source: pcp/src/output.c@ e936b3

non_adaptive_molecuilder
Last change on this file since e936b3 was c510a7, checked in by Frederik Heber <heber@…>, 17 years ago

char lengths of 255 and MAXDUMMYSTRING replaced with define MAXSTRINGSIZE in molecuilder and pcp

  • Property mode set to 100644
File size: 91.0 KB
Line 
1/** \file output.c
2 * Output of forces and energies, Visuals (density and ions for OpenDX).
3 *
4 * Herein all the functions concerning the output of data are gathered:
5 * Initialization of the FileData structure InitOutVisArray() and the files themselves
6 * InitOutputFiles(),
7 * Saving of a calculated state OutputVisSrcFiles() - 1. Psis OutputSrcPsiDensity(), 2. Ions
8 * OutSrcIons() - or retrieving Psis ReadSrcPsiDensity() and Ions ReadSrcIons(),
9 * Preparation (in case of RiemannTensor use) CalculateOutVisDensityPos(), OutVisPosRTransformPosNFRto0(),
10 * Output of visual data (for OpenDx explorer) OutputVis() - 1. OpenDX files CreateDensityOutputGeneral(),
11 * 2. electronic densitiy data OutVisDensity() (uses MPI sending density coefficients OutputOutVisDensity()
12 * and receiving and writing CombineOutVisDensity()), 3. ion data OutVisIons() -
13 * Closing of files CloseOutputFiles().
14 *
15 * There are some more routines: OutputCurrentDensity() outputs the current density for each magnetic field
16 * direction, OutputVisAllOrbital() outputs all orbitals of a certain minimsation type and
17 * TestReadnWriteSrcDensity() checks whether a certain minimisation group can be written and read again
18 * correctly.
19 *
20 * There are some helpers that open files with certain filenames, making extensive usage of all
21 * the suffixes defined in here: OpenFile(), OpenFileNo(), OpenFileNo2(), OpenFileNoNo() and
22 * OpenFileNoPost().
23 *
24 *
25 Project: ParallelCarParrinello
26 \author Jan Hamaekers, Frederik Heber
27 \date 2000, 2006
28
29 File: output.c
30 $Id: output.c,v 1.51.2.2 2007-04-21 12:55:50 foo Exp $
31*/
32#include<stdlib.h>
33#include<stdio.h>
34#include<string.h>
35#include<math.h>
36//#include<sys/time.h>
37#include <time.h>
38#include<unistd.h>
39#include"data.h"
40#include"density.h"
41#include"errors.h"
42#include"gramsch.h"
43#include"helpers.h"
44#include "init.h"
45#include"myfft.h"
46#include"mymath.h"
47#include"output.h"
48#include"pdbformat.h"
49#include"perturbed.h"
50
51
52/* Konvention: Rueckgabe 0 einer Funktion, bedeutet keinen Fehler (entsprechend exitcode 0) */
53/* Oeffnet Datei P->mainname+"..." mit what*/
54
55/** Opens a file with FileData::mainname+suffix.
56 * Both the path under which the main programme resides and the path to the config file are
57 * tried subsequently.
58 * \param *P Problem at hand
59 * \param **file file pointer array
60 * \param *suffix suffix after mainname
61 * \param *what access parameter for the file: r, w, rw, r+, w+ ...
62 * \param verbose 1 - print status, 0 - don't print anything
63 * \return 0 - could not open file, 1 - file is open
64 */
65int OpenFile(struct Problem *P, FILE** file, const char* suffix, const char* what, int verbose)
66{
67 char* name; /* Zu erzeugender Dateiname */
68 name = (char*)
69 Malloc(strlen(P->Files.default_path) + strlen(P->Files.mainname) + strlen(suffix) + 1,"OpenFile");
70 sprintf(name, "%s%s%s", P->Files.default_path, P->Files.mainname, suffix);
71 *file = fopen(name, what);
72 if (*file == NULL) {
73 fprintf(stderr,"(%i) Normal access failed: name %s, what %s\n", P->Par.me, name, what);
74 /* hier default file ausprobieren, falls nur gelesen werden soll! */
75 if(*what == 'r') {
76 name = (char*)
77 Realloc(name,strlen(P->Files.default_path) + strlen(suffix)+1,"OpenFile");
78 sprintf(name, "%s%s", P->Files.default_path,suffix);
79 *file = fopen(name,what);
80 if (*file != NULL) {
81 if (verbose) fprintf(stderr,"(%i) Default file is open: %s\n",P->Par.me,name);
82 Free(name, "OpenFile: name");
83 return(1);
84 } else {
85 if (verbose) fprintf(stderr,"\n(%i)Error: Cannot open neither normal nor default file for reading: %s\n",P->Par.me,name);
86 Free(name, "OpenFile: name");
87 return(0);
88 }
89 } else {
90 if (verbose) fprintf(stderr,"\n(%i)Error: Cannot open normal file for writing: %s\n",P->Par.me,name);
91 Free(name, "OpenFile: name");
92 return(0);
93 }
94 } else {
95 if (verbose) if(verbose) fprintf(stderr,"(%i) File is open: %s\n",P->Par.me,name);
96 Free(name, "OpenFile: name");
97 return(1);
98 }
99}
100
101/** Opens a file with FileData::mainname+suffix+"."+No (2 digits).
102 * Both the path under which the main programme resides and the path to the config file are
103 * tried subsequently.
104 * \param *P Problem at hand
105 * \param **file file pointer array
106 * \param *suffix suffix after mainname
107 * \param No the number with up to two digits
108 * \param *what access parameter for the file: r, w, rw, r+, w+ ...
109 * \param verbose 1 - print status, 0 - don't print anything
110 * \return 0 - could not open file, 1 - file is open
111 */
112int OpenFileNo2(struct Problem *P, FILE** file, const char* suffix, int No, const char* what, int verbose)
113{
114 char* name; /* Zu erzeugender Dateiname */
115 name = (char*)
116 Malloc(strlen(P->Files.default_path) + strlen(P->Files.mainname) + strlen(suffix) + 4,"OpenFile");
117 sprintf(name, "%s%s%s.%02i", P->Files.default_path, P->Files.mainname, suffix, No);
118 *file = fopen(name, what);
119 if (*file == NULL) {
120 /* falls nur gelesen wird, auch default_path ausprobieren */
121 if (*what == 'r') {
122 name = (char*)
123 Realloc(name,strlen(P->Files.default_path) + strlen(suffix) + 4,"OpenFileNo2");
124 sprintf(name, "%s%s.%02i", P->Files.default_path, suffix, No);
125 *file = fopen(name, what);
126 if (*file != NULL) {
127 if(verbose) fprintf(stderr,"(%i) Default file is open: %s\n", P->Par.me, name);
128 Free(name, "OpenFileNo2: name");
129 return(1);
130 }
131 }
132 if (verbose) fprintf(stderr,"\n(%i)Error: Cannot open file: %s\n", P->Par.me, name);
133 Free(name, "OpenFileNo2: name");
134 return(0);
135 } else {
136 if(verbose) fprintf(stderr,"(%i) File is open: %s\n",P->Par.me, name);
137 Free(name, "OpenFileNo2: name");
138 return(1);
139 }
140}
141
142/* Oeffnet Datei P->Files.mainname+"...".Nr(4stellig) mit what*/
143/** Opens a file with FileData::mainname+suffix+"."+No (4 digits).
144 * Both the path under which the main programme resides and the path to the config file are
145 * tried subsequently.
146 * \param *P Problem at hand
147 * \param **file file pointer array
148 * \param *suffix suffix after mainname
149 * \param No the number with up to four digits
150 * \param *what access parameter for the file: r, w, rw, r+, w+ ...
151 * \param verbose 1 - print status, 0 - don't print anything
152 * \return 0 - could not open file, 1 - file is open
153 */
154int OpenFileNo(struct Problem *P, FILE** file, const char* suffix, int No, const char* what, int verbose)
155{
156 char* name; /* Zu erzeugender Dateiname */
157 name = (char*)
158 Malloc(strlen(P->Files.default_path) + strlen(P->Files.mainname) + strlen(suffix) + 6,"OpenFileNo");
159 sprintf(name, "%s%s%s.%04i", P->Files.default_path, P->Files.mainname, suffix, No);
160 *file = fopen(name, what);
161 if (*file == NULL) {
162 /* falls nur gelesen wird, auch default_path ausprobieren */
163 if (*what == 'r') {
164 name = (char*)
165 Realloc(name,strlen(P->Files.default_path) + strlen(suffix) + 6,"OpenFileNo");
166 sprintf(name, "%s%s.%04i", P->Files.default_path, suffix, No);
167 *file = fopen(name, what);
168 if (*file != NULL) {
169 if(verbose) fprintf(stderr,"(%i) Default file is open: %s\n", P->Par.me, name);
170 Free(name, "OpenFileNo: name");
171 return(1);
172 }
173 }
174 if (verbose) fprintf(stderr,"\n(%i)Error: Cannot open file: %s\n", P->Par.me, name);
175 Free(name, "OpenFileNo: name");
176 return(0);
177 } else {
178 if(verbose) fprintf(stderr,"(%i) File is open: %s\n", P->Par.me, name);
179 Free(name, "OpenFileNo: name");
180 return(1);
181 }
182}
183
184/* die nachfolgende Routine wird von seq und par benutzt!!! */
185/* Oeffnet Datei P->Files.mainname+"...".No.postfix mit what*/
186
187/** Opens a file with FileData::mainname+suffix+"."+No(4 digits)+postfix.
188 * Only the path under which the main programme resides is tried.
189 * \param *P Problem at hand
190 * \param **file file pointer array
191 * \param *suffix suffix after mainname
192 * \param No the number with up to four digits
193 * \param *postfix post-suffix at the end of filename
194 * \param *what access parameter for the file: r, w, rw, r+, w+ ...
195 * \param verbose 1 - print status, 0 - don't print anything
196 * \return 0 - could not open file, 1 - file is open
197 */
198int OpenFileNoPost(struct Problem *P, FILE** file, const char* suffix, int No, const char* postfix, const char* what, int verbose)
199{
200 char* name; /* Zu erzeugender Dateiname */
201 name = (char*)
202 Malloc(strlen(P->Files.default_path) + strlen(P->Files.mainname) + strlen(postfix) + strlen(suffix) + 6,"OpenFileNoPost");
203 sprintf(name, "%s%s%s.%04i%s", P->Files.default_path, P->Files.mainname, suffix, No, postfix);
204 *file = fopen(name, what);
205 if (*file == NULL) {
206 if (verbose) fprintf(stderr,"\n(%i)Error: Cannot open file: %s\n", P->Par.me, name);
207 Free(name, "OpenFileNoPost: name");
208 return(0);
209 } else {
210 if(verbose) fprintf(stderr,"(%i) File is open: %s\n", P->Par.me, name);
211 Free(name, "OpenFileNoPost: name");
212 return(1);
213 }
214}
215
216/** Opens a file with FileData::mainname+suffix+"."+No1(4 digits)+"."+No2(4 digits).
217 * Only the path under which the main programme resides is tried.
218 * \param *P Problem at hand
219 * \param **file file pointer array
220 * \param *suffix suffix after mainname
221 * \param No1 first number with up to four digits
222 * \param No2 second number with up to four digits
223 * \param *what access parameter for the file: r, w, rw, r+, w+ ...
224 * \param verbose 1 - print status, 0 - don't print anything
225 * \return 0 - could not open file, 1 - file is open
226 */
227int OpenFileNoNo(struct Problem *P, FILE** file, const char* suffix, int No1, int No2, const char* what, int verbose)
228{ /* zuerst suffix; No1: lfd, No2: procId */
229 char *name;
230 name = (char*)
231 Malloc(strlen(P->Files.default_path) + strlen(P->Files.mainname) + strlen(suffix) + 5 + 6 + 1,"OpenFileNoNo");
232 sprintf(name,"%s%s%s.%04i.%04i", P->Files.default_path, P->Files.mainname, suffix, No1, No2);
233 *file = fopen(name, what);
234 if(*file == NULL) {
235 if (verbose) fprintf(stderr,"\n(%i)Error: Cannot open file: %s\n", P->Par.me, name);
236 Free(name, "OpenFileNoNo: name");
237 return(0);
238 }
239 if(verbose) fprintf(stderr,"(%i) File is open: %s\n", P->Par.me, name);
240 Free(name, "OpenFileNoNo: name");
241 return(1);
242}
243
244/** Transformation of wave function of Riemann level to zeroth before output as Vis.
245 * \param *RT RiemannTensor structure, contains RiemannTensor::LatticeLevel
246 * \param *source source wave function array
247 * \param *dest destination wave function array
248 * \param NF dimensional factor (NDIM, generally 3)
249 */
250static void OutVisPosRTransformPosNFRto0(const struct RiemannTensor *RT, fftw_real *source, fftw_real *dest, const int NF)
251{
252 struct LatticeLevel *Lev = RT->LevR;
253 int es = Lev->NUp0[2]*NF;
254 unsigned int cpyes = sizeof(fftw_real)*es;
255 int nx=Lev->Plan0.plan->local_nx,ny=Lev->N[1],nz=Lev->N[2],Nx=Lev->NUp0[0],Ny=Lev->NUp0[1];
256 int lx,ly,z,Lx,Ly;
257 for(lx=0; lx < nx; lx++)
258 for(Lx=0; Lx < Nx; Lx++)
259 for(ly=0; ly < ny; ly++)
260 for(Ly=0; Ly < Ny; Ly++)
261 for(z=0; z < nz; z++) {
262 memcpy( &dest[es*(z+nz*(Ly+Ny*(ly+ny*(Lx+Nx*lx))))],
263 &source[es*(Ly+Ny*(Lx+Nx*(z+nz*(ly+ny*lx))))],
264 cpyes);
265 }
266}
267
268
269/** prints Norm of each wave function to screen.
270 * \param *out output destination (eg. stdout)
271 * \param *P Problem at hand
272 */
273void OutputNorm (FILE *out, struct Problem *P) {
274 struct Lattice *Lat = &P->Lat;
275 struct Psis *Psi = &Lat->Psi;
276 struct LatticeLevel *Lev = P->R.LevS;
277 struct OnePsiElement *OnePsi, *LOnePsi;
278 int i;
279
280 for (i=0;i<Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT;i++) {
281 OnePsi =&Psi->AllPsiStatus[i];
282 if (OnePsi->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) { // local one
283 LOnePsi = &Psi->LocalPsiStatus[OnePsi->MyLocalNo];
284 fprintf(out,"(%i) Norm of Psi %i: %e\n", P->Par.me, OnePsi->MyGlobalNo, GramSchGetNorm2(P,Lev,Lev->LPsi->LocalPsi[OnePsi->MyLocalNo]));
285 }
286 }
287}
288
289/** Output of current Psis state of source level RunStruct::LevS's LevelPsi::LocalPsi to file \ref suffixsrcpsidat.
290 * In case of process 0, the doc file is written in a parsable way with minimisation type RunStruct#CurrentMin, level number
291 * LatticeLevel#LevelNo, and number of grid nodes LatticeLevel#N.
292 * The two (three) different Psis::SpinType's are discerned and in case of SpinUpDown separate data files opened.
293 *
294 * Then for every global wave function of the desired type each coefficient of the reciprocal grid is copied into
295 * Density::DensityCArray[TempDensity], fouriertransformed, copied into Density::DensityArray[TempDensity].
296 *
297 * As the file output is only handled by process 0, all other coefficient shares are sent within the Psi group to which
298 * the current global wave function belongs to process 0 of the Psi group and from there on to process 0 of all via
299 * MPI.
300 * \param *P Problem at hand
301 * \param type Current minimisation state
302 * \return 0 - file written, 1 - unable to open files for writing
303 * \note This serves as a backup file, when the process is terminated and one would like to restart it at the
304 * current calculation lateron, see ReadSrcPsiDensity(). Note also that it is not necessary to specify the
305 * same number of processes on later restart, any number may be used under the condition that the number of
306 * grid nodes match and that there 2 sharing wave functions in case of SpinUpDown.
307 * \sa ReadSrcPsiDensity() - same for Reading the coefficients, TestReadnWriteSrcDensity() - checks both routines against
308 * each other
309 */
310int OutputSrcPsiDensity(struct Problem *P, enum PsiTypeTag type)
311{
312 int i,j,k, Index, zahl, owner;
313 struct Lattice *Lat = &P->Lat;
314 //struct RunStruct *R = &P->R;
315 struct fft_plan_3d *plan = Lat->plan;
316 struct LatticeLevel *LevS = P->R.LevS;
317 struct Psis *Psi = &Lat->Psi;
318 fftw_complex *work = (fftw_complex *)LevS->Dens->DensityArray[TempDensity];
319 double *destpsiR = (double *)LevS->Dens->DensityArray[TempDensity];
320 fftw_real *srcpsiR = (fftw_real *)LevS->Dens->DensityCArray[TempDensity];
321 fftw_complex *srcpsiC = (fftw_complex *)LevS->Dens->DensityCArray[TempDensity];
322 FILE *SrcPsiData, *SrcPsiDoc;
323 char *suffixdat, *suffixdoc;
324 MPI_Status status;
325 struct OnePsiElement *OnePsiA, *LOnePsiA;
326 fftw_complex *LPsiDatA;
327 int Num = 0, colorNo = 0;
328 int Sent = 0, sent = 0;
329
330 SpeedMeasure(P,ReadnWriteTime,StartTimeDo);
331 suffixdat = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "OutputSrcPsiDensity: *suffixdat");
332 suffixdoc = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "OutputSrcPsiDensity: *suffixdoc");
333 sprintf(suffixdat, ".%.254s.L%i", P->R.MinimisationName[type], LevS->LevelNo);
334 strncpy (suffixdoc, suffixdat, MAXSTRINGSIZE);
335 // for the various spin cases, output the doc-file if it's process 0
336 if (P->Par.me_comm_ST == 0) { // if we are process 0 of SpinDouble or SpinUp&-Down
337 switch (Lat->Psi.PsiST) {
338 case SpinDouble:
339 colorNo = 0;
340 strncat (suffixdat, suffixsrcpsidat, MAXSTRINGSIZE-strlen(suffixdat));
341 strncat (suffixdoc, suffixsrcpsidoc, MAXSTRINGSIZE-strlen(suffixdoc));
342 Num = Lat->Psi.GlobalNo[PsiMaxNoDouble];
343 break;
344 case SpinUp:
345 colorNo = 0;
346 strncat (suffixdat, suffixsrcpsiupdat, MAXSTRINGSIZE-strlen(suffixdat));
347 strncat (suffixdoc, suffixsrcpsiupdoc, MAXSTRINGSIZE-strlen(suffixdoc));
348 Num = Lat->Psi.GlobalNo[PsiMaxNoUp];
349 break;
350 case SpinDown:
351 colorNo = 1;
352 strncat (suffixdat, suffixsrcpsidowndat, MAXSTRINGSIZE-strlen(suffixdat));
353 strncat (suffixdoc, suffixsrcpsidowndoc, MAXSTRINGSIZE-strlen(suffixdoc));
354 Num = Lat->Psi.GlobalNo[PsiMaxNoDown];
355 break;
356 }
357 if (!OpenFileNo(P, &SrcPsiData, suffixdat, colorNo, "wb",P->Call.out[ReadOut])) { // open SourcePsiData as write binary
358 fprintf(stderr,"(%i) Error opening file with suffix %s for writing!\n",P->Par.me, suffixdat);
359 return 1;
360 }
361 if (!OpenFile(P, &SrcPsiDoc, suffixdoc, "w",P->Call.out[ReadOut])) { // open the (text) doc file
362 fprintf(stderr,"(%i) Error opening file with suffix %s for writing!\n",P->Par.me, suffixdoc);
363 return 1;
364 }
365 fprintf(SrcPsiDoc, "Mintype\t%i\n", (int)type);
366 fprintf(SrcPsiDoc, "LevelNo\t%i\n", LevS->LevelNo);
367 fprintf(SrcPsiDoc, "GridNodes\t%i\t%i\t%i\n", LevS->N[0], LevS->N[1], LevS->N[2]);
368 fprintf(SrcPsiDoc, "PsiNo\t%i\t%i\n", Num, P->Lat.Psi.GlobalNo[PsiMaxAdd]);
369 fprintf(SrcPsiDoc, "Epsilon\t%lg\t%lg\n", P->R.RelEpsTotalEnergy, P->R.RelEpsKineticEnergy);
370 for (i = 0; i < P->Par.Max_my_color_comm_ST_Psi; i++) {
371 fprintf(SrcPsiDoc, "\t%i", Lat->Psi.RealAllLocalNo[i]); // print number of local Psis
372 }
373 fprintf(SrcPsiDoc, "\n");
374 fclose(SrcPsiDoc);
375 }
376 Free(suffixdat, "OutputSrcPsiDensity: *suffixdat");
377 Free(suffixdoc, "OutputSrcPsiDensity: *suffixdoc");
378
379 // send/receive around and write share of coefficient array of each wave function
380 MPI_Allreduce(&sent, &Sent, 1, MPI_INT, MPI_SUM, P->Par.comm_ST); // catch all at the starter line
381 if (P->Call.out[PsiOut]) fprintf(stderr,"(%i) me (%i/%i) \t Psi (%i/%i)\t PsiT (%i/%i)\n", P->Par.me, P->Par.me_comm_ST, P->Par.Max_me_comm_ST, P->Par.me_comm_ST_Psi, P->Par.Max_me_comm_ST_Psi, P->Par.me_comm_ST_PsiT, P->Par.Max_me_comm_ST_PsiT);
382 k = -1; // k is global PsiNo counter for the desired group
383 for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions (plus the extra one for each process)
384 OnePsiA = &Psi->AllPsiStatus[j]; // grab OnePsiA
385 if (OnePsiA->PsiType == type) { // only take desired minimisation group
386 k++;
387 owner = 0; // notes down in process 0 of each psi group the owner of the next coefficient share
388 //fprintf(stderr,"(%i) ST_Psi: OnePsiA %i\tP->Par.me %i\n", P->Par.me,OnePsiA->my_color_comm_ST_Psi,P->Par.my_color_comm_ST_Psi);
389 if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) { // Belongs to my Psi group?
390 LOnePsiA = &Psi->LocalPsiStatus[OnePsiA->MyLocalNo];
391 LPsiDatA = LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo];
392 SetArrayToDouble0((double *)srcpsiR, LevS->Dens->TotalSize*2); // zero DensityCArray[TempDensity]
393 for (i=0;i<LevS->MaxG;i++) { // for each every unique G grid vector
394 Index = LevS->GArray[i].Index;
395 srcpsiC[Index].re = LPsiDatA[i].re; // copy real value
396 srcpsiC[Index].im = LPsiDatA[i].im; // copy imaginary value
397 }
398 for (i=0; i<LevS->MaxDoubleG; i++) { // also for every doubly appearing G vector (symmetry savings)
399 srcpsiC[LevS->DoubleG[2*i+1]].re = srcpsiC[LevS->DoubleG[2*i]].re;
400 srcpsiC[LevS->DoubleG[2*i+1]].im = -srcpsiC[LevS->DoubleG[2*i]].im;
401 }
402 // do an fft transform from complex to real on these srcPsiR
403 fft_3d_complex_to_real(plan, LevS->LevelNo, FFTNF1, srcpsiC, work);
404
405 for (i=0; i < LevS->Dens->LocalSizeR; i++)
406 destpsiR[i] = (double)srcpsiR[i];
407 } else
408 LOnePsiA = NULL;
409
410 if (P->Par.me_comm_ST == 0) { // if we are process 0 of all, only we may access the file
411 for (i=0; i<P->Par.Max_me_comm_ST_Psi;i++) { // for each share of the coefficient in the PsiGroup
412 if (LOnePsiA == NULL) { // if it's not local, receive coefficients from correct PsiGroup (process 0 within that group)
413 if (MPI_Recv( destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, OnePsiA->my_color_comm_ST_Psi, OutputSrcPsiTag, P->Par.comm_ST_PsiT, &status ) != MPI_SUCCESS)
414 Error(SomeError, "OutputSrcPsiDensity: MPI_Recv of loaded coefficients failed!");
415 MPI_Get_count(&status, MPI_DOUBLE, &zahl);
416 if (zahl != LevS->Dens->LocalSizeR) // check number of elements
417 fprintf(stderr,"(%i)OutputSrcPsiDensity: MPI_Recv of loaded coefficients of GlobalNo %i, owner %i failed: Too few coefficients - %i instead of %i!\n", P->Par.me, k, i, zahl, LevS->Dens->LocalSizeR);
418 //else
419 //fprintf(stderr,"(%i)OutputSrcPsiDensity: MPI_Recv of loaded coefficients of GlobalNo %i, owner %i succeeded!\n", P->Par.me, k, i);
420 } else { // if it's local ...
421 if (i != 0) { // but share of array not for us, receive from owner process within Psi group
422 if (MPI_Recv( destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, i, OutputSrcPsiTag, P->Par.comm_ST_Psi, &status ) != MPI_SUCCESS)
423 Error(SomeError, "OutputSrcPsiDensity: MPI_Recv of loaded coefficients failed!");
424 MPI_Get_count(&status, MPI_DOUBLE, &zahl);
425 if (zahl != LevS->Dens->LocalSizeR) // check number of elements
426 fprintf(stderr,"(%i)OutputSrcPsiDensity: MPI_Recv of loaded coefficients of GlobalNo %i, owner %i failed: Too few coefficients - %i instead of %i!\n", P->Par.me, k, i, zahl, LevS->Dens->LocalSizeR);
427 //else
428 //fprintf(stderr,"(%i)OutputSrcPsiDensity: MPI_Recv of loaded coefficients of GlobalNo %i, owner %i succeeded!\n", P->Par.me, k, i);
429 } // otherwise it was our share already
430 }
431 // store the final share on disc
432 if ((zahl = fwrite(destpsiR, sizeof(double), (size_t)(LevS->Dens->LocalSizeR), SrcPsiData)) != (size_t)(LevS->Dens->LocalSizeR)) {
433 fclose(SrcPsiData);
434 //if (P->Par.me == 0)
435 fprintf(stderr, "(%i)OutputSrcPsiDensity: only %i bytes written instead of expected %i\n", P->Par.me, zahl, LevS->Dens->LocalSizeR);
436 Error(SomeError,"OutputSrcPsiDensity: fwrite Error");
437 }
438 }
439 } else { // if we are not process 0 of all, we are but a deliverer
440 if (LOnePsiA != NULL) { // send if it's local
441 if (P->Par.me_comm_ST_Psi == 0) { // if we are process 0 in the group, send final share to our process 0
442 for (owner = 0; owner < P->Par.Max_me_comm_ST_Psi; owner++) { // for all processes of our Psi group
443 if (owner != 0) { // still not our share of coefficients, receive from owner in our Psi group (increasing owner)
444 if (MPI_Recv( destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, owner, OutputSrcPsiTag, P->Par.comm_ST_Psi, &status ) != MPI_SUCCESS)
445 Error(SomeError, "OutputSrcPsiDensity: MPI_Recv of loaded coefficients failed!");
446 MPI_Get_count(&status, MPI_DOUBLE, &zahl);
447 if (zahl != LevS->Dens->LocalSizeR) // check number of elements
448 fprintf(stderr,"(%i)OutputSrcPsiDensity: MPI_Recv of loaded coefficients of GlobalNo %i, owner %i failed: Too few coefficients - %i instead of %i!\n", P->Par.me, k, owner, zahl, LevS->Dens->LocalSizeR);
449 //else
450 //fprintf(stderr,"(%i)OutputSrcPsiDensity: MPI_Recv of loaded coefficients of GlobalNo %i, owner %i succeeded!\n", P->Par.me, k, owner);
451 } else sent++; // only count sent if it was our share
452
453 if (MPI_Send(destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, 0, OutputSrcPsiTag, P->Par.comm_ST_PsiT) != MPI_SUCCESS)
454 Error(SomeError, "OutputSrcPsiDensity: MPI_Send of loaded coefficients failed!");
455 //else
456 //fprintf(stderr,"(%i)OutputSrcPsiDensity: MPI_Send to process %i in PsiT group of loaded coefficients GlobalNo %i succeeded!\n", P->Par.me, 0, k);
457 }
458 } else {
459 sent++;
460 if (MPI_Send(destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, 0, OutputSrcPsiTag, P->Par.comm_ST_Psi) != MPI_SUCCESS)
461 Error(SomeError, "OutputSrcPsiDensity: MPI_Send of loaded coefficients failed!");
462 //else
463 //fprintf(stderr,"(%i)OutputSrcPsiDensity: MPI_Send to process %i in Psi group of loaded coefficients GlobalNo %i succeeded!\n", P->Par.me, 0, k);
464 }
465 }
466 // otherwise we don't have anything to do with this
467 }
468 }
469 }
470 MPI_Allreduce(&sent, &Sent, 1, MPI_INT, MPI_SUM, P->Par.comm_ST); // catch all again at finish
471 if (P->Call.out[PsiOut]) fprintf(stderr,"(%i) Out of %i shares %i had to be sent in total, %i from this process alone.\n", P->Par.me, P->Par.Max_me_comm_ST_Psi*Psi->NoOfPsis, Sent, sent);
472 if (!(P->Par.me_comm_ST))
473 fclose(SrcPsiData);
474 SpeedMeasure(P,ReadnWriteTime,StopTimeDo);
475
476 return 0;
477}
478
479/** Tests whether writing and successant reading of coefficient array is working correctly.
480 * The local wave function array is written to a disc (\sa OutputSrcPsiDensity()), the by \a wavenr
481 * specified coefficient array copied to OldPsiDat and afterwards read again via ReadSrcPsiDensity().
482 * Comparison per process of each local coefficient shows incorrect read or writes.
483 * \param *P Problem at hand
484 * \param type minimisation type array to test for read and write
485 * \return 1 - successful, 0 - test failed
486 */
487int TestReadnWriteSrcDensity(struct Problem *P, enum PsiTypeTag type)
488{
489 struct RunStruct *R = &P->R;
490 struct LatticeLevel *LevS = R->LevS;
491 struct Lattice *Lat = &P->Lat;
492 struct Psis *Psi = &Lat->Psi;
493 int i,k;
494 fftw_complex *destpsiC, *srcpsiC;
495
496 //fprintf(stderr,"(%i)TestReadnWriteSrcDensity\n",P->Par.me);
497 // write whole array of type to disc
498 OutputSrcPsiDensity(P,type);
499 debug(P,"array written");
500
501 // copy specified array to OldPsiDat
502 for (k=0; k < Lat->Psi.LocalNo; k++) // for every local wave function of type, copy coefficients
503 if (Psi->LocalPsiStatus[k].PsiType == type) { // ... yet only for given type
504 srcpsiC = LevS->LPsi->LocalPsi[k];
505 destpsiC = LevS->LPsi->OldLocalPsi[k - Psi->TypeStartIndex[type]];
506 for (i=0;i<LevS->MaxG;i++) { // for each every unique G grid vector
507 destpsiC[i].re = srcpsiC[i].re; // copy real value
508 destpsiC[i].im = srcpsiC[i].im; // copy imaginary value
509 }
510 }
511 debug(P,"array copied");
512
513 // read whole array again
514 if (!ReadSrcPsiDensity(P,type,0,R->LevSNo))
515 return 0;
516 debug(P,"array read");
517
518 // compare with copied array
519 for (k=0; k < Lat->Psi.LocalNo; k++) // for every local wave function of type, compare coefficients
520 if (Psi->LocalPsiStatus[k].PsiType == type) { // ... yet only for given type
521 srcpsiC = LevS->LPsi->LocalPsi[k];
522 destpsiC = LevS->LPsi->OldLocalPsi[k - Psi->TypeStartIndex[type]];
523 for (i=0;i<LevS->MaxG;i++) // for each every unique G grid vector
524 if ((fabs(destpsiC[i].re - srcpsiC[i].re) >= MYEPSILON) ||(fabs(destpsiC[i].im - srcpsiC[i].im) >= MYEPSILON)) {
525 fprintf(stderr,"(%i)TestReadnWriteSrcDensity: First difference at index %i - %lg+i%lg against loaded %lg+i%lg\n",P->Par.me, i, srcpsiC[i].re, srcpsiC[i].im,destpsiC[i].re,destpsiC[i].im);
526 return 0;
527 }
528 }
529 debug(P,"array compared");
530 fprintf(stderr,"(%i)TestReadnWriteSrcDensity: OK!\n",P->Par.me);
531 return 1;
532}
533
534
535/** Read Psis state from an earlier run.
536 * The doc file is opened, mesh sizes LatticeLevel::N[], global number of Psis read and checked against the known
537 * values in the inital level RunStruct::LevS.
538 * Note, only process 0 handles the files, all read coefficients are transfered to their respective owners via MPI
539 * afterwards. Here, process 0 of a certain Psi group is used as a transferer for the coefficients of the other processes
540 * in this Psi group. He receives them all from process 0 and sends them onward accordingly. The complete set of
541 * coefficients on the real grid for one wave function in the Psi group are transformed into complex wave function
542 * coefficients by the usual fft procedure (see ChangeToLevUp()).
543 *
544 * \param *P Problem at hand
545 * \param type minimisation type to read
546 * \param test whether to just test for presence of files (1) or really read them (0)
547 * \param LevSNo level number to be read
548 * \note This is the counterpart to OutputSrcPsiDensity().
549 * \return 1 - success, 0 - failure
550 * \note It is not necessary to specify the same number of processes on later restart, any number may be used under
551 * the condition that the number of grid nodes match and that there at least 2 processes sharing wave functions
552 * in case of SpinUpDown.
553 * \sa OutputSrcPsiDensity() - same for writing the coefficients, TestReadnWriteSrcDensity() - checks both routines against
554 * each other
555 */
556int ReadSrcPsiDensity(struct Problem *P, enum PsiTypeTag type, int test, int LevSNo)
557{
558 int i, j, k, Index, owner;
559 struct RunStruct *R = &P->R;
560 struct Lattice *Lat = &P->Lat;
561 struct fft_plan_3d *plan = Lat->plan;
562 struct LatticeLevel *LevS = R->LevS; // keep open for LevelNo read from file
563 struct Psis *Psi = &Lat->Psi;
564 //struct Energy *E = Lat->E;
565 fftw_complex *work;
566 double *destpsiR;
567 fftw_real *srcpsiR;
568 fftw_complex *srcpsiC;
569 FILE *SrcPsiData, *SrcPsiDoc;
570 int N[NDIM], GlobalNo[2];
571 int LevelNo, readnr=0;
572 int zahl, signal = test ? 1 : 2; // 0 - ok, 1 - test failed, 2 - throw Error
573 char suffixdat[MAXSTRINGSIZE], suffixdoc[MAXSTRINGSIZE];
574 int read_type, Num = 0, colorNo = 0;
575 char spin[20];
576 double Eps[2];
577 MPI_Status status;
578 struct OnePsiElement *OnePsiA, *LOnePsiA;
579 int Recv=0, recv=0;
580
581 SpeedMeasure(P,ReadnWriteTime,StartTimeDo);
582 sprintf(suffixdat, ".%.254s.L%i", P->R.MinimisationName[type], LevSNo);
583 strncpy (suffixdoc, suffixdat, MAXSTRINGSIZE);
584 // Depending on Psis::SpinType the source psi doc file is opened and header written
585 switch (Lat->Psi.PsiST) {
586 case SpinDouble:
587 colorNo = 0;
588 strncat (suffixdat, suffixsrcpsidat, MAXSTRINGSIZE-strlen(suffixdat));
589 strncat (suffixdoc, suffixsrcpsidoc, MAXSTRINGSIZE-strlen(suffixdoc));
590 strncpy (spin, "GlobalNoSpinDouble", 20);
591 Num = Lat->Psi.GlobalNo[PsiMaxNoDouble];
592 break;
593 case SpinUp:
594 colorNo = 0;
595 strncat (suffixdat, suffixsrcpsiupdat, MAXSTRINGSIZE-strlen(suffixdat));
596 strncat (suffixdoc, suffixsrcpsiupdoc, MAXSTRINGSIZE-strlen(suffixdoc));
597 strncpy (spin, "GlobalNoSpinUp", 20);
598 Num = Lat->Psi.GlobalNo[PsiMaxNoUp];
599 break;
600 case SpinDown:
601 colorNo = 1;
602 strncat (suffixdat, suffixsrcpsidowndat, MAXSTRINGSIZE-strlen(suffixdat));
603 strncat (suffixdoc, suffixsrcpsidowndoc, MAXSTRINGSIZE-strlen(suffixdoc));
604 strncpy (spin, "GlobalNoSpinDown", 20);
605 Num = Lat->Psi.GlobalNo[PsiMaxNoDown];
606 break;
607 }
608 // open doc file ...
609 if (!(P->Par.me_comm_ST)) {
610 if (!OpenFile(P, &SrcPsiDoc, suffixdoc, "r", test ? 0 : P->Call.out[ReadOut])) { // open doc file
611 debug(P,"ReadSrcPsiDensity: doc file pointer NULL\n");
612 if (test) {
613 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
614 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
615 return 0;
616 }
617 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
618 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
619 Error(SomeError,"ReadSrcPsiDensity: cannot open doc file!");
620 }
621 // ... and parse critical ...
622 readnr += ParseForParameter(0,SrcPsiDoc,"Mintype",0,1,1,int_type,(int *)&read_type, 1, test ? optional : critical);
623 readnr += ParseForParameter(0,SrcPsiDoc,"LevelNo",0,1,1,int_type,&LevelNo,1, test ? optional : critical);
624 readnr += 3*ParseForParameter(0,SrcPsiDoc,"GridNodes",0,3,1,row_int,&N[0], 1, test ? optional : critical);
625 readnr += 2*ParseForParameter(0,SrcPsiDoc,"PsiNo",0,2,1,row_int,&GlobalNo[0], 1, test ? optional : critical);
626 // and optional items ...
627 if (ParseForParameter(0,SrcPsiDoc,"Epsilon",0,2,1,row_double,&Eps[0],1,optional))
628 if ((P->Call.ReadSrcFiles == 1) && ((Eps[1] < R->RelEpsKineticEnergy) || (Eps[0] < R->RelEpsTotalEnergy))) {
629 //fprintf(stderr,"(%i) Eps %lg %lg\tRelEps %lg %lg\n", P->Par.me, Eps[0], Eps[1], R->RelEpsTotalEnergy, R->RelEpsKineticEnergy);
630 fprintf(stderr,"(%i) NOTE: Doing minimization after source file parsing due to smaller specified epsilon stop conditions.\n",P->Par.me);
631 P->Call.ReadSrcFiles = 2; // do minimisation even after loading
632 }
633 if (readnr != 7) { // check number of items read
634 debug(P, "ReadSrcPsiDensity: too few doc items in file\n");
635 fclose(SrcPsiDoc);
636 if (test) {
637 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
638 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
639 return 0;
640 }
641 fprintf(stderr,"ReadSrcPsiDensity: Only %i items read!\n",readnr);
642 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
643 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
644 Error(SomeError, "ReadSrcPsiDensity: read error");
645 }
646 // check if levels match
647 if (LevSNo != LevelNo) {
648 debug(P,"ReadSrcPsiDensity: mismatching levels\n");
649 fclose(SrcPsiDoc);
650 if (test) {
651 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
652 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
653 return 0;
654 }
655 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
656 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
657 Error(SomeError,"ReadSrcPsiDensity: Mismatching levels!");
658 } else {
659 LevS = &P->Lat.Lev[LevelNo];
660 }
661
662 // check if systems in memory and file match
663 if ((read_type != R->CurrentMin) || (N[0] != LevS->N[0]) || (N[1] != LevS->N[1]) || (N[2] != LevS->N[2]) || (GlobalNo[0] != Num) || (GlobalNo[1] != Lat->Psi.GlobalNo[PsiMaxAdd])) { // check read system
664 debug(P,"ReadSrcPsiDensity: srcpsi file does not fit to system\n");
665 fclose(SrcPsiDoc);
666 if (test) {
667 fprintf(stderr,"(%i) Min\t N(x,y,z)\tPsiNo+AddNo\n file: %s\t %i %i %i\t %i + %i\nsystem: %s\t %d %d %d\t %d + %d\n",P->Par.me, R->MinimisationName[read_type], N[0], N[1], N[2], GlobalNo[0], GlobalNo[1], R->MinimisationName[R->CurrentMin], LevS->N[0] , LevS->N[1], LevS->N[2], Lat->Psi.GlobalNo[PsiMaxNoDouble], Lat->Psi.GlobalNo[PsiMaxAdd]);
668 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
669 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
670 return 0;
671 }
672 fprintf(stderr,"ReadSrcPsiDensity: Type %i != CurrentMin %i || N[0] %i != %i || N[1] %i != %i || N[2] %i != %i || %s %i + %i != %i + %i\n", read_type, R->CurrentMin, N[0], LevS->N[0], N[1], LevS->N[1], N[2], LevS->N[2], spin, GlobalNo[0], GlobalNo[1], Num, P->Lat.Psi.GlobalNo[PsiMaxAdd]);
673 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
674 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
675 Error(SomeError,"ReadSrcPsiDensity: srcpsi file does not fit to system");
676 }
677 signal = 0; // everything went alright, signal ok
678 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
679 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
680 } else { // others wait for signal from root process
681 if (MPI_Bcast(&signal,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
682 Error(SomeError,"ReadSrcPsiDensity: Bcast of signal failed\n");
683 if (signal == 1)
684 return 0;
685 else if (signal == 2)
686 Error(SomeError, "ReadSrcPsiDensity: Something went utterly wrong, see root process");
687 else if (P->Call.out[PsiOut])
688 fprintf(stderr,"(%i) ReadSrcPsiDensity: Everything went alright so far\n", P->Par.me);
689 }
690 if (MPI_Bcast(&LevelNo,1,MPI_INT,0,P->Par.comm_ST) != MPI_SUCCESS)
691 Error(SomeError,"ReadSrcPsiDensity: Bcast of LevelNo failed\n");
692 LevS = &P->Lat.Lev[LevelNo];
693 //if (!test) fprintf(stderr,"(%i) LevelSNo %i\n", P->Par.me, LevS->LevelNo);
694
695 if (!test) {
696 // set some pointers for work to follow
697 work = (fftw_complex *)LevS->Dens->DensityArray[TempDensity];
698 destpsiR = (double *)LevS->Dens->DensityArray[TempDensity];
699 srcpsiR = (fftw_real *)LevS->Dens->DensityCArray[TempDensity];
700 srcpsiC = (fftw_complex *)LevS->Dens->DensityCArray[TempDensity];
701
702 // read share of coefficient array for each wave function and send/receive around
703 owner = 0;
704 MPI_Allreduce (&recv, &Recv, 1, MPI_INT, MPI_SUM, P->Par.comm_ST);
705 //fprintf(stderr,"(%i) me (%i/%i) \t Psi (%i/%i)\t PsiT (%i/%i)\n", P->Par.me, P->Par.me_comm_ST, P->Par.Max_me_comm_ST, P->Par.me_comm_ST_Psi, P->Par.Max_me_comm_ST_Psi, P->Par.me_comm_ST_PsiT, P->Par.Max_me_comm_ST_PsiT);
706 k = -1; // k is global PsiNo counter for the desired group
707 for (j=0; j < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; j++) { // go through all wave functions (plus the extra one for each process)
708 OnePsiA = &Psi->AllPsiStatus[j]; // grab OnePsiA
709 if (OnePsiA->PsiType == type) { // only take desired minimisation group
710 k++;
711 //fprintf(stderr,"(%i) ST_Psi: OnePsiA %i\tP->Par.my_color_comm_ST_Psi %i\n", P->Par.me,OnePsiA->my_color_comm_ST_Psi,P->Par.my_color_comm_ST_Psi);
712 if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // Belongs to my Psi group?
713 LOnePsiA = &Psi->LocalPsiStatus[OnePsiA->MyLocalNo];
714 else
715 LOnePsiA = NULL;
716
717 if (P->Par.me_comm_ST == 0) { // if we are process 0 of all, we may access file
718 if (!OpenFileNo(P, &SrcPsiData, suffixdat, colorNo, "r", test ? 0 : P->Call.out[ReadOut])) {
719 Error(SomeError,"ReadSrcPsiDensity: cannot open data file");
720 }
721 for (i=P->Par.Max_me_comm_ST_Psi-1; i>=0;i--) { // load coefficients
722 fseek( SrcPsiData, (long)((k*N[0]*N[1]*N[2]+i*((long)LevS->Dens->LocalSizeR))*sizeof(double)), SEEK_SET); // seek to beginning of this process' coefficients
723 // readin
724 if ((zahl = fread(destpsiR, sizeof(double), (size_t)(LevS->Dens->LocalSizeR), SrcPsiData)) != (size_t)LevS->Dens->LocalSizeR) {
725 fclose(SrcPsiData);
726 fprintf(stderr, "(%i)ReadSrcPsiDensity: only %i bytes read instead of expected %i\n", P->Par.me, zahl, LevS->Dens->LocalSizeR);
727 Error(SomeError,"ReadSrcPsiDensity: fread Error");
728 }
729 if (LOnePsiA == NULL) { // if it's not local, send away coefficients to correct PsiGroup (process 0 within that group)
730 if (MPI_Send(destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, OnePsiA->my_color_comm_ST_Psi, ReadSrcPsiTag, P->Par.comm_ST_PsiT) != MPI_SUCCESS)
731 Error(SomeError, "ReadSrcPsiDensity: MPI_Send of loaded coefficients failed!");
732 //else
733 //fprintf(stderr,"(%i)ReadSrcPsiDensity: MPI_Send to process %i of loaded coefficients GlobalNo %i, owner %i succeeded!\n", P->Par.me, OnePsiA->my_color_comm_ST_Psi, k, i);
734 } else { // if it's local ...
735 if (i != 0) { // but share of array not for us, send to owner process within Psi group
736 if (MPI_Send(destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, i, ReadSrcPsiTag, P->Par.comm_ST_Psi) != MPI_SUCCESS)
737 Error(SomeError, "ReadSrcPsiDensity: MPI_Send within Psi group of loaded coefficients failed!");
738 //else
739 //fprintf(stderr,"(%i)ReadSrcPsiDensity: MPI_Send to process %i within Psi group of loaded coefficients GlobalNo %i succeeded!\n", P->Par.me, i, k);
740 } // otherwise it was our share already
741 }
742 }
743 } else {
744 if (LOnePsiA != NULL) { // receive
745 if (P->Par.me_comm_ST_Psi == 0) { // if we are process 0 in the group, receive share from process 0 of all
746 for (owner = P->Par.Max_me_comm_ST_Psi -1; owner >=0; owner--) { // for all processes of our Psi group
747 if (MPI_Recv(destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, 0, ReadSrcPsiTag, P->Par.comm_ST_PsiT, &status) != MPI_SUCCESS)
748 Error(SomeError, "ReadSrcPsiDensity: MPI_Recv of loaded coefficients failed!");
749 MPI_Get_count(&status, MPI_DOUBLE, &zahl);
750 if (zahl != LevS->Dens->LocalSizeR) // check number of elements
751 fprintf(stderr,"(%i)ReadSrcPsiDensity: MPI_Recv from process 0 of loaded coefficients of GlobalNo %i, owner %i failed: Too few coefficients - %i instead of %i!\n", P->Par.me, k, owner, zahl, LevS->Dens->LocalSizeR);
752 //else
753 //fprintf(stderr,"(%i)ReadSrcPsiDensity: MPI_Recv from process 0 of loaded coefficients of GlobalNo %i, owner %i succeeded!\n", P->Par.me, k, owner);
754
755 if (owner != 0) { // not our share of coefficients, send to owner in our Psi group
756 if (MPI_Send(destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, owner, ReadSrcPsiTag, P->Par.comm_ST_Psi) != MPI_SUCCESS)
757 Error(SomeError, "ReadSrcPsiDensity: MPI_Send within Psi group of loaded coefficients failed!");
758 //else
759 //fprintf(stderr,"(%i)ReadSrcPsiDensity: MPI_Send to process %i within Psi group of loaded coefficients GlobalNo %i succeeded!\n", P->Par.me, owner, k);
760 } else recv++;
761 }
762 // otherwise it's our share!
763 } else { // our share within Psi Group not belonging to process 0 of all
764 recv++;
765 if (MPI_Recv(destpsiR, LevS->Dens->LocalSizeR, MPI_DOUBLE, 0, ReadSrcPsiTag, P->Par.comm_ST_Psi, &status) != MPI_SUCCESS)
766 Error(SomeError, "ReadSrcPsiDensity: MPI_Recv of loaded coefficients failed!");
767 MPI_Get_count(&status, MPI_DOUBLE, &zahl);
768 if (zahl != LevS->Dens->LocalSizeR) // check number of elements
769 fprintf(stderr,"(%i)ReadSrcPsiDensity: MPI_Recv of loaded coefficients of GlobalNo %i, owner %i failed: Too few coefficients - %i instead of %i!\n", P->Par.me, k, P->Par.me_comm_ST_Psi, zahl, LevS->Dens->LocalSizeR);
770 //else
771 //fprintf(stderr,"(%i)ReadSrcPsiDensity: MPI_Recv of loaded coefficients of GlobalNo %i, owner %i succeeded!\n", P->Par.me, k, P->Par.me_comm_ST_Psi);
772 }
773 }
774 // otherwise we don't have anything to do with this
775 }
776
777 if (LOnePsiA != NULL) {
778 SetArrayToDouble0((double *)srcpsiR, LevS->Dens->TotalSize*2);
779 for (i=0; i < LevS->Dens->LocalSizeR; i++) // copy dest to src
780 srcpsiR[i] = (fftw_real)destpsiR[i];
781
782 fft_3d_real_to_complex(plan, LevS->LevelNo, FFTNF1, srcpsiC, work); // fft transform
783 //if (P->Call.out[PsiOut])
784 //fprintf(stderr,"(%i) LevSNo %i\t LocalPsi %p\n", P->Par.me, LevS->LevelNo, LevS->LPsi->LocalPsi[LOnePsiA->MyLocalNo]);
785 for (i=0;i<LevS->MaxG;i++) { // and copy into wave functions coefficients
786 Index = LevS->GArray[i].Index;
787 LevS->LPsi->LocalPsi[LOnePsiA->MyLocalNo][i].re = srcpsiC[Index].re/LevS->MaxN;
788 LevS->LPsi->LocalPsi[LOnePsiA->MyLocalNo][i].im = srcpsiC[Index].im/LevS->MaxN;
789 }
790 }
791 if ((P->Par.me_comm_ST == 0) && (SrcPsiData != NULL)) fclose(SrcPsiData);
792 }
793 }
794 MPI_Allreduce (&recv, &Recv, 1, MPI_INT, MPI_SUM, P->Par.comm_ST);
795 if (P->Call.out[PsiOut]) fprintf(stderr,"(%i) Out of %i shares %i had to be received in total, %i from this process alone.\n", P->Par.me, P->Par.Max_me_comm_ST_Psi*Psi->NoOfPsis, Recv, recv);
796 SpeedMeasure(P,ReadnWriteTime,StopTimeDo);
797 }
798 return 1; // everything went well till the end
799}
800
801/** Creates the density \ref suffixdensdoc and \ref suffixdensdx files for OpenDx.
802 * Opens \ref suffixdensdoc, fills (pos&data file name, byte order, max mesh points, matrix alignment, steps)
803 * and closes it.
804 * Opens \ref suffixdensdx, then for every FileData::*OutVisStep a describing structure for DX is written and
805 * the file closed again.
806 * \param *P Problem at hand
807 * \param me my process number in communicator Psi (0 - do nothing, else - do)
808 */
809static void CreateDensityOutputGeneral(struct Problem *P, const int me)
810{
811 FILE *DensityDoc, *DensityDx;
812 char *posname, *datname, *suffix;
813 struct LatticeLevel *Lev = &P->Lat.Lev[STANDARTLEVEL];
814 unsigned int i, MaxPoints, N[NDIM];
815 double *RB = P->Lat.RealBasis;
816 if (me) return;
817 N[0] = Lev->N[0]*Lev->NUp[0];
818 N[1] = Lev->N[1]*Lev->NUp[1];
819 N[2] = Lev->N[2]*Lev->NUp[2];
820 MaxPoints = (N[0]+1)*(N[1]+1)*(N[2]+1);
821 posname = (char*)
822 Malloc(strlen(P->Files.mainname) + strlen(suffixdenspos) + 3 + 1,"CreateDensityOutputGeneral: posname");
823 sprintf(posname, "%s.L%i%s", P->Files.mainname, Lev->LevelNo, suffixdenspos);
824 datname = (char*)
825 Malloc(strlen(P->Files.mainname) + strlen(suffixdensdat) + 3 + 1,"CreateDensityOutputGeneral: datname");
826 sprintf(datname, "%s.L%i%s", P->Files.mainname, Lev->LevelNo, suffixdensdat);
827 // write doc file
828 suffix = (char *)
829 Malloc(strlen(suffixdensdoc) + 3 + 1,"CreateDensityOutputGeneral: suffix");
830 sprintf(suffix, ".L%i%s", Lev->LevelNo, suffixdensdoc);
831 OpenFile(P, &DensityDoc, suffix, "w",P->Call.out[ReadOut]);
832 fprintf(DensityDoc,"DensityPositions file = %s.####\n", posname);
833 fprintf(DensityDoc,"DensityData file = %s.####\n", datname);
834 fprintf(DensityDoc,"format = ieee float (Bytes %lu) %s\n",(unsigned long) sizeof(float),msb);
835 fprintf(DensityDoc,"points = %i\n", MaxPoints);
836 fprintf(DensityDoc,"majority = row\n");
837 fprintf(DensityDoc,"TimeSeries = %i\n",P->Files.OutVisStep[Lev->LevelNo]+1);
838 fclose(DensityDoc);
839 Free(suffix, "CreateDensityOutputGeneral: suffix");
840 // write DX file
841 suffix = (char *)
842 Malloc(strlen(suffixdensdx) + 3 + 1,"CreateDensityOutputGeneral: suffix");
843 sprintf(suffix, ".L%i%s", Lev->LevelNo, suffixdensdx);
844 OpenFile(P, &DensityDx, suffix, "w",P->Call.out[ReadOut]);
845 for (i=0; i < (unsigned int)P->Files.OutVisStep[Lev->LevelNo]+1; i++) { // for every OutVis step
846 if (i==0) {
847 fprintf(DensityDx,"object \"gridcon\" class gridconnections counts %i %i %i\n\n",(N[0]+1),(N[1]+1),(N[2]+1));
848 if (P->Files.OutputPosType[i] != active)
849 fprintf(DensityDx, "object \"posdens\" class gridpositions counts %i %i %i\norigin 0.0 0.0 0.0\ndelta %f %f %f\ndelta %f %f %f\ndelta %f %f %f\n\n",
850 (N[0]+1),(N[1]+1),(N[2]+1),
851 (float)(RB[0]/N[0]),(float)(RB[1]/N[0]),(float)RB[2]/N[0],
852 (float)(RB[3]/N[1]),(float)(RB[4]/N[1]),(float)RB[5]/N[1],
853 (float)(RB[6]/N[2]),(float)(RB[7]/N[2]),(float)RB[8]/N[2]);
854 }
855 if (P->Files.OutputPosType[i] == active) {
856 fprintf(DensityDx,
857 "object \"pos.%04u\" class array type float rank 1 shape 3 items %i %s binary\n",i,MaxPoints,msb);
858 fprintf(DensityDx,"data file %s.%04u,0\n",posname,i);
859 }
860 fprintf(DensityDx,"attribute \"dep\" string \"positions\"\n");
861 fprintf(DensityDx,"# %lu - %lu Bytes\n\n",MaxPoints*i*(unsigned long)sizeof(float)*NDIM,MaxPoints*(i+1)*(unsigned long)sizeof(float)*NDIM-1);
862
863 fprintf(DensityDx,"object \"dat.%04u\" class array type float rank 0 items %i %s binary\n",i,MaxPoints,msb);
864 fprintf(DensityDx,"data file %s.%04u,0\n",datname,i);
865 fprintf(DensityDx,"attribute \"dep\" string \"positions\"\n");
866 fprintf(DensityDx,"# %lu - %lu Bytes\n\n",MaxPoints*i*(unsigned long)sizeof(float),MaxPoints*(i+1)*(unsigned long)sizeof(float)-1);
867
868 fprintf(DensityDx,"object \"obj.%04u\" class field\n",i);
869 if (P->Files.OutputPosType[i] == active)
870 fprintf(DensityDx,"component \"positions\" \"pos.%04i\"\n",i);
871 if (P->Files.OutputPosType[i] != active)
872 fprintf(DensityDx,"component \"positions\" \"posdens\"\n");
873 fprintf(DensityDx,"component \"connections\" \"gridcon\"\n");
874 fprintf(DensityDx,"component \"data\" \"dat.%04i\"\n",i);
875 }
876 fprintf(DensityDx,"\nobject \"series\" class series\n");
877 for (i=0; i < (unsigned int)P->Files.OutVisStep[Lev->LevelNo]+1; i++)
878 fprintf(DensityDx,"member %i \"obj.%04u\" position %f\n",i,i,(float)i);
879 fprintf(DensityDx,"end\n");
880 fclose(DensityDx);
881 Free(suffix, "CreateDensityOutputGeneral: suffix");
882
883 Free(posname, "CreateDensityOutputGeneral: posname");
884 Free(datname, "CreateDensityOutputGeneral: datname");
885}
886
887/** Calculates the OutVis density of the RiemannTensor level.
888 * The usual pattern arises when a density is fftransformed:
889 * -# over all grid vectors up to MaxG
890 * -# over all doubly grid vectors up to MaxDoubleG
891 * -# call to fft_3d_complex_to_real()
892 *
893 * In this case here followed by call to OutVisPosRTransformPosNFRto0() and finally FileData::work
894 * is copied to FileData::PosR.
895 * \param *Lat Lattice structure, containing Lattice::plan and LatticeLevel
896 * \param *F FileData structure, containing FileData::PosC, FileData::PosR, FileData::work, FileData::Totalsize, FileData::LocalSizeR
897 */
898static void CalculateOutVisDensityPos(struct Lattice *Lat, struct FileData *F/*, const double FactorC_R, const double FactorR_C*/)
899{
900 struct fft_plan_3d *plan = Lat->plan;
901 struct RiemannTensor *RT = &Lat->RT;
902 struct LatticeLevel *LevR = RT->LevR;
903 fftw_complex *destC = F->PosC;
904 fftw_real *destR = F->PosR;
905 fftw_complex *work = F->work;
906 fftw_real *workR = (fftw_real*)work;
907 fftw_complex *PosFactor = F->PosFactor;
908 fftw_complex *posfac, *destpos, *destRCS, *destRCD;
909 fftw_complex *coeff;
910 fftw_complex source;
911 int i, Index, pos, n;
912 int NF = NDIM, MaxNUp = F->MaxNUp, TotalSize = F->TotalSize, LocalSizeR = F->LocalSizeR;
913 SetArrayToDouble0((double *)destC, TotalSize*2);
914 for (i=0;i < LevR->MaxG;i++) {
915 Index = LevR->GArray[i].Index;
916 posfac = &PosFactor[MaxNUp*i];
917 destpos = &destC[MaxNUp*Index*NF];
918 coeff = &RT->Coeff[i];
919 for (pos=0; pos < MaxNUp; pos++) {
920 for (n=0; n < NF; n++) {
921 source.re = coeff[n].re;
922 source.im = coeff[n].im;
923 destpos[n+NF*pos].re = source.re*posfac[pos].re-source.im*posfac[pos].im;
924 destpos[n+NF*pos].im = source.re*posfac[pos].im+source.im*posfac[pos].re;
925 }
926 }
927 }
928 for (i=0; i < LevR->MaxDoubleG; i++) {
929 destRCS = &destC[LevR->DoubleG[2*i]*MaxNUp*NF];
930 destRCD = &destC[LevR->DoubleG[2*i+1]*MaxNUp*NF];
931 for (pos=0; pos < MaxNUp; pos++) {
932 for (n=0; n < NF; n++) {
933 destRCD[n+NF*pos].re = destRCS[n+NF*pos].re;
934 destRCD[n+NF*pos].im = -destRCS[n+NF*pos].im;
935 }
936 }
937 }
938 fft_3d_complex_to_real(plan, LevR->LevelNo, FFTNFRVecUp0, destC, work);
939 OutVisPosRTransformPosNFRto0(RT, destR, workR, NF);
940 memcpy(destR,workR,sizeof(fftw_real)*LocalSizeR);
941}
942
943/** Prepare Density::DensityArray for output.
944 * Into FileData::work subsequently each node (all z, all y, all x) is written as \f$\log(1+x)\f$,
945 * where x is Density::DensityArray[TotalDensity]. In the end result is send to process 0 (yet not
946 * received here, see CombineOutVisArray()). In case of RiemannTensor use, some more complex calculations
947 * are made: FileData::PosR is used, the coefficient offset'ed to the current node and the log taken there.
948 * \param *P Problem at hand
949 * \param myPE this ranks process in the Psi communcator ParallelSimulationData::me_comm_ST_Psi
950 * \param *srcdens Pointer to DensityArray which is to be displayed
951 */
952static void OutputOutVisDensity(struct Problem *P, const int myPE, fftw_real *srcdens)
953{
954 int N[NDIM], n[NDIM], pos[NDIM];
955 int destpos = 0;
956 double fac[NDIM], posd[NDIM];
957 float posf[NDIM+1];
958 struct Lattice *Lat = &P->Lat;
959 struct LatticeLevel *Lev0 = &Lat->Lev[0];
960 fftw_real *srcpos = P->Files.PosR;
961 //fftw_real *srcdens = Lev0->Dens->DensityArray[ActualDensity]; //[TotalDensity]; trick to display single density
962 float *dest = (float *)P->Files.work;
963 int Nx = Lev0->Plan0.plan->N[0];
964 int i;
965 double min, max;
966
967 N[0] = Lev0->Plan0.plan->local_nx;
968 N[1] = Lev0->Plan0.plan->N[1];
969 N[2] = Lev0->Plan0.plan->N[2];
970
971 max = min = srcdens[0];
972 for (i=1;i<P->R.Lev0->Dens->LocalSizeR;i++) {
973 if (srcdens[i] < min) min = srcdens[i];
974 if (srcdens[i] > max) max = srcdens[i];
975 }
976 if (P->Call.out[PsiOut]) fprintf(stderr,"(%i)OutputOutVisDensity: min %e\tmax %e\n",P->Par.me, min, max);
977
978 // go through all nodes
979 for (n[0]=0; n[0] < N[0]; n[0]++) {
980 pos[0] = (n[0] == N[0] ? 0 : n[0]);
981 for (n[1]=0; n[1] <= N[1]; n[1]++) {
982 pos[1] = (n[1] == N[1] ? 0 : n[1]);
983 for (n[2]=0; n[2] <= N[2]; n[2]++) {
984 pos[2] = (n[2] == N[2] ? 0 : n[2]);
985 // depending on RiemannTensor use, fill FileData::work
986 switch (Lat->RT.ActualUse) {
987 case inactive:
988 case standby:
989 if ((srcdens[pos[2]+N[2]*(pos[1]+N[1]*pos[0])]) > 0.)
990 dest[destpos] = log(1.0+(srcdens[pos[2]+N[2]*(pos[1]+N[1]*pos[0])]));
991 else
992 dest[destpos] = 0.;
993 destpos++;
994 break;
995 case active:
996 posf[0] = srcpos[0+NDIM*(pos[2]+N[2]*(pos[1]+N[1]*pos[0]))];
997 posf[1] = srcpos[1+NDIM*(pos[2]+N[2]*(pos[1]+N[1]*pos[0]))];
998 posf[2] = srcpos[2+NDIM*(pos[2]+N[2]*(pos[1]+N[1]*pos[0]))];
999 fac[0] = ((n[0]+N[0]*myPE)/(double)Nx);
1000 fac[1] = (n[1]/(double)N[1]);
1001 fac[2] = (n[2]/(double)N[2]);
1002 RMat33Vec3(posd, Lat->RealBasis, fac);
1003 posf[0] += posd[0];
1004 posf[1] += posd[1];
1005 posf[2] += posd[2];
1006 if ((srcdens[pos[2]+N[2]*(pos[1]+N[1]*pos[0])]) > 0.)
1007 posf[3] = log(1.0+(srcdens[pos[2]+N[2]*(pos[1]+N[1]*pos[0])]));
1008 else
1009 posf[3] = 0.;
1010 dest[destpos+0] = posf[0];
1011 dest[destpos+1] = posf[1];
1012 dest[destpos+2] = posf[2];
1013 dest[destpos+3] = posf[3];
1014 destpos += 4;
1015 break;
1016 }
1017 }
1018 }
1019 }
1020 if (myPE) MPI_Send(dest, destpos, MPI_FLOAT, 0, OutputDensTag, P->Par.comm_ST_Psi);
1021}
1022
1023/** Combines prepared electronic Psis density and output to file.
1024 * If we are process 0, open file suffixdensdat (only when RiemannTensor is used) and suffixdenspos, receive
1025 * FileData::work logarithmic coefficients sent by the other processes in OutputOutVisDensity(), go through all
1026 * nodes and save the coefficient to file - again depending on RiemannTensor use - followed by FileData::PosTemp
1027 * (for y and z nodes), close file(s).
1028 * \param *P Problem at hand
1029 * \param me this ranks process in the Psi communcator ParallelSimulationData::me_comm_ST_Psi
1030 * \param Maxme number of processes in this Psi communcator ParallelSimulationData::Max_me_comm_ST_Psi
1031 */
1032static void CombineOutVisDensity(struct Problem *P, const int me, const int Maxme)
1033{
1034 int i,n[NDIM], N[NDIM];
1035 float posf[NDIM+1];
1036 float *source = (float *)P->Files.work;
1037 double posd[NDIM], fac[NDIM];
1038 float *Temp = (float *)P->Files.PosTemp;
1039 struct Lattice *Lat = &P->Lat;
1040 struct LatticeLevel *Lev0 = &Lat->Lev[0];
1041 float step = P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo];
1042 int No=0, destpos;
1043 char *suffix;
1044 FILE *DensityData, *DensityPos;
1045 int Nx = Lev0->Plan0.plan->N[0]+1;
1046 MPI_Status status;
1047 if (me) return; // if we are process 0!
1048 N[0] = Lev0->Plan0.plan->local_nx;
1049 N[1] = Lev0->Plan0.plan->N[1]+1;
1050 N[2] = Lev0->Plan0.plan->N[2]+1;
1051
1052 // Open respective file depending on RiemannTensor use
1053 suffix = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "CombineOutVisDensity: *suffix");
1054 switch (Lat->RT.ActualUse) {
1055 case active:
1056 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixdenspos);
1057 OpenFileNo(P, &DensityPos, suffix, (int)step, "wb",P->Call.out[ReadOut]);
1058 case inactive:
1059 case standby:
1060 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixdensdat);
1061 OpenFileNo(P, &DensityData, suffix, (int)step, "wb",P->Call.out[ReadOut]);
1062 break;
1063 }
1064 // for all processes in the communicator
1065 for (i=0; i< Maxme; i++) {
1066 if (i) { // if process != 0, receive from this process
1067 /* MPI_Probe( i, OutputDensTag, P->Par.comm_ST_Psi, &status );*/
1068 switch (Lat->RT.ActualUse) {
1069 case inactive:
1070 case standby:
1071 MPI_Recv( source, N[0]*N[1]*N[2], MPI_FLOAT, i, OutputDensTag, P->Par.comm_ST_Psi, &status );
1072 break;
1073 case active:
1074 MPI_Recv( source, N[0]*N[1]*N[2]*4, MPI_FLOAT, i, OutputDensTag, P->Par.comm_ST_Psi, &status );
1075 break;
1076 }
1077 }
1078 destpos = 0;
1079 // go through all nodes and save the coefficient to file DensityData, depending on RiemannTensor
1080 for (n[0]=0; n[0] < N[0]; n[0]++) {
1081 for (n[1]=0; n[1] < N[1]; n[1]++) {
1082 for (n[2]=0; n[2] < N[2]; n[2]++) {
1083 switch (Lat->RT.ActualUse) {
1084 case inactive:
1085 case standby:
1086 posf[3] = source[destpos];
1087 destpos++;
1088 (void)fwrite(&posf[3], sizeof(float), (size_t)(1), DensityData);
1089 No++;
1090 if (i==0 && n[0] == 0)
1091 Temp[(n[2]+N[2]*(n[1]+N[1]*n[0]))] = posf[3];
1092 break;
1093 case active:
1094 posf[0] = source[destpos+0];
1095 posf[1] = source[destpos+1];
1096 posf[2] = source[destpos+2];
1097 posf[3] = source[destpos+3];
1098 destpos += 4;
1099 (void)fwrite(posf, sizeof(float), (size_t)(NDIM), DensityPos);
1100 (void)fwrite(&posf[3], sizeof(float), (size_t)(1), DensityData);
1101 No++;
1102 if (i==0 && n[0] == 0) {
1103 fac[0] = ((n[0]+N[0]*i)/(double)(Nx-1));
1104 fac[1] = (n[1]/(double)(N[1]-1));
1105 fac[2] = (n[2]/(double)(N[2]-1));
1106 RMat33Vec3(posd, Lat->RealBasis, fac);
1107 posf[0] -= posd[0];
1108 posf[1] -= posd[1];
1109 posf[2] -= posd[2];
1110 fac[0] = ((Nx-1)/(double)(Nx-1));
1111 fac[1] = (n[1]/(double)(N[1]-1));
1112 fac[2] = (n[2]/(double)(N[2]-1));
1113 RMat33Vec3(posd, Lat->RealBasis, fac);
1114 posf[0] += posd[0];
1115 posf[1] += posd[1];
1116 posf[2] += posd[2];
1117 Temp[0+(NDIM+1)*(n[2]+N[2]*(n[1]+N[1]*n[0]))] = posf[0];
1118 Temp[1+(NDIM+1)*(n[2]+N[2]*(n[1]+N[1]*n[0]))] = posf[1];
1119 Temp[2+(NDIM+1)*(n[2]+N[2]*(n[1]+N[1]*n[0]))] = posf[2];
1120 Temp[3+(NDIM+1)*(n[2]+N[2]*(n[1]+N[1]*n[0]))] = posf[3];
1121 }
1122 break;
1123 }
1124 }
1125 }
1126 }
1127 }
1128 n[0] = N[0];
1129 for (n[1]=0; n[1] < N[1]; n[1]++) {
1130 for (n[2]=0; n[2] < N[2]; n[2]++) {
1131 switch (Lat->RT.ActualUse) {
1132 case inactive:
1133 case standby:
1134 (void)fwrite(&Temp[n[2]+N[2]*(n[1])], sizeof(float), (size_t)(1), DensityData);
1135 No++;
1136 break;
1137 case active:
1138 (void)fwrite(&Temp[(NDIM+1)*(n[2]+N[2]*(n[1]))], sizeof(float), (size_t)(NDIM), DensityPos);
1139 (void)fwrite(&Temp[(NDIM+1)*(n[2]+N[2]*(n[1]))+3], sizeof(float), (size_t)(1), DensityData);
1140 No++;
1141 break;
1142 }
1143 }
1144 }
1145 if (No != Nx*N[1]*N[2]) Error(SomeError,"CombineOutVisDensity: No != points");
1146 switch (Lat->RT.ActualUse) {
1147 case active:
1148 fclose(DensityPos);
1149 case inactive:
1150 case standby:
1151 fclose(DensityData);
1152 break;
1153 }
1154 Free(suffix, "CombineOutVisDensity: *suffix");
1155}
1156
1157/** Main output electronic Psis density for OpenDX.
1158 * If FileData::MeOutVis is set, calls OutputOutVisDensity() followed by CombineOutVisDensity().
1159 * Beforehand CalculateOutVisDensityPos() is called if RiemannTensor is used.
1160 * \param *P Problem at hand
1161 * \param *src_dens Pointer to DensityArray which is to be displayed
1162 */
1163static void OutVisDensity(struct Problem *P, fftw_real *src_dens)
1164{
1165 if (!P->Files.MeOutVis) return;
1166 if (P->Lat.RT.ActualUse == active) CalculateOutVisDensityPos(&P->Lat, &P->Files/*, P->Lat.FactorDensityR, P->Lat.FactorDensityC*/);
1167 OutputOutVisDensity(P, P->Par.me_comm_ST_Psi, src_dens);
1168 /* Achtung hier: P->Files.work (RT->TempC, Dens->DensityCArray[TempDensity]) fuer myPE == 0 nicht veraendern !!! */
1169 CombineOutVisDensity(P, P->Par.me_comm_ST_Psi, P->Par.Max_me_comm_ST_Psi);
1170}
1171
1172/** Opening and Initializing of output measurement files.
1173 * If this is process 0, opens and writes top line of FileData::ForcesFile, FileData::EnergyFile.
1174 * and sets FileData::MeOutVis and FileData::MeOutMes (if output desired) to 1, otherwise 0.
1175 * \param *P Problem at hand
1176 */
1177void InitOutputFiles(struct Problem *P)
1178{
1179 struct FileData *F = &P->Files;
1180 F->ForcesFile = NULL;
1181 F->EnergyFile = NULL;
1182 F->HamiltonianFile = NULL;
1183 F->MinimisationFile = NULL;
1184 F->SpreadFile = NULL;
1185 F->ReciSpreadFile = NULL;
1186 F->TemperatureFile = NULL;
1187 // process 0 ?
1188 F->MeOutVis = ((P->Par.my_color_comm_ST == 0 && P->Par.my_color_comm_ST_Psi == 0 && F->DoOutVis) ? 1 : 0);
1189 F->MeOutCurr = ((P->Par.my_color_comm_ST == 0 && P->Par.my_color_comm_ST_Psi == 0 && F->DoOutCurr) ? 1 : 0);
1190 F->MeOutMes = ((P->Par.me == 0 && F->DoOutMes) ? 1 : 0);
1191 OpenFile(P, &F->HamiltonianFile, suffixhamiltonianall, "w",P->Call.out[ReadOut]);
1192
1193 if (!F->MeOutMes) return;
1194 OpenFile(P, &F->ForcesFile, suffixforcesall, "w",P->Call.out[ReadOut]);
1195 if (F->ForcesFile == NULL) fprintf(stderr,"Error opening ForcesFile\n");
1196 // write header of forces file
1197 fprintf(F->ForcesFile, "%s\t%s\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t%s\t%s\t%s\t\t%s\t\t%s\n",
1198 "Type", "No",
1199 "Pos0", "Pos1", "Pos2",
1200 "Total0", "Total1", "Total2",
1201 "Local0", "Local1", "Local2",
1202 "NLocal0", "NLocal1", "NLocal2",
1203 "Magnetic0", "Magnetic1", "Magnetic2",
1204 "Ewald0", "Ewald1", "Ewald2");
1205 OpenFile(P, &F->EnergyFile, suffixenergyall, "w",P->Call.out[ReadOut]);
1206 if (F->EnergyFile == NULL) fprintf(stderr,"Error opening EnergyFile\n");
1207 // write header of energy file
1208 if (P->R.DoUnOccupied) {
1209 fprintf(F->EnergyFile, "%s\t\t%s\t\t%s\t%s\t\t%s\t%s\t\t%s\t%s\t%s\t\t%s\t\t%s\t%s\t\t%s\t\t%s\t\t%s\n",
1210 "Time",
1211 "Total",
1212 "Total+Gap",
1213 "Kinetic", "NonLocal",
1214 "GapPsi",
1215 "Correlation", "Exchange",
1216 "Pseudo", "Hartree",
1217 "GapDensity",
1218 "-Gauss",
1219 "Ewald",
1220 "IonKin",
1221 "ETotal");
1222 } else {
1223 fprintf(F->EnergyFile, "%s\t\t%s\t\t%s\t\t%s\t%s\t%s\t%s\t\t%s\t\t%s\t\t%s\t\t%s\t\t%s\n",
1224 "Time",
1225 "Total",
1226 "Kinetic", "NonLocal",
1227 "Correlation", "Exchange",
1228 "Pseudo", "Hartree",
1229 "-Gauss",
1230 "Ewald",
1231 "IonKin",
1232 "ETotal");
1233 }
1234 OpenFile(P, &F->MinimisationFile, suffixminall, "w",P->Call.out[ReadOut]);
1235 if (F->MinimisationFile == NULL) fprintf(stderr,"Error opening MinimsationFile\n");
1236 // write header of minimsation file
1237 fprintf(F->MinimisationFile, "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n","Step", "Psi", "PsiStep", "TE", "ATE", "delta", "dEdt0", "ddEdtt0");
1238
1239 OpenFile(P, &F->TemperatureFile, suffixtempall, "w",P->Call.out[ReadOut]);
1240 if (F->TemperatureFile == NULL) fprintf(stderr,"Error opening TemperatureFile\n");
1241 // write header of minimsation file
1242}
1243
1244/** Closes all output measurement files.
1245 * Closes FileData::ForcesFile and FileData::EnergyFile
1246 * \param *P Problem at hand
1247 */
1248void CloseOutputFiles(struct Problem *P)
1249{
1250 struct FileData *F = &P->Files;
1251 if (!F->MeOutMes) return;
1252 if (F->ForcesFile != NULL) fclose(F->ForcesFile); // only they've been opened (thus not pointing to NULL)
1253 if (F->EnergyFile != NULL) fclose(F->EnergyFile);
1254 if (F->HamiltonianFile != NULL) fclose(F->HamiltonianFile);
1255 if (F->MinimisationFile != NULL) fclose(F->MinimisationFile);
1256 if (F->SpreadFile != NULL) fclose(F->SpreadFile);
1257 if (F->ReciSpreadFile != NULL) fclose(F->ReciSpreadFile);
1258 if (F->TemperatureFile != NULL) fclose(F->TemperatureFile);
1259}
1260
1261/** Initialization of Problem::FileData structure for visual output.
1262 * If this is process 0 (and OutVis desired), allocate memory for FileData::PosTemp, FileData::work,
1263 * set the entries of FileData all to their corresponding values from RiemannTensor,
1264 * FileData::*OutVisStep to zero.
1265 * \param *P Problem at hand
1266 */
1267void InitOutVisArray(struct Problem *P)
1268{
1269 struct FileData *F = &P->Files;
1270 struct Lattice *Lat = &P->Lat;
1271 struct RiemannTensor *RT = &Lat->RT;
1272 struct LatticeLevel *Lev0 = &Lat->Lev[0];
1273 int i;
1274 F->OutputPosType = NULL;
1275 if (!F->MeOutVis) return;
1276
1277 F->OutVisStep = Malloc(sizeof(int)*Lat->MaxLevel,"InitOutVisArray: OutVisStep");
1278 for (i=0;i<Lat->MaxLevel;i++)
1279 F->OutVisStep[i] = 0;
1280 F->PosTemp = (fftw_complex *)
1281 Malloc(sizeof(float)*(Lev0->Plan0.plan->N[1]+1)*(Lev0->Plan0.plan->N[2]+1)*
1282 ((Lat->RT.Use != UseRT ? 0 : NDIM)+1), "InitOutVisArray: TempC");
1283 F->work = (fftw_complex *)Lev0->Dens->DensityCArray[TempDensity];
1284 if (Lat->RT.Use != UseRT) return;
1285 F->TotalSize = RT->TotalSize[RTAIRT]/NDIM;
1286 F->LocalSizeR = RT->LocalSizeR[RTAiGcg];
1287 F->LocalSizeC = RT->LocalSizeC[RTAiGcg];
1288 F->MaxNUp = RT->MaxNUp[RTPFRto0];
1289 F->PosC = RT->DensityC[RTAiGcg];
1290 F->PosR = (fftw_real *)F->PosC;
1291 F->work = RT->TempC;
1292 F->PosFactor = RT->PosFactor[RTPFRto0];
1293}
1294
1295static const char suffixionfor[] = ".ions.force"; //!< Suffix for ion forces file
1296static const char suffixionZ[] = ".ions.datZ"; //!< Suffix for ion datZ file
1297static const char suffixionpos[] = ".ions.pos"; //!< Suffix for ion positions file
1298static const char suffixiondx[] = ".ions.dx"; //!< Suffix for ions dx file
1299static const char suffixiondoc[] = ".ions.doc"; //!< Suffix for ions doc file
1300static const char suffixsrciondoc[] = ".srcion.doc"; //!< Suffix for state ions doc file
1301static const char suffixsrciondat[] = ".srcion.data"; //!< Suffix for state ions data file
1302
1303/** Output current ions state.
1304 * If this is process0, open file suffixsrciondoc for writing, output Ions::Max_Types and
1305 * Ions::Max_IonsOfType of each type - each in a new line - closes it.
1306 * Then opens suffixsrciondat for binary writing, outputs Lattice:RealBasis vectors and
1307 * position IonType::R and speed IonType::U, closes it.
1308 * \param *P Problem at hand
1309 * \note This is the ionic counterpart to the elecontric OutputSrcPsiDensity(), storing a so far made
1310 * calculation to file.
1311 */
1312static void OutSrcIons(struct Problem *P)
1313{
1314 struct Ions *I = &P->Ion;
1315 double *U, *pos;
1316 double data[2*NDIM];
1317 int is,ia,i;
1318 FILE *SrcIonDoc, *SrcIonData;
1319 char *suffix = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "CombineOutVisDensity: *suffix");
1320
1321 if (!(P->Par.me == 0)) return;
1322
1323 // output of ion types and numbers per type
1324 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixsrciondoc);
1325 OpenFile(P, &SrcIonDoc, suffix, "w",P->Call.out[ReadOut]);
1326 fprintf(SrcIonDoc,"%i\n", I->Max_Types);
1327 for (is=0; is < I->Max_Types; is++)
1328 fprintf(SrcIonDoc,"%i\n", I->I[is].Max_IonsOfType);
1329 fclose(SrcIonDoc);
1330
1331 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixsrciondat);
1332 OpenFile(P, &SrcIonData, suffix, "wb",P->Call.out[ReadOut]);
1333 (void)fwrite(P->Lat.RealBasis, sizeof(double), (size_t)(NDIM_NDIM), SrcIonData);
1334 for (is=0; is < I->Max_Types; is++) {
1335 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1336 U = &I->I[is].U[NDIM*ia];
1337 pos = &I->I[is].R[NDIM*ia];
1338 for (i=0;i<NDIM;i++) {
1339 data[i] = pos[i];
1340 data[i+NDIM] = U[i];
1341 }
1342 (void)fwrite(&data, sizeof(double), (size_t)(2*NDIM), SrcIonData);
1343 }
1344 }
1345 fclose(SrcIonData);
1346 Free(suffix, "CombineOutVisDensity: *suffix");
1347}
1348
1349/** Read ions state from a file.
1350 * Reads the suffixsrciondoc file and checks it against the current state in Ions regarding
1351 * IonType::MaxTypes and IonType::Max_IonsOfType, closes it.
1352 * Afterwards, opens suffixsrciondat for binary reading, retrieves the basis checking it against
1353 * Problem::Lattice::RealBasis. If ok, reads position IonType::R and speed IonType::U, closes it.
1354 * \param *P Problem at hand
1355 * \return 1 - successful, 0 - failure
1356 * \note This is the ionic counterpart to the electronic ReadSrcPsiDensity(), see also OutSrcIons().
1357 */
1358int ReadSrcIons(struct Problem *P)
1359{
1360 struct Ions *I = &P->Ion;
1361 double *U, *pos;
1362 double data[2*NDIM];
1363 int is,ia,i;
1364 int Max_Types;
1365 int *Max_IonsOfType = NULL;
1366 double RealBasis[NDIM_NDIM];
1367 FILE *SrcIonDoc, *SrcIonData;
1368 char *suffix;
1369 int flag = 0;
1370 // read the doc file and check
1371
1372 if (!P->Par.me) { // process 0 reads and broadcasts ..
1373 suffix = (char *)
1374 Malloc(strlen(suffixsrciondoc) + 3 + 1,"ReadSrcIons: suffix");
1375 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixsrciondoc);
1376 if (OpenFile(P, &SrcIonDoc, suffix, "r",P->Call.out[ReadOut])) {
1377 if (fscanf(SrcIonDoc,"%i", &Max_Types) != 1) {
1378 //Error(SomeError, "ReadSrcIons: read error");
1379 Free(suffix, "ReadSrcIons: suffix");
1380 if (MPI_Bcast(&flag,1,MPI_INT,0,P->Par.comm) != MPI_SUCCESS)
1381 Error(SomeError,"ReadSrcIons: Bcast of signal failed\n");
1382 return flag;
1383 }
1384 if (Max_Types != I->Max_Types) {
1385 //Error(SomeError, "ReadSrcIons: srcion file does not fit to system, MaxTypes");
1386 Free(suffix, "ReadSrcIons: suffix");
1387 if (MPI_Bcast(&flag,1,MPI_INT,0,P->Par.comm) != MPI_SUCCESS)
1388 Error(SomeError,"ReadSrcIons: Bcast of signal failed\n");
1389 return flag;
1390 }
1391 Max_IonsOfType = (int *) Malloc(Max_Types*sizeof(int), "ReadSrcIons: Max_IonsOfType");
1392 for (is=0; is < Max_Types; is++) {
1393 if (fscanf(SrcIonDoc,"%i", &Max_IonsOfType[is]) != 1) {
1394 //Error(SomeError, "ReadSrcIons: read error");
1395 Free(suffix, "ReadSrcIons: suffix");
1396 Free(Max_IonsOfType, "ReadSrcIons: Max_IonsOfType");
1397 if (MPI_Bcast(&flag,1,MPI_INT,0,P->Par.comm) != MPI_SUCCESS)
1398 Error(SomeError,"ReadSrcIons: Bcast of signal failed\n");
1399 return flag;
1400 }
1401 if (Max_IonsOfType[is] != I->I[is].Max_IonsOfType) {
1402 //Error(SomeError, "ReadSrcIons: srcion file does not fit to system, Max_IonsOfType");
1403 Free(suffix, "ReadSrcIons: suffix");
1404 Free(Max_IonsOfType, "ReadSrcIons: Max_IonsOfType");
1405 if (MPI_Bcast(&flag,1,MPI_INT,0,P->Par.comm) != MPI_SUCCESS)
1406 Error(SomeError,"ReadSrcIons: Bcast of signal failed\n");
1407 return flag;
1408 }
1409 }
1410 Free(Max_IonsOfType, "ReadSrcIons: Max_IonsOfType");
1411 fclose(SrcIonDoc);
1412 }
1413 // check basis, then read positions and speeds of ions
1414 suffix = (char *)
1415 Realloc(suffix, strlen(suffixsrciondat) + 3 + 1,"ReadSrcIons: suffix");
1416 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixsrciondat);
1417 if (OpenFile(P, &SrcIonData, suffix, "rb",P->Call.out[ReadOut])) {
1418 if (fread(RealBasis, sizeof(double), (size_t)(NDIM_NDIM), SrcIonData) != NDIM_NDIM) {
1419 //Error(SomeError, "ReadSrcIons: read error");
1420 Free(suffix, "ReadSrcIons: suffix");
1421 if (MPI_Bcast(&flag,1,MPI_INT,0,P->Par.comm) != MPI_SUCCESS)
1422 Error(SomeError,"ReadSrcIons: Bcast of signal failed\n");
1423 return flag;
1424 }
1425 for (i=0; i < NDIM_NDIM; i++)
1426 if (RealBasis[i] != P->Lat.RealBasis[i]) {
1427 //Error(SomeError, "ReadSrcIons: srcion file does not fit to system, RealBasis");
1428 Free(suffix, "ReadSrcIons: suffix");
1429 if (MPI_Bcast(&flag,1,MPI_INT,0,P->Par.comm) != MPI_SUCCESS)
1430 Error(SomeError,"ReadSrcIons: Bcast of signal failed\n");
1431 return flag;
1432 }
1433 for (is=0; is < I->Max_Types; is++) {
1434 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1435 if (fread(&data, sizeof(double), (size_t)(2*NDIM), SrcIonData) != 2*NDIM) {
1436 //Error(SomeError, "ReadSrcIons: read error");
1437 Free(suffix, "ReadSrcIons: suffix");
1438 if (MPI_Bcast(&flag,1,MPI_INT,0,P->Par.comm) != MPI_SUCCESS)
1439 Error(SomeError,"ReadSrcIons: Bcast of signal failed\n");
1440 return flag;
1441 }
1442 U = &I->I[is].U[NDIM*ia];
1443 pos = &I->I[is].R[NDIM*ia];
1444 for (i=0;i<NDIM;i++) {
1445 pos[i] = data[i];
1446 U[i] = data[i+NDIM];
1447 }
1448 }
1449 }
1450 fclose(SrcIonData);
1451 flag = 1;
1452 }
1453 Free(suffix, "ReadSrcIons: suffix");
1454 }
1455 if (MPI_Bcast(&flag,1,MPI_INT,0,P->Par.comm) != MPI_SUCCESS)
1456 Error(SomeError,"ReadSrcIons: Bcast of signal failed\n");
1457 //fprintf(stderr, "(%i) Flag is %i\n", P->Par.me, flag);
1458 if (flag) {
1459 for (is=0; is < I->Max_Types; is++) {
1460 if (MPI_Bcast(I->I[is].R, I->I[is].Max_IonsOfType*NDIM, MPI_DOUBLE, 0, P->Par.comm) != MPI_SUCCESS)
1461 Error(SomeError,"ReadSrcIons: Bcast of I->I[is].R failed\n");
1462 if (MPI_Bcast(I->I[is].U, I->I[is].Max_IonsOfType*NDIM, MPI_DOUBLE, 0, P->Par.comm) != MPI_SUCCESS)
1463 Error(SomeError,"ReadSrcIons: Bcast of I->I[is].U failed\n");
1464 }
1465 }
1466 //fprintf(stderr, "(%i) ReadSrcIons done\n", P->Par.me);
1467 return flag;
1468}
1469
1470/** Output of ion doc, dx, forces and positions file for OpenDX.
1471 * If this is process 0,
1472 * open, fill and close IonDoc file suffixiondoc,
1473 * open, fill for each FileData::*OutVisStep and close IonDX file suffixiondx
1474 * for every
1475 * open suffixionfor, suffixionpos (and suffixionZ in case of only FileData::*OutVisStep), fill
1476 * them with the ion forces IonType::FIon and positions IonType::R of each type and each ion per type,
1477 * close them all.
1478 * \param *P Problem at hand
1479 */
1480static void OutVisIons(struct Problem *P)
1481{
1482 struct Ions *I = &P->Ion;
1483 struct FileData *F = &P->Files;
1484 struct LatticeLevel *Lev = &P->Lat.Lev[STANDARTLEVEL];
1485 int i,is,ia;
1486 double *fion, *pos;
1487 float data[6]; // holds temporarily twice NDIM values as write buffer
1488 int Z;
1489 char *datnamef, *datnameZ, *posname, *suffix;
1490 FILE *IonsDataF, *IonsDataZ, *IonsPos, *IonsDoc, *IonsDx;
1491
1492 if (!P->Files.MeOutVis && P->Par.me == 0) return;
1493
1494 // generate file names
1495 suffix = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "OutVisIons: * suffix");
1496 datnamef = (char*)
1497 malloc(strlen(P->Files.mainname)+strlen(suffixionfor) + 1);
1498 sprintf(datnamef, "%s.L%i%s", P->Files.mainname, P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixionfor);
1499 datnameZ = (char*)
1500 malloc(strlen(P->Files.mainname)+strlen(suffixionZ) + 1);
1501 sprintf(datnameZ, "%s.L%i%s", P->Files.mainname, P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixionZ);
1502 posname = (char*)
1503 malloc(strlen(P->Files.mainname)+strlen(suffixionpos) + 1);
1504 sprintf(posname, "%s.L%i%s", P->Files.mainname, P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixionpos);
1505 // open, fill and close doc file
1506 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixiondoc);
1507 if (OpenFile(P, &IonsDoc, suffix, "w",P->Call.out[ReadOut])) {
1508 fprintf(IonsDoc,"IonsPos file = %s.####\n", posname);
1509 fprintf(IonsDoc,"IonsForce file = %s.####\n", datnamef);
1510 fprintf(IonsDoc,"format = ieee float (Bytes %lu) %s = Force(3)\n",(unsigned long) sizeof(float),msb);
1511 fprintf(IonsDoc,"IonsZ file = %s.####\n", datnameZ);
1512 fprintf(IonsDoc,"format = int (Bytes %lu) %s = Z(1)\n",(unsigned long) sizeof(int),msb);
1513 fprintf(IonsDoc,"points = %i\n", I->Max_TotalIons);
1514 fprintf(IonsDoc,"majority = row\n");
1515 fprintf(IonsDoc,"TimeSeries = %i\n",F->OutVisStep[Lev->LevelNo]+1);
1516 fclose(IonsDoc);
1517 }
1518 // open dx file and fill it with each output step, close it
1519 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixiondx);
1520 if (OpenFile(P, &IonsDx, suffix, "w",P->Call.out[ReadOut])) {
1521 for (i=0; i < F->OutVisStep[Lev->LevelNo]+1; i++) {
1522 if (i==0) {
1523 /* fprintf(IonsDx,"object \"ioncon\" class array type int rank 1 shape 2 items 0 data follows\nattribute \"element type\" string \"lines\"\nattribute \"ref\" string \"positions\"\n\n"); */
1524 fprintf(IonsDx,"object \"iondatZ\" class array type int rank 0 items %i %s binary\n",I->Max_TotalIons,msb);
1525 fprintf(IonsDx,"data file %s,0\n",datnameZ);
1526 fprintf(IonsDx,"attribute \"dep\" string \"positions\"\n\n");
1527 }
1528
1529 fprintf(IonsDx,"object \"ionpos.%04i\" class array type float rank 1 shape 3 items %i %s binary\n",i,I->Max_TotalIons,msb);
1530 fprintf(IonsDx,"data file %s.%04i,0\n\n",posname,i);
1531
1532 fprintf(IonsDx,"object \"iondatF.%04i\" class array type float rank 1 shape 3 items %i %s binary\n",i,I->Max_TotalIons,msb);
1533 fprintf(IonsDx,"data file %s.%04i,0\n",datnamef,i);
1534 fprintf(IonsDx,"attribute \"dep\" string \"positions\"\n\n");
1535
1536 fprintf(IonsDx,"object \"ionobjF.%04i\" class field\n",i);
1537 fprintf(IonsDx,"component \"positions\" \"ionpos.%04i\"\n",i);
1538 fprintf(IonsDx,"component \"data\" \"iondatF.%04i\"\n",i);
1539 /*fprintf(IonsDx,"component \"connections\" \"ioncon\"\n\n");*/
1540
1541 fprintf(IonsDx,"object \"ionobjZ.%04i\" class field\n",i);
1542 fprintf(IonsDx,"component \"positions\" \"ionpos.%04i\"\n",i);
1543 fprintf(IonsDx,"component \"data\" \"iondatZ\"\n");
1544 /* fprintf(IonsDx,"component \"connections\" \"ioncon\"\n\n");*/
1545 }
1546 fprintf(IonsDx,"\nobject \"ionseriesF\" class series\n");
1547 for (i=0; i < F->OutVisStep[Lev->LevelNo]+1; i++)
1548 fprintf(IonsDx,"member %i \"ionobjF.%04i\" position %f\n",i,i,(float)i);
1549 fprintf(IonsDx,"\nobject \"ionseriesZ\" class series\n");
1550 for (i=0; i < F->OutVisStep[Lev->LevelNo]+1; i++)
1551 fprintf(IonsDx,"member %i \"ionobjZ.%04i\" position %f\n",i,i,(float)i);
1552 fprintf(IonsDx,"end\n");
1553 fclose(IonsDx);
1554 }
1555 Free(datnamef, "OutVisIons: datnamef");
1556 Free(datnameZ, "OutVisIons: datnameZ");
1557 Free(posname, "OutVisIons: posname");
1558 // open IonForces, IonZ and IonPosition file, write forces respectively positions for each ion of each type, close them
1559 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixionfor);
1560 if (OpenFileNo(P, &IonsDataF, suffix, F->OutVisStep[Lev->LevelNo], "wb",P->Call.out[ReadOut])) {
1561 if (F->OutVisStep[Lev->LevelNo] == 0) {
1562 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixionZ);
1563 OpenFile(P, &IonsDataZ, suffix, "wb",P->Call.out[ReadOut]);
1564 }
1565 sprintf(suffix, ".L%i%s", P->Lat.Lev[STANDARTLEVEL].LevelNo, suffixionpos);
1566 if (OpenFileNo(P, &IonsPos, suffix, F->OutVisStep[Lev->LevelNo], "wb",P->Call.out[ReadOut])) {
1567 for (is=0; is < I->Max_Types; is++) {
1568 for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
1569 fion = &I->I[is].FIon[NDIM*ia];
1570 pos = &I->I[is].R[NDIM*ia];
1571 for (i=0;i<3;i++) {
1572 data[i+3] = fion[i];
1573 data[i] = pos[i];
1574 }
1575 Z = I->I[is].Z;
1576 if (fwrite(&data[0],sizeof(float), (size_t)(3),IonsPos) != 3)
1577 Error(FileOpenParams, "Error writing ion positions!");
1578 if (F->OutVisStep[Lev->LevelNo] == 0) (void)fwrite(&Z,sizeof(int), (size_t)(1),IonsDataZ);
1579 if (fwrite(&data[3],sizeof(float), (size_t)(3),IonsDataF) != 3)
1580 Error(FileOpenParams, "Error writing ionic forces!");
1581 }
1582 }
1583 fclose(IonsPos);
1584 }
1585 if (F->OutVisStep[Lev->LevelNo] == 0)
1586 fclose(IonsDataZ);
1587 fclose(IonsDataF);
1588 }
1589 Free(suffix, "OutVisIons: *suffix");
1590}
1591
1592/** Output electronic density and ion state files with so far made calculations.
1593 * If CallOptions::WriteSrcFiles is set, OutputSrcPsiDensity() and OutSrcIons() are called.
1594 * \param *P Problem at hand
1595 * \param type which PsiTypeTag should be put to file
1596 */
1597void OutputVisSrcFiles(struct Problem *P, enum PsiTypeTag type)
1598{
1599 if (P->Call.WriteSrcFiles) {
1600 if(P->Call.out[NormalOut]) fprintf(stderr,"(%i) Writing %s srcpsi to disk\n", P->Par.me, P->R.MinimisationName[type]);
1601 OutputSrcPsiDensity(P, type);
1602 if(P->Call.out[NormalOut]) fprintf(stderr,"(%i) Writing srcion to disk\n", P->Par.me);
1603 OutSrcIons(P);
1604 }
1605 // if (!P->Files.MeOutVis) return;
1606 // P->Files.OutputPosType =
1607 // Realloc(P->Files.OutputPosType,sizeof(enum ModeType)*(P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]+1),"OutputVis");
1608 // P->Files.OutputPosType[P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]] = P->Lat.RT.ActualUse;
1609 // CreateDensityOutputGeneral(P, P->Par.me_comm_ST_Psi);
1610 // OutVisDensity(P);
1611 // OutVisIons(P);
1612 // if(P->Call.out[NormalOut]) fprintf(stderr,"(%i) Written OutVisStep %i to disk\n", P->Par.me, P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]);
1613 // /* P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]++; Genau ebend nicht hochzaehlen - wird immer ueberschrieben */
1614}
1615
1616/** Main output total electronic density and ion data for OpenDX.
1617 * Calls subsequently preparing CreateDensityOutputGeneral(), then output of electronic
1618 * densities OutVisDensity() and ion data OutVisIons(), increasing finally FileData::*OutVisStep.
1619 * \param *P Problem at hand
1620 * \param *srcdens Pointer to DensityArray which is to be displayed
1621 * \note Output is made only RunStruct::OutVisStep steps and if FileData::MeOutVis is set.
1622 */
1623void OutputVis(struct Problem *P, fftw_real *srcdens)
1624{
1625 if (!P->Files.MeOutVis) return;
1626 P->Files.OutputPosType = (enum ModeType *) Realloc(P->Files.OutputPosType,sizeof(enum ModeType)*(P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]+1),"OutputVis");
1627 P->Files.OutputPosType[P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]] = P->Lat.RT.ActualUse;
1628
1629 CreateDensityOutputGeneral(P, P->Par.me_comm_ST_Psi);
1630 OutVisDensity(P, srcdens);
1631 OutVisIons(P);
1632 if(P->Call.out[MinOut]) fprintf(stderr,"(%i) Written OutVisStep %i to disk\n", P->Par.me, P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]);
1633 P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]++;
1634}
1635
1636/** Output of each current density component for OpenDX.
1637 * \param *P Problem at hand
1638 * \note Output is made only RunStruct::OutVisStep steps and if FileData::MeOutVis is set.
1639 */
1640void OutputCurrentDensity(struct Problem *P)
1641{
1642 int index, i, r;
1643 fftw_real *density = P->R.Lev0->Dens->DensityArray[ActualDensity];
1644 fftw_real *CurrentDensity[NDIM*NDIM];
1645 if (!P->Files.MeOutCurr) return;
1646
1647 if(P->Call.out[NormalOut]) fprintf(stderr,"(%i)Output of Current Density (Vis)\n", P->Par.me);
1648
1649 P->Files.OutputPosType = (enum ModeType *) Realloc(P->Files.OutputPosType,sizeof(enum ModeType)*(P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]+(1)*NDIM),"OutputVis");
1650 for (i=0;i<(1)*NDIM;i++)
1651 P->Files.OutputPosType[P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]+i] = P->Lat.RT.ActualUse;
1652 if(P->Call.out[PsiOut]) fprintf(stderr,"(%i) OutVisStep %i, OutputPosType %p\n",P->Par.me, P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo], P->Files.OutputPosType);
1653
1654 // due to preprocessor values we can't put the following stuff into a loop
1655 CurrentDensity[0] = (fftw_real *) P->R.Lev0->Dens->DensityArray[CurrentDensity0];
1656 CurrentDensity[1] = (fftw_real *) P->R.Lev0->Dens->DensityArray[CurrentDensity1];
1657 CurrentDensity[2] = (fftw_real *) P->R.Lev0->Dens->DensityArray[CurrentDensity2];
1658 CurrentDensity[3] = (fftw_real *) P->R.Lev0->Dens->DensityArray[CurrentDensity3];
1659 CurrentDensity[4] = (fftw_real *) P->R.Lev0->Dens->DensityArray[CurrentDensity4];
1660 CurrentDensity[5] = (fftw_real *) P->R.Lev0->Dens->DensityArray[CurrentDensity5];
1661 CurrentDensity[6] = (fftw_real *) P->R.Lev0->Dens->DensityArray[CurrentDensity6];
1662 CurrentDensity[7] = (fftw_real *) P->R.Lev0->Dens->DensityArray[CurrentDensity7];
1663 CurrentDensity[8] = (fftw_real *) P->R.Lev0->Dens->DensityArray[CurrentDensity8];
1664
1665 // output current density, not vector component
1666 for (index=0;index<NDIM;index++) {
1667 // evaluate euclidian norm for given B component
1668 SetArrayToDouble0((double *)density,P->R.Lev0->Dens->TotalSize*2); // reset
1669 for (r=0;r<P->R.Lev0->Dens->LocalSizeR;r++) {
1670 for (i=0;i<NDIM;i++)
1671 density[r] += CurrentDensity[i + index*NDIM][r]*CurrentDensity[i + index*NDIM][r];
1672 density[r] = sqrt(density[r]);
1673 }
1674 // output
1675 CreateDensityOutputGeneral(P, P->Par.me_comm_ST_Psi);
1676 OutVisDensity(P, density);
1677 OutVisIons(P);
1678 if(P->Call.out[NormalOut]) fprintf(stderr,"(%i) Written OutVisStep %i to disk\n", P->Par.me, P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]);
1679 P->Files.OutVisStep[P->Lat.Lev[STANDARTLEVEL].LevelNo]++;
1680 }
1681}
1682
1683/** Output each orbital in a certain step order for OpenDX.
1684 * \param *P Problem at hand
1685 * \param offset from which step do we start
1686 * \param increment by which increment do we advance step-wise
1687 * \param type Only PsiTypeTag orbitals are displayed
1688 */
1689void OutputVisAllOrbital(struct Problem *P, int offset, int increment, enum PsiTypeTag type) {
1690 struct Lattice *Lat = &P->Lat;
1691 struct Psis *Psi = &Lat->Psi;
1692 struct RunStruct *R = &P->R;
1693 struct LatticeLevel *LevS = R->LevS;
1694 struct LatticeLevel *Lev = &P->Lat.Lev[STANDARTLEVEL];
1695 struct LatticeLevel *Lev0 = R->Lev0;
1696 struct Density *Dens0 = Lev0->Dens;
1697 struct OnePsiElement *OnePsiA, *LOnePsiA;
1698 MPI_Status status;
1699 int ElementSize = (sizeof(fftw_complex) / sizeof(double));
1700 fftw_complex *LPsiDatA;
1701 int i, p, RecvSource;
1702 int Num = Psi->NoOfPsis;
1703
1704 if (!P->Files.MeOutVis) return;
1705
1706 fprintf(stderr,"(%i) Realloc OutputPosType: %li to %i\n",P->Par.me,sizeof(P->Files.OutputPosType), P->Files.OutVisStep[Lev->LevelNo]+(Num));
1707 P->Files.OutputPosType = (enum ModeType *) Realloc(P->Files.OutputPosType,sizeof(enum ModeType)*(P->Files.OutVisStep[Lev->LevelNo]+(Num)),"OutputVis");
1708
1709 P->Files.OutVisStep[Lev->LevelNo] += offset;
1710 //P->Files.OutputPosType[P->Files.OutVisStep[Lev->LevelNo]] = P->Lat.RT.ActualUse;
1711 for (i=0; i < Psi->MaxPsiOfType+P->Par.Max_me_comm_ST_PsiT; i++) { // go through all wave functions (plus the extra one for each process)
1712 OnePsiA = &Psi->AllPsiStatus[i]; // grab the desired OnePsiA
1713 if (OnePsiA->PsiType == type) { // drop if extra one
1714 if (OnePsiA->my_color_comm_ST_Psi == P->Par.my_color_comm_ST_Psi) // local?
1715 LOnePsiA = &Psi->LocalPsiStatus[OnePsiA->MyLocalNo];
1716 else
1717 LOnePsiA = NULL;
1718 if (LOnePsiA == NULL) { // if it's not local ... receive it from respective process into TempPsi
1719 RecvSource = OnePsiA->my_color_comm_ST_Psi;
1720 MPI_Recv( LevS->LPsi->TempPsi, LevS->MaxG*ElementSize, MPI_DOUBLE, RecvSource, WannierTag1, P->Par.comm_ST_PsiT, &status );
1721 LPsiDatA=LevS->LPsi->TempPsi;
1722 } else { // .. otherwise send it to all other processes (Max_me... - 1)
1723 for (p=0;p<P->Par.Max_me_comm_ST_PsiT;p++)
1724 if (p != OnePsiA->my_color_comm_ST_Psi)
1725 MPI_Send( LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo], LevS->MaxG*ElementSize, MPI_DOUBLE, p, WannierTag1, P->Par.comm_ST_PsiT);
1726 LPsiDatA=LevS->LPsi->LocalPsi[OnePsiA->MyLocalNo];
1727 } // LPsiDatA is now set to the coefficients of OnePsi either stored or MPI_Received
1728
1729 P->Files.OutputPosType[P->Files.OutVisStep[Lev->LevelNo]] = P->Lat.RT.ActualUse;
1730 // recalculate density for the specific wave function ...
1731 CalculateOneDensityR(Lat, LevS, Dens0, LPsiDatA, Dens0->DensityArray[ActualDensity], R->FactorDensityR, 0);
1732 // ... and output (wherein ActualDensity is used instead of TotalDensity)
1733 //OutputVis(P);
1734 CreateDensityOutputGeneral(P, P->Par.me_comm_ST_Psi);
1735 OutVisDensity(P, Dens0->DensityArray[ActualDensity]);
1736 OutVisIons(P);
1737 if(P->Call.out[NormalOut]) fprintf(stderr,"(%i) Written OutVisStep %i to disk\n", P->Par.me, P->Files.OutVisStep[Lev->LevelNo]);
1738 P->Files.OutVisStep[Lev->LevelNo]+=increment;
1739 //P->Files.OutputPosType[P->Files.OutVisStep[Lev->LevelNo]] = P->Lat.RT.ActualUse;
1740 }
1741 }
1742}
1743
1744/** Read source files containing stored calculations.
1745 * Calls ReadSrcPsiDensity() and ReadSrcIons().
1746 * \param *P Problem at hand
1747 */
1748void ReadSrcFiles(struct Problem *P)
1749{
1750 if (P->Call.out[NormalOut]) fprintf(stderr, "(%i)ReadSrcPsiDensity\n", P->Par.me);
1751 ReadSrcPsiDensity(P, Occupied, 0, P->R.LevSNo);
1752 ReadSrcPsiDensity(P, UnOccupied, 0, P->R.LevSNo);
1753 if (P->Call.out[NormalOut]) fprintf(stderr, "(%i)ReadSrcIons\n", P->Par.me);
1754 ReadSrcIons(P);
1755}
1756
1757/** Plots a cut plane of the real density of one wave function.
1758 * \param *P Problem at hand
1759 * \param index index of axis (vector orthogonal to plane)
1760 * \param node node specifying where to cut at the given axis
1761 * \param wavenr global number of wave function
1762 * \param *density density array to plot
1763 * \sa PlotVectorPlane() - very similar
1764 */
1765void PlotSrcPlane(struct Problem *P, int index, double node, int wavenr, fftw_real *density)
1766{
1767 struct RunStruct *R = &P->R;
1768 struct Lattice *Lat = &P->Lat;
1769 struct LatticeLevel *Lev0 = R->Lev0;
1770 const int myPE = P->Par.me_comm_ST_Psi;
1771 char *filename, spin[12];
1772 char *suchpointer;
1773 FILE *PlotFile = NULL;
1774 time_t seconds;
1775
1776 time(&seconds); // get current time
1777
1778 filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "PlotSrcPlane: *filename");
1779 switch (Lat->Psi.PsiST) {
1780 case SpinDouble:
1781 sprintf(&filename[0], ".psi%i_cut%i.csv", wavenr, index);
1782 strncat(spin,"SpinDouble",12);
1783 break;
1784 case SpinUp:
1785 sprintf(&filename[0], ".psi%i_cut%i_up.csv", wavenr, index);
1786 strncat(spin,"SpinUp",12);
1787 break;
1788 case SpinDown:
1789 sprintf(&filename[0], ".psi%i_cut%i_down.csv", wavenr, index);
1790 strncat(spin,"SpinDown",12);
1791 break;
1792 }
1793
1794 if (!myPE) { // only process 0 writes to file
1795 OpenFile(P, &PlotFile, filename, "w", P->Call.out[ReadOut]);
1796 strcpy(filename, ctime(&seconds));
1797 suchpointer = strchr(filename, '\n');
1798 if (suchpointer != NULL)
1799 *suchpointer = '\0';
1800 if (PlotFile != NULL) {
1801 fprintf(PlotFile,"# Psi %i, type %s (real density) plot of plane perpendicular to direction e_%i at node %lg, seed %i, config %s, run on %s, #cpus %i", wavenr, spin, index, node, R->Seed, P->Files.default_path, filename, P->Par.Max_me_comm_ST_Psi);
1802 fprintf(PlotFile,"\n");
1803 } else { Error(SomeError, "PlotSrcPlane: Opening Plot File"); }
1804 }
1805 Free(filename, "PlotSrcPlane: *filename");
1806
1807 // plot density
1808 PlotRealDensity(P, Lev0, PlotFile, index, node, density, density);
1809
1810 if (PlotFile != NULL) {
1811 // close file
1812 fclose(PlotFile);
1813 }
1814}
1815
1816/** plots a cut plane of a given 3d real density.
1817 * \param *P Problem at hand, contains pointer to Lattice structure
1818 * \param *Lev LatticeLevel of the real density
1819 * \param PlotFile file pointer (already open and valid)
1820 * \param index index of lattice axis
1821 * \param n_orth position on lattice axis where to cut
1822 * \param *density1 first real density array
1823 * \param *density2 second real density array (point to \a *density1 if not needed)
1824 */
1825void PlotRealDensity(struct Problem *P, struct LatticeLevel *Lev, FILE *PlotFile, int index, double n_orth, fftw_real *density1, fftw_real *density2)
1826{
1827 struct Lattice *Lat = &P->Lat;
1828 int n[NDIM], n0;
1829 int N[NDIM];
1830 N[0] = Lev->Plan0.plan->N[0];
1831 N[1] = Lev->Plan0.plan->N[1];
1832 N[2] = Lev->Plan0.plan->N[2];
1833 const int N0 = Lev->Plan0.plan->local_nx;
1834 const int myPE = P->Par.me_comm_ST_Psi;
1835 double fac[NDIM], x[NDIM];
1836 int i0, i = 0;
1837 int PE, zahl;
1838 double *buffer;
1839 MPI_Status status;
1840 int sizes[P->Par.Max_me_comm_ST_Psi], c0, c1;
1841 double nodes[NDIM], node[NDIM];
1842
1843 for(i=0;i<NDIM;i++) {
1844 nodes[i] = (i == index) ? n_orth : 0.;
1845 node[i] = 0.;
1846 }
1847 RMat33Vec3(node, Lat->ReciBasis, nodes); // transform cartesian coordinates into cell coordinates [0,1]^3
1848 for(i=0;i<NDIM;i++) // now N^3 within node range of discrete grid
1849 node[i] = (int)(node[i]*N[i]/(2.*PI));
1850 fprintf(stderr,"(%i) n_orth %lg, index %i converted to plane offset vector (%lg, %lg, %lg).\n", P->Par.me, n_orth, index, node[0], node[1], node[2]);
1851
1852 switch (index) {
1853 case 0:
1854 zahl = 4*N[1]*N[2];
1855 break;
1856 case 1:
1857 zahl = 4*N0*N[2];
1858 break;
1859 case 2:
1860 zahl = 4*N0*N[1];
1861 break;
1862 }
1863 fprintf(stderr,"(%i) buffer size %i\n", P->Par.me, zahl);
1864 buffer = Malloc(sizeof(double)*zahl,"PlotRealDensity: buffer");
1865
1866 c0 = cross(index,0);
1867 c1 = cross(index,1);
1868 // then for every point on the grid in real space ...
1869 i=0;
1870 for (n0=0;n0<N0;n0++) // only local points on x axis
1871 for (n[1]=0;n[1]<N[1];n[1]++)
1872 for (n[2]=0;n[2]<N[2];n[2]++) {
1873 n[0]=n0 + N0*myPE; // global relative coordinate: due to partitoning of x-axis in PEPGamma>1 case
1874 if (n[index] == (int)node[index]) { // only on the correct plane orthogonal to desired axis and at desired node ...
1875 fac[0] = (double)n[0]/(double)N[0];
1876 fac[1] = (double)n[1]/(double)N[1];
1877 fac[2] = (double)n[2]/(double)N[2];
1878 RMat33Vec3(x, Lat->RealBasis, fac); // relative coordinate times basis matrix gives absolute ones
1879 i0 = n[2]+N[2]*(n[1]+N[1]*n0); // index to local density array
1880
1881 buffer[i++] = x[c0]; // fill buffer
1882 buffer[i++] = x[c1];
1883 buffer[i++] = density1[i0];
1884 buffer[i++] = density2[i0];
1885 if (i > zahl) Error(SomeError, "PlotRealDensity: buffer too small!");
1886 }
1887 }
1888 // exchange sizes of each buffer
1889 MPI_Allgather(&i, 1, MPI_INT, sizes, 1, MPI_INT, P->Par.comm_ST_Psi);
1890 if (myPE == 0) {
1891 for (PE=0; PE < P->Par.Max_me_comm_ST_Psi; PE++) {
1892 if (PE != 0) {
1893 // receive them
1894 if (MPI_Recv(buffer, sizes[PE], MPI_DOUBLE, PE, PlotRealDensityTag, P->Par.comm_ST_Psi, &status) != MPI_SUCCESS)
1895 Error(SomeError, "PlotRealDensity: MPI_Recv failure!");
1896 MPI_Get_count(&status, MPI_DOUBLE, &zahl);
1897 if (zahl != sizes[PE])
1898 Error(SomeError, "PlotRealDensity: received unexpected amount of elements!");
1899 }
1900 //write them: local one (still in buffer) and received ones
1901 for (i0 = 0; i0 < sizes[PE];) {
1902 fprintf(PlotFile,"%e", buffer[(i0)++]);
1903 if ((i0 % 4) == 0) {
1904 fprintf(PlotFile,"\n");
1905 } else {
1906 fprintf(PlotFile,"\t");
1907 }
1908 }
1909 }
1910 } else { // send them
1911 if (MPI_Send(buffer, i, MPI_DOUBLE, 0, PlotRealDensityTag, P->Par.comm_ST_Psi) != MPI_SUCCESS)
1912 Error(SomeError, "PlotRealDensity: MPI_Send failure!");
1913 }
1914 Free(buffer, "PlotRealDensity: buffer");
1915}
Note: See TracBrowser for help on using the repository browser.