];
|
---|
| 1211 | NUp[1] = LevS->NUp[1];
|
---|
| 1212 | NUp[2] = LevS->NUp[2];
|
---|
| 1213 | Wcentre[0] = Lat->Psi.AddData[k_normal].WannierCentre[0];
|
---|
| 1214 | Wcentre[1] = Lat->Psi.AddData[k_normal].WannierCentre[1];
|
---|
| 1215 | Wcentre[2] = Lat->Psi.AddData[k_normal].WannierCentre[2];
|
---|
| 1216 | // init pointers and values
|
---|
| 1217 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
| 1218 | const double FFTFactor = 1./LevS->MaxN;
|
---|
| 1219 | double vector;
|
---|
| 1220 | //double result, Result;
|
---|
| 1221 |
|
---|
| 1222 | // blow up source coefficients
|
---|
| 1223 | LockDensityArray(Dens0,TempDensity,real); // tempdestRC
|
---|
| 1224 | LockDensityArray(Dens0,Temp2Density,imag); // TempPsi
|
---|
| 1225 | LockDensityArray(Dens0,ActualPsiDensity,imag); // PsiC
|
---|
| 1226 | //if (tempdestRC != (fftw_complex *)Dens0->DensityArray[TempDensity]) Error(SomeError,"CalculatePerturbationOperator_R: tempdestRC corrupted");
|
---|
| 1227 | SetArrayToDouble0((double *)tempdestRC ,Dens0->TotalSize*2);
|
---|
| 1228 | //if (TempPsi != Dens0->DensityCArray[Temp2Density]) Error(SomeError,"CalculatePerturbationOperator_R: TempPsi corrupted");
|
---|
| 1229 | SetArrayToDouble0((double *)TempPsi ,Dens0->TotalSize*2);
|
---|
| 1230 | //if (PsiC != Dens0->DensityCArray[ActualPsiDensity]) Error(SomeError,"CalculatePerturbationOperator_R: PsiC corrupted");
|
---|
| 1231 | SetArrayToDouble0((double *)PsiC,Dens0->TotalSize*2);
|
---|
| 1232 | for (g=0; g<LevS->MaxG; g++) {
|
---|
| 1233 | Index = LevS->GArray[g].Index;
|
---|
| 1234 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*g];
|
---|
| 1235 | destrcv = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 1236 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 1237 | //if (destrcv != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->LocalSizeC) Error(SomeError,"CalculatePerturbationOperator_R: destrcv corrupted");
|
---|
| 1238 | destrcv [pos].re = (( source[g].re)*posfac[pos].re-(source[g].im)*posfac[pos].im);
|
---|
| 1239 | destrcv [pos].im = (( source[g].re)*posfac[pos].im+(source[g].im)*posfac[pos].re);
|
---|
| 1240 | }
|
---|
| 1241 | }
|
---|
| 1242 | for (g=0; g<LevS->MaxDoubleG; g++) {
|
---|
| 1243 | destsnd = &tempdestRC [LevS->DoubleG[2*g]*LevS->MaxNUp];
|
---|
| 1244 | destrcv = &tempdestRC [LevS->DoubleG[2*g+1]*LevS->MaxNUp];
|
---|
| 1245 | for (pos=0; pos<LevS->MaxNUp; pos++) {
|
---|
| 1246 | //if (destrcv != &tempdestRC [LevS->DoubleG[2*g+1]*LevS->MaxNUp] || LevS->DoubleG[2*g]*LevS->MaxNUp+pos<0 || LevS->DoubleG[2*g]*LevS->MaxNUp+pos>=Dens0->LocalSizeC|| LevS->DoubleG[2*g+1]*LevS->MaxNUp+pos<0 || LevS->DoubleG[2*g+1]*LevS->MaxNUp+pos>=Dens0->LocalSizeC) Error(SomeError,"CalculatePerturbationOperator_R: destrcv corrupted");
|
---|
| 1247 | destrcv [pos].re = destsnd [pos].re;
|
---|
| 1248 | destrcv [pos].im = -destsnd [pos].im;
|
---|
| 1249 | }
|
---|
| 1250 | }
|
---|
| 1251 | // fourier transform blown up wave function
|
---|
| 1252 | //if (tempdestRC != (fftw_complex *)Dens0->DensityArray[TempDensity]) Error(SomeError,"CalculatePerturbationOperator_R: tempdestRC corrupted");
|
---|
| 1253 | //if (workC != Dens0->DensityCArray[TempDensity]) Error(SomeError,"CalculatePerturbationOperator_R: workC corrupted");
|
---|
| 1254 | fft_3d_complex_to_real(plan,LevS->LevelNo, FFTNFUp, tempdestRC , workC);
|
---|
| 1255 | //if (tempdestRC != (fftw_complex *)Dens0->DensityArray[TempDensity]) Error(SomeError,"CalculatePerturbationOperator_R: tempdestRC corrupted");
|
---|
| 1256 | //if (TempPsiR != (fftw_real *)Dens0->DensityCArray[Temp2Density]) Error(SomeError,"CalculatePerturbationOperator_R: TempPsiR corrupted");
|
---|
| 1257 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC ,TempPsiR );
|
---|
| 1258 | UnLockDensityArray(Dens0,TempDensity,real); // TempdestRC
|
---|
| 1259 |
|
---|
| 1260 | //result = 0.;
|
---|
| 1261 | // for every point on the real grid multiply with component of position vector
|
---|
| 1262 | for (n0=0; n0<N0; n0++)
|
---|
| 1263 | for (n[1]=0; n[1]<N[1]; n[1]++)
|
---|
| 1264 | for (n[2]=0; n[2]<N[2]; n[2]++) {
|
---|
| 1265 | n[0] = n0 + N0 * myPE;
|
---|
| 1266 | fac[0] = (double)(n[0])/(double)((N[0]));
|
---|
| 1267 | fac[1] = (double)(n[1])/(double)((N[1]));
|
---|
| 1268 | fac[2] = (double)(n[2])/(double)((N[2]));
|
---|
| 1269 | RMat33Vec3(x,Lat->RealBasis,fac);
|
---|
| 1270 | iS = n[2] + N[2]*(n[1] + N[1]*n0); // mind splitting of x axis due to multiple processes
|
---|
| 1271 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
| 1272 | //PsiCR[iS] = ((double)n[0]/(double)N[0]*Lat->RealBasis[0] - fabs(Wcentre[0]))*TempPsiR[i0] - ((double)n[1]/(double)N[1]*Lat->RealBasis[4] - fabs(Wcentre[1]))*TempPsi2R[i0];
|
---|
| 1273 | //fprintf(stderr,"(%i) R[%i] = (%lg,%lg,%lg)\n",P->Par.me, i0, x[0], x[1], x[2]);
|
---|
| 1274 | //else fprintf(stderr,"(%i) WCentre[%i] = %e \n",P->Par.me, index_r, Wcentre[index_r]);
|
---|
| 1275 | vector = sawtooth(Lat,MinImageConv(Lat,x[index_r],Wcentre[index_r],index_r),index_r);
|
---|
| 1276 | //vector = 1.;//sin((double)(n[index_r])/(double)((N[index_r]))*2*PI);
|
---|
| 1277 | PsiCR[iS] = vector * TempPsiR[i0];
|
---|
| 1278 | //fprintf(stderr,"(%i) vector(%i/%i,%i/%i,%i/%i): %lg\tx[%i] = %e\tWcentre[%i] = %e\tTempPsiR[%i] = %e\tPsiCR[%i] = %e\n",P->Par.me, n[0], N[0], n[1], N[1], n[2], N[2], vector, index_r, x[index_r],index_r, Wcentre[index_r],i0,TempPsiR[i0],iS,PsiCR[iS]);
|
---|
| 1279 |
|
---|
| 1280 | //truedist(Lat,x[cross(index_r,2)],Wcentre[cross(index_r,2)],cross(index_r,2)) * TempPsiR[i0];
|
---|
| 1281 | //tmp += truedist(Lat,x[index_r],WCentre[index_r],index_r) * RealPhiR[i0];
|
---|
| 1282 | //tmp += sawtooth(Lat,truedist(Lat,x[index_r],WCentre[index_r],index_r), index_r)*RealPhiR[i0];
|
---|
| 1283 | //(Fehler mit falschem Ort ist vor dieser Stelle!): ueber result = RealPhiR[i0] * (x[index_r]) * RealPhiR[i0]; gecheckt
|
---|
| 1284 | //result += TempPsiR[i0] * PsiCR[iS];
|
---|
| 1285 | }
|
---|
| 1286 | UnLockDensityArray(Dens0,Temp2Density,imag); // TempPsi
|
---|
| 1287 | //MPI_Allreduce( &result, &Result, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 1288 | //if (P->Par.me == 0) fprintf(stderr,"(%i) PerturbationOpertator_R: %e\n",P->Par.me, Result/LevS->MaxN);
|
---|
| 1289 | // inverse fourier transform
|
---|
| 1290 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
| 1291 | //fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, Psi2C, workC);
|
---|
| 1292 |
|
---|
| 1293 | // copy to destination array
|
---|
| 1294 | for (g=0; g<LevS->MaxG; g++) {
|
---|
| 1295 | Index = LevS->GArray[g].Index;
|
---|
| 1296 | dest[g].re = ( PsiC[Index].re)*FFTFactor;
|
---|
| 1297 | dest[g].im = ( PsiC[Index].im)*FFTFactor;
|
---|
| 1298 | }
|
---|
| 1299 | UnLockDensityArray(Dens0,ActualPsiDensity,imag); //PsiC
|
---|
| 1300 | //if (LevS->GArray[0].GSq == 0)
|
---|
| 1301 | // dest[0].im = 0; // imaginary of G=0 is zero
|
---|
| 1302 | }
|
---|
| 1303 | /*
|
---|
| 1304 | {
|
---|
| 1305 | struct RunStruct *R = &P->R;
|
---|
| 1306 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 1307 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1308 | struct Lattice *Lat = &P->Lat;
|
---|
| 1309 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 1310 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 1311 | fftw_complex *tempdestRC = Dens0->DensityCArray[TempDensity];
|
---|
| 1312 | fftw_real *tempdestR = (fftw_real *) tempdestRC;
|
---|
| 1313 | fftw_complex *work = Dens0->DensityCArray[Temp2Density];
|
---|
| 1314 | fftw_complex *PsiC = (fftw_complex *) Dens0->DensityCArray[ActualPsiDensity];;
|
---|
| 1315 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
| 1316 | fftw_real *RealPhiR = (fftw_real *) Dens0->DensityArray[Temp2Density];
|
---|
| 1317 | fftw_complex *posfac, *destsnd, *destrcv;
|
---|
| 1318 | double x[NDIM], fac[NDIM], WCentre[NDIM];
|
---|
| 1319 | int n[NDIM], N0, n0, g, Index, pos, iS, i0;
|
---|
| 1320 |
|
---|
| 1321 | // init pointers and values
|
---|
| 1322 | int myPE = P->Par.me_comm_ST_Psi;
|
---|
| 1323 | double FFTFactor = 1./LevS->MaxN;
|
---|
| 1324 | int N[NDIM], NUp[NDIM];
|
---|
| 1325 | N[0] = LevS->Plan0.plan->N[0];
|
---|
| 1326 | N[1] = LevS->Plan0.plan->N[1];
|
---|
| 1327 | N[2] = LevS->Plan0.plan->N[2];
|
---|
| 1328 | NUp[0] = LevS->NUp[0];
|
---|
| 1329 | NUp[1] = LevS->NUp[1];
|
---|
| 1330 | NUp[2] = LevS->NUp[2];
|
---|
| 1331 | N0 = LevS->Plan0.plan->local_nx;
|
---|
| 1332 | wavenr = Lat->Psi.TypeStartIndex[Occupied] + (wavenr - Lat->Psi.TypeStartIndex[R->CurrentMin]);
|
---|
| 1333 | Wcentre[0] = Lat->Psi.AddData[wavenr].WannierCentre[0];
|
---|
| 1334 | Wcentre[1] = Lat->Psi.AddData[wavenr].WannierCentre[1];
|
---|
| 1335 | Wcentre[2] = Lat->Psi.AddData[wavenr].WannierCentre[2];
|
---|
| 1336 |
|
---|
| 1337 | // blow up source coefficients
|
---|
| 1338 | SetArrayToDouble0((double *)tempdestRC,Dens0->TotalSize*2);
|
---|
| 1339 | SetArrayToDouble0((double *)RealPhiR,Dens0->TotalSize*2);
|
---|
| 1340 | SetArrayToDouble0((double *)PsiC,Dens0->TotalSize*2);
|
---|
| 1341 | for (g=0; g<LevS->MaxG; g++) {
|
---|
| 1342 | Index = LevS->GArray[g].Index;
|
---|
| 1343 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*g];
|
---|
| 1344 | destrcv = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 1345 | for (pos=0; pos<LevS->MaxNUp; pos++) {
|
---|
| 1346 | destrcv[pos].re = (( source[g].re)*posfac[pos].re-( source[g].im)*posfac[pos].im);
|
---|
| 1347 | destrcv[pos].im = (( source[g].re)*posfac[pos].im+( source[g].im)*posfac[pos].re);
|
---|
| 1348 | }
|
---|
| 1349 | }
|
---|
| 1350 | for (g=0; g<LevS->MaxDoubleG; g++) {
|
---|
| 1351 | destsnd = &tempdestRC[LevS->DoubleG[2*g]*LevS->MaxNUp];
|
---|
| 1352 | destrcv = &tempdestRC[LevS->DoubleG[2*g+1]*LevS->MaxNUp];
|
---|
| 1353 | for (pos=0; pos<LevS->MaxNUp; pos++) {
|
---|
| 1354 | destrcv[pos].re = destsnd[pos].re;
|
---|
| 1355 | destrcv[pos].im = -destsnd[pos].im;
|
---|
| 1356 | }
|
---|
| 1357 | }
|
---|
| 1358 |
|
---|
| 1359 | // fourier transform blown up wave function
|
---|
| 1360 | fft_3d_complex_to_real(plan,LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
| 1361 | DensityRTransformPos(LevS,tempdestR,RealPhiR);
|
---|
| 1362 |
|
---|
| 1363 | //fft_Psi(P,source,RealPhiR,0,0);
|
---|
| 1364 |
|
---|
| 1365 | // for every point on the real grid multiply with component of position vector
|
---|
| 1366 | for (n0=0; n0<N0; n0++)
|
---|
| 1367 | for (n[1]=0; n[1]<N[1]; n[1]++)
|
---|
| 1368 | for (n[2]=0; n[2]<N[2]; n[2]++) {
|
---|
| 1369 | n[0] = n0 + N0 * myPE;
|
---|
| 1370 | fac[0] = (double)(n[0])/(double)((N[0]));
|
---|
| 1371 | fac[1] = (double)(n[1])/(double)((N[1]));
|
---|
| 1372 | fac[2] = (double)(n[2])/(double)((N[2]));
|
---|
| 1373 | RMat33Vec3(x,Lat->RealBasis,fac);
|
---|
| 1374 | iS = n[2] + N[2]*(n[1] + N[1]*n0); // mind splitting of x axis due to multiple processes
|
---|
| 1375 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
| 1376 | //PsiCR[iS] = (x[index_r]) * RealPhiR[i0]; //- WCentre[index_r]
|
---|
| 1377 | PsiCR[iS] = truedist(Lat,x[index_r],WCentre[index_r],index_r) * RealPhiR[i0];
|
---|
| 1378 | //PsiCR[iS] = truedist(Lat,x[index_r],0.,index_r) * RealPhiR[i0];
|
---|
| 1379 | //PsiCR[iS] = sawtooth(Lat,truedist(Lat,x[index_r],WCentre[index_r],index_r), index_r)*RealPhiR[i0];
|
---|
| 1380 | //(Fehler mit falschem Ort ist vor dieser Stelle!): ueber result = RealPhiR[i0] * (x[index_r]) * RealPhiR[i0]; gecheckt
|
---|
| 1381 | }
|
---|
| 1382 |
|
---|
| 1383 | // inverse fourier transform
|
---|
| 1384 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, PsiC, work);
|
---|
| 1385 |
|
---|
| 1386 | // copy to destination array
|
---|
| 1387 | for (g=0; g<LevS->MaxG; g++) {
|
---|
| 1388 | Index = LevS->GArray[g].Index;
|
---|
| 1389 | dest[g].re = ( PsiC[Index].re)*FFTFactor;
|
---|
| 1390 | dest[g].im = ( PsiC[Index].im)*FFTFactor;
|
---|
| 1391 | if (LevS->GArray[g].GSq == 0)
|
---|
| 1392 | dest[g].im = 0; // imaginary of G=0 is zero
|
---|
| 1393 | }
|
---|
| 1394 | }*/
|
---|
| 1395 |
|
---|
| 1396 | /** Prints the positions of all unperturbed orbitals to screen.
|
---|
| 1397 | * \param *P Problem at hand
|
---|
| 1398 | * \param type PsiTypeTag specifying group of orbitals
|
---|
| 1399 | * \sa CalculatePerturbationOperator_R()
|
---|
| 1400 | */
|
---|
| 1401 | void OutputOrbitalPositions(struct Problem *P, const enum PsiTypeTag type)
|
---|
| 1402 | {
|
---|
| 1403 | struct Lattice *Lat = &P->Lat;
|
---|
| 1404 | struct Psis *Psi = &Lat->Psi;
|
---|
| 1405 | struct RunStruct *R = &P->R;
|
---|
| 1406 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1407 | fftw_complex *temp = LevS->LPsi->TempPsi;
|
---|
| 1408 | fftw_complex *source;
|
---|
| 1409 | int wavenr, index;
|
---|
| 1410 | double result[NDIM], Result[NDIM];
|
---|
| 1411 | //double imsult[NDIM], Imsult[NDIM];
|
---|
| 1412 | double norm[NDIM], Norm[NDIM];
|
---|
| 1413 | //double imnorm[NDIM], imNorm[NDIM];
|
---|
| 1414 | double Wcentre[NDIM];
|
---|
| 1415 |
|
---|
| 1416 | // for every unperturbed wave function
|
---|
| 1417 | for (wavenr=Psi->TypeStartIndex[type]; wavenr<Psi->TypeStartIndex[type+1]; wavenr++) {
|
---|
| 1418 | source = LevS->LPsi->LocalPsi[wavenr];
|
---|
| 1419 | Wcentre[0] = Psi->AddData[wavenr].WannierCentre[0];
|
---|
| 1420 | Wcentre[1] = Psi->AddData[wavenr].WannierCentre[1];
|
---|
| 1421 | Wcentre[2] = Psi->AddData[wavenr].WannierCentre[2];
|
---|
| 1422 | for (index=0; index<NDIM; index++) {
|
---|
| 1423 | SetArrayToDouble0((double *)temp,2*R->InitLevS->MaxG);
|
---|
| 1424 | // apply position operator
|
---|
| 1425 | CalculatePerturbationOperator_R(P,source,temp,source,index, wavenr + Psi->TypeStartIndex[R->CurrentMin]);
|
---|
| 1426 | // take scalar product
|
---|
| 1427 | result[index] = GradSP(P,LevS,source,temp);
|
---|
| 1428 | //imsult[index] = GradImSP(P,LevS,source,temp);
|
---|
| 1429 | norm[index] = GradSP(P,LevS,source,source);
|
---|
| 1430 | //imnorm[index] = GradImSP(P,LevS,source,source);
|
---|
| 1431 | MPI_Allreduce( result, Result, NDIM, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 1432 | //MPI_Allreduce( imsult, Imsult, NDIM, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 1433 | MPI_Allreduce( norm, Norm, NDIM, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 1434 | //MPI_Allreduce( imnorm, imNorm, NDIM, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 1435 | }
|
---|
| 1436 | // print output to stderr
|
---|
| 1437 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Position of Orbital %i: (%e,%e,%e)\n",P->Par.me, wavenr, Result[0]/Norm[0]+Wcentre[0], Result[1]/Norm[1]+Wcentre[1], Result[2]/Norm[2]+Wcentre[2]);
|
---|
| 1438 | //fprintf(stderr,"(%i) Position of Orbital %i wrt Wannier: (%e,%e,%e)\n",P->Par.me, wavenr, Result[0]/Norm[0], Result[1]/Norm[1], Result[2]/Norm[2]);
|
---|
| 1439 | //fprintf(stderr,"(%i) with Norm: (%e,%e,%e) + i (%e,%e,%e)\n",P->Par.me, Norm[0], Norm[1], Norm[2], imNorm[0], imNorm[1], imNorm[2]);
|
---|
| 1440 | //if (P->Par.me == 0) fprintf(stderr,"(%i) Position of Orbital %i: (%e,%e,%e)\n",P->Par.me, wavenr, Result[0]/Norm[0], Result[1]/Norm[1], Result[2]/Norm[2]);
|
---|
| 1441 | }
|
---|
| 1442 | }
|
---|
| 1443 |
|
---|
| 1444 | #define borderstart 0.9
|
---|
| 1445 |
|
---|
| 1446 | /** Applies perturbation operator \f$(\widehat{r} \times \nabla)_{index}\f$ to \a *source.
|
---|
| 1447 | * The source is fourier-transformed by transforming it to a density (on the next higher level RunStruct#Lev0)
|
---|
| 1448 | * and at the same time multiply it with the respective component of the reciprocal G vector - the momentum. This
|
---|
| 1449 | * is done by callinf fft_Psi(). Thus we get \f$\nabla_k | \varphi (R) \rangle\f$.
|
---|
| 1450 | *
|
---|
| 1451 | * Next, we apply the two of three components of the position operator r, which ones stated by cross(), while going
|
---|
| 1452 | * in a loop through every point of the grid. In order to do this sensibly, truedist() is used to map the coordinates
|
---|
| 1453 | * onto -L/2...L/2, by subtracting the OneElementPsiAddData#WannierCentre R and wrapping. Also, due to the breaking up
|
---|
| 1454 | * of the x axis into equally sized chunks for each coefficient sharing process, we need to step only over local
|
---|
| 1455 | * x-axis grid points, however shift them to the global position when being used as position. In the end, we get
|
---|
| 1456 | * \f$\epsilon_{index,j,k} (\widehat{r}-R)_j \nabla_k | \varphi (R) \rangle\f$.
|
---|
| 1457 | *
|
---|
| 1458 | * One last fft brings the wave function back to reciprocal basis and it is copied to \a *dest.
|
---|
| 1459 | * \param *P Problem at hand
|
---|
| 1460 | * \param *source complex coefficients of wave function \f$\varphi(G)\f$
|
---|
| 1461 | * \param *dest returned complex coefficients of wave function \f$(\widehat{r} \times \widehat{p})_{index}|\varphi(G)\rangle\f$
|
---|
| 1462 | * \param phi0nr number within LocalPsi of the unperturbed pendant of the given perturbed wavefunction \a *source.
|
---|
| 1463 | * \param index_rxp index desired of the vector product
|
---|
| 1464 | * \sa CalculateConDirHConDir() - the procedure of fft and inverse fft is very similar.
|
---|
| 1465 | */
|
---|
| 1466 | void CalculatePerturbationOperator_RxP(struct Problem *P, const fftw_complex *source, fftw_complex *dest, const int phi0nr, const int index_rxp)
|
---|
| 1467 |
|
---|
| 1468 | {
|
---|
| 1469 | struct Lattice *Lat = &P->Lat;
|
---|
| 1470 | struct RunStruct *R = &P->R;
|
---|
| 1471 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 1472 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1473 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 1474 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 1475 | fftw_complex *TempPsi = Dens0->DensityCArray[Temp2Density];
|
---|
| 1476 | fftw_real *TempPsiR = (fftw_real *) TempPsi;
|
---|
| 1477 | fftw_complex *TempPsi2 = (fftw_complex *)Dens0->DensityArray[Temp2Density];
|
---|
| 1478 | fftw_real *TempPsi2R = (fftw_real *) TempPsi2;
|
---|
| 1479 | fftw_complex *workC = Dens0->DensityCArray[TempDensity];
|
---|
| 1480 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
| 1481 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
| 1482 | double x[NDIM], fac[NDIM], Wcentre[NDIM];
|
---|
| 1483 | int n[NDIM], n0, g, Index, iS, i0; //pos,
|
---|
| 1484 | int N[NDIM], NUp[NDIM];
|
---|
| 1485 | const int N0 = LevS->Plan0.plan->local_nx;
|
---|
| 1486 | N[0] = LevS->Plan0.plan->N[0];
|
---|
| 1487 | N[1] = LevS->Plan0.plan->N[1];
|
---|
| 1488 | N[2] = LevS->Plan0.plan->N[2];
|
---|
| 1489 | NUp[0] = LevS->NUp[0];
|
---|
| 1490 | NUp[1] = LevS->NUp[1];
|
---|
| 1491 | NUp[2] = LevS->NUp[2];
|
---|
| 1492 | Wcentre[0] = Lat->Psi.AddData[phi0nr].WannierCentre[0];
|
---|
| 1493 | Wcentre[1] = Lat->Psi.AddData[phi0nr].WannierCentre[1];
|
---|
| 1494 | Wcentre[2] = Lat->Psi.AddData[phi0nr].WannierCentre[2];
|
---|
| 1495 | // init pointers and values
|
---|
| 1496 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
| 1497 | const double FFTFactor = 1./LevS->MaxN; //
|
---|
| 1498 | // double max[NDIM], max_psi[NDIM];
|
---|
| 1499 | // double max_n[NDIM];
|
---|
| 1500 | int index[4];
|
---|
| 1501 | // double smooth, wall[NDIM];
|
---|
| 1502 | // for (g=0;g<NDIM;g++) {
|
---|
| 1503 | // max[g] = 0.;
|
---|
| 1504 | // max_psi[g] = 0.;
|
---|
| 1505 | // max_n[g] = -1.;
|
---|
| 1506 | // }
|
---|
| 1507 |
|
---|
| 1508 | //fprintf(stderr,"(%i) Wannier[%i] (%2.13e, %2.13e, %2.13e)\n", P->Par.me, phi0nr, 10.-Wcentre[0], 10.-Wcentre[1], 10.-Wcentre[2]);
|
---|
| 1509 | for (g=0;g<4;g++)
|
---|
| 1510 | index[g] = cross(index_rxp,g);
|
---|
| 1511 |
|
---|
| 1512 | // blow up source coefficients
|
---|
| 1513 | LockDensityArray(Dens0,Temp2Density,imag); // TempPsi
|
---|
| 1514 | LockDensityArray(Dens0,Temp2Density,real); // TempPsi2
|
---|
| 1515 | LockDensityArray(Dens0,ActualPsiDensity,imag); // PsiC
|
---|
| 1516 |
|
---|
| 1517 | fft_Psi(P,source,TempPsiR ,index[1],7);
|
---|
| 1518 | fft_Psi(P,source,TempPsi2R,index[3],7);
|
---|
| 1519 |
|
---|
| 1520 | //result = 0.;
|
---|
| 1521 | // for every point on the real grid multiply with component of position vector
|
---|
| 1522 | for (n0=0; n0<N0; n0++)
|
---|
| 1523 | for (n[1]=0; n[1]<N[1]; n[1]++)
|
---|
| 1524 | for (n[2]=0; n[2]<N[2]; n[2]++) {
|
---|
| 1525 | n[0] = n0 + N0 * myPE;
|
---|
| 1526 | fac[0] = (double)(n[0])/(double)((N[0]));
|
---|
| 1527 | fac[1] = (double)(n[1])/(double)((N[1]));
|
---|
| 1528 | fac[2] = (double)(n[2])/(double)((N[2]));
|
---|
| 1529 | RMat33Vec3(x,Lat->RealBasis,fac);
|
---|
| 1530 | // fac[0] = (fac[0] > .9) ? fac[0]-0.9 : 0.;
|
---|
| 1531 | // fac[1] = (fac[1] > .9) ? fac[1]-0.9 : 0.;
|
---|
| 1532 | // fac[2] = (fac[2] > .9) ? fac[2]-0.9 : 0.;
|
---|
| 1533 | // RMat33Vec3(wall,Lat->RealBasis,fac);
|
---|
| 1534 | // smooth = exp(wall[0]*wall[0]+wall[1]*wall[1]+wall[2]*wall[2]); // smoothing near the borders of the virtual cell
|
---|
| 1535 | iS = n[2] + N[2]*(n[1] + N[1]*n0); // mind splitting of x axis due to multiple processes
|
---|
| 1536 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
| 1537 |
|
---|
[f5586e] | 1538 | // if (fabs(truedist(Lat,x[index[1]],Wcentre[index[1]],index[1])) >= borderstart * sqrt(Lat->RealBasisSQ[index[1]])/2.)
|
---|
[a0bcf1] | 1539 | // if (max[index[1]] < sawtooth(Lat,truedist(Lat,x[index[1]],Wcentre[index[1]],index[1]),index[1]) * TempPsiR [i0]) {
|
---|
| 1540 | // max[index[1]] = sawtooth(Lat,truedist(Lat,x[index[1]],Wcentre[index[1]],index[1]),index[1]) * TempPsiR [i0];
|
---|
| 1541 | // max_psi[index[1]] = TempPsiR [i0];
|
---|
| 1542 | // max_n[index[1]] = truedist(Lat,x[index[1]],Wcentre[index[1]],index[1]);
|
---|
| 1543 | // }
|
---|
| 1544 | //
|
---|
[f5586e] | 1545 | // if (fabs(truedist(Lat,x[index[3]],Wcentre[index[3]],index[3])) >= borderstart * sqrt(Lat->RealBasisSQ[index[3]])/2.)
|
---|
[a0bcf1] | 1546 | // if (max[index[3]] < sawtooth(Lat,truedist(Lat,x[index[3]],Wcentre[index[3]],index[3]),index[3]) * TempPsiR [i0]) {
|
---|
| 1547 | // max[index[3]] = sawtooth(Lat,truedist(Lat,x[index[3]],Wcentre[index[3]],index[3]),index[3]) * TempPsiR [i0];
|
---|
| 1548 | // max_psi[index[3]] = TempPsiR [i0];
|
---|
| 1549 | // max_n[index[3]] = truedist(Lat,x[index[3]],Wcentre[index[3]],index[3]);
|
---|
| 1550 | // }
|
---|
| 1551 |
|
---|
| 1552 | PsiCR[iS] = //vector * TempPsiR[i0];
|
---|
| 1553 | sawtooth(Lat,MinImageConv(Lat,x[index[0]],Wcentre[index[0]],index[0]),index[0]) * TempPsiR [i0]
|
---|
| 1554 | -sawtooth(Lat,MinImageConv(Lat,x[index[2]],Wcentre[index[2]],index[2]),index[2]) * TempPsi2R[i0];
|
---|
| 1555 | // ShiftGaugeOrigin(P,truedist(Lat,x[index[0]],Wcentre[index[0]],index[0]),index[0]) * TempPsiR [i0]
|
---|
| 1556 | // -ShiftGaugeOrigin(P,truedist(Lat,x[index[2]],Wcentre[index[2]],index[2]),index[2]) * TempPsi2R[i0];
|
---|
| 1557 | // PsiCR[iS] = (x[index[0]] - Wcentre[index[0]]) * TempPsiR [i0] - (x[index[2]] - Wcentre[index[2]]) * TempPsi2R[i0];
|
---|
| 1558 | }
|
---|
| 1559 | //if (P->Par.me == 0) fprintf(stderr,"(%i) PerturbationOpertator_R(xP): %e\n",P->Par.me, Result/LevS->MaxN);
|
---|
| 1560 | UnLockDensityArray(Dens0,Temp2Density,imag); // TempPsi
|
---|
| 1561 | UnLockDensityArray(Dens0,Temp2Density,real); // TempPsi2
|
---|
| 1562 |
|
---|
| 1563 | // // print maximum values
|
---|
| 1564 | // fprintf (stderr,"(%i) RxP: Maximum values = (",P->Par.me);
|
---|
| 1565 | // for (g=0;g<NDIM;g++)
|
---|
| 1566 | // fprintf(stderr,"%lg\t", max[g]);
|
---|
| 1567 | // fprintf(stderr,"\b)\t(");
|
---|
| 1568 | // for (g=0;g<NDIM;g++)
|
---|
| 1569 | // fprintf(stderr,"%lg\t", max_psi[g]);
|
---|
| 1570 | // fprintf(stderr,"\b)\t");
|
---|
| 1571 | // fprintf (stderr,"at (");
|
---|
| 1572 | // for (g=0;g<NDIM;g++)
|
---|
| 1573 | // fprintf(stderr,"%lg\t", max_n[g]);
|
---|
| 1574 | // fprintf(stderr,"\b)\n");
|
---|
| 1575 |
|
---|
| 1576 | // inverse fourier transform
|
---|
| 1577 | //if (PsiC != Dens0->DensityCArray[ActualPsiDensity]) Error(SomeError,"CalculatePerturbationOperator_RxP: PsiC corrupted");
|
---|
| 1578 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
| 1579 |
|
---|
| 1580 | // copy to destination array
|
---|
| 1581 | SetArrayToDouble0((double *)dest, 2*R->InitLevS->MaxG);
|
---|
| 1582 | for (g=0; g<LevS->MaxG; g++) {
|
---|
| 1583 | Index = LevS->GArray[g].Index;
|
---|
| 1584 | dest[g].re += ( PsiC[Index].re)*FFTFactor; // factor confirmed, see grad.c:CalculateConDirHConDir()
|
---|
| 1585 | dest[g].im += ( PsiC[Index].im)*FFTFactor;
|
---|
| 1586 | //fprintf(stderr,"(%i) PsiC[(%lg,%lg,%lg)] = %lg +i %lg\n", P->Par.me, LevS->GArray[g].G[0], LevS->GArray[g].G[1], LevS->GArray[g].G[2], dest[g].re, dest[g].im);
|
---|
| 1587 | }
|
---|
| 1588 | UnLockDensityArray(Dens0,ActualPsiDensity,imag); // PsiC
|
---|
| 1589 | //if (LevS->GArray[0].GSq == 0.)
|
---|
| 1590 | //dest[0].im = 0.; // don't do this, see ..._P()
|
---|
| 1591 | }
|
---|
| 1592 |
|
---|
| 1593 | /** Applies perturbation operator \f$-(\nabla \times \widehat{r})_{index}\f$ to \a *source.
|
---|
| 1594 | * Is analogous to CalculatePerturbationOperator_RxP(), only the order is reversed, first position operator, then
|
---|
| 1595 | * momentum operator
|
---|
| 1596 | * \param *P Problem at hand
|
---|
| 1597 | * \param *source complex coefficients of wave function \f$\varphi(G)\f$
|
---|
| 1598 | * \param *dest returned complex coefficients of wave function \f$(\widehat{r} \times \widehat{p})_{index}|\varphi(G)\rangle\f$
|
---|
| 1599 | * \param phi0nr number within LocalPsi of the unperturbed pendant of the given perturbed wavefunction \a *source.
|
---|
| 1600 | * \param index_pxr index of position operator
|
---|
| 1601 | * \note Only third component is important due to initial rotiation of cell such that B field is aligned with z axis.
|
---|
| 1602 | * \sa CalculateConDirHConDir() - the procedure of fft and inverse fft is very similar.
|
---|
| 1603 | * \bug routine is not tested (but should work), as it offers no advantage over CalculatePerturbationOperator_RxP()
|
---|
| 1604 | */
|
---|
| 1605 | void CalculatePerturbationOperator_PxR(struct Problem *P, const fftw_complex *source, fftw_complex *dest, const int phi0nr, const int index_pxr)
|
---|
| 1606 |
|
---|
| 1607 | {
|
---|
| 1608 | struct Lattice *Lat = &P->Lat;
|
---|
| 1609 | struct RunStruct *R = &P->R;
|
---|
| 1610 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 1611 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1612 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 1613 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 1614 | fftw_complex *TempPsi = Dens0->DensityCArray[Temp2Density];
|
---|
| 1615 | fftw_real *TempPsiR = (fftw_real *) TempPsi;
|
---|
| 1616 | fftw_complex *workC = Dens0->DensityCArray[TempDensity];
|
---|
| 1617 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
| 1618 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
| 1619 | fftw_complex *Psi2C = Dens0->DensityCArray[ActualDensity];
|
---|
| 1620 | fftw_real *Psi2CR = (fftw_real *) Psi2C;
|
---|
| 1621 | fftw_complex *tempdestRC = (fftw_complex *)Dens0->DensityArray[Temp2Density];
|
---|
| 1622 | fftw_complex *posfac, *destsnd, *destrcv;
|
---|
| 1623 | double x[NDIM], fac[NDIM], Wcentre[NDIM];
|
---|
| 1624 | int n[NDIM], n0, g, Index, pos, iS, i0;
|
---|
| 1625 | int N[NDIM], NUp[NDIM];
|
---|
| 1626 | const int N0 = LevS->Plan0.plan->local_nx;
|
---|
| 1627 | N[0] = LevS->Plan0.plan->N[0];
|
---|
| 1628 | N[1] = LevS->Plan0.plan->N[1];
|
---|
| 1629 | N[2] = LevS->Plan0.plan->N[2];
|
---|
| 1630 | NUp[0] = LevS->NUp[0];
|
---|
| 1631 | NUp[1] = LevS->NUp[1];
|
---|
| 1632 | NUp[2] = LevS->NUp[2];
|
---|
| 1633 | Wcentre[0] = Lat->Psi.AddData[phi0nr].WannierCentre[0];
|
---|
| 1634 | Wcentre[1] = Lat->Psi.AddData[phi0nr].WannierCentre[1];
|
---|
| 1635 | Wcentre[2] = Lat->Psi.AddData[phi0nr].WannierCentre[2];
|
---|
| 1636 | // init pointers and values
|
---|
| 1637 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
| 1638 | const double FFTFactor = 1./LevS->MaxN;
|
---|
| 1639 |
|
---|
| 1640 | // blow up source coefficients
|
---|
| 1641 | SetArrayToDouble0((double *)tempdestRC ,Dens0->TotalSize*2);
|
---|
| 1642 | SetArrayToDouble0((double *)TempPsi ,Dens0->TotalSize*2);
|
---|
| 1643 | SetArrayToDouble0((double *)PsiC,Dens0->TotalSize*2);
|
---|
| 1644 | SetArrayToDouble0((double *)Psi2C,Dens0->TotalSize*2);
|
---|
| 1645 | for (g=0; g<LevS->MaxG; g++) {
|
---|
| 1646 | Index = LevS->GArray[g].Index;
|
---|
| 1647 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*g];
|
---|
| 1648 | destrcv = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 1649 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 1650 | destrcv [pos].re = (( source[g].re)*posfac[pos].re-( source[g].im)*posfac[pos].im);
|
---|
| 1651 | destrcv [pos].im = (( source[g].re)*posfac[pos].im+( source[g].im)*posfac[pos].re);
|
---|
| 1652 | }
|
---|
| 1653 | }
|
---|
| 1654 | for (g=0; g<LevS->MaxDoubleG; g++) {
|
---|
| 1655 | destsnd = &tempdestRC [LevS->DoubleG[2*g]*LevS->MaxNUp];
|
---|
| 1656 | destrcv = &tempdestRC [LevS->DoubleG[2*g+1]*LevS->MaxNUp];
|
---|
| 1657 | for (pos=0; pos<LevS->MaxNUp; pos++) {
|
---|
| 1658 | destrcv [pos].re = destsnd [pos].re;
|
---|
| 1659 | destrcv [pos].im = -destsnd [pos].im;
|
---|
| 1660 | }
|
---|
| 1661 | }
|
---|
| 1662 | // fourier transform blown up wave function
|
---|
| 1663 | fft_3d_complex_to_real(plan,LevS->LevelNo, FFTNFUp, tempdestRC , workC);
|
---|
| 1664 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC ,TempPsiR );
|
---|
| 1665 |
|
---|
| 1666 | //fft_Psi(P,source,TempPsiR ,cross(index_pxr,1),7);
|
---|
| 1667 | //fft_Psi(P,source,TempPsi2R,cross(index_pxr,3),7);
|
---|
| 1668 |
|
---|
| 1669 | //result = 0.;
|
---|
| 1670 | // for every point on the real grid multiply with component of position vector
|
---|
| 1671 | for (n0=0; n0<N0; n0++)
|
---|
| 1672 | for (n[1]=0; n[1]<N[1]; n[1]++)
|
---|
| 1673 | for (n[2]=0; n[2]<N[2]; n[2]++) {
|
---|
| 1674 | n[0] = n0 + N0 * myPE;
|
---|
| 1675 | fac[0] = (double)(n[0])/(double)((N[0]));
|
---|
| 1676 | fac[1] = (double)(n[1])/(double)((N[1]));
|
---|
| 1677 | fac[2] = (double)(n[2])/(double)((N[2]));
|
---|
| 1678 | RMat33Vec3(x,Lat->RealBasis,fac);
|
---|
| 1679 | iS = n[2] + N[2]*(n[1] + N[1]*n0); // mind splitting of x axis due to multiple processes
|
---|
| 1680 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
| 1681 | // PsiCR[iS] = sawtooth(Lat,truedist(Lat,x[cross(index_pxr,1)],Wcentre[cross(index_pxr,1)],cross(index_pxr,1)),cross(index_pxr,1)) * TempPsiR[i0];
|
---|
| 1682 | // Psi2CR[iS] = sawtooth(Lat,truedist(Lat,x[cross(index_pxr,3)],Wcentre[cross(index_pxr,3)],cross(index_pxr,3)),cross(index_pxr,3)) * TempPsiR[i0];
|
---|
| 1683 | PsiCR[iS] = ShiftGaugeOrigin(P,MinImageConv(Lat,x[cross(index_pxr,1)],Wcentre[cross(index_pxr,1)],cross(index_pxr,1)),cross(index_pxr,1)) * TempPsiR[i0];
|
---|
| 1684 | Psi2CR[iS] = ShiftGaugeOrigin(P,MinImageConv(Lat,x[cross(index_pxr,3)],Wcentre[cross(index_pxr,3)],cross(index_pxr,3)),cross(index_pxr,3)) * TempPsiR[i0];
|
---|
| 1685 | }
|
---|
| 1686 |
|
---|
| 1687 | // inverse fourier transform
|
---|
| 1688 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
| 1689 | fft_3d_real_to_complex(plan,LevS->LevelNo, FFTNF1, Psi2C, workC);
|
---|
| 1690 |
|
---|
| 1691 | // copy to destination array
|
---|
| 1692 | for (g=0; g<LevS->MaxG; g++) {
|
---|
| 1693 | Index = LevS->GArray[g].Index;
|
---|
| 1694 | dest[g].re = -LevS->GArray[g].G[cross(index_pxr,0)]*( PsiC[Index].im)*FFTFactor;
|
---|
| 1695 | dest[g].im = -LevS->GArray[g].G[cross(index_pxr,0)]*(-PsiC[Index].re)*FFTFactor;
|
---|
| 1696 | dest[g].re -= -LevS->GArray[g].G[cross(index_pxr,2)]*( Psi2C[Index].im)*FFTFactor;
|
---|
| 1697 | dest[g].im -= -LevS->GArray[g].G[cross(index_pxr,2)]*(-Psi2C[Index].re)*FFTFactor;
|
---|
| 1698 | }
|
---|
| 1699 | if (LevS->GArray[0].GSq == 0.)
|
---|
| 1700 | dest[0].im = 0.; // don't do this, see ..._P()
|
---|
| 1701 | }
|
---|
| 1702 |
|
---|
| 1703 | /** Evaluates first derivative of perturbed energy functional with respect to minimisation parameter \f$\Theta\f$.
|
---|
| 1704 | * \f[
|
---|
| 1705 | * \frac{\delta {\cal E}^{(2)}} {\delta \Theta} =
|
---|
| 1706 | * 2 {\cal R} \langle \widetilde{\varphi}_i^{(1)} | {\cal H}^{(0)} | \varphi_i^{(1)} \rangle
|
---|
| 1707 | * - \sum_l \lambda_{il} \langle \widetilde{\varphi}_i^{(1)} | \varphi_l^{(1)} \rangle
|
---|
| 1708 | * - \sum_k \lambda_{ki} \langle \varphi_k^{(1)} | \widetilde{\varphi}_i^{(1)} \rangle
|
---|
| 1709 | * + 2 {\cal R} \langle \widetilde{\varphi}_i^{(1)} | {\cal H}^{(1)} | \varphi_i^{(0)} \rangle
|
---|
| 1710 | * \f]
|
---|
| 1711 | *
|
---|
| 1712 | * The summation over all Psis has again to be done with an MPI exchange of non-local coefficients, as the conjugate
|
---|
| 1713 | * directions are not the same in situations where PePGamma > 1 (Psis split up among processes = multiple minimisation)
|
---|
| 1714 | * \param *P Problem at hand
|
---|
| 1715 | * \param source0 unperturbed wave function \f$\varphi_l^{(0)}\f$
|
---|
| 1716 | * \param source perturbed wave function \f$\varphi_l^{(1)} (G)\f$
|
---|
| 1717 | * \param ConDir normalized conjugate direction \f$\widetilde{\varphi}_l^{(1)} (G)\f$
|
---|
| 1718 | * \param Hc_grad complex coefficients of \f$H^{(0)} | \varphi_l^{(1)} (G) \rangle\f$, see GradientArray#HcGradient
|
---|
| 1719 | * \param H1c_grad complex coefficients of \f$H^{(1)} | \varphi_l^{(0)} (G) \rangle\f$, see GradientArray#H1cGradient
|
---|
| 1720 | * \sa CalculateLineSearch() - used there, \sa CalculateConDirHConDir() - same principles
|
---|
| 1721 | * \warning The MPI_Allreduce for the scalar product in the end has not been done and must not have been done for given
|
---|
| 1722 | * parameters yet!
|
---|
| 1723 | */
|
---|
| 1724 | double Calculate1stPerturbedDerivative(struct Problem *P, const fftw_complex *source0, const fftw_complex *source, const fftw_complex *ConDir, const fftw_complex *Hc_grad, const fftw_complex *H1c_grad)
|
---|
| 1725 | {
|
---|
| 1726 | struct RunStruct *R = &P->R;
|
---|
| 1727 | struct Psis *Psi = &P->Lat.Psi;
|
---|
| 1728 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1729 | double result = 0., E0 = 0., Elambda = 0., E1 = 0.;//, E2 = 0.;
|
---|
| 1730 | int i,m,j;
|
---|
| 1731 | const int state = R->CurrentMin;
|
---|
| 1732 | //const int l_normal = R->ActualLocalPsiNo - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[Occupied];
|
---|
| 1733 | const int ActNum = R->ActualLocalPsiNo - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[R->ActualLocalPsiNo].my_color_comm_ST_Psi;
|
---|
| 1734 | //int l = R->ActualLocalPsiNo;
|
---|
| 1735 | //int l_normal = Psi->TypeStartIndex[Occupied] + (l - Psi->TypeStartIndex[state]); // offset l to \varphi_l^{(0)}
|
---|
| 1736 | struct OnePsiElement *OnePsiB, *LOnePsiB;
|
---|
| 1737 | //fftw_complex *HConGrad = LevS->LPsi->TempPsi;
|
---|
| 1738 | fftw_complex *LPsiDatB=NULL;
|
---|
| 1739 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
| 1740 | int RecvSource;
|
---|
| 1741 | MPI_Status status;
|
---|
| 1742 |
|
---|
| 1743 | //CalculateCDfnl(P,ConDir,PP->CDfnl);
|
---|
| 1744 | //ApplyTotalHamiltonian(P,ConDir,HConDir, PP->CDfnl, 1, 0);
|
---|
| 1745 | //E0 = (GradSP(P, LevS, ConDir, Hc_grad) + GradSP(P, LevS, source, HConDir)) * Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor;
|
---|
| 1746 | E0 = 2.*GradSP(P, LevS, ConDir, Hc_grad) * Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor;
|
---|
| 1747 | result = E0;
|
---|
| 1748 | //fprintf(stderr,"(%i) 1st: E0 = \t\t%lg\n", P->Par.me, E0);
|
---|
| 1749 |
|
---|
| 1750 | m = -1;
|
---|
| 1751 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
| 1752 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
| 1753 | if (OnePsiB->PsiType == state) { // drop all but the ones of current min state
|
---|
| 1754 | m++; // increase m if it is type-specific wave function
|
---|
| 1755 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
| 1756 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
| 1757 | else
|
---|
| 1758 | LOnePsiB = NULL;
|
---|
| 1759 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
| 1760 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
| 1761 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, PerturbedTag, P->Par.comm_ST_PsiT, &status );
|
---|
| 1762 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
| 1763 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
| 1764 | for (i=0;i<P->Par.Max_me_comm_ST_PsiT;i++)
|
---|
| 1765 | if (i != OnePsiB->my_color_comm_ST_Psi)
|
---|
| 1766 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, i, PerturbedTag, P->Par.comm_ST_PsiT);
|
---|
| 1767 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
| 1768 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
| 1769 |
|
---|
| 1770 | Elambda -= 2.*Psi->lambda[ActNum][m]*GradSP(P, LevS, ConDir, LPsiDatB) * OnePsiB->PsiFactor; // lambda is symmetric
|
---|
| 1771 | }
|
---|
| 1772 | }
|
---|
| 1773 | result += Elambda;
|
---|
| 1774 | //fprintf(stderr,"(%i) 1st: Elambda = \t%lg\n", P->Par.me, Elambda);
|
---|
| 1775 |
|
---|
| 1776 | E1 = 2.*GradSP(P,LevS,ConDir,H1c_grad) * sqrt(Psi->AllPsiStatus[ActNum].PsiFactor*Psi->LocalPsiStatus[R->ActualLocalPsiNo].PsiFactor);
|
---|
| 1777 | result += E1;
|
---|
| 1778 | //fprintf(stderr,"(%i) 1st: E1 = \t\t%lg\n", P->Par.me, E1);
|
---|
| 1779 |
|
---|
| 1780 | return result;
|
---|
| 1781 | }
|
---|
| 1782 |
|
---|
| 1783 |
|
---|
| 1784 | /** Evaluates second derivative of perturbed energy functional with respect to minimisation parameter \f$\Theta\f$.
|
---|
| 1785 | * \f[
|
---|
| 1786 | * \frac{\delta^2 {\cal E}^{(2)}} {\delta \Theta^2} =
|
---|
| 1787 | * 2 \bigl( \langle \widetilde{\varphi}_l^{(1)} | {\cal H}^{(0)} | \widetilde{\varphi}_l^{(1)} \rangle
|
---|
| 1788 | * - \langle \varphi_l^{(1)} | {\cal H}^{(0)} | \varphi_l^{(1)} \rangle \bigr )
|
---|
| 1789 | * + 2 \sum_{i,i \neq l } \lambda_{il} \langle \varphi_i^{(1)} | \varphi_l^{(1)} \rangle
|
---|
| 1790 | * - 2 {\cal R} \langle \varphi_l^{(1)} | {\cal H}^{(1)} | \varphi_l^{(0)} \rangle
|
---|
| 1791 | * \f]
|
---|
| 1792 | *
|
---|
| 1793 | * The energy eigenvalues of \a ConDir and \a source must be supplied, they can be calculated via CalculateConDirHConDir() and/or
|
---|
| 1794 | * by the due to CalculatePerturbedEnergy() already present OnePsiElementAddData#Lambda eigenvalue. The summation over the
|
---|
| 1795 | * unperturbed lambda within the scalar product of perturbed wave functions is evaluated with Psis#lambda and Psis#Overlap.
|
---|
| 1796 | * Afterwards, the ConDir density is calculated and also the i-th perturbed density to first degree. With these in a sum over
|
---|
| 1797 | * all real mesh points the exchange-correlation first and second derivatives and also the Hartree potential ones can be calculated
|
---|
| 1798 | * and summed up.
|
---|
| 1799 | * \param *P Problem at hand
|
---|
| 1800 | * \param source0 unperturbed wave function \f$\varphi_l^{(0)}\f$
|
---|
| 1801 | * \param source wave function \f$\varphi_l^{(1)}\f$
|
---|
| 1802 | * \param ConDir conjugated direction \f$\widetilde{\varphi}_l^{(1)}\f$
|
---|
| 1803 | * \param sourceHsource eigenvalue of wave function \f$\langle \varphi_l^{(1)} | H^{(0)} | \varphi_l^{(1)}\rangle\f$
|
---|
| 1804 | * \param ConDirHConDir perturbed eigenvalue of conjugate direction \f$\langle \widetilde{\varphi}_l^{(1)} | H^{(0)} | \widetilde{\varphi}_l^{(1)}\rangle\f$
|
---|
| 1805 | * \param ConDirConDir norm of conjugate direction \f$\langle \widetilde{\varphi}_l^{(1)} | \widetilde{\varphi}_l^{(1)}\rangle\f$
|
---|
| 1806 | * \warning No MPI_AllReduce() takes place, parameters have to be reduced already.
|
---|
| 1807 | */
|
---|
| 1808 | double Calculate2ndPerturbedDerivative(struct Problem *P, const fftw_complex *source0,const fftw_complex *source, const fftw_complex *ConDir,const double sourceHsource, const double ConDirHConDir, const double ConDirConDir)
|
---|
| 1809 | {
|
---|
| 1810 | struct RunStruct *R = &P->R;
|
---|
| 1811 | struct Psis *Psi = &P->Lat.Psi;
|
---|
| 1812 | //struct Lattice *Lat = &P->Lat;
|
---|
| 1813 | //struct Energy *E = Lat->E;
|
---|
| 1814 | double result = 0.;
|
---|
| 1815 | double Con0 = 0., Elambda = 0.;//, E0 = 0., E1 = 0.;
|
---|
| 1816 | //int i;
|
---|
| 1817 | const int state = R->CurrentMin;
|
---|
| 1818 | //const int l_normal = R->ActualLocalPsiNo - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[Occupied];
|
---|
| 1819 | const int ActNum = R->ActualLocalPsiNo - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[R->ActualLocalPsiNo].my_color_comm_ST_Psi;
|
---|
| 1820 |
|
---|
| 1821 | Con0 = 2.*ConDirHConDir;
|
---|
| 1822 | result += Con0;
|
---|
| 1823 | ////E0 = -2.*sourceHsource;
|
---|
| 1824 | ////result += E0;
|
---|
| 1825 | ////E1 = -E->PsiEnergy[Perturbed1_0Energy][R->ActualLocalPsiNo] - E->PsiEnergy[Perturbed0_1Energy][R->ActualLocalPsiNo];
|
---|
| 1826 | ////result += E1;
|
---|
| 1827 | //fprintf(stderr,"(%i) 2nd: E1 = \t%lg\n", P->Par.me, E1);
|
---|
| 1828 |
|
---|
| 1829 | ////for (i=0;i<Lat->Psi.NoOfPsis;i++) {
|
---|
| 1830 | //// if (i != ActNum) Elambda += Psi->lambda[i][ActNum]*Psi->Overlap[i][ActNum]+ Psi->lambda[ActNum][i]*Psi->Overlap[ActNum][i]; // overlap contains PsiFactor
|
---|
| 1831 | ////}
|
---|
| 1832 | ////Elambda = Psi->lambda[ActNum][ActNum]*Psi->Overlap[ActNum][ActNum];
|
---|
| 1833 | Elambda = 2.*Psi->lambda[ActNum][ActNum]*ConDirConDir;
|
---|
| 1834 | result -= Elambda;
|
---|
| 1835 |
|
---|
| 1836 | //fprintf(stderr,"(%i) 2ndPerturbedDerivative: Result = Con0 + E0 + E1 + Elambda + dEdt0_XC + ddEddt0_XC + dEdt0_H + ddEddt0_H = %lg + %lg + %lg + %lg + %lg + %lg + %lg + %lg = %lg\n", P->Par.me, Con0, E0, E1, Elambda, VolumeFactorR*dEdt0_XC, VolumeFactorR*ddEddt0_XC, dEdt0_H, ddEddt0_H, result);
|
---|
| 1837 |
|
---|
| 1838 | return (result);
|
---|
| 1839 | }
|
---|
| 1840 |
|
---|
| 1841 | /** Returns index of specific component in 3x3 cross product.
|
---|
| 1842 | * \param i vector product component index, ranging from 0..NDIM
|
---|
| 1843 | * \param j index specifies which one of the four vectors in x*y - y*x, ranging from 0..3 (0,1 positive sign, 2,3 negative sign)
|
---|
| 1844 | * \return Component 0..2 of vector to be taken to evaluate a vector product
|
---|
| 1845 | * \sa crossed() - is the same but vice versa, return value must be specified, \a i is returned.
|
---|
| 1846 | */
|
---|
| 1847 | inline int cross(int i, int j)
|
---|
| 1848 | {
|
---|
| 1849 | const int matrix[NDIM*4] = {1,2,2,1,2,0,0,2,0,1,1,0};
|
---|
| 1850 | if (i>=0 && i<NDIM && j>=0 && j<4)
|
---|
| 1851 | return (matrix[i*4+j]);
|
---|
| 1852 | else {
|
---|
| 1853 | Error(SomeError,"cross: i or j out of range!");
|
---|
| 1854 | return (0);
|
---|
| 1855 | }
|
---|
| 1856 | }
|
---|
| 1857 |
|
---|
| 1858 | /** Returns index of resulting vector component in 3x3 cross product.
|
---|
| 1859 | * In the column specified by the \a j index \a i is looked for and the found row index returned.
|
---|
| 1860 | * \param i vector component index, ranging from 0..NDIM
|
---|
| 1861 | * \param j index specifies which one of the four vectors in x*y - y*x, ranging from 0..3 (0,1 positive sign, 2,3 negative sign)
|
---|
| 1862 | * \return Component 0..2 of resulting vector
|
---|
| 1863 | * \sa cross() - is the same but vice versa, return value must be specified, \a i is returned.
|
---|
| 1864 | */
|
---|
| 1865 | inline int crossed(int i, int j)
|
---|
| 1866 | {
|
---|
| 1867 | const int matrix[NDIM*4] = {1,2,2,1,2,0,0,2,0,1,1,0};
|
---|
| 1868 | int k;
|
---|
| 1869 | if (i>=0 && i<NDIM && j>=0 && j<4) {
|
---|
| 1870 | for (k=0;k<NDIM;k++)
|
---|
| 1871 | if (matrix[4*k+j] == i) return(k);
|
---|
| 1872 | Error(SomeError,"crossed: given component not found!");
|
---|
| 1873 | return(-1);
|
---|
| 1874 | } else {
|
---|
| 1875 | Error(SomeError,"crossed: i or j out of range!");
|
---|
| 1876 | return (-1);
|
---|
| 1877 | }
|
---|
| 1878 | }
|
---|
| 1879 |
|
---|
| 1880 | #define Nsin 16 //!< should be dependent on MaxG/MaxN per axis!
|
---|
| 1881 |
|
---|
| 1882 | /** Returns sawtooth shaped profile for position operator within cell.
|
---|
[f5586e] | 1883 | * This is a mapping from -L/2...L/2 (L = length of unit cell derived from Lattice#RealBasisSQ) to -L/2 to L/2 with a smooth transition:
|
---|
[a0bcf1] | 1884 | * \f[
|
---|
| 1885 | * f(x): x \rightarrow \left \{
|
---|
| 1886 | * \begin{array}{l}
|
---|
| 1887 | * -\frac{L}{2} \cdot \sin \left ( \frac{x}{0,05\cdot L} \cdot \frac{\pi}{2} \right ), 0<x<0,05\cdot L \\
|
---|
| 1888 | * (x - 0,05\cdot L) \cdot \frac{10}{9} - \frac{L}{2}, 0,05\cdot L \leq x<0,95\cdot L \\
|
---|
| 1889 | * \frac{L}{2} \cdot \cos \left ( \frac{x-0,95\cdot L}{0,05\cdot L} \cdot \frac{\pi}{2} \right), 0,95\cdot L<x<L
|
---|
| 1890 | * \end{array} \right \}
|
---|
| 1891 | * \f]
|
---|
[f5586e] | 1892 | * \param *Lat pointer to Lattice structure for Lattice#RealBasisSQ
|
---|
[a0bcf1] | 1893 | * \param L parameter x
|
---|
[f5586e] | 1894 | * \param index component index for Lattice#RealBasisSQ
|
---|
[a0bcf1] | 1895 | */
|
---|
| 1896 | inline double sawtooth(struct Lattice *Lat, double L, const int index)
|
---|
| 1897 | {
|
---|
[f5586e] | 1898 | double axis = sqrt(Lat->RealBasisSQ[index]);
|
---|
[a0bcf1] | 1899 | double sawstart = Lat->SawtoothStart;
|
---|
| 1900 | double sawend = 1. - sawstart;
|
---|
| 1901 | double sawfactor = (sawstart+sawend)/(sawend-sawstart);
|
---|
| 1902 | //return(L);
|
---|
| 1903 |
|
---|
| 1904 | //fprintf(stderr, "sawstart: %e\tsawend: %e\tsawfactor: %e\tL: %e\n", sawstart, sawend, sawfactor, L);
|
---|
| 1905 | // transform and return (sawtooth profile checked, 04.08.06)
|
---|
| 1906 | L += axis/2.; // transform to 0 ... L
|
---|
| 1907 | if (L < (sawstart*axis)) return (-axis/(2*sawfactor)*sin(L/(sawstart*axis)*PI/2.)); // first smooth transition from 0 ... -L/2
|
---|
| 1908 | if (L > (sawend*axis)) return ( axis/(2*sawfactor)*cos((L-sawend*axis)/(sawstart*axis)*PI/2.)); // second smooth transition from +L/2 ... 0
|
---|
| 1909 | //fprintf(stderr,"L %e\t sawstart %e\t sawend %e\t sawfactor %e\t axis%e\n", L, sawstart, sawend, sawfactor, axis);
|
---|
| 1910 | //return ((L - sawstart*axis) - axis/(2*sawfactor)); // area in between scale to -L/2 ... +L/2
|
---|
| 1911 | return (L - axis/2); // area in between return as it was
|
---|
| 1912 | }
|
---|
| 1913 |
|
---|
| 1914 | /** Shifts the origin of the gauge according to the CSDGT method.
|
---|
| 1915 | * \f[
|
---|
| 1916 | * d(r) = r - \sum_{I_s,I_a} (r-R_{I_s,I_a}) exp{(-\alpha_{I_s,I_a}(r-R_{I_s,I_a})^4)}
|
---|
| 1917 | * \f]
|
---|
| 1918 | * This trafo is necessary as the current otherweise (CSGT) sensitively depends on the current around
|
---|
| 1919 | * the core region inadequately/only moderately well approximated by a plane-wave-pseudo-potential-method.
|
---|
| 1920 | * \param *P Problem at hand, containing Lattice and Ions
|
---|
| 1921 | * \param r parameter r
|
---|
| 1922 | * \param index index of the basis vector
|
---|
| 1923 | * \return \f$d(r)\f$
|
---|
| 1924 | * \note Continuous Set of Damped Gauge Transformations according to Keith and Bader
|
---|
| 1925 | */
|
---|
| 1926 | inline double ShiftGaugeOrigin(struct Problem *P, double r, const int index)
|
---|
| 1927 | {
|
---|
| 1928 | struct Ions *I = &P->Ion;
|
---|
| 1929 | struct Lattice *Lat = &P->Lat;
|
---|
| 1930 | double x, tmp;
|
---|
| 1931 | int is,ia;
|
---|
| 1932 |
|
---|
| 1933 | // loop over all ions to calculate the sum
|
---|
| 1934 | x = r;
|
---|
| 1935 | for (is=0; is < I->Max_Types; is++)
|
---|
| 1936 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
| 1937 | tmp = (r - I->I[is].R[NDIM*ia]);
|
---|
| 1938 | x -= tmp*exp(- I->I[is].alpha[ia] * tpow(tmp,4));
|
---|
| 1939 | }
|
---|
| 1940 |
|
---|
| 1941 | return(sawtooth(Lat,x,index)); // still use sawtooth due to the numerical instability around the border region of the cell
|
---|
| 1942 | }
|
---|
| 1943 |
|
---|
| 1944 | /** Print sawtooth() for each node along one axis.
|
---|
| 1945 | * \param *P Problem at hand, containing RunStruct, Lattice and LatticeLevel RunStruct#LevS
|
---|
| 1946 | * \param index index of axis
|
---|
| 1947 | */
|
---|
| 1948 | void TestSawtooth(struct Problem *P, const int index)
|
---|
| 1949 | {
|
---|
| 1950 | struct RunStruct *R = &P->R;
|
---|
| 1951 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 1952 | struct Lattice *Lat =&P->Lat;
|
---|
| 1953 | double x;
|
---|
| 1954 | int n;
|
---|
| 1955 | int N[NDIM];
|
---|
| 1956 | N[0] = LevS->Plan0.plan->N[0];
|
---|
| 1957 | N[1] = LevS->Plan0.plan->N[1];
|
---|
| 1958 | N[2] = LevS->Plan0.plan->N[2];
|
---|
| 1959 |
|
---|
| 1960 | for (n=0;n<N[index];n++) {
|
---|
[f5586e] | 1961 | x = (double)n/(double)N[index] * sqrt(Lat->RealBasisSQ[index]);
|
---|
| 1962 | //fprintf(stderr,"(%i) x %e\t Axis/2 %e\n",P->Par.me, x, sqrt(Lat->RealBasisSQ[index])/2. );
|
---|
| 1963 | x = MinImageConv(Lat, x, sqrt(Lat->RealBasisSQ[index])/2., index);
|
---|
[a0bcf1] | 1964 | fprintf(stderr,"%e\t%e\n", x, sawtooth(Lat,x,index));
|
---|
| 1965 | }
|
---|
| 1966 | }
|
---|
| 1967 |
|
---|
| 1968 | /** Secures minimum image convention between two given points \a R[] and \a r[] within periodic boundary.
|
---|
| 1969 | * Each distance component within a periodic boundary must always be between -L/2 ... L/2
|
---|
| 1970 | * \param *Lat pointer to Lattice structure
|
---|
| 1971 | * \param R[] first vector, NDIM, each must be between 0...L
|
---|
| 1972 | * \param r[] second vector, NDIM, each must be between 0...L
|
---|
| 1973 | * \param index of component
|
---|
| 1974 | * \return component between -L/2 ... L/2
|
---|
| 1975 | */
|
---|
| 1976 | inline double MinImageConv(struct Lattice *Lat, const double R, const double r, const int index)
|
---|
| 1977 | {
|
---|
[f5586e] | 1978 | double axis = sqrt(Lat->RealBasisSQ[index]);
|
---|
[a0bcf1] | 1979 | double result = 0.;
|
---|
| 1980 |
|
---|
| 1981 | if (fabs(result = R - r + axis) < axis/2.) { }
|
---|
| 1982 | else if (fabs(result = R - r) <= axis/2.) { }
|
---|
| 1983 | else if (fabs(result = R - r - axis) < axis/2.) { }
|
---|
| 1984 | else Error(SomeError, "MinImageConv: None of the three cases applied!");
|
---|
| 1985 | return (result);
|
---|
| 1986 | }
|
---|
| 1987 |
|
---|
| 1988 |
|
---|
| 1989 | /** Fouriertransforms given \a source.
|
---|
| 1990 | * By the use of the symmetry parameter an additional imaginary unit and/or the momentum operator can
|
---|
| 1991 | * be applied at the same time.
|
---|
| 1992 | * \param *P Problem at hand
|
---|
| 1993 | * \param *Psi source array of reciprocal coefficients
|
---|
| 1994 | * \param *PsiR destination array, becoming filled with real coefficients
|
---|
| 1995 | * \param index_g component of G vector (only needed for symmetry=4..7)
|
---|
| 1996 | * \param symmetry 0 - do nothing, 1 - factor by "-1", 2 - factor by "i", 3 - factor by "1/i = -i", from 4 to 7 the same
|
---|
| 1997 | * but additionally with momentum operator
|
---|
| 1998 | */
|
---|
| 1999 | void fft_Psi(struct Problem *P, const fftw_complex *Psi, fftw_real *PsiR, const int index_g, const int symmetry)
|
---|
| 2000 | {
|
---|
| 2001 | struct Lattice *Lat = &P->Lat;
|
---|
| 2002 | struct RunStruct *R = &P->R;
|
---|
| 2003 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 2004 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 2005 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 2006 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 2007 | fftw_complex *tempdestRC = (fftw_complex *)Dens0->DensityArray[TempDensity];
|
---|
| 2008 | fftw_complex *work = Dens0->DensityCArray[TempDensity];
|
---|
| 2009 | fftw_complex *posfac, *destpos, *destRCS, *destRCD;
|
---|
| 2010 | int i, Index, pos;
|
---|
| 2011 |
|
---|
| 2012 | LockDensityArray(Dens0,TempDensity,imag); // tempdestRC
|
---|
| 2013 | SetArrayToDouble0((double *)tempdestRC, Dens0->TotalSize*2);
|
---|
| 2014 | SetArrayToDouble0((double *)PsiR, Dens0->TotalSize*2);
|
---|
| 2015 | switch (symmetry) {
|
---|
| 2016 | case 0:
|
---|
| 2017 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is positive
|
---|
| 2018 | Index = LevS->GArray[i].Index;
|
---|
| 2019 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 2020 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 2021 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 2022 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
| 2023 | destpos[pos].re = (Psi[i].re)*posfac[pos].re-(Psi[i].im)*posfac[pos].im;
|
---|
| 2024 | destpos[pos].im = (Psi[i].re)*posfac[pos].im+(Psi[i].im)*posfac[pos].re;
|
---|
| 2025 | }
|
---|
| 2026 | }
|
---|
| 2027 | break;
|
---|
| 2028 | case 1:
|
---|
| 2029 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is - positive
|
---|
| 2030 | Index = LevS->GArray[i].Index;
|
---|
| 2031 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 2032 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 2033 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 2034 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
| 2035 | destpos[pos].re = -((Psi[i].re)*posfac[pos].re-(Psi[i].im)*posfac[pos].im);
|
---|
| 2036 | destpos[pos].im = -((Psi[i].re)*posfac[pos].im+(Psi[i].im)*posfac[pos].re);
|
---|
| 2037 | }
|
---|
| 2038 | }
|
---|
| 2039 | break;
|
---|
| 2040 | case 2:
|
---|
| 2041 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is negative
|
---|
| 2042 | Index = LevS->GArray[i].Index;
|
---|
| 2043 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 2044 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 2045 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 2046 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
| 2047 | destpos[pos].re = (-Psi[i].im)*posfac[pos].re-(Psi[i].re)*posfac[pos].im;
|
---|
| 2048 | destpos[pos].im = (-Psi[i].im)*posfac[pos].im+(Psi[i].re)*posfac[pos].re;
|
---|
| 2049 | }
|
---|
| 2050 | }
|
---|
| 2051 | break;
|
---|
| 2052 | case 3:
|
---|
| 2053 | for (i=0;i<LevS->MaxG;i++) { // incoming is negative, outgoing is positive
|
---|
| 2054 | Index = LevS->GArray[i].Index;
|
---|
| 2055 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 2056 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 2057 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 2058 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
| 2059 | destpos[pos].re = (Psi[i].im)*posfac[pos].re-(-Psi[i].re)*posfac[pos].im;
|
---|
| 2060 | destpos[pos].im = (Psi[i].im)*posfac[pos].im+(-Psi[i].re)*posfac[pos].re;
|
---|
| 2061 | }
|
---|
| 2062 | }
|
---|
| 2063 | break;
|
---|
| 2064 | case 4:
|
---|
| 2065 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is positive
|
---|
| 2066 | Index = LevS->GArray[i].Index;
|
---|
| 2067 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 2068 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 2069 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 2070 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
| 2071 | destpos[pos].re = LevS->GArray[i].G[index_g]*((Psi[i].re)*posfac[pos].re-(Psi[i].im)*posfac[pos].im);
|
---|
| 2072 | destpos[pos].im = LevS->GArray[i].G[index_g]*((Psi[i].re)*posfac[pos].im+(Psi[i].im)*posfac[pos].re);
|
---|
| 2073 | }
|
---|
| 2074 | }
|
---|
| 2075 | break;
|
---|
| 2076 | case 5:
|
---|
| 2077 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is - positive
|
---|
| 2078 | Index = LevS->GArray[i].Index;
|
---|
| 2079 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 2080 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 2081 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 2082 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
| 2083 | destpos[pos].re = -LevS->GArray[i].G[index_g]*((Psi[i].re)*posfac[pos].re-(Psi[i].im)*posfac[pos].im);
|
---|
| 2084 | destpos[pos].im = -LevS->GArray[i].G[index_g]*((Psi[i].re)*posfac[pos].im+(Psi[i].im)*posfac[pos].re);
|
---|
| 2085 | }
|
---|
| 2086 | }
|
---|
| 2087 | break;
|
---|
| 2088 | case 6:
|
---|
| 2089 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is negative
|
---|
| 2090 | Index = LevS->GArray[i].Index;
|
---|
| 2091 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 2092 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 2093 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 2094 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
| 2095 | destpos[pos].re = LevS->GArray[i].G[index_g]*((-Psi[i].im)*posfac[pos].re-(Psi[i].re)*posfac[pos].im);
|
---|
| 2096 | destpos[pos].im = LevS->GArray[i].G[index_g]*((-Psi[i].im)*posfac[pos].im+(Psi[i].re)*posfac[pos].re);
|
---|
| 2097 | }
|
---|
| 2098 | }
|
---|
| 2099 | break;
|
---|
| 2100 | case 7:
|
---|
| 2101 | for (i=0;i<LevS->MaxG;i++) { // incoming is negative, outgoing is positive
|
---|
| 2102 | Index = LevS->GArray[i].Index;
|
---|
| 2103 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 2104 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 2105 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 2106 | //if (destpos != &tempdestRC[LevS->MaxNUp*Index] || LevS->MaxNUp*Index+pos<0 || LevS->MaxNUp*Index+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destpos corrupted");
|
---|
| 2107 | destpos[pos].re = LevS->GArray[i].G[index_g]*((Psi[i].im)*posfac[pos].re-(-Psi[i].re)*posfac[pos].im);
|
---|
| 2108 | destpos[pos].im = LevS->GArray[i].G[index_g]*((Psi[i].im)*posfac[pos].im+(-Psi[i].re)*posfac[pos].re);
|
---|
| 2109 | }
|
---|
| 2110 | }
|
---|
| 2111 | break;
|
---|
| 2112 | }
|
---|
| 2113 | for (i=0; i<LevS->MaxDoubleG; i++) {
|
---|
| 2114 | destRCS = &tempdestRC[LevS->DoubleG[2*i]*LevS->MaxNUp];
|
---|
| 2115 | destRCD = &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp];
|
---|
| 2116 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 2117 | //if (destRCD != &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp] || LevS->DoubleG[2*i+1]*LevS->MaxNUp+pos<0 || LevS->DoubleG[2*i+1]*LevS->MaxNUp+pos>=Dens0->TotalSize) Error(SomeError,"fft_Psi: destRCD corrupted");
|
---|
| 2118 | destRCD[pos].re = destRCS[pos].re;
|
---|
| 2119 | destRCD[pos].im = -destRCS[pos].im;
|
---|
| 2120 | }
|
---|
| 2121 | }
|
---|
| 2122 | fft_3d_complex_to_real(plan, LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
| 2123 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC, PsiR);
|
---|
| 2124 | UnLockDensityArray(Dens0,TempDensity,imag); // tempdestRC
|
---|
| 2125 | }
|
---|
| 2126 |
|
---|
| 2127 | /** Locks all NDIM_NDIM current density arrays
|
---|
| 2128 | * \param Dens0 Density structure to be locked (in the current parts)
|
---|
| 2129 | */
|
---|
| 2130 | void AllocCurrentDensity(struct Density *Dens0) {
|
---|
| 2131 | // real
|
---|
| 2132 | LockDensityArray(Dens0,CurrentDensity0,real); // CurrentDensity[B_index]
|
---|
| 2133 | LockDensityArray(Dens0,CurrentDensity1,real); // CurrentDensity[B_index]
|
---|
| 2134 | LockDensityArray(Dens0,CurrentDensity2,real); // CurrentDensity[B_index]
|
---|
| 2135 | LockDensityArray(Dens0,CurrentDensity3,real); // CurrentDensity[B_index]
|
---|
| 2136 | LockDensityArray(Dens0,CurrentDensity4,real); // CurrentDensity[B_index]
|
---|
| 2137 | LockDensityArray(Dens0,CurrentDensity5,real); // CurrentDensity[B_index]
|
---|
| 2138 | LockDensityArray(Dens0,CurrentDensity6,real); // CurrentDensity[B_index]
|
---|
| 2139 | LockDensityArray(Dens0,CurrentDensity7,real); // CurrentDensity[B_index]
|
---|
| 2140 | LockDensityArray(Dens0,CurrentDensity8,real); // CurrentDensity[B_index]
|
---|
| 2141 | // imaginary
|
---|
| 2142 | LockDensityArray(Dens0,CurrentDensity0,imag); // CurrentDensity[B_index]
|
---|
| 2143 | LockDensityArray(Dens0,CurrentDensity1,imag); // CurrentDensity[B_index]
|
---|
| 2144 | LockDensityArray(Dens0,CurrentDensity2,imag); // CurrentDensity[B_index]
|
---|
| 2145 | LockDensityArray(Dens0,CurrentDensity3,imag); // CurrentDensity[B_index]
|
---|
| 2146 | LockDensityArray(Dens0,CurrentDensity4,imag); // CurrentDensity[B_index]
|
---|
| 2147 | LockDensityArray(Dens0,CurrentDensity5,imag); // CurrentDensity[B_index]
|
---|
| 2148 | LockDensityArray(Dens0,CurrentDensity6,imag); // CurrentDensity[B_index]
|
---|
| 2149 | LockDensityArray(Dens0,CurrentDensity7,imag); // CurrentDensity[B_index]
|
---|
| 2150 | LockDensityArray(Dens0,CurrentDensity8,imag); // CurrentDensity[B_index]
|
---|
| 2151 | }
|
---|
| 2152 |
|
---|
| 2153 | /** Reset and unlocks all NDIM_NDIM current density arrays
|
---|
| 2154 | * \param Dens0 Density structure to be unlocked/resetted (in the current parts)
|
---|
| 2155 | */
|
---|
| 2156 | void DisAllocCurrentDensity(struct Density *Dens0) {
|
---|
| 2157 | //int i;
|
---|
| 2158 | // real
|
---|
| 2159 | // for(i=0;i<NDIM*NDIM;i++)
|
---|
| 2160 | // SetArrayToDouble0((double *)Dens0->DensityArray[i], Dens0->TotalSize*2);
|
---|
| 2161 | UnLockDensityArray(Dens0,CurrentDensity0,real); // CurrentDensity[B_index]
|
---|
| 2162 | UnLockDensityArray(Dens0,CurrentDensity1,real); // CurrentDensity[B_index]
|
---|
| 2163 | UnLockDensityArray(Dens0,CurrentDensity2,real); // CurrentDensity[B_index]
|
---|
| 2164 | UnLockDensityArray(Dens0,CurrentDensity3,real); // CurrentDensity[B_index]
|
---|
| 2165 | UnLockDensityArray(Dens0,CurrentDensity4,real); // CurrentDensity[B_index]
|
---|
| 2166 | UnLockDensityArray(Dens0,CurrentDensity5,real); // CurrentDensity[B_index]
|
---|
| 2167 | UnLockDensityArray(Dens0,CurrentDensity6,real); // CurrentDensity[B_index]
|
---|
| 2168 | UnLockDensityArray(Dens0,CurrentDensity7,real); // CurrentDensity[B_index]
|
---|
| 2169 | UnLockDensityArray(Dens0,CurrentDensity8,real); // CurrentDensity[B_index]
|
---|
| 2170 | // imaginary
|
---|
| 2171 | // for(i=0;i<NDIM*NDIM;i++)
|
---|
| 2172 | // SetArrayToDouble0((double *)Dens0->DensityCArray[i], Dens0->TotalSize*2);
|
---|
| 2173 | UnLockDensityArray(Dens0,CurrentDensity0,imag); // CurrentDensity[B_index]
|
---|
| 2174 | UnLockDensityArray(Dens0,CurrentDensity1,imag); // CurrentDensity[B_index]
|
---|
| 2175 | UnLockDensityArray(Dens0,CurrentDensity2,imag); // CurrentDensity[B_index]
|
---|
| 2176 | UnLockDensityArray(Dens0,CurrentDensity3,imag); // CurrentDensity[B_index]
|
---|
| 2177 | UnLockDensityArray(Dens0,CurrentDensity4,imag); // CurrentDensity[B_index]
|
---|
| 2178 | UnLockDensityArray(Dens0,CurrentDensity5,imag); // CurrentDensity[B_index]
|
---|
| 2179 | UnLockDensityArray(Dens0,CurrentDensity6,imag); // CurrentDensity[B_index]
|
---|
| 2180 | UnLockDensityArray(Dens0,CurrentDensity7,imag); // CurrentDensity[B_index]
|
---|
| 2181 | UnLockDensityArray(Dens0,CurrentDensity8,imag); // CurrentDensity[B_index]
|
---|
| 2182 | }
|
---|
| 2183 |
|
---|
| 2184 | // these defines safe-guard same symmetry for same kind of wave function
|
---|
| 2185 | #define Psi0symmetry 0 // //0 //0 //0 // regard psi0 as real
|
---|
| 2186 | #define Psi1symmetry 0 // //3 //0 //0 // regard psi0 as real
|
---|
| 2187 | #define Psip0symmetry 6 //6 //6 //6 //6 // momentum times "i" due to operation on left hand
|
---|
| 2188 | #define Psip1symmetry 7 //7 //4 //6 //7 // momentum times "-i" as usual (right hand)
|
---|
| 2189 |
|
---|
| 2190 | /** Evaluates the 3x3 current density arrays.
|
---|
| 2191 | * The formula we want to evaluate is as follows
|
---|
| 2192 | * \f[
|
---|
| 2193 | * j_k(r) = \langle \psi_k^{(0)} | \Bigl ( p|r'\rangle\langle r' | + | r' \rangle \langle r' | p \Bigr )
|
---|
| 2194 | \Bigl [ | \psi_k^{(r\times p )} \rangle - r' \times | \psi_k^{(p)} \rangle \Bigr ] \cdot B.
|
---|
| 2195 | * \f]
|
---|
| 2196 | * Most of the DensityTypes-arrays are locked for temporary use. Pointers are set to their
|
---|
| 2197 | * start address and afterwards the current density arrays locked and reset'ed. Then for every
|
---|
| 2198 | * unperturbed wave function we do:
|
---|
| 2199 | * -# FFT unperturbed p-perturbed and rxp-perturbed wave function
|
---|
| 2200 | * -# FFT wave function with applied momentum operator for all three indices
|
---|
| 2201 | * -# For each index of the momentum operator:
|
---|
| 2202 | * -# FFT p-perturbed wave function
|
---|
| 2203 | * -# For every index of the external field:
|
---|
| 2204 | * -# FFT rxp-perturbed wave function
|
---|
| 2205 | * -# Evaluate current density for these momentum index and external field indices
|
---|
| 2206 | *
|
---|
| 2207 | * Afterwards the temporary densities are unlocked and the density ones gathered from all Psi-
|
---|
| 2208 | * sharing processes.
|
---|
| 2209 | *
|
---|
| 2210 | * \param *P Problem at hand, containing Lattice and RunStruct
|
---|
| 2211 | */
|
---|
| 2212 | void FillCurrentDensity(struct Problem *P)
|
---|
| 2213 | {
|
---|
| 2214 | struct Lattice *Lat = &P->Lat;
|
---|
| 2215 | struct RunStruct *R = &P->R;
|
---|
| 2216 | struct Psis *Psi = &Lat->Psi;
|
---|
| 2217 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 2218 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 2219 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 2220 | fftw_complex *Psi0;
|
---|
| 2221 | fftw_real *Psi0R, *Psip0R;
|
---|
| 2222 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
| 2223 | fftw_real *Psi1R;
|
---|
| 2224 | fftw_real *Psip1R;
|
---|
| 2225 | fftw_real *tempArray; // intendedly the same
|
---|
| 2226 | double r_bar[NDIM], x[NDIM], fac[NDIM];
|
---|
| 2227 | double Current;//, current;
|
---|
| 2228 | const double UnitsFactor = 1.; ///LevS->MaxN; // 1/N (from ff-backtransform)
|
---|
| 2229 | int i, index, B_index;
|
---|
| 2230 | int k, j, i0;
|
---|
| 2231 | int n[NDIM], n0;
|
---|
| 2232 | int N[NDIM];
|
---|
| 2233 | N[0] = Lev0->Plan0.plan->N[0];
|
---|
| 2234 | N[1] = Lev0->Plan0.plan->N[1];
|
---|
| 2235 | N[2] = Lev0->Plan0.plan->N[2];
|
---|
| 2236 | const int N0 = Lev0->Plan0.plan->local_nx;
|
---|
| 2237 | //int ActNum;
|
---|
| 2238 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
| 2239 | const int type = R->CurrentMin;
|
---|
| 2240 | MPI_Status status;
|
---|
| 2241 | int cross_lookup_1[4], cross_lookup_3[4], l_1 = 0, l_3 = 0;
|
---|
| 2242 |
|
---|
| 2243 | //fprintf(stderr,"(%i) FactoR %e\n", P->Par.me, R->FactorDensityR);
|
---|
| 2244 |
|
---|
| 2245 | // Init values and pointers
|
---|
| 2246 | if (P->Call.out[PsiOut]) {
|
---|
| 2247 | fprintf(stderr,"(%i) LockArray: ", P->Par.me);
|
---|
| 2248 | for(i=0;i<MaxDensityTypes;i++)
|
---|
| 2249 | fprintf(stderr,"(%i,%i) ",Dens0->LockArray[i],Dens0->LockCArray[i]);
|
---|
| 2250 | fprintf(stderr,"\n");
|
---|
| 2251 | }
|
---|
| 2252 | LockDensityArray(Dens0,Temp2Density,real); // Psi1R
|
---|
| 2253 | LockDensityArray(Dens0,Temp2Density,imag); // Psip1R and tempArray
|
---|
| 2254 | LockDensityArray(Dens0,GapDensity,real); // Psi0R
|
---|
| 2255 | LockDensityArray(Dens0,GapLocalDensity,real); // Psip0R
|
---|
| 2256 |
|
---|
| 2257 | Psi0R = (fftw_real *)Dens0->DensityArray[GapDensity];
|
---|
| 2258 | Psip0R = (fftw_real *)Dens0->DensityArray[GapLocalDensity];
|
---|
| 2259 | Psi1R = (fftw_real *)Dens0->DensityArray[Temp2Density];
|
---|
| 2260 | tempArray = Psip1R = (fftw_real *)Dens0->DensityCArray[Temp2Density];
|
---|
| 2261 | SetArrayToDouble0((double *)Psi0R,Dens0->TotalSize*2);
|
---|
| 2262 | SetArrayToDouble0((double *)Psip0R,Dens0->TotalSize*2);
|
---|
| 2263 | SetArrayToDouble0((double *)Psi1R,Dens0->TotalSize*2);
|
---|
| 2264 | SetArrayToDouble0((double *)Psip1R,Dens0->TotalSize*2);
|
---|
| 2265 |
|
---|
| 2266 | if (P->Call.out[PsiOut]) {
|
---|
| 2267 | fprintf(stderr,"(%i) LockArray: ", P->Par.me);
|
---|
| 2268 | for(i=0;i<MaxDensityTypes;i++)
|
---|
| 2269 | fprintf(stderr,"(%i,%i) ",Dens0->LockArray[i],Dens0->LockCArray[i]);
|
---|
| 2270 | fprintf(stderr,"\n");
|
---|
| 2271 | }
|
---|
| 2272 |
|
---|
| 2273 | // don't put the following stuff into a for loop, they might not be continuous! (preprocessor values: CurrentDensity...)
|
---|
| 2274 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
| 2275 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
| 2276 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
| 2277 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
| 2278 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
| 2279 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
| 2280 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
| 2281 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
| 2282 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
| 2283 |
|
---|
| 2284 | // initialize the array if it is the first of all six perturbation run
|
---|
| 2285 | if ((R->DoFullCurrent == 0) && (R->CurrentMin == Perturbed_P0)) { // reset if FillDelta...() hasn't done it before
|
---|
| 2286 | debug(P,"resetting CurrentDensity...");
|
---|
| 2287 | for (B_index=0; B_index<NDIM*NDIM; B_index++) // initialize current density array
|
---|
| 2288 | SetArrayToDouble0((double *)CurrentDensity[B_index],Dens0->TotalSize*2); // DensityArray is fftw_real, no 2*LocalSizeR here!
|
---|
| 2289 | }
|
---|
| 2290 |
|
---|
| 2291 | switch(type) { // set j (which is linked to the index from derivation wrt to B^{ext})
|
---|
| 2292 | case Perturbed_P0:
|
---|
| 2293 | case Perturbed_P1:
|
---|
| 2294 | case Perturbed_P2:
|
---|
| 2295 | j = type - Perturbed_P0;
|
---|
| 2296 | l_1 = crossed(j,1);
|
---|
| 2297 | l_3 = crossed(j,3);
|
---|
| 2298 | for(k=0;k<4;k++) {
|
---|
| 2299 | cross_lookup_1[k] = cross(l_1,k);
|
---|
| 2300 | cross_lookup_3[k] = cross(l_3,k);
|
---|
| 2301 | }
|
---|
| 2302 | break;
|
---|
| 2303 | case Perturbed_RxP0:
|
---|
| 2304 | case Perturbed_RxP1:
|
---|
| 2305 | case Perturbed_RxP2:
|
---|
| 2306 | j = type - Perturbed_RxP0;
|
---|
| 2307 | break;
|
---|
| 2308 | default:
|
---|
| 2309 | j = 0;
|
---|
| 2310 | Error(SomeError,"FillCurrentDensity() called while not in perturbed minimisation!");
|
---|
| 2311 | break;
|
---|
| 2312 | }
|
---|
| 2313 |
|
---|
| 2314 | int wished = -1;
|
---|
| 2315 | FILE *file = fopen(P->Call.MainParameterFile,"r");
|
---|
[961b75] | 2316 | if (!ParseForParameter(1,file,"Orbital",0,1,1,int_type,&wished, 1, optional)) {
|
---|
[a0bcf1] | 2317 | fprintf(stderr,"Desired Orbital missing!\n");
|
---|
| 2318 | wished = -1;
|
---|
| 2319 | } else if (wished != -1) {
|
---|
| 2320 | fprintf(stderr,"Desired Orbital is: %i.\n", wished);
|
---|
| 2321 | } else {
|
---|
| 2322 | fprintf(stderr,"Desired Orbital is: All.\n");
|
---|
| 2323 | }
|
---|
| 2324 | fclose(file);
|
---|
| 2325 |
|
---|
| 2326 | // Commence grid filling
|
---|
| 2327 | for (k=Psi->TypeStartIndex[Occupied];k<Psi->TypeStartIndex[Occupied+1];k++) // every local wave functions adds up its part of the current
|
---|
| 2328 | if ((k + P->Par.me_comm_ST_PsiT*(Psi->TypeStartIndex[UnOccupied]-Psi->TypeStartIndex[Occupied]) == wished) || (wished == -1)) { // compare with global number
|
---|
| 2329 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i)Calculating Current Density Summand of type %s for Psi (%i/%i) ... \n", P->Par.me, R->MinimisationName[type], Psi->LocalPsiStatus[k].MyGlobalNo, k);
|
---|
| 2330 | //ActNum = k - Psi->TypeStartIndex[Occupied] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[k].my_color_comm_ST_Psi; // global number of unperturbed Psi
|
---|
| 2331 | Psi0 = LevS->LPsi->LocalPsi[k]; // Local unperturbed psi
|
---|
| 2332 |
|
---|
| 2333 | // now some preemptive ffts for the whole grid
|
---|
| 2334 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Bringing |Psi0> one level up and fftransforming\n", P->Par.me);
|
---|
| 2335 | fft_Psi(P, Psi0, Psi0R, 0, Psi0symmetry); //0 // 0 //0
|
---|
| 2336 |
|
---|
| 2337 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Bringing |Psi1> one level up and fftransforming\n", P->Par.me);
|
---|
| 2338 | fft_Psi(P, LevS->LPsi->LocalPsi[Psi->TypeStartIndex[type]+k], Psi1R, 0, Psi1symmetry); //3 //0 //0
|
---|
| 2339 |
|
---|
| 2340 | for (index=0;index<NDIM;index++) { // for all NDIM components of momentum operator
|
---|
| 2341 |
|
---|
| 2342 | if ((P->Call.out[StepLeaderOut]) && (!index)) fprintf(stderr,"(%i) Bringing p|Psi0> one level up and fftransforming\n", P->Par.me);
|
---|
| 2343 | fft_Psi(P, Psi0, Psip0R, index, Psip0symmetry); //6 //6 //6
|
---|
| 2344 |
|
---|
| 2345 | if ((P->Call.out[StepLeaderOut]) && (!index)) fprintf(stderr,"(%i) Bringing p|Psi1> one level up and fftransforming\n", P->Par.me);
|
---|
| 2346 | fft_Psi(P, LevS->LPsi->LocalPsi[Psi->TypeStartIndex[type]+k], Psip1R, index, Psip1symmetry); //4 //6 //7
|
---|
| 2347 |
|
---|
| 2348 | // then for every point on the grid in real space ...
|
---|
| 2349 |
|
---|
| 2350 | //if (Psi1R != (fftw_real *)Dens0->DensityArray[Temp2Density] || i0<0 || i0>=Dens0->LocalSizeR) Error(SomeError,"fft_Psi: Psi1R corrupted");
|
---|
| 2351 | //Psi1R[i0] = (Psi1_rxp_R[j])[i0] - (r_bar[cross(j,0)] * (Psi1_p_R[cross(j,1)])[i0] - r_bar[cross(j,2)] * (Psi1_p_R[cross(j,3)])[i0]); //
|
---|
| 2352 | //if (Psip1R != (fftw_real *)Dens0->DensityCArray[Temp2Density] || i0<0 || i0>=Dens0->LocalSizeR) Error(SomeError,"fft_Psi: Psip1R corrupted");
|
---|
| 2353 | //Psip1R[i0] = Psi1_rxp_pR[i0] - (r_bar[cross(j,0)] * (Psi1_p_pR[cross(j,1)])[i0] - r_bar[cross(j,2)] * (Psi1_p_pR[cross(j,3)])[i0]); //
|
---|
| 2354 |
|
---|
| 2355 | switch(type) {
|
---|
| 2356 | case Perturbed_P0:
|
---|
| 2357 | case Perturbed_P1:
|
---|
| 2358 | case Perturbed_P2:
|
---|
| 2359 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
| 2360 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
| 2361 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
| 2362 | i0 = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
| 2363 | n[0]=n0 + N0*myPE; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
|
---|
| 2364 | fac[0] = (double)n[0]/(double)N[0];
|
---|
| 2365 | fac[1] = (double)n[1]/(double)N[1];
|
---|
| 2366 | fac[2] = (double)n[2]/(double)N[2];
|
---|
| 2367 | RMat33Vec3(x, Lat->RealBasis, fac); // relative coordinate times basis matrix gives absolute ones
|
---|
| 2368 | for (i=0;i<NDIM;i++) // build gauge-translated r_bar evaluation point
|
---|
| 2369 | r_bar[i] =
|
---|
| 2370 | sawtooth(Lat,MinImageConv(Lat, x[i], Psi->AddData[k].WannierCentre[i], i),i);
|
---|
| 2371 | // ShiftGaugeOrigin(P,truedist(Lat, x[i], Psi->AddData[k].WannierCentre[i], i),i);
|
---|
| 2372 | //truedist(Lat, x[i], Psi->AddData[k].WannierCentre[i], i);
|
---|
| 2373 |
|
---|
| 2374 | Current = Psip0R[i0] * (r_bar[cross_lookup_1[0]] * Psi1R[i0]);
|
---|
| 2375 | Current += (Psi0R[i0] * r_bar[cross_lookup_1[0]] * Psip1R[i0]);
|
---|
| 2376 | Current *= .5 * UnitsFactor * Psi->LocalPsiStatus[k].PsiFactor * R->FactorDensityR; // factor confirmed, see CalculateOneDensityR() and InitDensityCalculation()
|
---|
| 2377 | ////if (CurrentDensity[index+j*NDIM] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index+j*NDIM] || i0<0 || i0>=Dens0->LocalSizeR || (index+j*NDIM)<0 || (index+j*NDIM)>=NDIM*NDIM) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
| 2378 | CurrentDensity[index+l_1*NDIM][i0] -= Current; // note: sign of cross product resides in Current itself (here: plus)
|
---|
| 2379 |
|
---|
| 2380 | Current = - Psip0R[i0] * (r_bar[cross_lookup_3[2]] * Psi1R[i0]);
|
---|
| 2381 | Current += - (Psi0R[i0] * r_bar[cross_lookup_3[2]] * Psip1R[i0]);
|
---|
| 2382 | Current *= .5 * UnitsFactor * Psi->LocalPsiStatus[k].PsiFactor * R->FactorDensityR; // factor confirmed, see CalculateOneDensityR() and InitDensityCalculation()
|
---|
| 2383 | ////if (CurrentDensity[index+j*NDIM] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index+j*NDIM] || i0<0 || i0>=Dens0->LocalSizeR || (index+j*NDIM)<0 || (index+j*NDIM)>=NDIM*NDIM) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
| 2384 | CurrentDensity[index+l_3*NDIM][i0] -= Current; // note: sign of cross product resides in Current itself (here: minus)
|
---|
| 2385 | }
|
---|
| 2386 | break;
|
---|
| 2387 | case Perturbed_RxP0:
|
---|
| 2388 | case Perturbed_RxP1:
|
---|
| 2389 | case Perturbed_RxP2:
|
---|
| 2390 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
| 2391 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
| 2392 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
| 2393 | i0 = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
| 2394 | Current = (Psip0R[i0] * Psi1R[i0] + Psi0R[i0] * Psip1R[i0]);
|
---|
| 2395 | Current *= .5 * UnitsFactor * Psi->LocalPsiStatus[k].PsiFactor * R->FactorDensityR; // factor confirmed, see CalculateOneDensityR() and InitDensityCalculation()
|
---|
| 2396 | ////if (CurrentDensity[index+j*NDIM] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index+j*NDIM] || i0<0 || i0>=Dens0->LocalSizeR || (index+j*NDIM)<0 || (index+j*NDIM)>=NDIM*NDIM) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
| 2397 | CurrentDensity[index+j*NDIM][i0] += Current;
|
---|
| 2398 | }
|
---|
| 2399 | break;
|
---|
| 2400 | default:
|
---|
| 2401 | break;
|
---|
| 2402 | }
|
---|
| 2403 | }
|
---|
| 2404 | //OutputCurrentDensity(P);
|
---|
| 2405 | }
|
---|
| 2406 |
|
---|
| 2407 | //debug(P,"Unlocking arrays");
|
---|
| 2408 | //debug(P,"GapDensity");
|
---|
| 2409 | UnLockDensityArray(Dens0,GapDensity,real); // Psi0R
|
---|
| 2410 | //debug(P,"GapLocalDensity");
|
---|
| 2411 | UnLockDensityArray(Dens0,GapLocalDensity,real); // Psip0R
|
---|
| 2412 | //debug(P,"Temp2Density");
|
---|
| 2413 | UnLockDensityArray(Dens0,Temp2Density,real); // Psi1R
|
---|
| 2414 |
|
---|
| 2415 | // if (P->Call.out[StepLeaderOut])
|
---|
| 2416 | // fprintf(stderr,"\n\n");
|
---|
| 2417 |
|
---|
| 2418 | //debug(P,"MPI operation");
|
---|
| 2419 | // and in the end gather partial densities from other processes
|
---|
| 2420 | if (type == Perturbed_RxP2) // exchange all (due to shared wave functions) only after last pertubation run
|
---|
| 2421 | for (index=0;index<NDIM*NDIM;index++) {
|
---|
| 2422 | //if (tempArray != (fftw_real *)Dens0->DensityCArray[Temp2Density]) Error(SomeError,"FillCurrentDensity: tempArray corrupted");
|
---|
| 2423 | //debug(P,"tempArray to zero");
|
---|
| 2424 | SetArrayToDouble0((double *)tempArray, Dens0->TotalSize*2);
|
---|
| 2425 | ////if (CurrentDensity[index] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index]) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
| 2426 | //debug(P,"CurrentDensity exchange");
|
---|
| 2427 | MPI_Allreduce( CurrentDensity[index], tempArray, Dens0->LocalSizeR, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_PsiT); // gather results from all wave functions ...
|
---|
| 2428 | switch(Psi->PsiST) { // ... and also from SpinUp/Downs
|
---|
| 2429 | default:
|
---|
| 2430 | //debug(P,"CurrentDensity = tempArray");
|
---|
| 2431 | for (i=0;i<Dens0->LocalSizeR;i++) {
|
---|
| 2432 | ////if (CurrentDensity[index] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index] || i<0 || i>=Dens0->LocalSizeR) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
| 2433 | CurrentDensity[index][i] = tempArray[i];
|
---|
| 2434 | }
|
---|
| 2435 | break;
|
---|
| 2436 | case SpinUp:
|
---|
| 2437 | //debug(P,"CurrentDensity exchange spinup");
|
---|
| 2438 | MPI_Sendrecv(tempArray, Dens0->LocalSizeR, MPI_DOUBLE, P->Par.me_comm_ST, CurrentTag1,
|
---|
| 2439 | CurrentDensity[index], Dens0->LocalSizeR, MPI_DOUBLE, P->Par.me_comm_ST, CurrentTag2, P->Par.comm_STInter, &status );
|
---|
| 2440 | //debug(P,"CurrentDensity += tempArray");
|
---|
| 2441 | for (i=0;i<Dens0->LocalSizeR;i++) {
|
---|
| 2442 | ////if (CurrentDensity[index] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index] || i<0 || i>=Dens0->LocalSizeR) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
| 2443 | CurrentDensity[index][i] += tempArray[i];
|
---|
| 2444 | }
|
---|
| 2445 | break;
|
---|
| 2446 | case SpinDown:
|
---|
| 2447 | //debug(P,"CurrentDensity exchange spindown");
|
---|
| 2448 | MPI_Sendrecv(tempArray, Dens0->LocalSizeR, MPI_DOUBLE, P->Par.me_comm_ST, CurrentTag2,
|
---|
| 2449 | CurrentDensity[index], Dens0->LocalSizeR, MPI_DOUBLE, P->Par.me_comm_ST, CurrentTag1, P->Par.comm_STInter, &status );
|
---|
| 2450 | //debug(P,"CurrentDensity += tempArray");
|
---|
| 2451 | for (i=0;i<Dens0->LocalSizeR;i++) {
|
---|
| 2452 | ////if (CurrentDensity[index] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index] || i<0 || i>=Dens0->LocalSizeR) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
| 2453 | CurrentDensity[index][i] += tempArray[i];
|
---|
| 2454 | }
|
---|
| 2455 | break;
|
---|
| 2456 | }
|
---|
| 2457 | }
|
---|
| 2458 | //debug(P,"Temp2Density");
|
---|
| 2459 | UnLockDensityArray(Dens0,Temp2Density,imag); // Psip1R and tempArray
|
---|
| 2460 | //debug(P,"CurrentDensity end");
|
---|
| 2461 | }
|
---|
| 2462 |
|
---|
| 2463 | /** Structure holding Problem at hand and two indices, defining the greens function to be inverted.
|
---|
| 2464 | */
|
---|
| 2465 | struct params
|
---|
| 2466 | {
|
---|
| 2467 | struct Problem *P;
|
---|
| 2468 | int *k;
|
---|
| 2469 | int *l;
|
---|
| 2470 | int *iter;
|
---|
| 2471 | fftw_complex *x_l;
|
---|
| 2472 | };
|
---|
| 2473 |
|
---|
| 2474 | /** Wrapper function to solve G_kl x = b for x.
|
---|
| 2475 | * \param *x above x
|
---|
| 2476 | * \param *param additional parameters, here Problem at hand
|
---|
| 2477 | * \return evaluated to be minimized functional \f$\frac{1}{2}x \cdot Ax - xb\f$ at \a x on return
|
---|
| 2478 | */
|
---|
| 2479 | static double DeltaCurrent_f(const gsl_vector * x, void * param)
|
---|
| 2480 | {
|
---|
| 2481 | struct Problem *P = ((struct params *)param)->P;
|
---|
| 2482 | struct RunStruct *R = &P->R;
|
---|
| 2483 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 2484 | struct Psis *Psi = &P->Lat.Psi;
|
---|
| 2485 | struct PseudoPot *PP = &P->PP;
|
---|
| 2486 | const double PsiFactor = Psi->AllPsiStatus[*((struct params *)param)->k].PsiFactor;
|
---|
| 2487 | double result = 0.;
|
---|
| 2488 | fftw_complex *TempPsi = LevS->LPsi->TempPsi;
|
---|
| 2489 | fftw_complex *TempPsi2 = LevS->LPsi->TempPsi2;
|
---|
| 2490 | int u;
|
---|
| 2491 |
|
---|
| 2492 | //fprintf(stderr,"Evaluating f(%i,%i) for %i-th time\n", *((struct params *)param)->k, *((struct params *)param)->l, *((struct params *)param)->iter);
|
---|
| 2493 |
|
---|
| 2494 | // extract gsl_vector
|
---|
| 2495 | for (u=0;u<LevS->MaxG;u++) {
|
---|
| 2496 | TempPsi[u].re = gsl_vector_get(x, 2*u);
|
---|
| 2497 | TempPsi[u].im = gsl_vector_get(x, 2*u+1);
|
---|
| 2498 | }
|
---|
| 2499 | // generate fnl
|
---|
| 2500 | CalculateCDfnl(P, TempPsi, PP->CDfnl); // calculate needed non-local form factors
|
---|
| 2501 | // Apply Hamiltonian to x
|
---|
| 2502 | ApplyTotalHamiltonian(P,TempPsi,TempPsi2, PP->CDfnl,PsiFactor,0);
|
---|
| 2503 | // take scalar product to get eigen value
|
---|
| 2504 | result = .5 * PsiFactor * (((*((struct params *)param)->k == *((struct params *)param)->l ? GradSP(P,LevS,TempPsi,TempPsi2) : 0.) - Psi->lambda[*((struct params *)param)->k][*((struct params *)param)->l])) - GradSP(P,LevS,TempPsi,LevS->LPsi->LocalPsi[*((struct params *)param)->l]);
|
---|
| 2505 | return result;
|
---|
| 2506 | }
|
---|
| 2507 |
|
---|
| 2508 | /** Wrapper function to solve G_kl x = b for x.
|
---|
| 2509 | * \param *x above x
|
---|
| 2510 | * \param *param additional parameters, here Problem at hand
|
---|
| 2511 | * \param *g gradient vector on return
|
---|
| 2512 | * \return error code
|
---|
| 2513 | */
|
---|
| 2514 | static void DeltaCurrent_df(const gsl_vector * x, void * param, gsl_vector * g)
|
---|
| 2515 | {
|
---|
| 2516 | struct Problem *P = ((struct params *)param)->P;
|
---|
| 2517 | struct RunStruct *R = &P->R;
|
---|
| 2518 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 2519 | struct Psis *Psi = &P->Lat.Psi;
|
---|
| 2520 | struct PseudoPot *PP = &P->PP;
|
---|
| 2521 | const double PsiFactor = Psi->AllPsiStatus[*((struct params *)param)->k].PsiFactor;
|
---|
| 2522 | fftw_complex *TempPsi = LevS->LPsi->TempPsi;
|
---|
| 2523 | fftw_complex *TempPsi2 = LevS->LPsi->TempPsi2;
|
---|
| 2524 | fftw_complex *x_l = ((struct params *)param)->x_l;
|
---|
| 2525 | int u;
|
---|
| 2526 |
|
---|
| 2527 | //fprintf(stderr,"Evaluating df(%i,%i) for %i-th time\n", *((struct params *)param)->k, *((struct params *)param)->l, *((struct params *)param)->iter);
|
---|
| 2528 |
|
---|
| 2529 | // extract gsl_vector
|
---|
| 2530 | for (u=0;u<LevS->MaxG;u++) {
|
---|
| 2531 | TempPsi[u].re = gsl_vector_get(x, 2*u);
|
---|
| 2532 | TempPsi[u].im = gsl_vector_get(x, 2*u+1);
|
---|
| 2533 | }
|
---|
| 2534 | // generate fnl
|
---|
| 2535 | CalculateCDfnl(P, TempPsi, PP->CDfnl); // calculate needed non-local form factors
|
---|
| 2536 | // Apply Hamiltonian to x
|
---|
| 2537 | ApplyTotalHamiltonian(P,TempPsi,TempPsi2, PP->CDfnl,PsiFactor,0);
|
---|
| 2538 | // put into returning vector
|
---|
| 2539 | for (u=0;u<LevS->MaxG;u++) {
|
---|
| 2540 | gsl_vector_set(g, 2*u, TempPsi2[u].re - x_l[u].re);
|
---|
| 2541 | gsl_vector_set(g, 2*u+1, TempPsi2[u].im - x_l[u].im);
|
---|
| 2542 | }
|
---|
| 2543 | }
|
---|
| 2544 |
|
---|
| 2545 | /** Wrapper function to solve G_kl x = b for x.
|
---|
| 2546 | * \param *x above x
|
---|
| 2547 | * \param *param additional parameters, here Problem at hand
|
---|
| 2548 | * \param *f evaluated to be minimized functional \f$\frac{1}{2}x \cdot Ax - xb\f$ at \a x on return
|
---|
| 2549 | * \param *g gradient vector on return
|
---|
| 2550 | * \return error code
|
---|
| 2551 | */
|
---|
| 2552 | static void DeltaCurrent_fdf(const gsl_vector * x, void * param, double * f, gsl_vector * g)
|
---|
| 2553 | {
|
---|
| 2554 | struct Problem *P = ((struct params *)param)->P;
|
---|
| 2555 | struct RunStruct *R = &P->R;
|
---|
| 2556 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 2557 | struct Psis *Psi = &P->Lat.Psi;
|
---|
| 2558 | struct PseudoPot *PP = &P->PP;
|
---|
| 2559 | const double PsiFactor = Psi->AllPsiStatus[*((struct params *)param)->k].PsiFactor;
|
---|
| 2560 | fftw_complex *TempPsi = LevS->LPsi->TempPsi;
|
---|
| 2561 | fftw_complex *TempPsi2 = LevS->LPsi->TempPsi2;
|
---|
| 2562 | fftw_complex *x_l = ((struct params *)param)->x_l;
|
---|
| 2563 | int u;
|
---|
| 2564 |
|
---|
| 2565 | //fprintf(stderr,"Evaluating fdf(%i,%i) for %i-th time\n", *((struct params *)param)->k, *((struct params *)param)->l, *((struct params *)param)->iter);
|
---|
| 2566 |
|
---|
| 2567 | // extract gsl_vector
|
---|
| 2568 | for (u=0;u<LevS->MaxG;u++) {
|
---|
| 2569 | TempPsi[u].re = gsl_vector_get(x, 2*u);
|
---|
| 2570 | TempPsi[u].im = gsl_vector_get(x, 2*u+1);
|
---|
| 2571 | }
|
---|
| 2572 | // generate fnl
|
---|
| 2573 | CalculateCDfnl(P, TempPsi, PP->CDfnl); // calculate needed non-local form factors
|
---|
| 2574 | // Apply Hamiltonian to x
|
---|
| 2575 | ApplyTotalHamiltonian(P,TempPsi,TempPsi2, PP->CDfnl,PsiFactor,0);
|
---|
| 2576 | // put into returning vector
|
---|
| 2577 | for (u=0;u<LevS->MaxG;u++) {
|
---|
| 2578 | gsl_vector_set(g, 2*u, TempPsi[u].re - x_l[u].re);
|
---|
| 2579 | gsl_vector_set(g, 2*u+1, TempPsi[u].im - x_l[u].im);
|
---|
| 2580 | }
|
---|
| 2581 |
|
---|
| 2582 | *f = .5 * PsiFactor * (((*((struct params *)param)->k == *((struct params *)param)->l ? GradSP(P,LevS,TempPsi,TempPsi2) : 0.) - Psi->lambda[*((struct params *)param)->k][*((struct params *)param)->l])) - GradSP(P,LevS,TempPsi,LevS->LPsi->LocalPsi[*((struct params *)param)->l]);
|
---|
| 2583 | }
|
---|
| 2584 |
|
---|
| 2585 | /** Evaluates the \f$\Delta j_k(r')\f$ component of the current density.
|
---|
| 2586 | * \f[
|
---|
| 2587 | * \Delta j_k(r') = \frac{e}{m} \sum_l \langle \varphi^{(0)}_k | \left ( p |r'\rangle \langle r'| + | r'\rangle\langle r'|p \right ) {\cal G}_{kl} (d_k - d_l) \times p | \varphi^{(1)}_l \rangle \cdot B
|
---|
| 2588 | * \f]
|
---|
| 2589 | * \param *P Problem at hand
|
---|
| 2590 | * \note result has not yet been MPI_Allreduced for ParallelSimulationData#comm_ST_inter or ParallelSimulationData#comm_ST_PsiT groups!
|
---|
| 2591 | * \warning the routine is checked but does not yet produce sensible results.
|
---|
| 2592 | */
|
---|
| 2593 | void FillDeltaCurrentDensity(struct Problem *P)
|
---|
| 2594 | {
|
---|
| 2595 | struct Lattice *Lat = &P->Lat;
|
---|
| 2596 | struct RunStruct *R = &P->R;
|
---|
| 2597 | struct Psis *Psi = &Lat->Psi;
|
---|
| 2598 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 2599 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 2600 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 2601 | int i,j,s;
|
---|
| 2602 | int k,l,u, in, dex, index,i0;
|
---|
| 2603 | //const int Num = Psi->NoOfPsis;
|
---|
| 2604 | int RecvSource;
|
---|
| 2605 | MPI_Status status;
|
---|
| 2606 | struct OnePsiElement *OnePsiB, *LOnePsiB, *OnePsiA, *LOnePsiA;
|
---|
| 2607 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
| 2608 | int n[NDIM], n0;
|
---|
| 2609 | int N[NDIM];
|
---|
| 2610 | N[0] = Lev0->Plan0.plan->N[0];
|
---|
| 2611 | N[1] = Lev0->Plan0.plan->N[1];
|
---|
| 2612 | N[2] = Lev0->Plan0.plan->N[2];
|
---|
| 2613 | const int N0 = Lev0->Plan0.plan->local_nx;
|
---|
| 2614 | fftw_complex *LPsiDatB;
|
---|
| 2615 | fftw_complex *Psi0, *Psi1;
|
---|
| 2616 | fftw_real *Psi0R, *Psip0R;
|
---|
| 2617 | fftw_real *Psi1R, *Psip1R;
|
---|
| 2618 | fftw_complex *x_l = LevS->LPsi->TempPsi;//, **x_l_bak;
|
---|
| 2619 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
| 2620 | int mem_avail, MEM_avail;
|
---|
| 2621 | double Current;
|
---|
| 2622 | const double UnitsFactor = 1.;
|
---|
| 2623 | int cross_lookup[4];
|
---|
| 2624 | struct params param;
|
---|
| 2625 | double factor; // temporary factor in Psi1 pre-evaluation
|
---|
| 2626 |
|
---|
| 2627 | LockDensityArray(Dens0,GapDensity,real); // Psi0R
|
---|
| 2628 | LockDensityArray(Dens0,GapLocalDensity,real); // Psip0R
|
---|
| 2629 | LockDensityArray(Dens0,Temp2Density,imag); // Psi1
|
---|
| 2630 | LockDensityArray(Dens0,GapUpDensity,real); // Psi1R
|
---|
| 2631 | LockDensityArray(Dens0,GapDownDensity,real); // Psip1R
|
---|
| 2632 |
|
---|
| 2633 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
| 2634 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
| 2635 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
| 2636 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
| 2637 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
| 2638 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
| 2639 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
| 2640 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
| 2641 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
| 2642 |
|
---|
| 2643 | Psi0R = (fftw_real *)Dens0->DensityArray[GapDensity];
|
---|
| 2644 | Psip0R = (fftw_real *)Dens0->DensityArray[GapLocalDensity];
|
---|
| 2645 | Psi1 = (fftw_complex *) Dens0->DensityCArray[Temp2Density];
|
---|
| 2646 | Psi1R = (fftw_real *)Dens0->DensityArray[GapUpDensity];
|
---|
| 2647 | Psip1R = (fftw_real *)Dens0->DensityArray[GapDownDensity];
|
---|
| 2648 |
|
---|
| 2649 | // if (R->CurrentMin == Perturbed_P0)
|
---|
| 2650 | // for (B_index=0; B_index<NDIM*NDIM; B_index++) { // initialize current density array
|
---|
| 2651 | // debug(P,"resetting CurrentDensity...");
|
---|
| 2652 | // SetArrayToDouble0((double *)CurrentDensity[B_index],Dens0->TotalSize*2); // DensityArray is fftw_real, no 2*LocalSizeR here!
|
---|
| 2653 | // }
|
---|
| 2654 | //if (Psi1 != (fftw_complex *) Dens0->DensityCArray[Temp2Density]) Error(SomeError,"FillDeltaCurrentDensity: Psi1 corrupted");
|
---|
| 2655 | SetArrayToDouble0((double *)Psi1,2*Dens0->TotalSize);
|
---|
| 2656 |
|
---|
| 2657 | // gsl_vector *x = gsl_vector_alloc(Num);
|
---|
| 2658 | // gsl_matrix *G = gsl_matrix_alloc(Num,Num);
|
---|
| 2659 | // gsl_permutation *p = gsl_permutation_alloc(Num);
|
---|
| 2660 | //int signum;
|
---|
| 2661 | // begin of GSL linearer CG solver stuff
|
---|
| 2662 | int iter, Status;
|
---|
| 2663 |
|
---|
| 2664 | const gsl_multimin_fdfminimizer_type *T;
|
---|
| 2665 | gsl_multimin_fdfminimizer *minset;
|
---|
| 2666 |
|
---|
| 2667 | /* Position of the minimum (1,2). */
|
---|
| 2668 | //double par[2] = { 1.0, 2.0 };
|
---|
| 2669 |
|
---|
| 2670 | gsl_vector *x;
|
---|
| 2671 | gsl_multimin_function_fdf my_func;
|
---|
| 2672 |
|
---|
| 2673 | param.P = P;
|
---|
| 2674 | param.k = &k;
|
---|
| 2675 | param.l = &l;
|
---|
| 2676 | param.iter = &iter;
|
---|
| 2677 | param.x_l = x_l;
|
---|
| 2678 |
|
---|
| 2679 | my_func.f = &DeltaCurrent_f;
|
---|
| 2680 | my_func.df = &DeltaCurrent_df;
|
---|
| 2681 | my_func.fdf = &DeltaCurrent_fdf;
|
---|
| 2682 | my_func.n = 2*LevS->MaxG;
|
---|
| 2683 | my_func.params = (void *)¶m;
|
---|
| 2684 |
|
---|
| 2685 | T = gsl_multimin_fdfminimizer_conjugate_pr;
|
---|
| 2686 | minset = gsl_multimin_fdfminimizer_alloc (T, 2*LevS->MaxG);
|
---|
| 2687 | x = gsl_vector_alloc (2*LevS->MaxG);
|
---|
| 2688 | // end of GSL CG stuff
|
---|
| 2689 |
|
---|
| 2690 |
|
---|
| 2691 | // // construct G_kl = - (H^{(0)} \delta_{kl} -\langle \varphi^{(0)}_k |H^{(0)}| \varphi^{(0)}_l|rangle)^{-1} = A^{-1}
|
---|
| 2692 | // for (k=0;k<Num;k++)
|
---|
| 2693 | // for (l=0;l<Num;l++)
|
---|
| 2694 | // gsl_matrix_set(G, k, l, k == l ? 0. : Psi->lambda[k][l]);
|
---|
| 2695 | // // and decompose G_kl = L U
|
---|
| 2696 |
|
---|
| 2697 | mem_avail = MEM_avail = 0;
|
---|
| 2698 | // x_l_bak = x_l = (fftw_complex **) Malloc(sizeof(fftw_complex *)*Num,"FillDeltaCurrentDensity: *x_l");
|
---|
| 2699 | // for (i=0;i<Num;i++) {
|
---|
| 2700 | // x_l[i] = NULL;
|
---|
| 2701 | // x_l[i] = (fftw_complex *) malloc(sizeof(fftw_complex)*LevS->MaxG);
|
---|
| 2702 | // if (x_l[i] == NULL) {
|
---|
| 2703 | // mem_avail = 1; // there was not enough memory for this node
|
---|
| 2704 | // fprintf(stderr,"(%i) FillDeltaCurrentDensity: x_l[%i] ... insufficient memory.\n",P->Par.me,i);
|
---|
| 2705 | // }
|
---|
| 2706 | // }
|
---|
| 2707 | // MPI_Allreduce(&mem_avail,&MEM_avail,1,MPI_INT,MPI_SUM,P->Par.comm_ST); // sum results from all processes
|
---|
| 2708 |
|
---|
| 2709 | if (MEM_avail != 0) { // means at least node couldn't allocate sufficient memory, skipping...
|
---|
| 2710 | fprintf(stderr,"(%i) FillDeltaCurrentDensity: x_l[], not enough memory: %i! Skipping FillDeltaCurrentDensity evaluation.", P->Par.me, MEM_avail);
|
---|
| 2711 | } else {
|
---|
| 2712 | // sum over k and calculate \Delta j_k(r')
|
---|
| 2713 | k=-1;
|
---|
| 2714 | for (i=0; i < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; i++) { // go through all wave functions
|
---|
| 2715 | //fprintf(stderr,"(%i) GlobalNo: %d\tLocalNo: %d\n", P->Par.me,Psi->AllPsiStatus[i].MyGlobalNo,Psi->AllPsiStatus[i].MyLocalNo);
|
---|
| 2716 | OnePsiA = &Psi->AllPsiStatus[i]; // grab OnePsiA
|
---|
| 2717 | if (OnePsiA->PsiType == Occupied) { // drop the extra and perturbed ones
|
---|
| 2718 | k++;
|
---|
| 2719 | if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
| 2720 | LOnePsiA = &Psi->LocalPsiStatus[OnePsiA->MyLocalNo];
|
---|
| 2721 | else
|
---|
| 2722 | LOnePsiA = NULL;
|
---|
| 2723 | if (LOnePsiA != NULL) {
|
---|
| 2724 | Psi0=LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo];
|
---|
| 2725 |
|
---|
| 2726 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Bringing |Psi0> one level up and fftransforming\n", P->Par.me);
|
---|
| 2727 | //if (Psi0R != (fftw_real *)Dens0->DensityArray[GapDensity]) Error(SomeError,"FillDeltaCurrentDensity: Psi0R corrupted");
|
---|
| 2728 | fft_Psi(P,Psi0,Psi0R, 0, Psi0symmetry); //0 // 0 //0
|
---|
| 2729 |
|
---|
| 2730 | for (in=0;in<NDIM;in++) { // in is the index from derivation wrt to B^{ext}
|
---|
| 2731 | l = -1;
|
---|
| 2732 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
| 2733 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiA
|
---|
| 2734 | if (OnePsiB->PsiType == Occupied)
|
---|
| 2735 | l++;
|
---|
| 2736 | if ((OnePsiB != OnePsiA) && (OnePsiB->PsiType == Occupied)) { // drop the same and the extra ones
|
---|
| 2737 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
| 2738 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
| 2739 | else
|
---|
| 2740 | LOnePsiB = NULL;
|
---|
| 2741 | if (LOnePsiB == NULL) { // if it's not local ... receive x from respective process
|
---|
| 2742 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
| 2743 | MPI_Recv( x_l, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, HamiltonianTag, P->Par.comm_ST_PsiT, &status );
|
---|
| 2744 | } else { // .. otherwise setup wave function as x ...
|
---|
| 2745 | // Evaluate cross product: \epsilon_{ijm} (d_k - d_l)_j p_m | \varphi^{(0)} \rangle = b_i ... and
|
---|
| 2746 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
| 2747 | //LPsiDatx=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo+Psi->TypeStartIndex[Perturbed_P0]];
|
---|
| 2748 | //CalculatePerturbationOperator_P(P,LPsiDatB,LPsiDatB_p0,cross(in,1),0);
|
---|
| 2749 | //CalculatePerturbationOperator_P(P,LPsiDatB,LPsiDatB_p1,cross(in,3),0);
|
---|
| 2750 | for (dex=0;dex<4;dex++)
|
---|
| 2751 | cross_lookup[dex] = cross(in,dex);
|
---|
| 2752 | for(s=0;s<LevS->MaxG;s++) {
|
---|
| 2753 | //if (x_l != x_l_bak || s<0 || s>LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: x_l[] corrupted");
|
---|
| 2754 | factor =
|
---|
| 2755 | (MinImageConv(Lat,Psi->AddData[LOnePsiA->MyLocalNo].WannierCentre[cross_lookup[0]],
|
---|
| 2756 | Psi->AddData[LOnePsiB->MyLocalNo].WannierCentre[cross_lookup[0]],cross_lookup[0]) * LevS->GArray[s].G[cross_lookup[1]] -
|
---|
| 2757 | MinImageConv(Lat,Psi->AddData[LOnePsiA->MyLocalNo].WannierCentre[cross_lookup[2]],
|
---|
| 2758 | Psi->AddData[LOnePsiB->MyLocalNo].WannierCentre[cross_lookup[2]],cross_lookup[2]) * LevS->GArray[s].G[cross_lookup[3]]);
|
---|
| 2759 | x_l[s].re = factor * (-LPsiDatB[s].im); // switched due to factorization with "-i G"
|
---|
| 2760 | x_l[s].im = factor * (LPsiDatB[s].re);
|
---|
| 2761 | }
|
---|
| 2762 | // ... and send it to all other processes (Max_me... - 1)
|
---|
| 2763 | for (u=0;u<P->Par.Max_me_comm_ST_PsiT;u++)
|
---|
| 2764 | if (u != OnePsiB->my_color_comm_ST_Psi)
|
---|
| 2765 | MPI_Send( x_l, LevS->MaxG*ElementSize, MPI_DOUBLE, u, HamiltonianTag, P->Par.comm_ST_PsiT);
|
---|
| 2766 | } // x_l row is now filled (either by receiving result or evaluating it on its own)
|
---|
| 2767 | // Solve Ax = b by minimizing 1/2 xAx -xb (gradient is residual Ax - b) with conjugate gradient polak-ribiere
|
---|
| 2768 |
|
---|
| 2769 | debug(P,"fill starting point x with values from b");
|
---|
| 2770 | /* Starting point, x = b */
|
---|
| 2771 | for (u=0;u<LevS->MaxG;u++) {
|
---|
| 2772 | gsl_vector_set (x, 2*u, x_l[u].re);
|
---|
| 2773 | gsl_vector_set (x, 2*u+1, x_l[u].im);
|
---|
| 2774 | }
|
---|
| 2775 |
|
---|
| 2776 | gsl_multimin_fdfminimizer_set (minset, &my_func, x, 0.01, 1e-4);
|
---|
| 2777 |
|
---|
| 2778 | fprintf(stderr,"(%i) Start solving for (%i,%i) and index %i\n",P->Par.me, k,l,in);
|
---|
| 2779 | // start solving
|
---|
| 2780 | iter = 0;
|
---|
| 2781 | do
|
---|
| 2782 | {
|
---|
| 2783 | iter++;
|
---|
| 2784 | Status = gsl_multimin_fdfminimizer_iterate (minset);
|
---|
| 2785 |
|
---|
| 2786 | if (Status)
|
---|
| 2787 | break;
|
---|
| 2788 |
|
---|
| 2789 | Status = gsl_multimin_test_gradient (minset->gradient, 1e-3);
|
---|
| 2790 |
|
---|
| 2791 | if (Status == GSL_SUCCESS)
|
---|
| 2792 | fprintf (stderr,"(%i) Minimum found after %i iterations.\n", P->Par.me, iter);
|
---|
| 2793 |
|
---|
| 2794 | } while (Status == GSL_CONTINUE && iter < 100);
|
---|
| 2795 |
|
---|
| 2796 | debug(P,"Put solution into Psi1");
|
---|
| 2797 | // ... and what do we do now? Put solution into Psi1!
|
---|
| 2798 | for(s=0;s<LevS->MaxG;s++) {
|
---|
| 2799 | //if (Psi1 != (fftw_complex *) Dens0->DensityCArray[Temp2Density] || s<0 || s>LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: Psi1 corrupted");
|
---|
| 2800 | Psi1[s].re = gsl_vector_get (minset->x, 2*s);
|
---|
| 2801 | Psi1[s].im = gsl_vector_get (minset->x, 2*s+1);
|
---|
| 2802 | }
|
---|
| 2803 |
|
---|
| 2804 | // // Solve A^{-1} b_i = x
|
---|
| 2805 | // for(s=0;s<LevS->MaxG;s++) {
|
---|
| 2806 | // // REAL PART
|
---|
| 2807 | // // retrieve column from gathered matrix
|
---|
| 2808 | // for(u=0;u<Num;u++)
|
---|
| 2809 | // gsl_vector_set(x,u,x_l[u][s].re);
|
---|
| 2810 | //
|
---|
| 2811 | // // solve: sum_l A_{kl}^(-1) b_l (s) = x_k (s)
|
---|
| 2812 | // gsl_linalg_LU_svx (G, p, x);
|
---|
| 2813 | //
|
---|
| 2814 | // // put solution back into x_l[s]
|
---|
| 2815 | // for(u=0;u<Num;u++) {
|
---|
| 2816 | // //if (x_l != x_l_bak || s<0 || s>=LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: x_l[] corrupted");
|
---|
| 2817 | // x_l[u][s].re = gsl_vector_get(x,u);
|
---|
| 2818 | // }
|
---|
| 2819 | //
|
---|
| 2820 | // // IMAGINARY PART
|
---|
| 2821 | // // retrieve column from gathered matrix
|
---|
| 2822 | // for(u=0;u<Num;u++)
|
---|
| 2823 | // gsl_vector_set(x,u,x_l[u][s].im);
|
---|
| 2824 | //
|
---|
| 2825 | // // solve: sum_l A_{kl}^(-1) b_l (s) = x_k (s)
|
---|
| 2826 | // gsl_linalg_LU_svx (G, p, x);
|
---|
| 2827 | //
|
---|
| 2828 | // // put solution back into x_l[s]
|
---|
| 2829 | // for(u=0;u<Num;u++) {
|
---|
| 2830 | // //if (x_l != x_l_bak || s<0 || s>=LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: x_l[] corrupted");
|
---|
| 2831 | // x_l[u][s].im = gsl_vector_get(x,u);
|
---|
| 2832 | // }
|
---|
| 2833 | // } // now we have in x_l a vector similar to "Psi1" which we use to evaluate the current density
|
---|
| 2834 | //
|
---|
| 2835 | // // evaluate \Delta J_k ... mind the minus sign from G_kl!
|
---|
| 2836 | // // fill Psi1
|
---|
| 2837 | // for(s=0;s<LevS->MaxG;s++) {
|
---|
| 2838 | // //if (Psi1 != (fftw_complex *) Dens0->DensityCArray[Temp2Density] || s<0 || s>LevS->MaxG) Error(SomeError,"FillDeltaCurrentDensity: Psi1 corrupted");
|
---|
| 2839 | // Psi1[s].re = x_l[k][s].re;
|
---|
| 2840 | // Psi1[s].im = x_l[k][s].im;
|
---|
| 2841 | // }
|
---|
| 2842 |
|
---|
| 2843 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Bringing |Psi1> one level up and fftransforming\n", P->Par.me);
|
---|
| 2844 | //if (Psi1R != (fftw_real *)Dens0->DensityArray[GapUpDensity]) Error(SomeError,"FillDeltaCurrentDensity: Psi1R corrupted");
|
---|
| 2845 | fft_Psi(P,Psi1,Psi1R, 0, Psi1symmetry); //2 // 0 //0
|
---|
| 2846 |
|
---|
| 2847 | for (index=0;index<NDIM;index++) { // for all NDIM components of momentum operator
|
---|
| 2848 |
|
---|
| 2849 | if ((P->Call.out[StepLeaderOut]) && (!index)) fprintf(stderr,"(%i) Bringing p|Psi0> one level up and fftransforming\n", P->Par.me);
|
---|
| 2850 | //if (Psip0R != (fftw_real *)Dens0->DensityArray[GapLocalDensity]) Error(SomeError,"FillDeltaCurrentDensity: Psip0R corrupted");
|
---|
| 2851 | fft_Psi(P,Psi0,Psip0R, index, Psip0symmetry); //6 //6 //6
|
---|
| 2852 |
|
---|
| 2853 | if ((P->Call.out[StepLeaderOut]) && (!index)) fprintf(stderr,"(%i) Bringing p|Psi1> one level up and fftransforming\n", P->Par.me);
|
---|
| 2854 | //if (Psip1R != (fftw_real *)Dens0->DensityArray[GapDownDensity]) Error(SomeError,"FillDeltaCurrentDensity: Psip1R corrupted");
|
---|
| 2855 | fft_Psi(P,Psi1,Psip1R, index, Psip1symmetry); //4 //6 //6
|
---|
| 2856 |
|
---|
| 2857 | // then for every point on the grid in real space ...
|
---|
| 2858 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
| 2859 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
| 2860 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
| 2861 | i0 = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
| 2862 | // and take the product
|
---|
| 2863 | Current = (Psip0R[i0] * Psi1R[i0] + Psi0R[i0] * Psip1R[i0]);
|
---|
| 2864 | Current *= 0.5 * UnitsFactor * Psi->AllPsiStatus[OnePsiA->MyGlobalNo].PsiFactor * R->FactorDensityR;
|
---|
| 2865 | ////if (CurrentDensity[index+in*NDIM] != (fftw_real *) Dens0->DensityArray[CurrentDensity0 + index+in*NDIM]) Error(SomeError,"FillCurrentDensity: CurrentDensity[] corrupted");
|
---|
| 2866 | //if (i0<0 || i0>=Dens0->LocalSizeR) Error(SomeError,"FillDeltaCurrentDensity: i0 out of range");
|
---|
| 2867 | //if ((index+in*NDIM)<0 || (index+in*NDIM)>=NDIM*NDIM) Error(SomeError,"FillDeltaCurrentDensity: index out of range");
|
---|
| 2868 | CurrentDensity[index+in*NDIM][i0] += Current; // minus sign is from G_kl
|
---|
| 2869 | }
|
---|
| 2870 | }
|
---|
| 2871 | }
|
---|
| 2872 | }
|
---|
| 2873 | }
|
---|
| 2874 | }
|
---|
| 2875 | }
|
---|
| 2876 | }
|
---|
| 2877 | }
|
---|
| 2878 | UnLockDensityArray(Dens0,GapDensity,real); // Psi0R
|
---|
| 2879 | UnLockDensityArray(Dens0,GapLocalDensity,real); // Psip0R
|
---|
| 2880 | UnLockDensityArray(Dens0,Temp2Density,imag); // Psi1
|
---|
| 2881 | UnLockDensityArray(Dens0,GapUpDensity,real); // Psi1R
|
---|
| 2882 | UnLockDensityArray(Dens0,GapDownDensity,real); // Psip1R
|
---|
| 2883 | // for (i=0;i<Num;i++)
|
---|
[64fa9e] | 2884 | // if (x_l[i] != NULL) Free(x_l[i], "bla", "bla");
|
---|
| 2885 | // Free(x_l, "bla");
|
---|
[a0bcf1] | 2886 | gsl_multimin_fdfminimizer_free (minset);
|
---|
| 2887 | gsl_vector_free (x);
|
---|
| 2888 | // gsl_matrix_free(G);
|
---|
| 2889 | // gsl_permutation_free(p);
|
---|
| 2890 | // gsl_vector_free(x);
|
---|
| 2891 | }
|
---|
| 2892 |
|
---|
| 2893 |
|
---|
| 2894 | /** Evaluates the overlap integral between \a state wave functions.
|
---|
| 2895 | * \f[
|
---|
| 2896 | * S_{kl} = \langle \varphi_k^{(1)} | \varphi_l^{(1)} \rangle
|
---|
| 2897 | * \f]
|
---|
| 2898 | * The scalar product is calculated via GradSP(), MPI_Allreduced among comm_ST_Psi and the result
|
---|
| 2899 | * stored in Psis#Overlap. The rows have to be MPI exchanged, as otherwise processes will add
|
---|
| 2900 | * to the TotalEnergy overlaps calculated with old wave functions - they have been minimised after
|
---|
| 2901 | * the product with exchanged coefficients was taken.
|
---|
| 2902 | * \param *P Problem at hand
|
---|
| 2903 | * \param l local number of perturbed wave function.
|
---|
| 2904 | * \param state PsiTypeTag minimisation state of wave functions to be overlapped
|
---|
| 2905 | */
|
---|
| 2906 | void CalculateOverlap(struct Problem *P, const int l, const enum PsiTypeTag state)
|
---|
| 2907 | {
|
---|
| 2908 | struct RunStruct *R = &P->R;
|
---|
| 2909 | struct Lattice *Lat = &(P->Lat);
|
---|
| 2910 | struct Psis *Psi = &Lat->Psi;
|
---|
| 2911 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 2912 | struct OnePsiElement *OnePsiB, *LOnePsiB;
|
---|
| 2913 | fftw_complex *LPsiDatB=NULL, *LPsiDatA=NULL;
|
---|
| 2914 | const int ElementSize = (sizeof(fftw_complex) / sizeof(double));
|
---|
| 2915 | int RecvSource;
|
---|
| 2916 | MPI_Status status;
|
---|
| 2917 | int i,j,m,p;
|
---|
| 2918 | //const int l_normal = l - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[Occupied];
|
---|
| 2919 | const int ActNum = l - Psi->TypeStartIndex[state] + Psi->TypeStartIndex[1] * Psi->LocalPsiStatus[l].my_color_comm_ST_Psi;
|
---|
| 2920 | double *sendbuf, *recvbuf;
|
---|
| 2921 | double tmp,TMP;
|
---|
| 2922 | const int gsize = P->Par.Max_me_comm_ST_PsiT; //number of processes in PsiT
|
---|
| 2923 | int p_num; // number of wave functions (for overlap)
|
---|
| 2924 |
|
---|
| 2925 | // update overlap table after wave function has changed
|
---|
| 2926 | LPsiDatA = LevS->LPsi->LocalPsi[l];
|
---|
| 2927 | m = -1; // to access U matrix element (0..Num-1)
|
---|
| 2928 | for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions
|
---|
| 2929 | OnePsiB = &Psi->AllPsiStatus[j]; // grab OnePsiB
|
---|
| 2930 | if (OnePsiB->PsiType == state) { // drop all but the ones of current min state
|
---|
| 2931 | m++; // increase m if it is non-extra wave function
|
---|
| 2932 | if (OnePsiB->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
|
---|
| 2933 | LOnePsiB = &Psi->LocalPsiStatus[OnePsiB->MyLocalNo];
|
---|
| 2934 | else
|
---|
| 2935 | LOnePsiB = NULL;
|
---|
| 2936 | if (LOnePsiB == NULL) { // if it's not local ... receive it from respective process into TempPsi
|
---|
| 2937 | RecvSource = OnePsiB->my_color_comm_ST_Psi;
|
---|
| 2938 | MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, OverlapTag, P->Par.comm_ST_PsiT, &status );
|
---|
| 2939 | LPsiDatB=LevS->LPsi->TempPsi;
|
---|
| 2940 | } else { // .. otherwise send it to all other processes (Max_me... - 1)
|
---|
| 2941 | for (p=0;p<P->Par.Max_me_comm_ST_PsiT;p++)
|
---|
| 2942 | if (p != OnePsiB->my_color_comm_ST_Psi)
|
---|
| 2943 | MPI_Send( LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, p, OverlapTag, P->Par.comm_ST_PsiT);
|
---|
| 2944 | LPsiDatB=LevS->LPsi->LocalPsi[OnePsiB->MyLocalNo];
|
---|
| 2945 | } // LPsiDatB is now set to the coefficients of OnePsi either stored or MPI_Received
|
---|
| 2946 |
|
---|
| 2947 | tmp = GradSP(P, LevS, LPsiDatA, LPsiDatB) * sqrt(Psi->LocalPsiStatus[l].PsiFactor * OnePsiB->PsiFactor);
|
---|
| 2948 | MPI_Allreduce ( &tmp, &TMP, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi);
|
---|
| 2949 | //fprintf(stderr,"(%i) Setting Overlap [%i][%i] = %lg\n",P->Par.me, ActNum,m,TMP);
|
---|
| 2950 | Psi->Overlap[ActNum][m] = TMP; //= Psi->Overlap[m][ActNum]
|
---|
| 2951 | }
|
---|
| 2952 | }
|
---|
| 2953 |
|
---|
| 2954 | // exchange newly calculated rows among PsiT
|
---|
| 2955 | p_num = (m+1) + 1; // number of Psis: one more due to ActNum
|
---|
| 2956 | sendbuf = (double *) Malloc(p_num * sizeof(double), "CalculateOverlap: sendbuf");
|
---|
| 2957 | sendbuf[0] = ActNum; // first entry is the global row number
|
---|
| 2958 | for (i=1;i<p_num;i++)
|
---|
| 2959 | sendbuf[i] = Psi->Overlap[ActNum][i-1]; // then follow up each entry of overlap row
|
---|
| 2960 | recvbuf = (double *) Malloc(gsize * p_num * sizeof(double), "CalculateOverlap: recvbuf");
|
---|
| 2961 | MPI_Allgather(sendbuf, p_num, MPI_DOUBLE, recvbuf, p_num, MPI_DOUBLE, P->Par.comm_ST_PsiT);
|
---|
[64fa9e] | 2962 | Free(sendbuf, "bla");
|
---|
[a0bcf1] | 2963 | for (i=0;i<gsize;i++) {// extract results from other processes out of receiving buffer
|
---|
| 2964 | m = recvbuf[i*p_num]; // m is ActNum of the process whose results we've just received
|
---|
| 2965 | //fprintf(stderr,"(%i) Received row %i from process %i\n", P->Par.me, m, i);
|
---|
| 2966 | for (j=1;j<p_num;j++)
|
---|
| 2967 | Psi->Overlap[m][j-1] = Psi->Overlap[j-1][m] = recvbuf[i*p_num+j]; // put each entry into correspondent Overlap row
|
---|
| 2968 | }
|
---|
[64fa9e] | 2969 | Free(recvbuf, "bla");
|
---|
[a0bcf1] | 2970 | }
|
---|
| 2971 |
|
---|
| 2972 |
|
---|
| 2973 | /** Calculates magnetic susceptibility from known current density.
|
---|
| 2974 | * The bulk susceptibility tensor can be expressed as a function of the current density.
|
---|
| 2975 | * \f[
|
---|
| 2976 | * \chi_{ij} = \frac{\mu_0}{2\Omega} \frac{\delta}{\delta B_i^{ext}} \int_\Omega d^3 r \left (r \times j(r) \right )_j
|
---|
| 2977 | * \f]
|
---|
| 2978 | * Thus the integral over real space and subsequent MPI_Allreduce() over results from ParallelSimulationData#comm_ST_Psi is
|
---|
| 2979 | * straightforward. Tensor is diagonalized afterwards and split into its various sub-tensors of lower rank (e.g., isometric
|
---|
| 2980 | * value is tensor of rank 0) which are printed to screen and the tensorial elements to file '....chi.csv'
|
---|
| 2981 | * \param *P Problem at hand
|
---|
| 2982 | */
|
---|
| 2983 | void CalculateMagneticSusceptibility(struct Problem *P)
|
---|
| 2984 | {
|
---|
| 2985 | struct RunStruct *R = &P->R;
|
---|
| 2986 | struct Lattice *Lat = &P->Lat;
|
---|
| 2987 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 2988 | struct Density *Dens0 = R->Lev0->Dens;
|
---|
| 2989 | struct Ions *I = &P->Ion;
|
---|
| 2990 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
| 2991 | int in, dex, i, i0, n0;
|
---|
| 2992 | int n[NDIM];
|
---|
| 2993 | const int N0 = Lev0->Plan0.plan->local_nx;
|
---|
| 2994 | int N[NDIM];
|
---|
| 2995 | N[0] = Lev0->Plan0.plan->N[0];
|
---|
| 2996 | N[1] = Lev0->Plan0.plan->N[1];
|
---|
| 2997 | N[2] = Lev0->Plan0.plan->N[2];
|
---|
| 2998 | double chi[NDIM*NDIM],Chi[NDIM*NDIM], x[NDIM], fac[NDIM];
|
---|
| 2999 | const double discrete_factor = Lat->Volume/Lev0->MaxN;
|
---|
| 3000 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
| 3001 | double eta, delta_chi, S, A, iso;
|
---|
| 3002 | int cross_lookup[4];
|
---|
| 3003 | char filename[256];
|
---|
| 3004 | FILE *ChiFile;
|
---|
| 3005 | time_t seconds;
|
---|
| 3006 | time(&seconds); // get current time
|
---|
| 3007 |
|
---|
| 3008 | // set pointers onto current density
|
---|
| 3009 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
| 3010 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
| 3011 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
| 3012 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
| 3013 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
| 3014 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
| 3015 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
| 3016 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
| 3017 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
| 3018 | //for(i=0;i<NDIM;i++) {
|
---|
| 3019 | // field[i] = Dens0->DensityArray[TempDensity+i];
|
---|
| 3020 | //LockDensityArray(Dens0,TempDensity+i,real);
|
---|
| 3021 | // SetArrayToDouble0((double *)field[i],Dens0->TotalSize*2);
|
---|
| 3022 | //}
|
---|
| 3023 | gsl_matrix_complex *H = gsl_matrix_complex_calloc(NDIM,NDIM);
|
---|
| 3024 |
|
---|
| 3025 |
|
---|
| 3026 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) magnetic susceptibility tensor \\Chi_ij = \n",P->Par.me);
|
---|
| 3027 | for (in=0; in<NDIM; in++) { // index i of integrand vector component
|
---|
| 3028 | for(dex=0;dex<4;dex++) // initialise cross lookup
|
---|
| 3029 | cross_lookup[dex] = cross(in,dex);
|
---|
| 3030 | for (dex=0; dex<NDIM; dex++) { // index j of derivation wrt B field
|
---|
| 3031 | chi[in+dex*NDIM] = 0.;
|
---|
| 3032 | // do the integration over real space
|
---|
| 3033 | for(n0=0;n0<N0;n0++)
|
---|
| 3034 | for(n[1]=0;n[1]<N[1];n[1]++)
|
---|
| 3035 | for(n[2]=0;n[2]<N[2];n[2]++) {
|
---|
| 3036 | n[0]=n0 + N0*myPE; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
|
---|
| 3037 | fac[0] = (double)(n[0])/(double)N[0];
|
---|
| 3038 | fac[1] = (double)(n[1])/(double)N[1];
|
---|
| 3039 | fac[2] = (double)(n[2])/(double)N[2];
|
---|
| 3040 | RMat33Vec3(x, Lat->RealBasis, fac);
|
---|
| 3041 | i0 = n[2]+N[2]*(n[1]+N[1]*(n0)); // the index of current density must match LocalSizeR!
|
---|
[f5586e] | 3042 | chi[in+dex*NDIM] += MinImageConv(Lat,x[cross_lookup[0]], sqrt(Lat->RealBasisSQ[cross_lookup[0]])/2.,cross_lookup[0]) * CurrentDensity[dex*NDIM+cross_lookup[1]][i0]; // x[cross(in,0)], sqrt(Lat->RealBasisSQ[cross_lookup[0]])/2.
|
---|
| 3043 | chi[in+dex*NDIM] -= MinImageConv(Lat,x[cross_lookup[2]], sqrt(Lat->RealBasisSQ[cross_lookup[2]])/2.,cross_lookup[2]) * CurrentDensity[dex*NDIM+cross_lookup[3]][i0]; // x[cross(in,2)], sqrt(Lat->RealBasisSQ[cross_lookup[2]])/2.
|
---|
[a0bcf1] | 3044 | // if (in == dex) field[in][i0] =
|
---|
[f5586e] | 3045 | // truedist(Lat,x[cross_lookup[0]], sqrt(Lat->RealBasisSQ[c[0]])/2.,cross_lookup[0]) * CurrentDensity[dex*NDIM+cross_lookup[1]][i0]
|
---|
| 3046 | // - truedist(Lat,x[cross_lookup[2]], sqrt(Lat->RealBasisSQ[c[2]])/2.,cross_lookup[2]) * CurrentDensity[dex*NDIM+cross_lookup[3]][i0];
|
---|
| 3047 | //fprintf(stderr,"(%i) temporary susceptiblity \\chi[%i][%i] += %e * %e = r[%i] * CurrDens[%i][%i] = %e\n",P->Par.me,in,dex,(double)n[cross_lookup[0]]/(double)N[cross_lookup[0]]*(sqrt(Lat->RealBasisSQ[cross_lookup[0]])),CurrentDensity[dex*NDIM+cross_lookup[1]][i0],cross_lookup[0],dex*NDIM+cross_lookup[1],i0,chi[in*NDIM+dex]);
|
---|
[a0bcf1] | 3048 | }
|
---|
| 3049 | chi[in+dex*NDIM] *= mu0*discrete_factor/(2.*Lat->Volume); // integral factor
|
---|
| 3050 | chi[in+dex*NDIM] *= (-1625.); // empirical gauge factor ... sigh
|
---|
| 3051 | MPI_Allreduce ( &chi[in+dex*NDIM], &Chi[in+dex*NDIM], 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
| 3052 | I->I[0].chi[in+dex*NDIM] = Chi[in+dex*NDIM];
|
---|
| 3053 | Chi[in+dex*NDIM] *= Lat->Volume*loschmidt_constant; // factor for _molar_ susceptibility
|
---|
| 3054 | if (P->Call.out[ValueOut]) {
|
---|
| 3055 | fprintf(stderr,"%e\t", Chi[in+dex*NDIM]);
|
---|
| 3056 | if (dex == NDIM-1) fprintf(stderr,"\n");
|
---|
| 3057 | }
|
---|
| 3058 | }
|
---|
| 3059 | }
|
---|
| 3060 | // store symmetrized matrix
|
---|
| 3061 | for (in=0;in<NDIM;in++)
|
---|
| 3062 | for (dex=0;dex<NDIM;dex++)
|
---|
| 3063 | gsl_matrix_complex_set(H,in,dex,gsl_complex_rect((Chi[in+dex*NDIM]+Chi[dex+in*NDIM])/2.,0));
|
---|
| 3064 | // output tensor to file
|
---|
| 3065 | if (P->Par.me == 0) {
|
---|
| 3066 | sprintf(filename, ".chi.L%i.csv", Lev0->LevelNo);
|
---|
| 3067 | OpenFile(P, &ChiFile, filename, "a", P->Call.out[ReadOut]);
|
---|
| 3068 | fprintf(ChiFile,"# magnetic susceptibility tensor chi[01,02,03,10,11,12,20,21,22], seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
| 3069 | fprintf(ChiFile,"%lg\t", P->Lat.ECut/(Lat->LevelSizes[0]*Lat->LevelSizes[0]));
|
---|
| 3070 | for (in=0;in<NDIM*NDIM;in++)
|
---|
| 3071 | fprintf(ChiFile,"%e\t", Chi[in]);
|
---|
| 3072 | fprintf(ChiFile,"\n");
|
---|
| 3073 | fclose(ChiFile);
|
---|
| 3074 | }
|
---|
| 3075 | // diagonalize chi
|
---|
| 3076 | gsl_vector *eval = gsl_vector_alloc(NDIM);
|
---|
| 3077 | gsl_eigen_herm_workspace *w = gsl_eigen_herm_alloc(NDIM);
|
---|
| 3078 | gsl_eigen_herm(H, eval, w);
|
---|
| 3079 | gsl_eigen_herm_free(w);
|
---|
| 3080 | gsl_sort_vector(eval); // sort eigenvalues
|
---|
| 3081 | // print eigenvalues
|
---|
| 3082 | iso = 0;
|
---|
| 3083 | for (i=0;i<NDIM;i++) {
|
---|
| 3084 | I->I[0].chi_PAS[i] = gsl_vector_get(eval,i);
|
---|
| 3085 | iso += Chi[i+i*NDIM]/3.;
|
---|
| 3086 | }
|
---|
| 3087 | eta = (gsl_vector_get(eval,1)-gsl_vector_get(eval,0))/(gsl_vector_get(eval,2)-iso);
|
---|
| 3088 | delta_chi = gsl_vector_get(eval,2) - 0.5*(gsl_vector_get(eval,0)+gsl_vector_get(eval,1));
|
---|
| 3089 | S = (delta_chi*delta_chi)*(1+1./3.*eta*eta);
|
---|
| 3090 | A = 0.;
|
---|
| 3091 | for (i=0;i<NDIM;i++) {
|
---|
| 3092 | in = cross(i,0);
|
---|
| 3093 | dex = cross(i,1);
|
---|
| 3094 | A += pow(-1,i)*pow(0.5*(Chi[in+dex*NDIM]-Chi[dex+in*NDIM]),2);
|
---|
| 3095 | }
|
---|
| 3096 | if (P->Call.out[ValueOut]) {
|
---|
| 3097 | fprintf(stderr,"(%i) converted to Principal Axis System\n==================\nDiagonal entries:", P->Par.me);
|
---|
| 3098 | for (i=0;i<NDIM;i++)
|
---|
| 3099 | fprintf(stderr,"\t%lg",gsl_vector_get(eval,i));
|
---|
| 3100 | fprintf(stderr,"\nsusceptib. : %e\n", iso);
|
---|
| 3101 | fprintf(stderr,"anisotropy : %e\n", delta_chi);
|
---|
| 3102 | fprintf(stderr,"asymmetry : %e\n", eta);
|
---|
| 3103 | fprintf(stderr,"S : %e\n", S);
|
---|
| 3104 | fprintf(stderr,"A : %e\n", A);
|
---|
| 3105 | fprintf(stderr,"==================\n");
|
---|
| 3106 | }
|
---|
| 3107 | //for(i=0;i<NDIM;i++)
|
---|
| 3108 | //UnLockDensityArray(Dens0,TempDensity+i,real);
|
---|
| 3109 | gsl_vector_free(eval);
|
---|
| 3110 | gsl_matrix_complex_free(H);
|
---|
| 3111 | }
|
---|
| 3112 |
|
---|
| 3113 | /** Fouriertransforms all nine current density components and calculates shielding tensor.
|
---|
| 3114 | * \f[
|
---|
| 3115 | * \sigma_{ij} = \left ( \frac{G}{|G|^2} \times J_i(G) \right )_j
|
---|
| 3116 | * \f]
|
---|
| 3117 | * The CurrentDensity has to be fouriertransformed to reciprocal subspace in order to be useful, and the final
|
---|
| 3118 | * product \f$\sigma_{ij}(G)\f$ has to be back-transformed to real space. However, the shielding is the only evaluated
|
---|
| 3119 | * at the grid points and not where the real ion position is. The shieldings there are interpolated between the eight
|
---|
| 3120 | * adjacent grid points by a simple linear weighting. Afterwards follows the same analaysis and printout of the rank-2-tensor
|
---|
| 3121 | * as in the case of CalculateMagneticShielding().
|
---|
| 3122 | * \param *P Problem at hand
|
---|
| 3123 | * \note Lots of arrays are used temporarily during the routine for the fft'ed Current density tensor.
|
---|
| 3124 | * \note MagneticSusceptibility is needed for G=0-component and thus has to be computed beforehand
|
---|
| 3125 | */
|
---|
| 3126 | void CalculateChemicalShieldingByReciprocalCurrentDensity(struct Problem *P)
|
---|
| 3127 | {
|
---|
| 3128 | struct RunStruct *R = &P->R;
|
---|
| 3129 | struct Lattice *Lat = &P->Lat;
|
---|
| 3130 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 3131 | struct Ions *I = &P->Ion;
|
---|
| 3132 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 3133 | struct OneGData *GArray = Lev0->GArray;
|
---|
| 3134 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 3135 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
| 3136 | fftw_complex *CurrentDensityC[NDIM*NDIM];
|
---|
| 3137 | fftw_complex *work = (fftw_complex *)Dens0->DensityCArray[TempDensity];
|
---|
| 3138 | //fftw_complex *sigma_imag = (fftw_complex *)Dens0->DensityCArray[Temp2Density];
|
---|
| 3139 | //fftw_real *sigma_real = (fftw_real *)sigma_imag;
|
---|
| 3140 | fftw_complex *sigma_imag[NDIM_NDIM];
|
---|
| 3141 | fftw_real *sigma_real[NDIM_NDIM];
|
---|
| 3142 | double sigma,Sigma;
|
---|
| 3143 | int it, ion, in, dex, g, n[2][NDIM], Index, i;
|
---|
| 3144 | //const double FFTfactor = 1.;///Lev0->MaxN;
|
---|
| 3145 | double eta, delta_sigma, S, A, iso, tmp;
|
---|
| 3146 | FILE *SigmaFile;
|
---|
| 3147 | char suffixsigma[255];
|
---|
| 3148 | double x[2][NDIM];
|
---|
| 3149 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
| 3150 | int N[NDIM];
|
---|
| 3151 | int cross_lookup[4]; // cross lookup table
|
---|
| 3152 | N[0] = Lev0->Plan0.plan->N[0];
|
---|
| 3153 | N[1] = Lev0->Plan0.plan->N[1];
|
---|
| 3154 | N[2] = Lev0->Plan0.plan->N[2];
|
---|
| 3155 | const int N0 = Lev0->Plan0.plan->local_nx;
|
---|
| 3156 | const double factorDC = R->FactorDensityC;
|
---|
| 3157 | gsl_matrix_complex *H = gsl_matrix_complex_calloc(NDIM,NDIM);
|
---|
| 3158 |
|
---|
| 3159 | time_t seconds;
|
---|
| 3160 | time(&seconds); // get current time
|
---|
| 3161 |
|
---|
| 3162 | // inverse Fourier transform current densities
|
---|
| 3163 | CurrentDensityC[0] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity0];
|
---|
| 3164 | CurrentDensityC[1] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity1];
|
---|
| 3165 | CurrentDensityC[2] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity2];
|
---|
| 3166 | CurrentDensityC[3] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity3];
|
---|
| 3167 | CurrentDensityC[4] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity4];
|
---|
| 3168 | CurrentDensityC[5] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity5];
|
---|
| 3169 | CurrentDensityC[6] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity6];
|
---|
| 3170 | CurrentDensityC[7] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity7];
|
---|
| 3171 | CurrentDensityC[8] = (fftw_complex *) Dens0->DensityCArray[CurrentDensity8];
|
---|
| 3172 | // don't put the following stuff into a for loop, they are not continuous! (preprocessor values CurrentDensity.)
|
---|
| 3173 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
| 3174 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
| 3175 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
| 3176 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
| 3177 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
| 3178 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
| 3179 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
| 3180 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
| 3181 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
| 3182 |
|
---|
| 3183 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) Checking J_{ij} (G=0) = 0 for each i,j ... \n",P->Par.me);
|
---|
| 3184 | for (in=0;in<NDIM*NDIM;in++) {
|
---|
| 3185 | CalculateOneDensityC(Lat, R->LevS, Dens0, CurrentDensity[in], CurrentDensityC[in], factorDC);
|
---|
| 3186 | tmp = sqrt(CurrentDensityC[in][0].re*CurrentDensityC[in][0].re+CurrentDensityC[in][0].im*CurrentDensityC[in][0].im);
|
---|
| 3187 | if (GArray[0].GSq < MYEPSILON) {
|
---|
| 3188 | if (in % NDIM == 0) fprintf(stderr,"(%i) ",P->Par.me);
|
---|
| 3189 | if (tmp > MYEPSILON) {
|
---|
| 3190 | fprintf(stderr,"J_{%i,%i} = |%e + i%e| < %e ? (%e)\t", in / NDIM, in%NDIM, CurrentDensityC[in][0].re, CurrentDensityC[in][0].im, MYEPSILON, tmp - MYEPSILON);
|
---|
| 3191 | } else {
|
---|
| 3192 | fprintf(stderr,"J_{%i,%i} ok\t", in / NDIM, in%NDIM);
|
---|
| 3193 | }
|
---|
| 3194 | if (in % NDIM == (NDIM-1)) fprintf(stderr,"\n");
|
---|
| 3195 | }
|
---|
| 3196 | }
|
---|
| 3197 |
|
---|
| 3198 | for (in=0;in<NDIM*NDIM;in++) {
|
---|
| 3199 | LockDensityArray(Dens0,in,real); // Psi1R
|
---|
| 3200 | sigma_imag[in] = (fftw_complex *) Dens0->DensityArray[in];
|
---|
| 3201 | sigma_real[in] = (fftw_real *) sigma_imag[in];
|
---|
| 3202 | }
|
---|
| 3203 |
|
---|
| 3204 | LockDensityArray(Dens0,TempDensity,imag); // work
|
---|
| 3205 | LockDensityArray(Dens0,Temp2Density,imag); // tempdestRC and field
|
---|
| 3206 | // go through reciprocal nodes and calculate shielding tensor sigma
|
---|
| 3207 | for (in=0; in<NDIM; in++) {// index i of vector component in integrand
|
---|
| 3208 | for(dex=0;dex<4;dex++) // initialise cross lookup
|
---|
| 3209 | cross_lookup[dex] = cross(in,dex);
|
---|
| 3210 | for (dex=0; dex<NDIM; dex++) { // index j of B component derivation in current density tensor
|
---|
| 3211 | //if (tempdestRC != (fftw_complex *)Dens0->DensityCArray[Temp2Density]) Error(SomeError,"CalculateChemicalShieldingByReciprocalCurrentDensity: tempdestRC corrupted");
|
---|
| 3212 | SetArrayToDouble0((double *)sigma_imag[in+dex*NDIM],Dens0->TotalSize*2);
|
---|
| 3213 | for (g=0; g < Lev0->MaxG; g++)
|
---|
| 3214 | if (GArray[g].GSq > MYEPSILON) { // skip due to divisor
|
---|
| 3215 | Index = GArray[g].Index; // re = im, im = -re due to "i" in formula
|
---|
| 3216 | //if (tempdestRC != (fftw_complex *)Dens0->DensityCArray[Temp2Density] || Index<0 || Index>=Dens0->LocalSizeC) Error(SomeError,"CalculateChemicalShieldingByReciprocalCurrentDensity: tempdestRC corrupted");
|
---|
| 3217 | sigma_imag[in+dex*NDIM][Index].re = GArray[g].G[cross_lookup[0]] * (-CurrentDensityC[dex*NDIM+cross_lookup[1]][Index].im)/GArray[g].GSq;//*FFTfactor;
|
---|
| 3218 | sigma_imag[in+dex*NDIM][Index].re -= GArray[g].G[cross_lookup[2]] * (-CurrentDensityC[dex*NDIM+cross_lookup[3]][Index].im)/GArray[g].GSq;//*FFTfactor;
|
---|
| 3219 | sigma_imag[in+dex*NDIM][Index].im = GArray[g].G[cross_lookup[0]] * ( CurrentDensityC[dex*NDIM+cross_lookup[1]][Index].re)/GArray[g].GSq;//*FFTfactor;
|
---|
| 3220 | sigma_imag[in+dex*NDIM][Index].im -= GArray[g].G[cross_lookup[2]] * ( CurrentDensityC[dex*NDIM+cross_lookup[3]][Index].re)/GArray[g].GSq;//*FFTfactor;
|
---|
| 3221 | } else { // G=0-component stems from magnetic susceptibility
|
---|
| 3222 | sigma_imag[in+dex*NDIM][GArray[g].Index].re = 2./3.*I->I[0].chi[in+dex*NDIM];//-4.*M_PI*(0.5*I->I[0].chi[0+0*NDIM]+0.5*I->I[0].chi[1+1*NDIM]+2./3.*I->I[0].chi[2+2*NDIM]);
|
---|
| 3223 | }
|
---|
| 3224 | for (g=0; g<Lev0->MaxDoubleG; g++) { // apply symmetry
|
---|
| 3225 | //if (tempdestRC != (fftw_complex *)Dens0->DensityCArray[Temp2Density] || Lev0->DoubleG[2*g+1]<0 || Lev0->DoubleG[2*g+1]>=Dens0->LocalSizeC) Error(SomeError,"CalculateChemicalShieldingByReciprocalCurrentDensity: tempdestRC corrupted");
|
---|
| 3226 | sigma_imag[in+dex*NDIM][Lev0->DoubleG[2*g+1]].re = sigma_imag[in+dex*NDIM][Lev0->DoubleG[2*g]].re;
|
---|
| 3227 | sigma_imag[in+dex*NDIM][Lev0->DoubleG[2*g+1]].im = -sigma_imag[in+dex*NDIM][Lev0->DoubleG[2*g]].im;
|
---|
| 3228 | }
|
---|
| 3229 | // fourier transformation of sigma
|
---|
| 3230 | //if (tempdestRC != (fftw_complex *)Dens0->DensityCArray[Temp2Density]) Error(SomeError,"CalculateChemicalShieldingByReciprocalCurrentDensity: tempdestRC corrupted");
|
---|
| 3231 | fft_3d_complex_to_real(plan, Lev0->LevelNo, FFTNF1, sigma_imag[in+dex*NDIM], work);
|
---|
| 3232 |
|
---|
| 3233 | for (it=0; it < I->Max_Types; it++) { // integration over all types
|
---|
| 3234 | for (ion=0; ion < I->I[it].Max_IonsOfType; ion++) { // and each ion of type
|
---|
| 3235 | // read transformed sigma at core position and MPI_Allreduce
|
---|
| 3236 | for (g=0;g<NDIM;g++) {
|
---|
[f5586e] | 3237 | n[0][g] = floor(I->I[it].R[NDIM*ion+g]/sqrt(Lat->RealBasisSQ[g])*(double)N[g]);
|
---|
| 3238 | n[1][g] = ceil(I->I[it].R[NDIM*ion+g]/sqrt(Lat->RealBasisSQ[g])*(double)N[g]);
|
---|
| 3239 | x[1][g] = I->I[it].R[NDIM*ion+g]/sqrt(Lat->RealBasisSQ[g])*(double)N[g] - (double)n[0][g];
|
---|
[a0bcf1] | 3240 | x[0][g] = 1. - x[1][g];
|
---|
| 3241 | //fprintf(stderr,"(%i) n_floor[%i] = %i\tn_ceil[%i] = %i --- x_floor[%i] = %e\tx_ceil[%i] = %e\n",P->Par.me, g,n[0][g], g,n[1][g], g,x[0][g], g,x[1][g]);
|
---|
| 3242 | }
|
---|
| 3243 | sigma = 0.;
|
---|
| 3244 | for (i=0;i<2;i++) { // interpolate linearly between adjacent grid points per axis
|
---|
| 3245 | if ((n[i][0] >= N0*myPE) && (n[i][0] < N0*(myPE+1))) {
|
---|
| 3246 | // fprintf(stderr,"(%i) field[%i]: sigma = %e\n", P->Par.me, n[i][2]+N[2]*(n[i][1]+N[1]*(n[i][0]-N0*myPE)), sigma);
|
---|
| 3247 | sigma += (x[i][0]*x[0][1]*x[0][2])*sigma_real[in+dex*NDIM][n[0][2]+N[2]*(n[0][1]+N[1]*(n[i][0]-N0*myPE))]*mu0; // if it's local and factor from inverse fft
|
---|
| 3248 | //fprintf(stderr,"(%i) field[%i]: sigma += %e * %e \n", P->Par.me, n[i][2]+N[2]*(n[i][1]+N[1]*(n[i][0]-N0*myPE)), (x[i][0]*x[0][1]*x[0][2]), field[n[0][2]+N[2]*(n[0][1]+N[1]*(n[i][0]-N0*myPE))]*mu0);
|
---|
| 3249 | sigma += (x[i][0]*x[0][1]*x[1][2])*sigma_real[in+dex*NDIM][n[1][2]+N[2]*(n[0][1]+N[1]*(n[i][0]-N0*myPE))]*mu0; // if it's local and factor from inverse fft
|
---|
| 3250 | //fprintf(stderr,"(%i) field[%i]: sigma += %e * %e \n", P->Par.me, n[i][2]+N[2]*(n[i][1]+N[1]*(n[i][0]-N0*myPE)), (x[i][0]*x[0][1]*x[1][2]), field[n[1][2]+N[2]*(n[0][1]+N[1]*(n[i][0]-N0*myPE))]*mu0);
|
---|
| 3251 | sigma += (x[i][0]*x[1][1]*x[0][2])*sigma_real[in+dex*NDIM][n[0][2]+N[2]*(n[1][1]+N[1]*(n[i][0]-N0*myPE))]*mu0; // if it's local and factor from inverse fft
|
---|
| 3252 | //fprintf(stderr,"(%i) field[%i]: sigma += %e * %e \n", P->Par.me, n[i][2]+N[2]*(n[i][1]+N[1]*(n[i][0]-N0*myPE)), (x[i][0]*x[1][1]*x[0][2]), field[n[0][2]+N[2]*(n[1][1]+N[1]*(n[i][0]-N0*myPE))]*mu0);
|
---|
| 3253 | sigma += (x[i][0]*x[1][1]*x[1][2])*sigma_real[in+dex*NDIM][n[1][2]+N[2]*(n[1][1]+N[1]*(n[i][0]-N0*myPE))]*mu0; // if it's local and factor from inverse fft
|
---|
| 3254 | //fprintf(stderr,"(%i) field[%i]: sigma += %e * %e \n", P->Par.me, n[i][2]+N[2]*(n[i][1]+N[1]*(n[i][0]-N0*myPE)), (x[i][0]*x[1][1]*x[1][2]), field[n[1][2]+N[2]*(n[1][1]+N[1]*(n[i][0]-N0*myPE))]*mu0);
|
---|
| 3255 | }
|
---|
| 3256 | }
|
---|
| 3257 | sigma *= -R->FactorDensityR; // factor from inverse fft? (and its defined as negative proportionaly factor)
|
---|
| 3258 | MPI_Allreduce ( &sigma, &Sigma, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum local to total
|
---|
| 3259 | I->I[it].sigma_rezi[ion][in+dex*NDIM] = Sigma;
|
---|
| 3260 | }
|
---|
| 3261 | }
|
---|
| 3262 | // fabs() all sigma values, as we need them as a positive density: OutputVis plots them in logarithmic scale and
|
---|
| 3263 | // thus cannot deal with negative values!
|
---|
| 3264 | for (i=0; i< Dens0->LocalSizeR; i++)
|
---|
| 3265 | sigma_real[in+dex*NDIM][i] = fabs(sigma_real[in+dex*NDIM][i]);
|
---|
| 3266 | }
|
---|
| 3267 | }
|
---|
| 3268 | UnLockDensityArray(Dens0,TempDensity,imag); // work
|
---|
| 3269 | UnLockDensityArray(Dens0,Temp2Density,imag); // tempdestRC and field
|
---|
| 3270 |
|
---|
| 3271 | // output tensor to file
|
---|
| 3272 | if (P->Par.me == 0) {
|
---|
| 3273 | sprintf(&suffixsigma[0], ".sigma_chi_rezi.L%i.csv", Lev0->LevelNo);
|
---|
| 3274 | OpenFile(P, &SigmaFile, suffixsigma, "a", P->Call.out[ReadOut]);
|
---|
| 3275 | fprintf(SigmaFile,"# chemical shielding tensor sigma_rezi[01,02,03,10,11,12,20,21,22], seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
| 3276 | fprintf(SigmaFile,"%lg\t", P->Lat.ECut/(Lat->LevelSizes[0]*Lat->LevelSizes[0]));
|
---|
| 3277 | for (in=0;in<NDIM;in++)
|
---|
| 3278 | for (dex=0;dex<NDIM;dex++)
|
---|
| 3279 | fprintf(SigmaFile,"%e\t", GSL_REAL(gsl_matrix_complex_get(H,in,dex)));
|
---|
| 3280 | fprintf(SigmaFile,"\n");
|
---|
| 3281 | fclose(SigmaFile);
|
---|
| 3282 | }
|
---|
| 3283 |
|
---|
| 3284 | gsl_vector *eval = gsl_vector_alloc(NDIM);
|
---|
| 3285 | gsl_eigen_herm_workspace *w = gsl_eigen_herm_alloc(NDIM);
|
---|
| 3286 |
|
---|
| 3287 | for (it=0; it < I->Max_Types; it++) { // integration over all types
|
---|
| 3288 | for (ion=0; ion < I->I[it].Max_IonsOfType; ion++) { // and each ion of type
|
---|
| 3289 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Shielding Tensor for Ion %i of element %s \\sigma_ij = \n",P->Par.me, ion, I->I[it].Name);
|
---|
| 3290 | for (in=0; in<NDIM; in++) { // index i of vector component in integrand
|
---|
| 3291 | for (dex=0; dex<NDIM; dex++) {// index j of B component derivation in current density tensor
|
---|
| 3292 | gsl_matrix_complex_set(H,in,dex,gsl_complex_rect((I->I[it].sigma_rezi[ion][in+dex*NDIM]+I->I[it].sigma_rezi[ion][dex+in*NDIM])/2.,0));
|
---|
| 3293 | if (P->Call.out[ValueOut]) fprintf(stderr,"%e\t", I->I[it].sigma_rezi[ion][in+dex*NDIM]);
|
---|
| 3294 | }
|
---|
| 3295 | if (P->Call.out[ValueOut]) fprintf(stderr,"\n");
|
---|
| 3296 | }
|
---|
| 3297 | // output tensor to file
|
---|
| 3298 | if (P->Par.me == 0) {
|
---|
| 3299 | sprintf(&suffixsigma[0], ".sigma_i%i_%s_rezi.L%i.csv", ion, I->I[it].Symbol, Lev0->LevelNo);
|
---|
| 3300 | OpenFile(P, &SigmaFile, suffixsigma, "a", P->Call.out[ReadOut]);
|
---|
| 3301 | fprintf(SigmaFile,"# chemical shielding tensor sigma_rezi[01,02,03,10,11,12,20,21,22], seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
| 3302 | fprintf(SigmaFile,"%lg\t", P->Lat.ECut/(Lat->LevelSizes[0]*Lat->LevelSizes[0]));
|
---|
| 3303 | for (in=0;in<NDIM;in++)
|
---|
| 3304 | for (dex=0;dex<NDIM;dex++)
|
---|
| 3305 | fprintf(SigmaFile,"%e\t", I->I[it].sigma_rezi[ion][in+dex*NDIM]);
|
---|
| 3306 | fprintf(SigmaFile,"\n");
|
---|
| 3307 | fclose(SigmaFile);
|
---|
| 3308 | }
|
---|
| 3309 | // diagonalize sigma
|
---|
| 3310 | gsl_eigen_herm(H, eval, w);
|
---|
| 3311 | gsl_sort_vector(eval); // sort eigenvalues
|
---|
| 3312 | // print eigenvalues
|
---|
| 3313 | // if (P->Call.out[ValueOut]) {
|
---|
| 3314 | // fprintf(stderr,"(%i) diagonal shielding for Ion %i of element %s:", P->Par.me, ion, I->I[it].Name);
|
---|
| 3315 | // for (in=0;in<NDIM;in++)
|
---|
| 3316 | // fprintf(stderr,"\t%lg",gsl_vector_get(eval,in));
|
---|
| 3317 | // fprintf(stderr,"\n\n");
|
---|
| 3318 | // }
|
---|
| 3319 | iso = 0.;
|
---|
| 3320 | for (i=0;i<NDIM;i++) {
|
---|
| 3321 | I->I[it].sigma_rezi_PAS[ion][i] = gsl_vector_get(eval,i);
|
---|
| 3322 | iso += I->I[it].sigma_rezi[ion][i+i*NDIM]/3.;
|
---|
| 3323 | }
|
---|
| 3324 | eta = (gsl_vector_get(eval,1)-gsl_vector_get(eval,0))/(gsl_vector_get(eval,2)-iso);
|
---|
| 3325 | delta_sigma = gsl_vector_get(eval,2) - 0.5*(gsl_vector_get(eval,0)+gsl_vector_get(eval,1));
|
---|
| 3326 | S = (delta_sigma*delta_sigma)*(1+1./3.*eta*eta);
|
---|
| 3327 | A = 0.;
|
---|
| 3328 | for (i=0;i<NDIM;i++) {
|
---|
| 3329 | in = cross(i,0);
|
---|
| 3330 | dex = cross(i,1);
|
---|
| 3331 | A += pow(-1,i)*pow(0.5*(I->I[it].sigma_rezi[ion][in+dex*NDIM]-I->I[it].sigma_rezi[ion][dex+in*NDIM]),2);
|
---|
| 3332 | }
|
---|
| 3333 | if (P->Call.out[ValueOut]) {
|
---|
| 3334 | fprintf(stderr,"(%i) converted to Principal Axis System\n==================\nDiagonal entries:", P->Par.me);
|
---|
| 3335 | for (i=0;i<NDIM;i++)
|
---|
| 3336 | fprintf(stderr,"\t%lg",gsl_vector_get(eval,i));
|
---|
| 3337 | fprintf(stderr,"\nshielding : %e\n", iso);
|
---|
| 3338 | fprintf(stderr,"anisotropy : %e\n", delta_sigma);
|
---|
| 3339 | fprintf(stderr,"asymmetry : %e\n", eta);
|
---|
| 3340 | fprintf(stderr,"S : %e\n", S);
|
---|
| 3341 | fprintf(stderr,"A : %e\n", A);
|
---|
| 3342 | fprintf(stderr,"==================\n");
|
---|
| 3343 |
|
---|
| 3344 | }
|
---|
| 3345 | }
|
---|
| 3346 | }
|
---|
| 3347 |
|
---|
| 3348 | // Output of magnetic field densities for each direction
|
---|
| 3349 | for (i=0;i<NDIM*NDIM;i++)
|
---|
| 3350 | OutputVis(P, sigma_real[i]);
|
---|
| 3351 | // Diagonalizing the tensor "field" B_ij [r]
|
---|
| 3352 | fprintf(stderr,"(%i) Diagonalizing B_ij [r] ... \n", P->Par.me);
|
---|
| 3353 | for (i=0; i< Dens0->LocalSizeR; i++) {
|
---|
| 3354 | for (in=0; in<NDIM; in++) // index i of vector component in integrand
|
---|
| 3355 | for (dex=0; dex<NDIM; dex++) { // index j of B component derivation in current density tensor
|
---|
| 3356 | //fprintf(stderr,"(%i) Setting B_(%i,%i)[%i] ... \n", P->Par.me, in,dex,i);
|
---|
| 3357 | gsl_matrix_complex_set(H,in,dex,gsl_complex_rect((sigma_real[in+dex*NDIM][i]+sigma_real[dex+in*NDIM][i])/2.,0));
|
---|
| 3358 | }
|
---|
| 3359 | gsl_eigen_herm(H, eval, w);
|
---|
| 3360 | gsl_sort_vector(eval); // sort eigenvalues
|
---|
| 3361 | for (in=0;in<NDIM;in++)
|
---|
| 3362 | sigma_real[in][i] = gsl_vector_get(eval,in);
|
---|
| 3363 | }
|
---|
| 3364 | // Output of diagonalized magnetic field densities for each direction
|
---|
| 3365 | for (i=0;i<NDIM;i++)
|
---|
| 3366 | OutputVis(P, sigma_real[i]);
|
---|
| 3367 | for (i=0;i<NDIM*NDIM;i++)
|
---|
| 3368 | UnLockDensityArray(Dens0,i,real); // sigma_imag/real free
|
---|
| 3369 |
|
---|
| 3370 | gsl_eigen_herm_free(w);
|
---|
| 3371 | gsl_vector_free(eval);
|
---|
| 3372 | gsl_matrix_complex_free(H);
|
---|
| 3373 | }
|
---|
| 3374 |
|
---|
| 3375 |
|
---|
| 3376 | /** Calculates the chemical shielding tensor at the positions of the nuclei.
|
---|
| 3377 | * The chemical shielding tensor at position R is defined as the proportionality factor between the induced and
|
---|
| 3378 | * the externally applied field.
|
---|
| 3379 | * \f[
|
---|
| 3380 | * \sigma_{ij} (R) = \frac{\delta B_j^{ind} (R)}{\delta B_i^{ext}}
|
---|
| 3381 | * = \frac{\mu_0}{4 \pi} \int d^3 r' \left ( \frac{r'-r}{| r' - r |^3} \times J_i (r') \right )_j
|
---|
| 3382 | * \f]
|
---|
| 3383 | * One after another for each nuclear position is the tensor evaluated and the result printed
|
---|
| 3384 | * to screen. Tensor is diagonalized afterwards.
|
---|
| 3385 | * \param *P Problem at hand
|
---|
| 3386 | * \sa CalculateMagneticSusceptibility() - similar calculation, yet without translation to ion centers.
|
---|
| 3387 | * \warning This routine is out-dated due to being numerically unstable because of the singularity which is not
|
---|
| 3388 | * considered carefully, recommendend replacement is CalculateChemicalShieldingByReciprocalCurrentDensity().
|
---|
| 3389 | */
|
---|
| 3390 | void CalculateChemicalShielding(struct Problem *P)
|
---|
| 3391 | {
|
---|
| 3392 | struct RunStruct *R = &P->R;
|
---|
| 3393 | struct Lattice *Lat = &P->Lat;
|
---|
| 3394 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 3395 | struct Density *Dens0 = R->Lev0->Dens;
|
---|
| 3396 | struct Ions *I = &P->Ion;
|
---|
| 3397 | double sigma[NDIM*NDIM],Sigma[NDIM*NDIM];
|
---|
| 3398 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
| 3399 | int it, ion, in, dex, i0, n[NDIM], n0, i;//, *NUp;
|
---|
| 3400 | double x,y,z;
|
---|
| 3401 | double dist;
|
---|
| 3402 | double r[NDIM], fac[NDIM];
|
---|
| 3403 | const double discrete_factor = Lat->Volume/Lev0->MaxN;
|
---|
| 3404 | double eta, delta_sigma, S, A, iso;
|
---|
| 3405 | const int myPE = P->Par.me_comm_ST_Psi;
|
---|
| 3406 | int N[NDIM];
|
---|
| 3407 | N[0] = Lev0->Plan0.plan->N[0];
|
---|
| 3408 | N[1] = Lev0->Plan0.plan->N[1];
|
---|
| 3409 | N[2] = Lev0->Plan0.plan->N[2];
|
---|
| 3410 | const int N0 = Lev0->Plan0.plan->local_nx;
|
---|
| 3411 | FILE *SigmaFile;
|
---|
| 3412 | char suffixsigma[255];
|
---|
| 3413 | time_t seconds;
|
---|
| 3414 | time(&seconds); // get current time
|
---|
| 3415 |
|
---|
| 3416 | // set pointers onto current density
|
---|
| 3417 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
| 3418 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
| 3419 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
| 3420 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
| 3421 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
| 3422 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
| 3423 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
| 3424 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
| 3425 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
| 3426 | gsl_matrix_complex *H = gsl_matrix_complex_calloc(NDIM,NDIM);
|
---|
| 3427 |
|
---|
| 3428 | for (it=0; it < I->Max_Types; it++) { // integration over all types
|
---|
| 3429 | for (ion=0; ion < I->I[it].Max_IonsOfType; ion++) { // and each ion of type
|
---|
| 3430 | if (P->Call.out[ValueOut]) fprintf(stderr,"(%i) Shielding Tensor for Ion %i of element %s \\sigma_ij = \n",P->Par.me, ion, I->I[it].Name);
|
---|
| 3431 | for (in=0; in<NDIM; in++) {// index i of vector component in integrand
|
---|
| 3432 | for (dex=0; dex<NDIM; dex++) { // index j of B component derivation in current density tensor
|
---|
| 3433 | sigma[in+dex*NDIM] = 0.;
|
---|
| 3434 |
|
---|
| 3435 | for(n0=0;n0<N0;n0++) // do the integration over real space
|
---|
| 3436 | for(n[1]=0;n[1]<N[1];n[1]++)
|
---|
| 3437 | for(n[2]=0;n[2]<N[2];n[2]++) {
|
---|
| 3438 | n[0]=n0 + N0*myPE; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
|
---|
| 3439 | fac[0] = (double)n[0]/(double)N[0];
|
---|
| 3440 | fac[1] = (double)n[1]/(double)N[1];
|
---|
| 3441 | fac[2] = (double)n[2]/(double)N[2];
|
---|
| 3442 | RMat33Vec3(r, Lat->RealBasis, fac);
|
---|
| 3443 | i0 = n[2]+N[2]*(n[1]+N[1]*(n0)); // the index of current density must match LocalSizeR!
|
---|
| 3444 | x = MinImageConv(Lat,r[cross(in,0)], I->I[it].R[NDIM*ion+cross(in,0)],cross(in,0));
|
---|
| 3445 | y = MinImageConv(Lat,r[cross(in,2)], I->I[it].R[NDIM*ion+cross(in,2)],cross(in,2));
|
---|
| 3446 | z = MinImageConv(Lat,r[in], I->I[it].R[NDIM*ion+in],in); // "in" always is missing third component in cross product
|
---|
| 3447 | dist = pow(x*x + y*y + z*z, 3./2.);
|
---|
| 3448 | if ((dist < pow(2.,3.)) && (dist > MYEPSILON)) sigma[in+dex*NDIM] += (x * CurrentDensity[dex*NDIM+cross(in,1)][i0] - y * CurrentDensity[dex*NDIM+cross(in,3)][i0])/dist;
|
---|
| 3449 | //if (it == 0 && ion == 0) fprintf(stderr,"(%i) sigma[%i][%i] += (%e * %e - %e * %e)/%e = %e\n", P->Par.me, in, dex, x,CurrentDensity[dex*NDIM+cross(in,1)][i0],y,CurrentDensity[dex*NDIM+cross(in,3)][i0],dist,sigma[in+dex*NDIM]);
|
---|
| 3450 | }
|
---|
| 3451 | sigma[in+dex*NDIM] *= -mu0*discrete_factor/(4.*PI); // due to summation instead of integration
|
---|
| 3452 | MPI_Allreduce ( &sigma[in+dex*NDIM], &Sigma[in+dex*NDIM], 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
| 3453 | I->I[it].sigma[ion][in+dex*NDIM] = Sigma[in+dex*NDIM];
|
---|
| 3454 | if (P->Call.out[ValueOut]) fprintf(stderr," %e", Sigma[in+dex*NDIM]);
|
---|
| 3455 | }
|
---|
| 3456 | if (P->Call.out[ValueOut]) fprintf(stderr,"\n");
|
---|
| 3457 | }
|
---|
| 3458 | // store symmetrized matrix
|
---|
| 3459 | for (in=0;in<NDIM;in++)
|
---|
| 3460 | for (dex=0;dex<NDIM;dex++)
|
---|
| 3461 | gsl_matrix_complex_set(H,in,dex,gsl_complex_rect((Sigma[in+dex*NDIM]+Sigma[dex+in*NDIM])/2.,0));
|
---|
| 3462 | // output tensor to file
|
---|
| 3463 | if (P->Par.me == 0) {
|
---|
| 3464 | sprintf(&suffixsigma[0], ".sigma_i%i_%s.L%i.csv", ion, I->I[it].Symbol, Lev0->LevelNo);
|
---|
| 3465 | OpenFile(P, &SigmaFile, suffixsigma, "a", P->Call.out[ReadOut]);
|
---|
| 3466 | fprintf(SigmaFile,"# chemical shielding tensor sigma[01,02,03,10,11,12,20,21,22], seed %i, config %s, run on %s", R->Seed, P->Files.default_path, ctime(&seconds));
|
---|
| 3467 | fprintf(SigmaFile,"%lg\t", P->Lat.ECut/(Lat->LevelSizes[0]*Lat->LevelSizes[0]));
|
---|
| 3468 | for (in=0;in<NDIM*NDIM;in++)
|
---|
| 3469 | fprintf(SigmaFile,"%e\t", Sigma[in]);
|
---|
| 3470 | fprintf(SigmaFile,"\n");
|
---|
| 3471 | fclose(SigmaFile);
|
---|
| 3472 | }
|
---|
| 3473 | // diagonalize sigma
|
---|
| 3474 | gsl_vector *eval = gsl_vector_alloc(NDIM);
|
---|
| 3475 | gsl_eigen_herm_workspace *w = gsl_eigen_herm_alloc(NDIM);
|
---|
| 3476 | gsl_eigen_herm(H, eval, w);
|
---|
| 3477 | gsl_eigen_herm_free(w);
|
---|
| 3478 | gsl_sort_vector(eval); // sort eigenvalues
|
---|
| 3479 | // print eigenvalues
|
---|
| 3480 | // if (P->Call.out[ValueOut]) {
|
---|
| 3481 | // fprintf(stderr,"(%i) diagonal shielding for Ion %i of element %s:", P->Par.me, ion, I->I[it].Name);
|
---|
| 3482 | // for (in=0;in<NDIM;in++)
|
---|
| 3483 | // fprintf(stderr,"\t%lg",gsl_vector_get(eval,in));
|
---|
| 3484 | // fprintf(stderr,"\n\n");
|
---|
| 3485 | // }
|
---|
| 3486 | // print eigenvalues
|
---|
| 3487 | iso = 0;
|
---|
| 3488 | for (i=0;i<NDIM;i++) {
|
---|
| 3489 | I->I[it].sigma[ion][i] = gsl_vector_get(eval,i);
|
---|
| 3490 | iso += Sigma[i+i*NDIM]/3.;
|
---|
| 3491 | }
|
---|
| 3492 | eta = (gsl_vector_get(eval,1)-gsl_vector_get(eval,0))/(gsl_vector_get(eval,2)-iso);
|
---|
| 3493 | delta_sigma = gsl_vector_get(eval,2) - 0.5*(gsl_vector_get(eval,0)+gsl_vector_get(eval,1));
|
---|
| 3494 | S = (delta_sigma*delta_sigma)*(1+1./3.*eta*eta);
|
---|
| 3495 | A = 0.;
|
---|
| 3496 | for (i=0;i<NDIM;i++) {
|
---|
| 3497 | in = cross(i,0);
|
---|
| 3498 | dex = cross(i,1);
|
---|
| 3499 | A += pow(-1,i)*pow(0.5*(Sigma[in+dex*NDIM]-Sigma[dex+in*NDIM]),2);
|
---|
| 3500 | }
|
---|
| 3501 | if (P->Call.out[ValueOut]) {
|
---|
| 3502 | fprintf(stderr,"(%i) converted to Principal Axis System\n==================\nDiagonal entries:", P->Par.me);
|
---|
| 3503 | for (i=0;i<NDIM;i++)
|
---|
| 3504 | fprintf(stderr,"\t%lg",gsl_vector_get(eval,i));
|
---|
| 3505 | fprintf(stderr,"\nshielding : %e\n", iso);
|
---|
| 3506 | fprintf(stderr,"anisotropy : %e\n", delta_sigma);
|
---|
| 3507 | fprintf(stderr,"asymmetry : %e\n", eta);
|
---|
| 3508 | fprintf(stderr,"S : %e\n", S);
|
---|
| 3509 | fprintf(stderr,"A : %e\n", A);
|
---|
| 3510 | fprintf(stderr,"==================\n");
|
---|
| 3511 |
|
---|
| 3512 | }
|
---|
| 3513 | gsl_vector_free(eval);
|
---|
| 3514 | }
|
---|
| 3515 | }
|
---|
| 3516 |
|
---|
| 3517 | gsl_matrix_complex_free(H);
|
---|
| 3518 | }
|
---|
| 3519 |
|
---|
| 3520 | /** Test if integrated current over cell is 0.
|
---|
| 3521 | * In most cases we do not reach a numerical sensible zero as in MYEPSILON and remain satisfied as long
|
---|
| 3522 | * as the integrated current density is very small (e.g. compared to single entries in the current density array)
|
---|
| 3523 | * \param *P Problem at hand
|
---|
| 3524 | * \param index index of current component
|
---|
| 3525 | * \sa CalculateNativeIntDens() for integration of one current tensor component
|
---|
| 3526 | */
|
---|
| 3527 | void TestCurrent(struct Problem *P, const int index)
|
---|
| 3528 | {
|
---|
| 3529 | struct RunStruct *R = &P->R;
|
---|
| 3530 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 3531 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 3532 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
| 3533 | int in;
|
---|
| 3534 | double result[NDIM*NDIM], res = 0.;
|
---|
| 3535 |
|
---|
| 3536 | // set pointers onto current density array and get number of grid points in each direction
|
---|
| 3537 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
| 3538 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
| 3539 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
| 3540 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
| 3541 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
| 3542 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
| 3543 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
| 3544 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
| 3545 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
| 3546 | for(in=0;in<NDIM;in++) {
|
---|
| 3547 | result[in] = CalculateNativeIntDens(P,Lev0,CurrentDensity[in + NDIM*index],R->FactorDensityR);
|
---|
| 3548 | res += pow(result[in],2.);
|
---|
| 3549 | }
|
---|
| 3550 | res = sqrt(res);
|
---|
| 3551 | // if greater than 0, complain about it
|
---|
| 3552 | if ((res > MYEPSILON) && (P->Call.out[LeaderOut]))
|
---|
| 3553 | fprintf(stderr, "(%i) \\int_\\Omega d^3 r j_%i(r) = (%e,%e,%e), %e > %e!\n",P->Par.me, index, result[0], result[1], result[2], res, MYEPSILON);
|
---|
| 3554 | }
|
---|
| 3555 |
|
---|
| 3556 | /** Testing whether re<->im switches (due to symmetry) confuses fft.
|
---|
| 3557 | * \param *P Problem at hand
|
---|
| 3558 | * \param l local wave function number
|
---|
| 3559 | */
|
---|
| 3560 | void test_fft_symmetry(struct Problem *P, const int l)
|
---|
| 3561 | {
|
---|
| 3562 | struct Lattice *Lat = &P->Lat;
|
---|
| 3563 | struct RunStruct *R = &P->R;
|
---|
| 3564 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 3565 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 3566 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 3567 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 3568 | fftw_complex *tempdestRC = (fftw_complex *)Dens0->DensityCArray[Temp2Density];
|
---|
| 3569 | fftw_complex *work = Dens0->DensityCArray[TempDensity];
|
---|
| 3570 | fftw_complex *workC = (fftw_complex *)Dens0->DensityArray[TempDensity];
|
---|
| 3571 | fftw_complex *posfac, *destpos, *destRCS, *destRCD;
|
---|
| 3572 | fftw_complex *PsiC = Dens0->DensityCArray[ActualPsiDensity];
|
---|
| 3573 | fftw_real *PsiCR = (fftw_real *) PsiC;
|
---|
| 3574 | fftw_complex *Psi0 = LevS->LPsi->LocalPsi[l];
|
---|
| 3575 | fftw_complex *dest = LevS->LPsi->TempPsi;
|
---|
| 3576 | fftw_real *Psi0R = (fftw_real *)Dens0->DensityArray[Temp2Density];
|
---|
| 3577 | int i,Index, pos, i0, iS,g; //, NoOfPsis = Psi->TypeStartIndex[UnOccupied] - Psi->TypeStartIndex[Occupied];
|
---|
| 3578 | int n[NDIM], n0;
|
---|
| 3579 | const int N0 = LevS->Plan0.plan->local_nx; // we don't want to build global density, but local
|
---|
| 3580 | int N[NDIM], NUp[NDIM];
|
---|
| 3581 | N[0] = LevS->Plan0.plan->N[0];
|
---|
| 3582 | N[1] = LevS->Plan0.plan->N[1];
|
---|
| 3583 | N[2] = LevS->Plan0.plan->N[2];
|
---|
| 3584 | NUp[0] = LevS->NUp[0];
|
---|
| 3585 | NUp[1] = LevS->NUp[1];
|
---|
| 3586 | NUp[2] = LevS->NUp[2];
|
---|
| 3587 | //const int k_normal = Lat->Psi.TypeStartIndex[Occupied] + (l - Lat->Psi.TypeStartIndex[R->CurrentMin]);
|
---|
| 3588 | //const double *Wcentre = Lat->Psi.AddData[k_normal].WannierCentre;
|
---|
| 3589 | //double x[NDIM], fac[NDIM];
|
---|
| 3590 | double result1=0., result2=0., result3=0., result4=0.;
|
---|
| 3591 | double Result1=0., Result2=0., Result3=0., Result4=0.;
|
---|
| 3592 | const double HGcRCFactor = 1./LevS->MaxN; // factor for inverse fft
|
---|
| 3593 |
|
---|
| 3594 |
|
---|
| 3595 | // fft to real space
|
---|
| 3596 | SetArrayToDouble0((double *)tempdestRC, Dens0->TotalSize*2);
|
---|
| 3597 | SetArrayToDouble0((double *)PsiC, Dens0->TotalSize*2);
|
---|
| 3598 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is positive
|
---|
| 3599 | Index = LevS->GArray[i].Index;
|
---|
| 3600 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 3601 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 3602 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 3603 | destpos[pos].re = (Psi0[i].re)*posfac[pos].re-(Psi0[i].im)*posfac[pos].im;
|
---|
| 3604 | destpos[pos].im = (Psi0[i].re)*posfac[pos].im+(Psi0[i].im)*posfac[pos].re;
|
---|
| 3605 | //destpos[pos].re = (Psi0[i].im)*posfac[pos].re-(-Psi0[i].re)*posfac[pos].im;
|
---|
| 3606 | //destpos[pos].im = (Psi0[i].im)*posfac[pos].im+(-Psi0[i].re)*posfac[pos].re;
|
---|
| 3607 | }
|
---|
| 3608 | }
|
---|
| 3609 | for (i=0; i<LevS->MaxDoubleG; i++) {
|
---|
| 3610 | destRCS = &tempdestRC[LevS->DoubleG[2*i]*LevS->MaxNUp];
|
---|
| 3611 | destRCD = &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp];
|
---|
| 3612 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 3613 | destRCD[pos].re = destRCS[pos].re;
|
---|
| 3614 | destRCD[pos].im = -destRCS[pos].im;
|
---|
| 3615 | }
|
---|
| 3616 | }
|
---|
| 3617 | fft_3d_complex_to_real(plan, LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
| 3618 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC, Psi0R);
|
---|
| 3619 |
|
---|
| 3620 | // apply position operator and do first result
|
---|
| 3621 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
| 3622 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
| 3623 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
| 3624 | n[0]=n0 + LevS->Plan0.plan->start_nx; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
|
---|
| 3625 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
| 3626 | iS = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
| 3627 | //x[0] += 1; // shifting expectation value of x coordinate from 0 to 1
|
---|
| 3628 | PsiCR[iS] = Psi0R[i0]; // truedist(Lat, x[0], Wcentre[0],0) *
|
---|
| 3629 | result1 += PsiCR[iS] * Psi0R[i0];
|
---|
| 3630 | }
|
---|
| 3631 | result1 /= LevS->MaxN; // factor due to discrete integration
|
---|
| 3632 | MPI_Allreduce ( &result1, &Result1, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
| 3633 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) 1st result: %e\n",P->Par.me, Result1);
|
---|
| 3634 |
|
---|
| 3635 | // fft to reciprocal space and do second result
|
---|
| 3636 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
| 3637 | SetArrayToDouble0((double *)dest, 2*R->InitLevS->MaxG);
|
---|
| 3638 | for (g=0; g < LevS->MaxG; g++) {
|
---|
| 3639 | Index = LevS->GArray[g].Index;
|
---|
| 3640 | dest[g].re = (Psi0[Index].re)*HGcRCFactor;
|
---|
| 3641 | dest[g].im = (Psi0[Index].im)*HGcRCFactor;
|
---|
| 3642 | }
|
---|
| 3643 | result2 = GradSP(P,LevS,Psi0,dest);
|
---|
| 3644 | MPI_Allreduce ( &result2, &Result2, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
| 3645 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) 2nd result: %e\n",P->Par.me, Result2);
|
---|
| 3646 |
|
---|
| 3647 | // fft again to real space, this time change symmetry
|
---|
| 3648 | SetArrayToDouble0((double *)tempdestRC, Dens0->TotalSize*2);
|
---|
| 3649 | SetArrayToDouble0((double *)PsiC, Dens0->TotalSize*2);
|
---|
| 3650 | for (i=0;i<LevS->MaxG;i++) { // incoming is positive, outgoing is positive
|
---|
| 3651 | Index = LevS->GArray[i].Index;
|
---|
| 3652 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 3653 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 3654 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 3655 | destpos[pos].re = (Psi0[i].im)*posfac[pos].re-(-Psi0[i].re)*posfac[pos].im;
|
---|
| 3656 | destpos[pos].im = (Psi0[i].im)*posfac[pos].im+(-Psi0[i].re)*posfac[pos].re;
|
---|
| 3657 | }
|
---|
| 3658 | }
|
---|
| 3659 | for (i=0; i<LevS->MaxDoubleG; i++) {
|
---|
| 3660 | destRCS = &tempdestRC[LevS->DoubleG[2*i]*LevS->MaxNUp];
|
---|
| 3661 | destRCD = &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp];
|
---|
| 3662 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 3663 | destRCD[pos].re = destRCS[pos].re;
|
---|
| 3664 | destRCD[pos].im = -destRCS[pos].im;
|
---|
| 3665 | }
|
---|
| 3666 | }
|
---|
| 3667 | fft_3d_complex_to_real(plan, LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
| 3668 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC, Psi0R);
|
---|
| 3669 |
|
---|
| 3670 | // bring down from Lev0 to LevS
|
---|
| 3671 | for (n0=0;n0<N0;n0++) // only local points on x axis
|
---|
| 3672 | for (n[1]=0;n[1]<N[1];n[1]++)
|
---|
| 3673 | for (n[2]=0;n[2]<N[2];n[2]++) {
|
---|
| 3674 | i0 = n[2]*NUp[2]+N[2]*NUp[2]*(n[1]*NUp[1]+N[1]*NUp[1]*n0*NUp[0]);
|
---|
| 3675 | iS = n[2]+N[2]*(n[1]+N[1]*n0);
|
---|
| 3676 | PsiCR[iS] = Psi0R[i0]; // truedist(Lat, x[0], Wcentre[0],0) *
|
---|
| 3677 | result3 += PsiCR[iS] * Psi0R[i0];
|
---|
| 3678 | }
|
---|
| 3679 | result3 /= LevS->MaxN; // factor due to discrete integration
|
---|
| 3680 | MPI_Allreduce ( &result3, &Result3, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
| 3681 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) 3rd result: %e\n",P->Par.me, Result3);
|
---|
| 3682 |
|
---|
| 3683 | // fft back to reciprocal space, change symmetry back and do third result
|
---|
| 3684 | fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, PsiC, workC);
|
---|
| 3685 | SetArrayToDouble0((double *)dest, 2*R->InitLevS->MaxG);
|
---|
| 3686 | for (g=0; g < LevS->MaxG; g++) {
|
---|
| 3687 | Index = LevS->GArray[g].Index;
|
---|
| 3688 | dest[g].re = (-PsiC[Index].im)*HGcRCFactor;
|
---|
| 3689 | dest[g].im = ( PsiC[Index].re)*HGcRCFactor;
|
---|
| 3690 | }
|
---|
| 3691 | result4 = GradSP(P,LevS,Psi0,dest);
|
---|
| 3692 | MPI_Allreduce ( &result4, &Result4, 1, MPI_DOUBLE, MPI_SUM, P->Par.comm_ST_Psi); // sum "LocalSize to TotalSize"
|
---|
| 3693 | if (P->Call.out[StepLeaderOut]) fprintf(stderr,"(%i) 4th result: %e\n",P->Par.me, Result4);
|
---|
| 3694 | }
|
---|
| 3695 |
|
---|
| 3696 |
|
---|
| 3697 | /** Test function to check RxP application.
|
---|
| 3698 | * Checks applied solution to an analytic for a specific and simple wave function -
|
---|
| 3699 | * where just one coefficient is unequal to zero.
|
---|
| 3700 | * \param *P Problem at hand
|
---|
| 3701 | exp(I b G) - I exp(I b G) b G - exp(I a G) + I exp(I a G) a G
|
---|
| 3702 | -------------------------------------------------------------
|
---|
| 3703 | 2
|
---|
| 3704 | G
|
---|
| 3705 | */
|
---|
| 3706 | void test_rxp(struct Problem *P)
|
---|
| 3707 | {
|
---|
| 3708 | struct RunStruct *R = &P->R;
|
---|
| 3709 | struct Lattice *Lat = &P->Lat;
|
---|
| 3710 | //struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 3711 | struct LatticeLevel *LevS = R->LevS;
|
---|
| 3712 | struct OneGData *GA = LevS->GArray;
|
---|
| 3713 | //struct Density *Dens0 = Lev0->Dens;
|
---|
| 3714 | fftw_complex *Psi0 = LevS->LPsi->TempPsi;
|
---|
| 3715 | fftw_complex *Psi2 = P->Grad.GradientArray[GraSchGradient];
|
---|
| 3716 | fftw_complex *Psi3 = LevS->LPsi->TempPsi2;
|
---|
| 3717 | int g, g_bar, i, j, k, k_normal = 0;
|
---|
| 3718 | double tmp, a,b, G;
|
---|
| 3719 | //const double *Wcentre = Lat->Psi.AddData[k_normal].WannierCentre;
|
---|
| 3720 | const double discrete_factor = 1.;//Lat->Volume/LevS->MaxN;
|
---|
| 3721 | fftw_complex integral;
|
---|
| 3722 |
|
---|
| 3723 | // reset coefficients
|
---|
| 3724 | debug (P,"Creating RxP test function.");
|
---|
| 3725 | SetArrayToDouble0((double *)Psi0,2*R->InitLevS->MaxG);
|
---|
| 3726 | SetArrayToDouble0((double *)Psi2,2*R->InitLevS->MaxG);
|
---|
| 3727 |
|
---|
| 3728 | // pick one which becomes non-zero
|
---|
| 3729 | g = 3;
|
---|
| 3730 |
|
---|
| 3731 | //for (g=0;g<LevS->MaxG;g++) {
|
---|
| 3732 | Psi0[g].re = 1.;
|
---|
| 3733 | Psi0[g].im = 0.;
|
---|
| 3734 | //}
|
---|
| 3735 | fprintf(stderr,"(%i) G[%i] = (%e,%e,%e) \n",P->Par.me, g, GA[g].G[0], GA[g].G[1], GA[g].G[2]);
|
---|
| 3736 | i = 0;
|
---|
| 3737 |
|
---|
| 3738 | // calculate analytic result
|
---|
| 3739 | debug (P,"Calculating analytic solution.");
|
---|
| 3740 | for (g_bar=0;g_bar<LevS->MaxG;g_bar++) {
|
---|
| 3741 | for (g=0;g<LevS->MaxG;g++) {
|
---|
| 3742 | if (GA[g].G[i] == GA[g_bar].G[i]) {
|
---|
| 3743 | j = cross(i,0);
|
---|
| 3744 | k = cross(i,1);
|
---|
| 3745 | if (GA[g].G[k] == GA[g_bar].G[k]) {
|
---|
[f5586e] | 3746 | //b = truedist(Lat, sqrt(Lat->RealBasisSQ[j]), Wcentre[j], j);
|
---|
| 3747 | b = sqrt(Lat->RealBasisSQ[j]);
|
---|
[a0bcf1] | 3748 | //a = truedist(Lat, 0., Wcentre[j], j);
|
---|
| 3749 | a = 0.;
|
---|
| 3750 | G = 1; //GA[g].G[k];
|
---|
| 3751 | if (GA[g].G[j] == GA[g_bar].G[j]) {
|
---|
| 3752 | Psi2[g_bar].re += G*Psi0[g].re * (.5 * b * b - .5 * a * a) * discrete_factor;
|
---|
| 3753 | Psi2[g_bar].im += G*Psi0[g].im * (.5 * b * b - .5 * a * a) * discrete_factor;
|
---|
| 3754 | //if ((G != 0) && ((fabs(Psi0[g].re) > MYEPSILON) || (fabs(Psi0[g].im) > MYEPSILON)))
|
---|
| 3755 | //fprintf(stderr,"(%i) Psi[%i].re += %e +i %e\n",P->Par.me, g_bar, G*Psi0[g].re * (.5 * b * b - .5 * a * a) * discrete_factor, G*Psi0[g].im * (.5 * b * b - .5 * a * a) * discrete_factor);
|
---|
| 3756 | } else {
|
---|
| 3757 | tmp = GA[g].G[j]-GA[g_bar].G[j];
|
---|
| 3758 | integral.re = (cos(tmp*b)+sin(tmp*b)*b*tmp - cos(tmp*a)-sin(tmp*a)*a*tmp) / (tmp * tmp);
|
---|
| 3759 | integral.im = (sin(tmp*b)-cos(tmp*b)*b*tmp - sin(tmp*a)+cos(tmp*a)*a*tmp) / (tmp * tmp);
|
---|
| 3760 | Psi2[g_bar].re += G*(Psi0[g].re*integral.re - Psi0[g].im*integral.im) * discrete_factor;
|
---|
| 3761 | Psi2[g_bar].im += G*(Psi0[g].re*integral.im + Psi0[g].im*integral.re) * discrete_factor;
|
---|
| 3762 | //if ((G != 0) && ((fabs(Psi0[g].re) > MYEPSILON) || (fabs(Psi0[g].im) > MYEPSILON)))
|
---|
| 3763 | //fprintf(stderr,"(%i) Psi[%i].re += %e\tPsi[%i].im += %e \n",P->Par.me, g_bar, G*(Psi0[g].re*integral.re - Psi0[g].im*integral.im) * discrete_factor, g_bar, G*(Psi0[g].re*integral.im + Psi0[g].im*integral.re) * discrete_factor);
|
---|
| 3764 | }
|
---|
| 3765 | }
|
---|
| 3766 | j = cross(i,2);
|
---|
| 3767 | k = cross(i,3);
|
---|
| 3768 | if (GA[g].G[k] == GA[g_bar].G[k]) {
|
---|
[f5586e] | 3769 | //b = truedist(Lat, sqrt(Lat->RealBasisSQ[j]), Wcentre[j], j);
|
---|
| 3770 | b = sqrt(Lat->RealBasisSQ[j]);
|
---|
[a0bcf1] | 3771 | //a = truedist(Lat, 0., Wcentre[j], j);
|
---|
| 3772 | a = 0.;
|
---|
| 3773 | G = 1; //GA[g].G[k];
|
---|
| 3774 | if (GA[g].G[j] == GA[g_bar].G[j]) {
|
---|
| 3775 | Psi2[g_bar].re += G*Psi0[g].re * (.5 * b * b - .5 * a * a) * discrete_factor;
|
---|
| 3776 | Psi2[g_bar].im += G*Psi0[g].im * (.5 * b * b - .5 * a * a) * discrete_factor;
|
---|
| 3777 | //if ((G != 0) && ((fabs(Psi0[g].re) > MYEPSILON) || (fabs(Psi0[g].im) > MYEPSILON)))
|
---|
| 3778 | //fprintf(stderr,"(%i) Psi[%i].re += %e +i %e\n",P->Par.me, g_bar, G*Psi0[g].re * (.5 * b * b - .5 * a * a) * discrete_factor, G*Psi0[g].im * (.5 * b * b - .5 * a * a) * discrete_factor);
|
---|
| 3779 | } else {
|
---|
| 3780 | tmp = GA[g].G[j]-GA[g_bar].G[j];
|
---|
| 3781 | integral.re = (cos(tmp*b)+sin(tmp*b)*b*tmp - cos(tmp*a)-sin(tmp*a)*a*tmp) / (tmp * tmp);
|
---|
| 3782 | integral.im = (sin(tmp*b)-cos(tmp*b)*b*tmp - sin(tmp*a)+cos(tmp*a)*a*tmp) / (tmp * tmp);
|
---|
| 3783 | Psi2[g_bar].re += G*(Psi0[g].re*integral.re - Psi0[g].im*integral.im) * discrete_factor;
|
---|
| 3784 | Psi2[g_bar].im += G*(Psi0[g].re*integral.im + Psi0[g].im*integral.re) * discrete_factor;
|
---|
| 3785 | //if ((G != 0) && ((fabs(Psi0[g].re) > MYEPSILON) || (fabs(Psi0[g].im) > MYEPSILON)))
|
---|
| 3786 | //fprintf(stderr,"(%i) Psi[%i].re += %e\tPsi[%i].im += %e \n",P->Par.me, g_bar, G*(Psi0[g].re*integral.re - Psi0[g].im*integral.im) * discrete_factor, g_bar, G*(Psi0[g].re*integral.im + Psi0[g].im*integral.re) * discrete_factor);
|
---|
| 3787 | }
|
---|
| 3788 | }
|
---|
| 3789 | }
|
---|
| 3790 | }
|
---|
| 3791 | }
|
---|
| 3792 |
|
---|
| 3793 | // apply rxp
|
---|
| 3794 | debug (P,"Applying RxP to test function.");
|
---|
| 3795 | CalculatePerturbationOperator_RxP(P,Psi0,Psi3,k_normal,i);
|
---|
| 3796 |
|
---|
| 3797 | // compare both coefficient arrays
|
---|
| 3798 | debug(P,"Beginning comparison of analytic and Rxp applied solution.");
|
---|
| 3799 | for (g=0;g<LevS->MaxG;g++) {
|
---|
| 3800 | if ((fabs(Psi3[g].re-Psi2[g].re) >= MYEPSILON) || (fabs(Psi3[g].im-Psi2[g].im) >= MYEPSILON))
|
---|
| 3801 | fprintf(stderr,"(%i) Psi3[%i] = %e +i %e != Psi2[%i] = %e +i %e\n",P->Par.me, g, Psi3[g].re, Psi3[g].im, g, Psi2[g].re, Psi2[g].im);
|
---|
| 3802 | //else
|
---|
| 3803 | //fprintf(stderr,"(%i) Psi1[%i] == Psi2[%i] = %e +i %e\n",P->Par.me, g, g, Psi1[g].re, Psi1[g].im);
|
---|
| 3804 | }
|
---|
| 3805 | fprintf(stderr,"(%i) <0|1> = <0|r|0> == %e +i %e\n",P->Par.me, GradSP(P,LevS,Psi0,Psi3), GradImSP(P,LevS,Psi0,Psi3));
|
---|
| 3806 | fprintf(stderr,"(%i) <1|1> = |r|ᅵ == %e +i %e\n",P->Par.me, GradSP(P,LevS,Psi3,Psi3), GradImSP(P,LevS,Psi3,Psi3));
|
---|
| 3807 | fprintf(stderr,"(%i) <0|0> = %e +i %e\n",P->Par.me, GradSP(P,LevS,Psi0,Psi0), GradImSP(P,LevS,Psi0,Psi0));
|
---|
| 3808 | fprintf(stderr,"(%i) <0|2> = %e +i %e\n",P->Par.me, GradSP(P,LevS,Psi0,Psi2), GradImSP(P,LevS,Psi0,Psi2));
|
---|
| 3809 | }
|
---|
| 3810 |
|
---|
| 3811 |
|
---|
| 3812 | /** Output of a (X,Y,DX,DY) 2d-vector plot.
|
---|
| 3813 | * For a printable representation of the induced current two-dimensional vector plots are useful, as three-dimensional
|
---|
| 3814 | * isospheres are sometimes mis-leading or do not represent the desired flow direction. The routine simply extracts a
|
---|
| 3815 | * two-dimensional cut orthogonal to one of the lattice axis at a certain node.
|
---|
| 3816 | * \param *P Problem at hand
|
---|
| 3817 | * \param B_index direction of B field
|
---|
| 3818 | * \param n_orth grid node in B_index direction of the plane (the order in which the remaining two coordinate axis
|
---|
| 3819 | * appear is the same as in a cross product, which is used to determine orthogonality)
|
---|
| 3820 | */
|
---|
| 3821 | void PlotVectorPlane(struct Problem *P, int B_index, int n_orth)
|
---|
| 3822 | {
|
---|
| 3823 | struct RunStruct *R = &P->R;
|
---|
| 3824 | struct LatticeLevel *Lev0 = R->Lev0;
|
---|
| 3825 | struct Density *Dens0 = Lev0->Dens;
|
---|
| 3826 | char filename[255];
|
---|
| 3827 | char *suchpointer;
|
---|
| 3828 | FILE *PlotFile = NULL;
|
---|
| 3829 | const int myPE = P->Par.me_comm_ST;
|
---|
| 3830 | time_t seconds;
|
---|
| 3831 | fftw_real *CurrentDensity[NDIM*NDIM];
|
---|
| 3832 | CurrentDensity[0] = (fftw_real *) Dens0->DensityArray[CurrentDensity0];
|
---|
| 3833 | CurrentDensity[1] = (fftw_real *) Dens0->DensityArray[CurrentDensity1];
|
---|
| 3834 | CurrentDensity[2] = (fftw_real *) Dens0->DensityArray[CurrentDensity2];
|
---|
| 3835 | CurrentDensity[3] = (fftw_real *) Dens0->DensityArray[CurrentDensity3];
|
---|
| 3836 | CurrentDensity[4] = (fftw_real *) Dens0->DensityArray[CurrentDensity4];
|
---|
| 3837 | CurrentDensity[5] = (fftw_real *) Dens0->DensityArray[CurrentDensity5];
|
---|
| 3838 | CurrentDensity[6] = (fftw_real *) Dens0->DensityArray[CurrentDensity6];
|
---|
| 3839 | CurrentDensity[7] = (fftw_real *) Dens0->DensityArray[CurrentDensity7];
|
---|
| 3840 | CurrentDensity[8] = (fftw_real *) Dens0->DensityArray[CurrentDensity8];
|
---|
| 3841 | time(&seconds); // get current time
|
---|
| 3842 |
|
---|
| 3843 | if (!myPE) { // only process 0 writes to file
|
---|
| 3844 | // open file
|
---|
| 3845 | sprintf(&filename[0], ".current.L%i.csv", Lev0->LevelNo);
|
---|
| 3846 | OpenFile(P, &PlotFile, filename, "w", P->Call.out[ReadOut]);
|
---|
| 3847 | strcpy(filename, ctime(&seconds));
|
---|
| 3848 | suchpointer = strchr(filename, '\n');
|
---|
| 3849 | if (suchpointer != NULL)
|
---|
| 3850 | *suchpointer = '\0';
|
---|
| 3851 | if (PlotFile != NULL) {
|
---|
| 3852 | fprintf(PlotFile,"# current vector plot of plane perpendicular to direction e_%i at node %i, seed %i, config %s, run on %s, #cpus %i", B_index, n_orth, R->Seed, P->Files.default_path, filename, P->Par.Max_me_comm_ST_Psi);
|
---|
| 3853 | fprintf(PlotFile,"\n");
|
---|
| 3854 | } else { Error(SomeError, "PlotVectorPlane: Opening Plot File"); }
|
---|
| 3855 | }
|
---|
| 3856 |
|
---|
| 3857 | // plot density
|
---|
| 3858 | if (!P->Par.me_comm_ST_PsiT) // only first wave function group as current density of all psis was gathered
|
---|
| 3859 | PlotRealDensity(P, Lev0, PlotFile, B_index, n_orth, CurrentDensity[B_index*NDIM+cross(B_index,0)], CurrentDensity[B_index*NDIM+cross(B_index,1)]);
|
---|
| 3860 |
|
---|
| 3861 | if (PlotFile != NULL) {
|
---|
| 3862 | // close file
|
---|
| 3863 | fclose(PlotFile);
|
---|
| 3864 | }
|
---|
| 3865 | }
|
---|
| 3866 |
|
---|
| 3867 |
|
---|
| 3868 | /** Reads psi coefficients of \a type from file and transforms to new level.
|
---|
| 3869 | * \param *P Problem at hand
|
---|
| 3870 | * \param type PsiTypeTag of which minimisation group to load from file
|
---|
| 3871 | * \sa ReadSrcPsiDensity() - reading the coefficients, ChangePsiAndDensToLevUp() - transformation to upper level
|
---|
| 3872 | */
|
---|
| 3873 | void ReadSrcPerturbedPsis(struct Problem *P, enum PsiTypeTag type)
|
---|
| 3874 | {
|
---|
| 3875 | struct RunStruct *R = &P->R;
|
---|
| 3876 | struct Lattice *Lat = &P->Lat;
|
---|
| 3877 | struct LatticeLevel *Lev0 = &P->Lat.Lev[R->Lev0No+1]; // one level higher than current (ChangeLevUp already occurred)
|
---|
| 3878 | struct LatticeLevel *LevS = &P->Lat.Lev[R->LevSNo+1];
|
---|
| 3879 | struct Density *Dens = Lev0->Dens;
|
---|
| 3880 | struct Psis *Psi = &Lat->Psi;
|
---|
| 3881 | struct fft_plan_3d *plan = Lat->plan;
|
---|
| 3882 | fftw_complex *work = (fftw_complex *)Dens->DensityCArray[TempDensity];
|
---|
| 3883 | fftw_complex *tempdestRC = (fftw_complex *)Dens->DensityArray[TempDensity];
|
---|
| 3884 | fftw_complex *posfac, *destpos, *destRCS, *destRCD;
|
---|
| 3885 | fftw_complex *source, *source0;
|
---|
| 3886 | int Index,i,pos;
|
---|
| 3887 | double factorC = 1./Lev0->MaxN;
|
---|
| 3888 | int p,g;
|
---|
| 3889 |
|
---|
| 3890 | // ================= read coefficients from file to LocalPsi ============
|
---|
| 3891 | ReadSrcPsiDensity(P, type, 0, R->LevSNo+1);
|
---|
| 3892 |
|
---|
| 3893 | // ================= transform to upper level ===========================
|
---|
| 3894 | // for all local Psis do the usual transformation (completing coefficients for all grid vectors, fft, permutation)
|
---|
| 3895 | LockDensityArray(Dens, TempDensity, real);
|
---|
| 3896 | LockDensityArray(Dens, TempDensity, imag);
|
---|
| 3897 | for (p=Psi->LocalNo-1; p >= 0; p--)
|
---|
| 3898 | if (Psi->LocalPsiStatus[p].PsiType == type) { // only for the desired type
|
---|
| 3899 | source = LevS->LPsi->LocalPsi[p];
|
---|
| 3900 | source0 = Lev0->LPsi->LocalPsi[p];
|
---|
| 3901 | //fprintf(stderr,"(%i) ReadSrcPerturbedPsis: LevSNo %i\t Lev0No %i\tp %i\t source %p\t source0 %p\n", P->Par.me, LevS->LevelNo, Lev0->LevelNo, p, source, source0);
|
---|
| 3902 | SetArrayToDouble0((double *)tempdestRC, Dens->TotalSize*2);
|
---|
| 3903 | for (i=0;i<LevS->MaxG;i++) {
|
---|
| 3904 | Index = LevS->GArray[i].Index;
|
---|
| 3905 | posfac = &LevS->PosFactorUp[LevS->MaxNUp*i];
|
---|
| 3906 | destpos = &tempdestRC[LevS->MaxNUp*Index];
|
---|
| 3907 | //if (isnan(source[i].re)) { fprintf(stderr,"(%i) WARNING in ReadSrcPerturbedPsis(): source_%i[%i] = NaN!\n", P->Par.me, p, i); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 3908 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 3909 | destpos[pos].re = source[i].re*posfac[pos].re-source[i].im*posfac[pos].im;
|
---|
| 3910 | destpos[pos].im = source[i].re*posfac[pos].im+source[i].im*posfac[pos].re;
|
---|
| 3911 | }
|
---|
| 3912 | }
|
---|
| 3913 | for (i=0; i<LevS->MaxDoubleG; i++) {
|
---|
| 3914 | destRCS = &tempdestRC[LevS->DoubleG[2*i]*LevS->MaxNUp];
|
---|
| 3915 | destRCD = &tempdestRC[LevS->DoubleG[2*i+1]*LevS->MaxNUp];
|
---|
| 3916 | for (pos=0; pos < LevS->MaxNUp; pos++) {
|
---|
| 3917 | destRCD[pos].re = destRCS[pos].re;
|
---|
| 3918 | destRCD[pos].im = -destRCS[pos].im;
|
---|
| 3919 | }
|
---|
| 3920 | }
|
---|
| 3921 | fft_3d_complex_to_real(plan, LevS->LevelNo, FFTNFUp, tempdestRC, work);
|
---|
| 3922 | DensityRTransformPos(LevS,(fftw_real*)tempdestRC,(fftw_real *)Dens->DensityCArray[ActualPsiDensity]);
|
---|
| 3923 | // now we have density in the upper level, fft back to complex and store it as wave function coefficients
|
---|
| 3924 | fft_3d_real_to_complex(plan, Lev0->LevelNo, FFTNF1, Dens->DensityCArray[ActualPsiDensity], work);
|
---|
| 3925 | for (g=0; g < Lev0->MaxG; g++) {
|
---|
| 3926 | Index = Lev0->GArray[g].Index;
|
---|
| 3927 | source0[g].re = Dens->DensityCArray[ActualPsiDensity][Index].re*factorC;
|
---|
| 3928 | source0[g].im = Dens->DensityCArray[ActualPsiDensity][Index].im*factorC;
|
---|
| 3929 | //if (isnan(source0[g].re)) { fprintf(stderr,"(%i) WARNING in ReadSrcPerturbedPsis(): source0_%i[%i] = NaN!\n", P->Par.me, p, g); Error(SomeError, "NaN-Fehler!"); }
|
---|
| 3930 | }
|
---|
| 3931 | if (Lev0->GArray[0].GSq == 0.0)
|
---|
| 3932 | source0[g].im = 0.0;
|
---|
| 3933 | }
|
---|
| 3934 | UnLockDensityArray(Dens, TempDensity, real);
|
---|
| 3935 | UnLockDensityArray(Dens, TempDensity, imag);
|
---|
| 3936 | // finished.
|
---|
| 3937 | }
|
---|