| 1 | /** \file mymath.c | 
|---|
| 2 | * Linear algebra mathematical routines. | 
|---|
| 3 | * Small library of often needed mathematical routines such as hard-coded | 
|---|
| 4 | * vector VP3(), scalar SP(), matrix products RMat33Vec3(), RMatMat33(), RVec3Mat33(), | 
|---|
| 5 | * multiplication with scalar SM(), euclidian distance Dist(),inverse RMatReci3(), | 
|---|
| 6 | * transposed RTranspose3(), modulo Rest(), nullifying NV(), SetArrayToDouble0(), | 
|---|
| 7 | * gamma function gammln(), gaussian error function derf(), integration via | 
|---|
| 8 | * Simpsons Rule Simps().\n | 
|---|
| 9 | * Also for printing matrixes PrintCMat330(), PrintRMat330() and vectors | 
|---|
| 10 | * PrintCVec30(), PrintRVec30() to screen.\n | 
|---|
| 11 | * All specialized for 3x3 real or complex ones.\n | 
|---|
| 12 | * Rather specialized is RotateToAlign() which is needed in transforming the whole coordinate | 
|---|
| 13 | * system in order to align a certain vector. | 
|---|
| 14 | * | 
|---|
| 15 | Project: ParallelCarParrinello | 
|---|
| 16 | \author Jan Hamaekers | 
|---|
| 17 | \date 2000 | 
|---|
| 18 |  | 
|---|
| 19 | File: helpers.c | 
|---|
| 20 | $Id: mymath.c,v 1.25 2007-03-29 13:38:30 foo Exp $ | 
|---|
| 21 | */ | 
|---|
| 22 |  | 
|---|
| 23 | #include<stdlib.h> | 
|---|
| 24 | #include<stdio.h> | 
|---|
| 25 | #include<stddef.h> | 
|---|
| 26 | #include<math.h> | 
|---|
| 27 | #include<string.h> | 
|---|
| 28 | #include"mymath.h" | 
|---|
| 29 |  | 
|---|
| 30 | // use double precision fft when we have it | 
|---|
| 31 | #ifdef HAVE_CONFIG_H | 
|---|
| 32 | #include <config.h> | 
|---|
| 33 | #endif | 
|---|
| 34 |  | 
|---|
| 35 | #ifdef HAVE_DFFTW_H | 
|---|
| 36 | #include "dfftw.h" | 
|---|
| 37 | #else | 
|---|
| 38 | #include "fftw.h" | 
|---|
| 39 | #endif | 
|---|
| 40 |  | 
|---|
| 41 | #ifdef HAVE_GSL_GSL_SF_ERF_H | 
|---|
| 42 | #include "gsl/gsl_sf_erf.h" | 
|---|
| 43 | #endif | 
|---|
| 44 |  | 
|---|
| 45 |  | 
|---|
| 46 | /** efficiently compute x^n | 
|---|
| 47 | * \param x argument | 
|---|
| 48 | * \param n potency | 
|---|
| 49 | * \return \f$x^n\f$ | 
|---|
| 50 | */ | 
|---|
| 51 | #ifdef HAVE_INLINE | 
|---|
| 52 | inline double tpow(double x, int n) | 
|---|
| 53 | #else | 
|---|
| 54 | double tpow(double x, int n) | 
|---|
| 55 | #endif | 
|---|
| 56 | { | 
|---|
| 57 | double y = 1; | 
|---|
| 58 | int neg = (n < 0); | 
|---|
| 59 |  | 
|---|
| 60 | if (neg) n = -n; | 
|---|
| 61 |  | 
|---|
| 62 | while (n) { | 
|---|
| 63 | if (n & 1) y *= x; | 
|---|
| 64 | x *= x; | 
|---|
| 65 | n >>= 1; | 
|---|
| 66 | } | 
|---|
| 67 | return neg ? 1.0/y : y; | 
|---|
| 68 | } | 
|---|
| 69 |  | 
|---|
| 70 |  | 
|---|
| 71 | /** Modulo function. | 
|---|
| 72 | * Normal modulo operation, yet return value is >=0 | 
|---|
| 73 | * \param n     denominator | 
|---|
| 74 | * \param m divisor | 
|---|
| 75 | * \return modulo >=0 | 
|---|
| 76 | */ | 
|---|
| 77 | #ifdef HAVE_INLINE | 
|---|
| 78 | inline int Rest(int n, int m) /* normale modulo-Funktion, Ausgabe>=0 */ | 
|---|
| 79 | #else | 
|---|
| 80 | int Rest(int n, int m) /* normale modulo-Funktion, Ausgabe>=0 */ | 
|---|
| 81 | #endif | 
|---|
| 82 | { | 
|---|
| 83 | int q = n%m; | 
|---|
| 84 | if (q >= 0) return (q); | 
|---|
| 85 | return ((q) + m); | 
|---|
| 86 | } | 
|---|
| 87 |  | 
|---|
| 88 | /* Rechnungen */ | 
|---|
| 89 |  | 
|---|
| 90 | /** Real 3x3 inverse of matrix. | 
|---|
| 91 | * Calculates the inverse of a matrix by b_ij = A_ij/det(A), where | 
|---|
| 92 | * is A_ij is the matrix with row j and column i removed. | 
|---|
| 93 | * \param B     inverse matrix array (set by function) | 
|---|
| 94 | * \param A matrix array to be inverted | 
|---|
| 95 | * \return 0 - error: det A == 0, 1 - success | 
|---|
| 96 | */ | 
|---|
| 97 | #ifdef HAVE_INLINE | 
|---|
| 98 | inline int RMatReci3(double B[NDIM_NDIM], const double A[NDIM_NDIM]) | 
|---|
| 99 | #else | 
|---|
| 100 | int RMatReci3(double B[NDIM_NDIM], const double A[NDIM_NDIM]) | 
|---|
| 101 | #endif | 
|---|
| 102 | { | 
|---|
| 103 | double detA = RDET3(A); | 
|---|
| 104 | double detAReci; | 
|---|
| 105 | if (detA == 0.0) return 1;  // RDET3(A) yields precisely zero if A irregular | 
|---|
| 106 | detAReci = 1./detA; | 
|---|
| 107 | B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);          // A_11 | 
|---|
| 108 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);          // A_12 | 
|---|
| 109 | B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);          // A_13 | 
|---|
| 110 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);          // A_21 | 
|---|
| 111 | B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);          // A_22 | 
|---|
| 112 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);          // A_23 | 
|---|
| 113 | B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);          // A_31 | 
|---|
| 114 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);          // A_32 | 
|---|
| 115 | B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);          // A_33 | 
|---|
| 116 | return 0; | 
|---|
| 117 | } | 
|---|
| 118 |  | 
|---|
| 119 | /** Real 3x3 Matrix multiplication. | 
|---|
| 120 | * Hard-coded falk scheme for multiplication of matrix1 * matrix2 | 
|---|
| 121 | * \param C     product matrix | 
|---|
| 122 | * \param A matrix1 array | 
|---|
| 123 | * \param B matrix2 array | 
|---|
| 124 | */ | 
|---|
| 125 | #ifdef HAVE_INLINE | 
|---|
| 126 | inline void RMatMat33(double C[NDIM*NDIM], const double A[NDIM*NDIM], const double B[NDIM*NDIM]) | 
|---|
| 127 | #else | 
|---|
| 128 | void RMatMat33(double C[NDIM*NDIM], const double A[NDIM*NDIM], const double B[NDIM*NDIM]) | 
|---|
| 129 | #endif | 
|---|
| 130 | { | 
|---|
| 131 | C[0] = A[0]*B[0]+A[3]*B[1]+A[6]*B[2]; | 
|---|
| 132 | C[1] = A[1]*B[0]+A[4]*B[1]+A[7]*B[2]; | 
|---|
| 133 | C[2] = A[2]*B[0]+A[5]*B[1]+A[8]*B[2]; | 
|---|
| 134 | C[3] = A[0]*B[3]+A[3]*B[4]+A[6]*B[5]; | 
|---|
| 135 | C[4] = A[1]*B[3]+A[4]*B[4]+A[7]*B[5]; | 
|---|
| 136 | C[5] = A[2]*B[3]+A[5]*B[4]+A[8]*B[5]; | 
|---|
| 137 | C[6] = A[0]*B[6]+A[3]*B[7]+A[6]*B[8]; | 
|---|
| 138 | C[7] = A[1]*B[6]+A[4]*B[7]+A[7]*B[8]; | 
|---|
| 139 | C[8] = A[2]*B[6]+A[5]*B[7]+A[8]*B[8]; | 
|---|
| 140 | } | 
|---|
| 141 |  | 
|---|
| 142 | /** Real 3x3 Matrix vector multiplication. | 
|---|
| 143 | * hard-coded falk scheme for multiplication of matrix * vector | 
|---|
| 144 | * \param C resulting vector | 
|---|
| 145 | * \param M     matrix array | 
|---|
| 146 | * \param V vector array | 
|---|
| 147 | */ | 
|---|
| 148 | #ifdef HAVE_INLINE | 
|---|
| 149 | inline void RMat33Vec3(double C[NDIM], const double M[NDIM*NDIM], const double V[NDIM]) | 
|---|
| 150 | #else | 
|---|
| 151 | void RMat33Vec3(double C[NDIM], const double M[NDIM*NDIM], const double V[NDIM]) | 
|---|
| 152 | #endif | 
|---|
| 153 | { | 
|---|
| 154 | C[0] = M[0]*V[0]+M[3]*V[1]+M[6]*V[2]; | 
|---|
| 155 | C[1] = M[1]*V[0]+M[4]*V[1]+M[7]*V[2]; | 
|---|
| 156 | C[2] = M[2]*V[0]+M[5]*V[1]+M[8]*V[2]; | 
|---|
| 157 | } | 
|---|
| 158 |  | 
|---|
| 159 | /** Real 3x3 vector Matrix multiplication. | 
|---|
| 160 | * hard-coded falk scheme for multiplication of vector * matrix | 
|---|
| 161 | * \param C resulting vector | 
|---|
| 162 | * \param V vector array | 
|---|
| 163 | * \param M     matrix array | 
|---|
| 164 | */ | 
|---|
| 165 | #ifdef HAVE_INLINE | 
|---|
| 166 | inline void RVec3Mat33(double C[NDIM], const double V[NDIM], const double M[NDIM*NDIM]) | 
|---|
| 167 | #else | 
|---|
| 168 | void RVec3Mat33(double C[NDIM], const double V[NDIM], const double M[NDIM*NDIM]) | 
|---|
| 169 | #endif | 
|---|
| 170 | { | 
|---|
| 171 | C[0] = V[0]*M[0]+V[1]*M[1]+V[2]*M[2]; | 
|---|
| 172 | C[1] = V[0]*M[3]+V[1]*M[4]+V[2]*M[5]; | 
|---|
| 173 | C[2] = V[0]*M[6]+V[1]*M[7]+V[2]*M[8]; | 
|---|
| 174 | } | 
|---|
| 175 |  | 
|---|
| 176 | /** Real 3x3 vector product. | 
|---|
| 177 | * vector product of vector1 x vector 2 | 
|---|
| 178 | * \param V     resulting orthogonal vector | 
|---|
| 179 | * \param A vector1 array | 
|---|
| 180 | * \param B vector2 array | 
|---|
| 181 | */ | 
|---|
| 182 | #ifdef HAVE_INLINE | 
|---|
| 183 | inline void VP3(double V[NDIM], double A[NDIM], double B[NDIM]) | 
|---|
| 184 | #else | 
|---|
| 185 | void VP3(double V[NDIM], double A[NDIM], double B[NDIM]) | 
|---|
| 186 | #endif | 
|---|
| 187 | { | 
|---|
| 188 | V[0] = A[1]*B[2]-A[2]*B[1]; | 
|---|
| 189 | V[1] = A[2]*B[0]-A[0]*B[2]; | 
|---|
| 190 | V[2] = A[0]*B[1]-A[1]*B[0]; | 
|---|
| 191 | } | 
|---|
| 192 |  | 
|---|
| 193 | /** Real transposition of 3x3 Matrix. | 
|---|
| 194 | * \param *A Matrix | 
|---|
| 195 | */ | 
|---|
| 196 | #ifdef HAVE_INLINE | 
|---|
| 197 | inline void RTranspose3(double *A) | 
|---|
| 198 | #else | 
|---|
| 199 | void RTranspose3(double *A) | 
|---|
| 200 | #endif | 
|---|
| 201 | { | 
|---|
| 202 | double dummy = A[1]; | 
|---|
| 203 | A[1] = A[3]; | 
|---|
| 204 | A[3] = dummy; | 
|---|
| 205 | dummy = A[2]; | 
|---|
| 206 | A[2] = A[6]; | 
|---|
| 207 | A[6] = dummy; | 
|---|
| 208 | dummy = A[5]; | 
|---|
| 209 | A[5] = A[7]; | 
|---|
| 210 | A[7] = dummy; | 
|---|
| 211 | } | 
|---|
| 212 |  | 
|---|
| 213 | /** Scalar product. | 
|---|
| 214 | * \param *a first vector | 
|---|
| 215 | * \param *b second vector | 
|---|
| 216 | * \param n dimension | 
|---|
| 217 | * \return scalar product of a with b | 
|---|
| 218 | */ | 
|---|
| 219 | #ifdef HAVE_INLINE | 
|---|
| 220 | inline double SP(const double *a, const double *b, const int n) | 
|---|
| 221 | #else | 
|---|
| 222 | double SP(const double *a, const double *b, const int n) | 
|---|
| 223 | #endif | 
|---|
| 224 | { | 
|---|
| 225 | int i; | 
|---|
| 226 | double dummySP; | 
|---|
| 227 | dummySP = 0; | 
|---|
| 228 | for (i = 0; i < n; i++) { | 
|---|
| 229 | dummySP += ((a[i]) * (b[i])); | 
|---|
| 230 | } | 
|---|
| 231 | return dummySP; | 
|---|
| 232 | } | 
|---|
| 233 |  | 
|---|
| 234 | /** Euclidian distance. | 
|---|
| 235 | * \param *a first vector | 
|---|
| 236 | * \param *b second vector | 
|---|
| 237 | * \param n dimension | 
|---|
| 238 | * \return sqrt(a-b) | 
|---|
| 239 | */ | 
|---|
| 240 | #ifdef HAVE_INLINE | 
|---|
| 241 | inline double Dist(const double *a, const double *b, const int n) | 
|---|
| 242 | #else | 
|---|
| 243 | double Dist(const double *a, const double *b, const int n) | 
|---|
| 244 | #endif | 
|---|
| 245 | { | 
|---|
| 246 | int i; | 
|---|
| 247 | double dummyDist = 0; | 
|---|
| 248 | for (i = 0; i < n; i++) { | 
|---|
| 249 | dummyDist += (a[i]-b[i])*(a[i]-b[i]); | 
|---|
| 250 | } | 
|---|
| 251 | return (sqrt(dummyDist)); | 
|---|
| 252 | } | 
|---|
| 253 |  | 
|---|
| 254 |  | 
|---|
| 255 | /** Multiplication with real scalar. | 
|---|
| 256 | * \param *a vector     (changed) | 
|---|
| 257 | * \param c scalar | 
|---|
| 258 | * \param n dimension | 
|---|
| 259 | */ | 
|---|
| 260 | #ifdef HAVE_INLINE | 
|---|
| 261 | inline void SM(double *a, const double c, const int n) | 
|---|
| 262 | #else | 
|---|
| 263 | void SM(double *a, const double c, const int n) | 
|---|
| 264 | #endif | 
|---|
| 265 | { | 
|---|
| 266 | int i; | 
|---|
| 267 | for (i = 0; i < n; i++) a[i] *= c; | 
|---|
| 268 | } | 
|---|
| 269 |  | 
|---|
| 270 | /** nullify vector. | 
|---|
| 271 | * sets all components of vector /a a to zero. | 
|---|
| 272 | * \param *a vector (changed) | 
|---|
| 273 | * \param n dimension | 
|---|
| 274 | */ | 
|---|
| 275 | #ifdef HAVE_INLINE | 
|---|
| 276 | inline void NV(double *a, const int n) | 
|---|
| 277 | #else | 
|---|
| 278 | void NV(double *a, const int n) | 
|---|
| 279 | #endif | 
|---|
| 280 | { | 
|---|
| 281 | int i; | 
|---|
| 282 | for (i = 0; i < n; i++) a[i] = 0; | 
|---|
| 283 | } | 
|---|
| 284 |  | 
|---|
| 285 | /** Differential step sum. | 
|---|
| 286 | * Sums up entries from array *dx, taking each \a incx of it, \a n times. | 
|---|
| 287 | * \param n number of steps | 
|---|
| 288 | * \param *dx incremental value array | 
|---|
| 289 | * \param incx step width | 
|---|
| 290 | * \return sum_i+=incx dx[i] | 
|---|
| 291 | * \sa Simps | 
|---|
| 292 | */ | 
|---|
| 293 | #ifdef HAVE_INLINE | 
|---|
| 294 | inline double dSum(int n, double *dx, int incx) | 
|---|
| 295 | #else | 
|---|
| 296 | double dSum(int n, double *dx, int incx) | 
|---|
| 297 | #endif | 
|---|
| 298 | { | 
|---|
| 299 | int i; | 
|---|
| 300 | double res; | 
|---|
| 301 | if (n <= 0) return(0.0); | 
|---|
| 302 | res = dx[0]; | 
|---|
| 303 | for(i = incx+1; i <= n*incx; i +=incx) | 
|---|
| 304 | res += dx[i-1]; | 
|---|
| 305 | return (res); | 
|---|
| 306 | } | 
|---|
| 307 |  | 
|---|
| 308 | /** Simpson formula for integration. | 
|---|
| 309 | * \a f is replaced by a polynomial of 2nd degree in order | 
|---|
| 310 | * to approximate the integral | 
|---|
| 311 | * \param n number of sampling points | 
|---|
| 312 | * \param *f function value array | 
|---|
| 313 | * \param h half the width of the integration interval | 
|---|
| 314 | * \return \f$\int_a^b f(x) dx = \frac{h}{3} (y_0 + 4 y_1 + 2 y_2 + 4 y_3 + ... + 2 y_{n-2} + 4 y_{n-1} + y_n)\f$ | 
|---|
| 315 | * \sa dSum() - used by this function. | 
|---|
| 316 | */ | 
|---|
| 317 | #ifdef HAVE_INLINE | 
|---|
| 318 | inline double Simps(int n, double *f, double h) | 
|---|
| 319 | #else | 
|---|
| 320 | double Simps(int n, double *f, double h) | 
|---|
| 321 | #endif | 
|---|
| 322 | { | 
|---|
| 323 | double res; | 
|---|
| 324 | int nm12=(n-1)/2; | 
|---|
| 325 | if (nm12*2 != n-1) { | 
|---|
| 326 | fprintf(stderr,"Simps: wrong n in Simps"); | 
|---|
| 327 | } | 
|---|
| 328 | res = 4.*dSum(nm12,&f[1],2)+2.*dSum(nm12-1,&f[2],2)+f[0]+f[n-1]; | 
|---|
| 329 | return(res*h/3.); | 
|---|
| 330 | } | 
|---|
| 331 |  | 
|---|
| 332 | /* derf */ | 
|---|
| 333 |  | 
|---|
| 334 | #ifndef HAVE_GSL_GSL_SF_ERF_H | 
|---|
| 335 | /** Logarithm of Gamma function. | 
|---|
| 336 | * \param xx x-value for function | 
|---|
| 337 | * \return ln(gamma(xx)) | 
|---|
| 338 | * \note formula and coefficients are taken from "Numerical Receipes in C" | 
|---|
| 339 | */ | 
|---|
| 340 | static double gammln(double xx) { | 
|---|
| 341 | int j; | 
|---|
| 342 | double x,tmp,ser; | 
|---|
| 343 | double stp = 2.50662827465; | 
|---|
| 344 | double cof[6] = { 76.18009173,-86.50532033,24.01409822,-1.231739516,.120858003e-2,-.536382e-5 }; | 
|---|
| 345 | x = xx -1.; | 
|---|
| 346 | tmp = x+5.5; | 
|---|
| 347 | tmp = (x+0.5)*log(tmp)-tmp; | 
|---|
| 348 | ser = 1.; | 
|---|
| 349 | for(j=0;j<6;j++) { | 
|---|
| 350 | x+=1.0; | 
|---|
| 351 | ser+=cof[j]/x; | 
|---|
| 352 | } | 
|---|
| 353 | return(tmp+log(stp*ser)); | 
|---|
| 354 | } | 
|---|
| 355 |  | 
|---|
| 356 | /** Series used by gammp(). | 
|---|
| 357 | * \param a | 
|---|
| 358 | * \param x | 
|---|
| 359 | * \bug when x equals 0 is 0 returned? | 
|---|
| 360 | * \note formula and coefficients are taken from "Numerical Receipes in C" | 
|---|
| 361 | * \warning maximum precision 1e-7 | 
|---|
| 362 | */ | 
|---|
| 363 | static double gser(double a, double x) { | 
|---|
| 364 | double gln = gammln(a); | 
|---|
| 365 | double ap,sum,del; | 
|---|
| 366 | int n; | 
|---|
| 367 | if (x <= 0.) { | 
|---|
| 368 | if (x < 0.) { | 
|---|
| 369 | return(0.0); | 
|---|
| 370 | } | 
|---|
| 371 | } | 
|---|
| 372 | ap=a; | 
|---|
| 373 | sum=1./a; | 
|---|
| 374 | del=sum; | 
|---|
| 375 | for (n=1;n<=100;n++) { | 
|---|
| 376 | ap += 1.; | 
|---|
| 377 | del *=x/ap; | 
|---|
| 378 | sum += del; | 
|---|
| 379 | if(fabs(del) < fabs(sum)*1.e-7) { | 
|---|
| 380 | return(sum*exp(-x+a*log(x)-gln)); | 
|---|
| 381 | } | 
|---|
| 382 | } | 
|---|
| 383 | return(sum*exp(-x+a*log(x)-gln)); | 
|---|
| 384 | } | 
|---|
| 385 |  | 
|---|
| 386 | /** Continued fraction used by gammp(). | 
|---|
| 387 | * \param a | 
|---|
| 388 | * \param x | 
|---|
| 389 | * \note formula and coefficients are taken from "Numerical Receipes in C" | 
|---|
| 390 | */ | 
|---|
| 391 | static double gcf(double a, double x) { | 
|---|
| 392 | double gln = gammln(a); | 
|---|
| 393 | double gold = 0.0; | 
|---|
| 394 | double a0 = 1.; | 
|---|
| 395 | double a1 = x; | 
|---|
| 396 | double b0 = 0.; | 
|---|
| 397 | double b1 = 1.; | 
|---|
| 398 | double fac = 1.; | 
|---|
| 399 | double an,ana,anf,g=0.0; | 
|---|
| 400 | int n; | 
|---|
| 401 | for (n=1; n <= 100; n++) { | 
|---|
| 402 | an = n; | 
|---|
| 403 | ana = an-a; | 
|---|
| 404 | a0=(a1+a0*ana)*fac; | 
|---|
| 405 | b0=(b1+b0*ana)*fac; | 
|---|
| 406 | anf=an*fac; | 
|---|
| 407 | a1=x*a0+anf*a1; | 
|---|
| 408 | b1=x*b0+anf*b1; | 
|---|
| 409 | if(a1 != 0.) { | 
|---|
| 410 | fac=1./a1; | 
|---|
| 411 | g=b1*fac; | 
|---|
| 412 | if (fabs((g-gold)/g)<1.e-7) { | 
|---|
| 413 | return(exp(-x+a*log(x)-gln)*g); | 
|---|
| 414 | } | 
|---|
| 415 | } | 
|---|
| 416 | } | 
|---|
| 417 | return(exp(-x+a*log(x)-gln)*g); | 
|---|
| 418 | } | 
|---|
| 419 |  | 
|---|
| 420 | /** Incomplete gamma function. | 
|---|
| 421 | * Either calculated via series gser() or via continued fraction gcf() | 
|---|
| 422 | * Needed by derf() | 
|---|
| 423 | * \f[ | 
|---|
| 424 | *      gammp(a,x) = \frac{1}{\gamma(a)} \int_x^\infty t^{a-1} \exp(-t) dt | 
|---|
| 425 | * \f] | 
|---|
| 426 | * \param a | 
|---|
| 427 | * \param x | 
|---|
| 428 | * \return f(a,x) =  (x < 1+a) ?  gser(a,x) : 1-gcf(a,x) | 
|---|
| 429 | * \note formula and coefficients are taken from "Numerical Receipes in C" | 
|---|
| 430 | */ | 
|---|
| 431 | static double gammp(double a, double x) { | 
|---|
| 432 | double res; | 
|---|
| 433 | if (x < a+1.) { | 
|---|
| 434 | res = gser(a,x); | 
|---|
| 435 | } else { | 
|---|
| 436 | res = 1.-gcf(a,x); | 
|---|
| 437 | } | 
|---|
| 438 | return(res); | 
|---|
| 439 | } | 
|---|
| 440 | #endif | 
|---|
| 441 |  | 
|---|
| 442 | /** Error function of integrated normal distribution. | 
|---|
| 443 | * Either realized via GSL function gsl_sf_erf or via gammp() | 
|---|
| 444 | * \f[ | 
|---|
| 445 | erf(x) = \frac{2}{\sqrt{\pi}} \int^x_0 \exp(-t^2) dt | 
|---|
| 446 | = \pi^{-1/2} \gamma(\frac{1}{2},x^2) | 
|---|
| 447 | * \f] | 
|---|
| 448 | * \param x | 
|---|
| 449 | * \return f(x) = sign(x) * gammp(0.5,x^2) | 
|---|
| 450 | * \sa gammp | 
|---|
| 451 | */ | 
|---|
| 452 | #ifdef HAVE_INLINE | 
|---|
| 453 | inline double derf(double x) | 
|---|
| 454 | #else | 
|---|
| 455 | double derf(double x) | 
|---|
| 456 | #endif | 
|---|
| 457 | { | 
|---|
| 458 | double res; | 
|---|
| 459 | #ifdef HAVE_GSL_GSL_SF_ERF_H | 
|---|
| 460 | // call gsl instead of numerical recipes routines | 
|---|
| 461 | res = gsl_sf_erf(x); | 
|---|
| 462 | #else | 
|---|
| 463 | if (x < 0) { | 
|---|
| 464 | res = -gammp(0.5,x*x); | 
|---|
| 465 | } else { | 
|---|
| 466 | res = gammp(0.5,x*x); | 
|---|
| 467 | } | 
|---|
| 468 | #endif | 
|---|
| 469 | return(res); | 
|---|
| 470 | } | 
|---|
| 471 |  | 
|---|
| 472 | /** Sets array to zero. | 
|---|
| 473 | * \param *a pointer to the double array | 
|---|
| 474 | * \param n number of array elements | 
|---|
| 475 | */ | 
|---|
| 476 | #ifdef HAVE_INLINE | 
|---|
| 477 | inline void SetArrayToDouble0(double *a, int n) | 
|---|
| 478 | #else | 
|---|
| 479 | void SetArrayToDouble0(double *a, int n) | 
|---|
| 480 | #endif | 
|---|
| 481 | { | 
|---|
| 482 | int i; | 
|---|
| 483 | for(i=0;i<n;i++) a[i] = 0.0; | 
|---|
| 484 | } | 
|---|
| 485 |  | 
|---|
| 486 | /** Print complex 3x3 matrix. | 
|---|
| 487 | * Checks if matrix has only zero entries, if not print each to screen: (re, im) ... | 
|---|
| 488 | * \param M matrix array | 
|---|
| 489 | */ | 
|---|
| 490 | void PrintCMat330(fftw_complex M[NDIM_NDIM]) | 
|---|
| 491 | { | 
|---|
| 492 | int i,p=0; | 
|---|
| 493 | for (i=0;i<NDIM_NDIM;i++) | 
|---|
| 494 | if (M[i].re != 0.0 || M[i].im != 0.0) p++; | 
|---|
| 495 | if (p) { | 
|---|
| 496 | for (i=0;i<NDIM_NDIM;i++) fprintf(stderr," (%f %f)", M[i].re, M[i].im); | 
|---|
| 497 | fprintf(stderr,"\n"); | 
|---|
| 498 | } | 
|---|
| 499 | } | 
|---|
| 500 |  | 
|---|
| 501 | /** Print real 3x3 matrix. | 
|---|
| 502 | * Checks if matrix has only zero entries, if not print each to screen: re ... | 
|---|
| 503 | * \param M matrix array | 
|---|
| 504 | */ | 
|---|
| 505 | void PrintRMat330(fftw_real M[NDIM_NDIM]) | 
|---|
| 506 | { | 
|---|
| 507 | int i,p=0; | 
|---|
| 508 | for (i=0;i<NDIM_NDIM;i++) | 
|---|
| 509 | if (M[i] != 0.0) p++; | 
|---|
| 510 | if (p) { | 
|---|
| 511 | for (i=0;i<NDIM_NDIM;i++) fprintf(stderr," %f", M[i]); | 
|---|
| 512 | fprintf(stderr,"\n"); | 
|---|
| 513 | } | 
|---|
| 514 | } | 
|---|
| 515 |  | 
|---|
| 516 | /** Print complex 3-dim vector. | 
|---|
| 517 | * Checks if vector has only zero entries, if not print each to screen: (re, im) ... | 
|---|
| 518 | * \param M vector array | 
|---|
| 519 | */ | 
|---|
| 520 | void PrintCVec30(fftw_complex M[NDIM]) | 
|---|
| 521 | { | 
|---|
| 522 | int i,p=0; | 
|---|
| 523 | for (i=0;i<NDIM;i++) | 
|---|
| 524 | if (M[i].re != 0.0 || M[i].im != 0.0) p++; | 
|---|
| 525 | if (p) { | 
|---|
| 526 | for (i=0;i<NDIM;i++) fprintf(stderr," (%f %f)", M[i].re, M[i].im); | 
|---|
| 527 | fprintf(stderr,"\n"); | 
|---|
| 528 | } | 
|---|
| 529 | } | 
|---|
| 530 |  | 
|---|
| 531 | /** Print real 3-dim vector. | 
|---|
| 532 | * Checks if vector has only zero entries, if not print each to screen: re ... | 
|---|
| 533 | * \param M matrix array | 
|---|
| 534 | */ | 
|---|
| 535 | void PrintRVec30(fftw_real M[NDIM]) | 
|---|
| 536 | { | 
|---|
| 537 | int i,p=0; | 
|---|
| 538 | for (i=0;i<NDIM;i++) | 
|---|
| 539 | if (M[i] != 0.0) p++; | 
|---|
| 540 | if (p) { | 
|---|
| 541 | for (i=0;i<NDIM;i++) fprintf(stderr," %f", M[i]); | 
|---|
| 542 | fprintf(stderr,"\n"); | 
|---|
| 543 | } | 
|---|
| 544 | } | 
|---|
| 545 |  | 
|---|
| 546 | /** Rotates \a matrix, such that simultaneously given \a vector is aligned with z axis. | 
|---|
| 547 | * Is used to rotate the unit cell in case of an external magnetic field. This field | 
|---|
| 548 | * is rotated so that it aligns with z axis in order to simplify necessary perturbation | 
|---|
| 549 | * calculations (only one component of each perturbed wave function necessary then). | 
|---|
| 550 | * \param vector which is aligned with z axis by rotation \a Q | 
|---|
| 551 | * \param Q return rotation matrix | 
|---|
| 552 | * \param matrix which is transformed under the above rotation \a Q | 
|---|
| 553 | */ | 
|---|
| 554 | void RotateToAlign(fftw_real Q[NDIM_NDIM], fftw_real matrix[NDIM_NDIM], fftw_real vector[NDIM]) { | 
|---|
| 555 | double tmp[NDIM_NDIM], Q1[NDIM_NDIM], Qtmp[NDIM_NDIM]; | 
|---|
| 556 | double alpha, beta, new_y; | 
|---|
| 557 | int i,j ; | 
|---|
| 558 |  | 
|---|
| 559 | // calculate rotation angles | 
|---|
| 560 | if (vector[0] < MYEPSILON) { | 
|---|
| 561 | alpha = 0; | 
|---|
| 562 | } else if (vector[1] > MYEPSILON) { | 
|---|
| 563 | alpha = atan(-vector[0]/vector[1]); | 
|---|
| 564 | } else alpha = PI/2; | 
|---|
| 565 | new_y = -sin(alpha)*vector[0]+cos(alpha)*vector[1]; | 
|---|
| 566 | if (new_y < MYEPSILON) { | 
|---|
| 567 | beta = 0; | 
|---|
| 568 | } else if (vector[2] > MYEPSILON) { | 
|---|
| 569 | beta = atan(-new_y/vector[2]);//asin(-vector[1]/vector[2]); | 
|---|
| 570 | } else beta = PI/2; | 
|---|
| 571 |  | 
|---|
| 572 | // create temporary matrix copy | 
|---|
| 573 | // set Q to identity | 
|---|
| 574 | for (i=0;i<NDIM;i++) | 
|---|
| 575 | for (j=0;j<NDIM;j++) { | 
|---|
| 576 | Q[i*NDIM+j] = (i == j) ? 1 : 0; | 
|---|
| 577 | tmp[i*NDIM+j] = matrix[i*NDIM+j]; | 
|---|
| 578 | } | 
|---|
| 579 |  | 
|---|
| 580 | // construct rotation matrices | 
|---|
| 581 | Q1[0] = cos(alpha); | 
|---|
| 582 | Q1[1] = sin(alpha); | 
|---|
| 583 | Q1[2] = 0; | 
|---|
| 584 | Q1[3] = -sin(alpha); | 
|---|
| 585 | Q1[4] = cos(alpha); | 
|---|
| 586 | Q1[5] = 0; | 
|---|
| 587 | Q1[6] = 0; | 
|---|
| 588 | Q1[7] = 0; | 
|---|
| 589 | Q1[8] = 1; | 
|---|
| 590 | // apply rotation and store | 
|---|
| 591 | RMatMat33(tmp,Q1,matrix); | 
|---|
| 592 | RMatMat33(Qtmp,Q1,Q); | 
|---|
| 593 |  | 
|---|
| 594 | Q1[0] = 1; | 
|---|
| 595 | Q1[1] = 0; | 
|---|
| 596 | Q1[2] = 0; | 
|---|
| 597 | Q1[3] = 0; | 
|---|
| 598 | Q1[4] = cos(beta); | 
|---|
| 599 | Q1[5] = sin(beta); | 
|---|
| 600 | Q1[6] = 0; | 
|---|
| 601 | Q1[7] = -sin(beta); | 
|---|
| 602 | Q1[8] = cos(beta); | 
|---|
| 603 | // apply rotation and store | 
|---|
| 604 | RMatMat33(matrix,Q1,tmp); | 
|---|
| 605 | RMatMat33(Q,Q1,Qtmp); | 
|---|
| 606 |  | 
|---|
| 607 | // in order to avoid unncessary calculations, set everything below epsilon to zero | 
|---|
| 608 | for (i=0;i<NDIM_NDIM;i++) { | 
|---|
| 609 | matrix[i] = (fabs(matrix[i]) > MYEPSILON) ? matrix[i] : 0; | 
|---|
| 610 | Q[i] = (fabs(Q[i]) > MYEPSILON) ? Q[i] : 0; | 
|---|
| 611 | } | 
|---|
| 612 | } | 
|---|