| 1 | /** \file mymath.c
 | 
|---|
| 2 |  * Linear algebra mathematical routines.
 | 
|---|
| 3 |  * Small library of often needed mathematical routines such as hard-coded
 | 
|---|
| 4 |  * vector VP3(), scalar SP(), matrix products RMat33Vec3(), RMatMat33(), RVec3Mat33(),
 | 
|---|
| 5 |  * multiplication with scalar SM(), euclidian distance Dist(),inverse RMatReci3(),
 | 
|---|
| 6 |  * transposed RTranspose3(), modulo Rest(), nullifying NV(), SetArrayToDouble0(),
 | 
|---|
| 7 |  * gamma function gammln(), gaussian error function derf(), integration via
 | 
|---|
| 8 |  * Simpsons Rule Simps().\n
 | 
|---|
| 9 |  * Also for printing matrixes PrintCMat330(), PrintRMat330() and vectors
 | 
|---|
| 10 |  * PrintCVec30(), PrintRVec30() to screen.\n
 | 
|---|
| 11 |  * All specialized for 3x3 real or complex ones.\n
 | 
|---|
| 12 |  * Rather specialized is RotateToAlign() which is needed in transforming the whole coordinate
 | 
|---|
| 13 |  * system in order to align a certain vector.
 | 
|---|
| 14 |  * 
 | 
|---|
| 15 |   Project: ParallelCarParrinello
 | 
|---|
| 16 |  \author Jan Hamaekers
 | 
|---|
| 17 |  \date 2000
 | 
|---|
| 18 | 
 | 
|---|
| 19 |   File: helpers.c
 | 
|---|
| 20 |   $Id: mymath.c,v 1.25 2007-03-29 13:38:30 foo Exp $
 | 
|---|
| 21 | */
 | 
|---|
| 22 | 
 | 
|---|
| 23 | #include<stdlib.h>
 | 
|---|
| 24 | #include<stdio.h>
 | 
|---|
| 25 | #include<stddef.h>
 | 
|---|
| 26 | #include<math.h>
 | 
|---|
| 27 | #include<string.h>
 | 
|---|
| 28 | #include"mymath.h"
 | 
|---|
| 29 | 
 | 
|---|
| 30 | // use double precision fft when we have it
 | 
|---|
| 31 | #ifdef HAVE_CONFIG_H
 | 
|---|
| 32 | #include <config.h>
 | 
|---|
| 33 | #endif
 | 
|---|
| 34 | 
 | 
|---|
| 35 | #ifdef HAVE_DFFTW_H
 | 
|---|
| 36 | #include "dfftw.h"
 | 
|---|
| 37 | #else
 | 
|---|
| 38 | #include "fftw.h"
 | 
|---|
| 39 | #endif
 | 
|---|
| 40 | 
 | 
|---|
| 41 | #ifdef HAVE_GSL_GSL_SF_ERF_H
 | 
|---|
| 42 | #include "gsl/gsl_sf_erf.h"
 | 
|---|
| 43 | #endif
 | 
|---|
| 44 | 
 | 
|---|
| 45 | 
 | 
|---|
| 46 | /** efficiently compute x^n
 | 
|---|
| 47 |  * \param x argument
 | 
|---|
| 48 |  * \param n potency
 | 
|---|
| 49 |  * \return \f$x^n\f$
 | 
|---|
| 50 |  */
 | 
|---|
| 51 | #ifdef HAVE_INLINE
 | 
|---|
| 52 | inline double tpow(double x, int n)
 | 
|---|
| 53 | #else
 | 
|---|
| 54 | double tpow(double x, int n)
 | 
|---|
| 55 | #endif
 | 
|---|
| 56 | {
 | 
|---|
| 57 |   double y = 1;
 | 
|---|
| 58 |   int neg = (n < 0);
 | 
|---|
| 59 | 
 | 
|---|
| 60 |   if (neg) n = -n;
 | 
|---|
| 61 | 
 | 
|---|
| 62 |   while (n) {
 | 
|---|
| 63 |     if (n & 1) y *= x;
 | 
|---|
| 64 |     x *= x;
 | 
|---|
| 65 |     n >>= 1;
 | 
|---|
| 66 |   }
 | 
|---|
| 67 |   return neg ? 1.0/y : y;
 | 
|---|
| 68 | }
 | 
|---|
| 69 | 
 | 
|---|
| 70 | 
 | 
|---|
| 71 | /** Modulo function.
 | 
|---|
| 72 |  * Normal modulo operation, yet return value is >=0
 | 
|---|
| 73 |  * \param n     denominator
 | 
|---|
| 74 |  * \param m divisor
 | 
|---|
| 75 |  * \return modulo >=0
 | 
|---|
| 76 |  */
 | 
|---|
| 77 | #ifdef HAVE_INLINE
 | 
|---|
| 78 | inline int Rest(int n, int m) /* normale modulo-Funktion, Ausgabe>=0 */
 | 
|---|
| 79 | #else
 | 
|---|
| 80 | int Rest(int n, int m) /* normale modulo-Funktion, Ausgabe>=0 */
 | 
|---|
| 81 | #endif
 | 
|---|
| 82 | {
 | 
|---|
| 83 |   int q = n%m;
 | 
|---|
| 84 |   if (q >= 0) return (q);
 | 
|---|
| 85 |   return ((q) + m);
 | 
|---|
| 86 | }
 | 
|---|
| 87 | 
 | 
|---|
| 88 | /* Rechnungen */
 | 
|---|
| 89 | 
 | 
|---|
| 90 | /** Real 3x3 inverse of matrix.
 | 
|---|
| 91 |  * Calculates the inverse of a matrix by b_ij = A_ij/det(A), where
 | 
|---|
| 92 |  * is A_ij is the matrix with row j and column i removed.
 | 
|---|
| 93 |  * \param B     inverse matrix array (set by function)
 | 
|---|
| 94 |  * \param A matrix array to be inverted
 | 
|---|
| 95 |  * \return 0 - error: det A == 0, 1 - success
 | 
|---|
| 96 |  */
 | 
|---|
| 97 | #ifdef HAVE_INLINE
 | 
|---|
| 98 | inline int RMatReci3(double B[NDIM_NDIM], const double A[NDIM_NDIM])
 | 
|---|
| 99 | #else
 | 
|---|
| 100 | int RMatReci3(double B[NDIM_NDIM], const double A[NDIM_NDIM])
 | 
|---|
| 101 | #endif
 | 
|---|
| 102 | {
 | 
|---|
| 103 |   double detA = RDET3(A);
 | 
|---|
| 104 |   double detAReci;
 | 
|---|
| 105 |   if (detA == 0.0) return 1;  // RDET3(A) yields precisely zero if A irregular
 | 
|---|
| 106 |   detAReci = 1./detA;
 | 
|---|
| 107 |   B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);          // A_11
 | 
|---|
| 108 |   B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);          // A_12
 | 
|---|
| 109 |   B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);          // A_13
 | 
|---|
| 110 |   B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);          // A_21
 | 
|---|
| 111 |   B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);          // A_22
 | 
|---|
| 112 |   B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);          // A_23
 | 
|---|
| 113 |   B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);          // A_31
 | 
|---|
| 114 |   B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);          // A_32
 | 
|---|
| 115 |   B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);          // A_33
 | 
|---|
| 116 |   return 0;
 | 
|---|
| 117 | }
 | 
|---|
| 118 | 
 | 
|---|
| 119 | /** Real 3x3 Matrix multiplication.
 | 
|---|
| 120 |  * Hard-coded falk scheme for multiplication of matrix1 * matrix2
 | 
|---|
| 121 |  * \param C     product matrix
 | 
|---|
| 122 |  * \param A matrix1 array
 | 
|---|
| 123 |  * \param B matrix2 array
 | 
|---|
| 124 |  */
 | 
|---|
| 125 | #ifdef HAVE_INLINE
 | 
|---|
| 126 | inline void RMatMat33(double C[NDIM*NDIM], const double A[NDIM*NDIM], const double B[NDIM*NDIM])
 | 
|---|
| 127 | #else
 | 
|---|
| 128 | void RMatMat33(double C[NDIM*NDIM], const double A[NDIM*NDIM], const double B[NDIM*NDIM])
 | 
|---|
| 129 | #endif
 | 
|---|
| 130 | {
 | 
|---|
| 131 |   C[0] = A[0]*B[0]+A[3]*B[1]+A[6]*B[2];
 | 
|---|
| 132 |   C[1] = A[1]*B[0]+A[4]*B[1]+A[7]*B[2];
 | 
|---|
| 133 |   C[2] = A[2]*B[0]+A[5]*B[1]+A[8]*B[2];
 | 
|---|
| 134 |   C[3] = A[0]*B[3]+A[3]*B[4]+A[6]*B[5];
 | 
|---|
| 135 |   C[4] = A[1]*B[3]+A[4]*B[4]+A[7]*B[5];
 | 
|---|
| 136 |   C[5] = A[2]*B[3]+A[5]*B[4]+A[8]*B[5];
 | 
|---|
| 137 |   C[6] = A[0]*B[6]+A[3]*B[7]+A[6]*B[8];
 | 
|---|
| 138 |   C[7] = A[1]*B[6]+A[4]*B[7]+A[7]*B[8];
 | 
|---|
| 139 |   C[8] = A[2]*B[6]+A[5]*B[7]+A[8]*B[8];
 | 
|---|
| 140 | }
 | 
|---|
| 141 | 
 | 
|---|
| 142 | /** Real 3x3 Matrix vector multiplication.
 | 
|---|
| 143 |  * hard-coded falk scheme for multiplication of matrix * vector
 | 
|---|
| 144 |  * \param C resulting vector
 | 
|---|
| 145 |  * \param M     matrix array
 | 
|---|
| 146 |  * \param V vector array
 | 
|---|
| 147 |  */
 | 
|---|
| 148 | #ifdef HAVE_INLINE
 | 
|---|
| 149 | inline void RMat33Vec3(double C[NDIM], const double M[NDIM*NDIM], const double V[NDIM])
 | 
|---|
| 150 | #else
 | 
|---|
| 151 | void RMat33Vec3(double C[NDIM], const double M[NDIM*NDIM], const double V[NDIM])
 | 
|---|
| 152 | #endif
 | 
|---|
| 153 | {
 | 
|---|
| 154 |   C[0] = M[0]*V[0]+M[3]*V[1]+M[6]*V[2];
 | 
|---|
| 155 |   C[1] = M[1]*V[0]+M[4]*V[1]+M[7]*V[2];
 | 
|---|
| 156 |   C[2] = M[2]*V[0]+M[5]*V[1]+M[8]*V[2];
 | 
|---|
| 157 | }
 | 
|---|
| 158 | 
 | 
|---|
| 159 | /** Real 3x3 vector Matrix multiplication.
 | 
|---|
| 160 |  * hard-coded falk scheme for multiplication of vector * matrix
 | 
|---|
| 161 |  * \param C resulting vector
 | 
|---|
| 162 |  * \param V vector array
 | 
|---|
| 163 |  * \param M     matrix array
 | 
|---|
| 164 |  */
 | 
|---|
| 165 | #ifdef HAVE_INLINE
 | 
|---|
| 166 | inline void RVec3Mat33(double C[NDIM], const double V[NDIM], const double M[NDIM*NDIM])
 | 
|---|
| 167 | #else
 | 
|---|
| 168 | void RVec3Mat33(double C[NDIM], const double V[NDIM], const double M[NDIM*NDIM])
 | 
|---|
| 169 | #endif
 | 
|---|
| 170 | {
 | 
|---|
| 171 |   C[0] = V[0]*M[0]+V[1]*M[1]+V[2]*M[2];
 | 
|---|
| 172 |   C[1] = V[0]*M[3]+V[1]*M[4]+V[2]*M[5];
 | 
|---|
| 173 |   C[2] = V[0]*M[6]+V[1]*M[7]+V[2]*M[8];
 | 
|---|
| 174 | }
 | 
|---|
| 175 | 
 | 
|---|
| 176 | /** Real 3x3 vector product.
 | 
|---|
| 177 |  * vector product of vector1 x vector 2
 | 
|---|
| 178 |  * \param V     resulting orthogonal vector
 | 
|---|
| 179 |  * \param A vector1 array
 | 
|---|
| 180 |  * \param B vector2 array
 | 
|---|
| 181 |  */
 | 
|---|
| 182 | #ifdef HAVE_INLINE
 | 
|---|
| 183 | inline void VP3(double V[NDIM], double A[NDIM], double B[NDIM])
 | 
|---|
| 184 | #else
 | 
|---|
| 185 | void VP3(double V[NDIM], double A[NDIM], double B[NDIM])
 | 
|---|
| 186 | #endif
 | 
|---|
| 187 | {
 | 
|---|
| 188 |   V[0] = A[1]*B[2]-A[2]*B[1];
 | 
|---|
| 189 |   V[1] = A[2]*B[0]-A[0]*B[2];
 | 
|---|
| 190 |   V[2] = A[0]*B[1]-A[1]*B[0];
 | 
|---|
| 191 | }
 | 
|---|
| 192 | 
 | 
|---|
| 193 | /** Real transposition of 3x3 Matrix.
 | 
|---|
| 194 |  * \param *A Matrix
 | 
|---|
| 195 |  */
 | 
|---|
| 196 | #ifdef HAVE_INLINE
 | 
|---|
| 197 | inline void RTranspose3(double *A)
 | 
|---|
| 198 | #else
 | 
|---|
| 199 | void RTranspose3(double *A)
 | 
|---|
| 200 | #endif
 | 
|---|
| 201 | {
 | 
|---|
| 202 |   double dummy = A[1];
 | 
|---|
| 203 |   A[1] = A[3];
 | 
|---|
| 204 |   A[3] = dummy;
 | 
|---|
| 205 |   dummy = A[2];
 | 
|---|
| 206 |   A[2] = A[6];
 | 
|---|
| 207 |   A[6] = dummy;
 | 
|---|
| 208 |   dummy = A[5];
 | 
|---|
| 209 |   A[5] = A[7];
 | 
|---|
| 210 |   A[7] = dummy;
 | 
|---|
| 211 | }
 | 
|---|
| 212 | 
 | 
|---|
| 213 | /** Scalar product.
 | 
|---|
| 214 |  * \param *a first vector
 | 
|---|
| 215 |  * \param *b second vector
 | 
|---|
| 216 |  * \param n dimension
 | 
|---|
| 217 |  * \return scalar product of a with b
 | 
|---|
| 218 |  */
 | 
|---|
| 219 | #ifdef HAVE_INLINE
 | 
|---|
| 220 | inline double SP(const double *a, const double *b, const int n)
 | 
|---|
| 221 | #else
 | 
|---|
| 222 | double SP(const double *a, const double *b, const int n)
 | 
|---|
| 223 | #endif
 | 
|---|
| 224 | {
 | 
|---|
| 225 |   int i;
 | 
|---|
| 226 |   double dummySP;
 | 
|---|
| 227 |   dummySP = 0;
 | 
|---|
| 228 |   for (i = 0; i < n; i++) {
 | 
|---|
| 229 |     dummySP += ((a[i]) * (b[i]));
 | 
|---|
| 230 |   }
 | 
|---|
| 231 |   return dummySP;
 | 
|---|
| 232 | }
 | 
|---|
| 233 | 
 | 
|---|
| 234 | /** Euclidian distance.
 | 
|---|
| 235 |  * \param *a first vector
 | 
|---|
| 236 |  * \param *b second vector
 | 
|---|
| 237 |  * \param n dimension
 | 
|---|
| 238 |  * \return sqrt(a-b)
 | 
|---|
| 239 |  */
 | 
|---|
| 240 | #ifdef HAVE_INLINE
 | 
|---|
| 241 | inline double Dist(const double *a, const double *b, const int n)
 | 
|---|
| 242 | #else
 | 
|---|
| 243 | double Dist(const double *a, const double *b, const int n)
 | 
|---|
| 244 | #endif
 | 
|---|
| 245 | {
 | 
|---|
| 246 |   int i;
 | 
|---|
| 247 |   double dummyDist = 0;
 | 
|---|
| 248 |   for (i = 0; i < n; i++) {
 | 
|---|
| 249 |     dummyDist += (a[i]-b[i])*(a[i]-b[i]);
 | 
|---|
| 250 |   }
 | 
|---|
| 251 |   return (sqrt(dummyDist));
 | 
|---|
| 252 | }
 | 
|---|
| 253 |      
 | 
|---|
| 254 | 
 | 
|---|
| 255 | /** Multiplication with real scalar.
 | 
|---|
| 256 |  * \param *a vector     (changed)
 | 
|---|
| 257 |  * \param c scalar
 | 
|---|
| 258 |  * \param n dimension
 | 
|---|
| 259 |  */
 | 
|---|
| 260 | #ifdef HAVE_INLINE
 | 
|---|
| 261 | inline void SM(double *a, const double c, const int n)
 | 
|---|
| 262 | #else
 | 
|---|
| 263 | void SM(double *a, const double c, const int n)
 | 
|---|
| 264 | #endif
 | 
|---|
| 265 | {
 | 
|---|
| 266 |   int i;
 | 
|---|
| 267 |   for (i = 0; i < n; i++) a[i] *= c;
 | 
|---|
| 268 | }
 | 
|---|
| 269 | 
 | 
|---|
| 270 | /** nullify vector.
 | 
|---|
| 271 |  * sets all components of vector /a a to zero.
 | 
|---|
| 272 |  * \param *a vector (changed)
 | 
|---|
| 273 |  * \param n dimension
 | 
|---|
| 274 |  */
 | 
|---|
| 275 | #ifdef HAVE_INLINE
 | 
|---|
| 276 | inline void NV(double *a, const int n)
 | 
|---|
| 277 | #else
 | 
|---|
| 278 | void NV(double *a, const int n)
 | 
|---|
| 279 | #endif
 | 
|---|
| 280 | {
 | 
|---|
| 281 |   int i;
 | 
|---|
| 282 |   for (i = 0; i < n; i++) a[i] = 0;
 | 
|---|
| 283 | }
 | 
|---|
| 284 | 
 | 
|---|
| 285 | /** Differential step sum.
 | 
|---|
| 286 |  * Sums up entries from array *dx, taking each \a incx of it, \a n times.
 | 
|---|
| 287 |  * \param n number of steps
 | 
|---|
| 288 |  * \param *dx incremental value array
 | 
|---|
| 289 |  * \param incx step width
 | 
|---|
| 290 |  * \return sum_i+=incx dx[i]
 | 
|---|
| 291 |  * \sa Simps
 | 
|---|
| 292 |  */
 | 
|---|
| 293 | #ifdef HAVE_INLINE
 | 
|---|
| 294 | inline double dSum(int n, double *dx, int incx)
 | 
|---|
| 295 | #else
 | 
|---|
| 296 | double dSum(int n, double *dx, int incx)
 | 
|---|
| 297 | #endif
 | 
|---|
| 298 | {
 | 
|---|
| 299 |   int i;
 | 
|---|
| 300 |   double res;
 | 
|---|
| 301 |   if (n <= 0) return(0.0);
 | 
|---|
| 302 |   res = dx[0];
 | 
|---|
| 303 |   for(i = incx+1; i <= n*incx; i +=incx) 
 | 
|---|
| 304 |     res += dx[i-1];
 | 
|---|
| 305 |   return (res);
 | 
|---|
| 306 | }
 | 
|---|
| 307 | 
 | 
|---|
| 308 | /** Simpson formula for integration.
 | 
|---|
| 309 |  * \a f is replaced by a polynomial of 2nd degree in order
 | 
|---|
| 310 |  * to approximate the integral
 | 
|---|
| 311 |  * \param n number of sampling points
 | 
|---|
| 312 |  * \param *f function value array
 | 
|---|
| 313 |  * \param h half the width of the integration interval
 | 
|---|
| 314 |  * \return \f$\int_a^b f(x) dx = \frac{h}{3} (y_0 + 4 y_1 + 2 y_2 + 4 y_3 + ... + 2 y_{n-2} + 4 y_{n-1} + y_n)\f$
 | 
|---|
| 315 |  * \sa dSum() - used by this function.
 | 
|---|
| 316 |  */
 | 
|---|
| 317 | #ifdef HAVE_INLINE
 | 
|---|
| 318 | inline double Simps(int n, double *f, double h)
 | 
|---|
| 319 | #else
 | 
|---|
| 320 | double Simps(int n, double *f, double h)
 | 
|---|
| 321 | #endif
 | 
|---|
| 322 | {
 | 
|---|
| 323 |   double res;
 | 
|---|
| 324 |   int nm12=(n-1)/2;
 | 
|---|
| 325 |   if (nm12*2 != n-1) { 
 | 
|---|
| 326 |     fprintf(stderr,"Simps: wrong n in Simps");
 | 
|---|
| 327 |   }
 | 
|---|
| 328 |   res = 4.*dSum(nm12,&f[1],2)+2.*dSum(nm12-1,&f[2],2)+f[0]+f[n-1];
 | 
|---|
| 329 |   return(res*h/3.);
 | 
|---|
| 330 | }
 | 
|---|
| 331 | 
 | 
|---|
| 332 | /* derf */
 | 
|---|
| 333 | 
 | 
|---|
| 334 | #ifndef HAVE_GSL_GSL_SF_ERF_H
 | 
|---|
| 335 | /** Logarithm of Gamma function.
 | 
|---|
| 336 |  * \param xx x-value for function
 | 
|---|
| 337 |  * \return ln(gamma(xx))
 | 
|---|
| 338 |  * \note formula and coefficients are taken from "Numerical Receipes in C"
 | 
|---|
| 339 |  */
 | 
|---|
| 340 | static double gammln(double xx) {
 | 
|---|
| 341 |   int j;
 | 
|---|
| 342 |   double x,tmp,ser;
 | 
|---|
| 343 |   double stp = 2.50662827465;
 | 
|---|
| 344 |   double cof[6] = { 76.18009173,-86.50532033,24.01409822,-1.231739516,.120858003e-2,-.536382e-5 };
 | 
|---|
| 345 |   x = xx -1.;
 | 
|---|
| 346 |   tmp = x+5.5;
 | 
|---|
| 347 |   tmp = (x+0.5)*log(tmp)-tmp;
 | 
|---|
| 348 |   ser = 1.;
 | 
|---|
| 349 |   for(j=0;j<6;j++) {
 | 
|---|
| 350 |     x+=1.0;
 | 
|---|
| 351 |     ser+=cof[j]/x;
 | 
|---|
| 352 |   }
 | 
|---|
| 353 |   return(tmp+log(stp*ser));
 | 
|---|
| 354 | }
 | 
|---|
| 355 | 
 | 
|---|
| 356 | /** Series used by gammp().
 | 
|---|
| 357 |  * \param a
 | 
|---|
| 358 |  * \param x
 | 
|---|
| 359 |  * \bug when x equals 0 is 0 returned?
 | 
|---|
| 360 |  * \note formula and coefficients are taken from "Numerical Receipes in C"
 | 
|---|
| 361 |  * \warning maximum precision 1e-7
 | 
|---|
| 362 |  */
 | 
|---|
| 363 | static double gser(double a, double x) {
 | 
|---|
| 364 |   double gln = gammln(a);
 | 
|---|
| 365 |   double ap,sum,del;
 | 
|---|
| 366 |   int n;
 | 
|---|
| 367 |   if (x <= 0.) {
 | 
|---|
| 368 |     if (x < 0.) {
 | 
|---|
| 369 |       return(0.0);
 | 
|---|
| 370 |     }
 | 
|---|
| 371 |   }
 | 
|---|
| 372 |   ap=a;
 | 
|---|
| 373 |   sum=1./a;
 | 
|---|
| 374 |   del=sum;
 | 
|---|
| 375 |   for (n=1;n<=100;n++) {
 | 
|---|
| 376 |     ap += 1.;
 | 
|---|
| 377 |     del *=x/ap;
 | 
|---|
| 378 |     sum += del;
 | 
|---|
| 379 |     if(fabs(del) < fabs(sum)*1.e-7) {
 | 
|---|
| 380 |       return(sum*exp(-x+a*log(x)-gln));
 | 
|---|
| 381 |     }
 | 
|---|
| 382 |   }
 | 
|---|
| 383 |   return(sum*exp(-x+a*log(x)-gln));
 | 
|---|
| 384 | }
 | 
|---|
| 385 | 
 | 
|---|
| 386 | /** Continued fraction used by gammp().
 | 
|---|
| 387 |  * \param a
 | 
|---|
| 388 |  * \param x
 | 
|---|
| 389 |  * \note formula and coefficients are taken from "Numerical Receipes in C"
 | 
|---|
| 390 |  */
 | 
|---|
| 391 | static double gcf(double a, double x) {
 | 
|---|
| 392 |   double gln = gammln(a);
 | 
|---|
| 393 |   double gold = 0.0;
 | 
|---|
| 394 |   double a0 = 1.;
 | 
|---|
| 395 |   double a1 = x;
 | 
|---|
| 396 |   double b0 = 0.;
 | 
|---|
| 397 |   double b1 = 1.;
 | 
|---|
| 398 |   double fac = 1.;
 | 
|---|
| 399 |   double an,ana,anf,g=0.0;
 | 
|---|
| 400 |   int n;
 | 
|---|
| 401 |   for (n=1; n <= 100; n++) {
 | 
|---|
| 402 |     an = n;
 | 
|---|
| 403 |     ana = an-a;
 | 
|---|
| 404 |     a0=(a1+a0*ana)*fac;
 | 
|---|
| 405 |     b0=(b1+b0*ana)*fac;
 | 
|---|
| 406 |     anf=an*fac;
 | 
|---|
| 407 |     a1=x*a0+anf*a1;
 | 
|---|
| 408 |     b1=x*b0+anf*b1;
 | 
|---|
| 409 |     if(a1 != 0.) {
 | 
|---|
| 410 |       fac=1./a1;
 | 
|---|
| 411 |       g=b1*fac;
 | 
|---|
| 412 |       if (fabs((g-gold)/g)<1.e-7) {
 | 
|---|
| 413 |                                 return(exp(-x+a*log(x)-gln)*g);
 | 
|---|
| 414 |       }
 | 
|---|
| 415 |     }
 | 
|---|
| 416 |   }
 | 
|---|
| 417 |   return(exp(-x+a*log(x)-gln)*g);
 | 
|---|
| 418 | }
 | 
|---|
| 419 | 
 | 
|---|
| 420 | /** Incomplete gamma function.
 | 
|---|
| 421 |  * Either calculated via series gser() or via continued fraction gcf()
 | 
|---|
| 422 |  * Needed by derf()
 | 
|---|
| 423 |  * \f[
 | 
|---|
| 424 |  *      gammp(a,x) = \frac{1}{\gamma(a)} \int_x^\infty t^{a-1} \exp(-t) dt
 | 
|---|
| 425 |  * \f]
 | 
|---|
| 426 |  * \param a
 | 
|---|
| 427 |  * \param x
 | 
|---|
| 428 |  * \return f(a,x) =  (x < 1+a) ?  gser(a,x) : 1-gcf(a,x)
 | 
|---|
| 429 |  * \note formula and coefficients are taken from "Numerical Receipes in C"
 | 
|---|
| 430 |  */
 | 
|---|
| 431 | static double gammp(double a, double x) {
 | 
|---|
| 432 |   double res;
 | 
|---|
| 433 |   if (x < a+1.) {
 | 
|---|
| 434 |     res = gser(a,x);
 | 
|---|
| 435 |   } else {
 | 
|---|
| 436 |     res = 1.-gcf(a,x);
 | 
|---|
| 437 |   }
 | 
|---|
| 438 |   return(res);
 | 
|---|
| 439 | }
 | 
|---|
| 440 | #endif
 | 
|---|
| 441 | 
 | 
|---|
| 442 | /** Error function of integrated normal distribution.
 | 
|---|
| 443 |  * Either realized via GSL function gsl_sf_erf or via gammp()
 | 
|---|
| 444 |  * \f[
 | 
|---|
| 445 |         erf(x) = \frac{2}{\sqrt{\pi}} \int^x_0 \exp(-t^2) dt 
 | 
|---|
| 446 |                                  = \pi^{-1/2} \gamma(\frac{1}{2},x^2)
 | 
|---|
| 447 |  * \f]
 | 
|---|
| 448 |  * \param x
 | 
|---|
| 449 |  * \return f(x) = sign(x) * gammp(0.5,x^2)
 | 
|---|
| 450 |  * \sa gammp
 | 
|---|
| 451 |  */
 | 
|---|
| 452 | #ifdef HAVE_INLINE
 | 
|---|
| 453 | inline double derf(double x)
 | 
|---|
| 454 | #else
 | 
|---|
| 455 | double derf(double x)
 | 
|---|
| 456 | #endif
 | 
|---|
| 457 | {
 | 
|---|
| 458 |   double res;
 | 
|---|
| 459 |   #ifdef HAVE_GSL_GSL_SF_ERF_H
 | 
|---|
| 460 |           // call gsl instead of numerical recipes routines
 | 
|---|
| 461 |         res = gsl_sf_erf(x);
 | 
|---|
| 462 |   #else
 | 
|---|
| 463 |            if (x < 0) {
 | 
|---|
| 464 |             res = -gammp(0.5,x*x);
 | 
|---|
| 465 |           } else {
 | 
|---|
| 466 |             res = gammp(0.5,x*x);
 | 
|---|
| 467 |           }
 | 
|---|
| 468 |         #endif
 | 
|---|
| 469 |   return(res);
 | 
|---|
| 470 | }
 | 
|---|
| 471 | 
 | 
|---|
| 472 | /** Sets array to zero.
 | 
|---|
| 473 |  * \param *a pointer to the double array
 | 
|---|
| 474 |  * \param n number of array elements
 | 
|---|
| 475 |  */
 | 
|---|
| 476 | #ifdef HAVE_INLINE
 | 
|---|
| 477 | inline void SetArrayToDouble0(double *a, int n)
 | 
|---|
| 478 | #else
 | 
|---|
| 479 | void SetArrayToDouble0(double *a, int n)
 | 
|---|
| 480 | #endif
 | 
|---|
| 481 | {
 | 
|---|
| 482 |   int i;
 | 
|---|
| 483 |   for(i=0;i<n;i++) a[i] = 0.0;
 | 
|---|
| 484 | }
 | 
|---|
| 485 | 
 | 
|---|
| 486 | /** Print complex 3x3 matrix.
 | 
|---|
| 487 |  * Checks if matrix has only zero entries, if not print each to screen: (re, im) ...
 | 
|---|
| 488 |  * \param M matrix array
 | 
|---|
| 489 |  */
 | 
|---|
| 490 | void PrintCMat330(fftw_complex M[NDIM_NDIM])
 | 
|---|
| 491 | {
 | 
|---|
| 492 |   int i,p=0;
 | 
|---|
| 493 |   for (i=0;i<NDIM_NDIM;i++)
 | 
|---|
| 494 |     if (M[i].re != 0.0 || M[i].im != 0.0) p++;
 | 
|---|
| 495 |   if (p) {
 | 
|---|
| 496 |     for (i=0;i<NDIM_NDIM;i++) fprintf(stderr," (%f %f)", M[i].re, M[i].im);
 | 
|---|
| 497 |     fprintf(stderr,"\n");
 | 
|---|
| 498 |   }
 | 
|---|
| 499 | }
 | 
|---|
| 500 | 
 | 
|---|
| 501 | /** Print real 3x3 matrix.
 | 
|---|
| 502 |  * Checks if matrix has only zero entries, if not print each to screen: re ...
 | 
|---|
| 503 |  * \param M matrix array
 | 
|---|
| 504 |  */
 | 
|---|
| 505 | void PrintRMat330(fftw_real M[NDIM_NDIM])
 | 
|---|
| 506 | {
 | 
|---|
| 507 |   int i,p=0;
 | 
|---|
| 508 |   for (i=0;i<NDIM_NDIM;i++)
 | 
|---|
| 509 |     if (M[i] != 0.0) p++;
 | 
|---|
| 510 |   if (p) {
 | 
|---|
| 511 |     for (i=0;i<NDIM_NDIM;i++) fprintf(stderr," %f", M[i]);
 | 
|---|
| 512 |     fprintf(stderr,"\n");
 | 
|---|
| 513 |   }
 | 
|---|
| 514 | }
 | 
|---|
| 515 | 
 | 
|---|
| 516 | /** Print complex 3-dim vector.
 | 
|---|
| 517 |  * Checks if vector has only zero entries, if not print each to screen: (re, im) ...
 | 
|---|
| 518 |  * \param M vector array
 | 
|---|
| 519 |  */
 | 
|---|
| 520 | void PrintCVec30(fftw_complex M[NDIM])
 | 
|---|
| 521 | {
 | 
|---|
| 522 |   int i,p=0;
 | 
|---|
| 523 |   for (i=0;i<NDIM;i++)
 | 
|---|
| 524 |     if (M[i].re != 0.0 || M[i].im != 0.0) p++;
 | 
|---|
| 525 |   if (p) {
 | 
|---|
| 526 |     for (i=0;i<NDIM;i++) fprintf(stderr," (%f %f)", M[i].re, M[i].im);
 | 
|---|
| 527 |     fprintf(stderr,"\n");
 | 
|---|
| 528 |   }
 | 
|---|
| 529 | }
 | 
|---|
| 530 | 
 | 
|---|
| 531 | /** Print real 3-dim vector.
 | 
|---|
| 532 |  * Checks if vector has only zero entries, if not print each to screen: re ...
 | 
|---|
| 533 |  * \param M matrix array
 | 
|---|
| 534 |  */
 | 
|---|
| 535 | void PrintRVec30(fftw_real M[NDIM])
 | 
|---|
| 536 | {
 | 
|---|
| 537 |   int i,p=0;
 | 
|---|
| 538 |   for (i=0;i<NDIM;i++)
 | 
|---|
| 539 |     if (M[i] != 0.0) p++;
 | 
|---|
| 540 |   if (p) {
 | 
|---|
| 541 |     for (i=0;i<NDIM;i++) fprintf(stderr," %f", M[i]);
 | 
|---|
| 542 |     fprintf(stderr,"\n");
 | 
|---|
| 543 |   }
 | 
|---|
| 544 | }
 | 
|---|
| 545 | 
 | 
|---|
| 546 | /** Rotates \a matrix, such that simultaneously given \a vector is aligned with z axis.
 | 
|---|
| 547 |  * Is used to rotate the unit cell in case of an external magnetic field. This field
 | 
|---|
| 548 |  * is rotated so that it aligns with z axis in order to simplify necessary perturbation
 | 
|---|
| 549 |  * calculations (only one component of each perturbed wave function necessary then).
 | 
|---|
| 550 |  * \param vector which is aligned with z axis by rotation \a Q
 | 
|---|
| 551 |  * \param Q return rotation matrix
 | 
|---|
| 552 |  * \param matrix which is transformed under the above rotation \a Q
 | 
|---|
| 553 |  */
 | 
|---|
| 554 | void RotateToAlign(fftw_real Q[NDIM_NDIM], fftw_real matrix[NDIM_NDIM], fftw_real vector[NDIM]) {
 | 
|---|
| 555 |   double tmp[NDIM_NDIM], Q1[NDIM_NDIM], Qtmp[NDIM_NDIM];
 | 
|---|
| 556 |   double alpha, beta, new_y;
 | 
|---|
| 557 |   int i,j ;
 | 
|---|
| 558 |     
 | 
|---|
| 559 |   // calculate rotation angles
 | 
|---|
| 560 |   if (vector[0] < MYEPSILON) {
 | 
|---|
| 561 |     alpha = 0;
 | 
|---|
| 562 |   } else if (vector[1] > MYEPSILON) {
 | 
|---|
| 563 |       alpha = atan(-vector[0]/vector[1]);
 | 
|---|
| 564 |     } else alpha = PI/2; 
 | 
|---|
| 565 |   new_y = -sin(alpha)*vector[0]+cos(alpha)*vector[1];
 | 
|---|
| 566 |   if (new_y < MYEPSILON) {
 | 
|---|
| 567 |     beta = 0;
 | 
|---|
| 568 |   } else if (vector[2] > MYEPSILON) {
 | 
|---|
| 569 |       beta = atan(-new_y/vector[2]);//asin(-vector[1]/vector[2]);
 | 
|---|
| 570 |     } else beta = PI/2;
 | 
|---|
| 571 | 
 | 
|---|
| 572 |   // create temporary matrix copy
 | 
|---|
| 573 |   // set Q to identity
 | 
|---|
| 574 |   for (i=0;i<NDIM;i++)
 | 
|---|
| 575 |     for (j=0;j<NDIM;j++) {
 | 
|---|
| 576 |       Q[i*NDIM+j] = (i == j) ? 1 : 0;
 | 
|---|
| 577 |       tmp[i*NDIM+j] = matrix[i*NDIM+j];
 | 
|---|
| 578 |     }
 | 
|---|
| 579 |   
 | 
|---|
| 580 |   // construct rotation matrices
 | 
|---|
| 581 |   Q1[0] = cos(alpha);
 | 
|---|
| 582 |   Q1[1] = sin(alpha);
 | 
|---|
| 583 |   Q1[2] = 0;
 | 
|---|
| 584 |   Q1[3] = -sin(alpha);
 | 
|---|
| 585 |   Q1[4] = cos(alpha);
 | 
|---|
| 586 |   Q1[5] = 0;
 | 
|---|
| 587 |   Q1[6] = 0;
 | 
|---|
| 588 |   Q1[7] = 0;
 | 
|---|
| 589 |   Q1[8] = 1;
 | 
|---|
| 590 |   // apply rotation and store
 | 
|---|
| 591 |   RMatMat33(tmp,Q1,matrix);
 | 
|---|
| 592 |   RMatMat33(Qtmp,Q1,Q);
 | 
|---|
| 593 | 
 | 
|---|
| 594 |   Q1[0] = 1;
 | 
|---|
| 595 |   Q1[1] = 0;
 | 
|---|
| 596 |   Q1[2] = 0;
 | 
|---|
| 597 |   Q1[3] = 0;
 | 
|---|
| 598 |   Q1[4] = cos(beta);
 | 
|---|
| 599 |   Q1[5] = sin(beta);
 | 
|---|
| 600 |   Q1[6] = 0;
 | 
|---|
| 601 |   Q1[7] = -sin(beta);
 | 
|---|
| 602 |   Q1[8] = cos(beta);
 | 
|---|
| 603 |   // apply rotation and store
 | 
|---|
| 604 |   RMatMat33(matrix,Q1,tmp);
 | 
|---|
| 605 |   RMatMat33(Q,Q1,Qtmp);
 | 
|---|
| 606 | 
 | 
|---|
| 607 |   // in order to avoid unncessary calculations, set everything below epsilon to zero
 | 
|---|
| 608 |   for (i=0;i<NDIM_NDIM;i++) {
 | 
|---|
| 609 |     matrix[i] = (fabs(matrix[i]) > MYEPSILON) ? matrix[i] : 0;
 | 
|---|
| 610 |     Q[i] = (fabs(Q[i]) > MYEPSILON) ? Q[i] : 0;
 | 
|---|
| 611 |   }
 | 
|---|
| 612 | }
 | 
|---|