[a0bcf1] | 1 | /** \file mymath.c
|
---|
| 2 | * Linear algebra mathematical routines.
|
---|
| 3 | * Small library of often needed mathematical routines such as hard-coded
|
---|
| 4 | * vector VP3(), scalar SP(), matrix products RMat33Vec3(), RMatMat33(), RVec3Mat33(),
|
---|
| 5 | * multiplication with scalar SM(), euclidian distance Dist(),inverse RMatReci3(),
|
---|
| 6 | * transposed RTranspose3(), modulo Rest(), nullifying NV(), SetArrayToDouble0(),
|
---|
| 7 | * gamma function gammln(), gaussian error function derf(), integration via
|
---|
| 8 | * Simpsons Rule Simps().\n
|
---|
| 9 | * Also for printing matrixes PrintCMat330(), PrintRMat330() and vectors
|
---|
| 10 | * PrintCVec30(), PrintRVec30() to screen.\n
|
---|
| 11 | * All specialized for 3x3 real or complex ones.\n
|
---|
| 12 | * Rather specialized is RotateToAlign() which is needed in transforming the whole coordinate
|
---|
| 13 | * system in order to align a certain vector.
|
---|
| 14 | *
|
---|
| 15 | Project: ParallelCarParrinello
|
---|
| 16 | \author Jan Hamaekers
|
---|
| 17 | \date 2000
|
---|
| 18 |
|
---|
| 19 | File: helpers.c
|
---|
| 20 | $Id: mymath.c,v 1.25 2007-03-29 13:38:30 foo Exp $
|
---|
| 21 | */
|
---|
| 22 |
|
---|
| 23 | #include<stdlib.h>
|
---|
| 24 | #include<stdio.h>
|
---|
| 25 | #include<stddef.h>
|
---|
| 26 | #include<math.h>
|
---|
| 27 | #include<string.h>
|
---|
| 28 | #include"mymath.h"
|
---|
| 29 |
|
---|
| 30 | // use double precision fft when we have it
|
---|
| 31 | #ifdef HAVE_CONFIG_H
|
---|
| 32 | #include <config.h>
|
---|
| 33 | #endif
|
---|
| 34 |
|
---|
| 35 | #ifdef HAVE_DFFTW_H
|
---|
| 36 | #include "dfftw.h"
|
---|
| 37 | #else
|
---|
| 38 | #include "fftw.h"
|
---|
| 39 | #endif
|
---|
| 40 |
|
---|
| 41 | #ifdef HAVE_GSL_GSL_SF_ERF_H
|
---|
| 42 | #include "gsl/gsl_sf_erf.h"
|
---|
| 43 | #endif
|
---|
| 44 |
|
---|
| 45 |
|
---|
| 46 | /** efficiently compute x^n
|
---|
| 47 | * \param x argument
|
---|
| 48 | * \param n potency
|
---|
| 49 | * \return \f$x^n\f$
|
---|
| 50 | */
|
---|
[08a794b] | 51 | #ifdef HAVE_INLINE
|
---|
[a0bcf1] | 52 | inline double tpow(double x, int n)
|
---|
[08a794b] | 53 | #else
|
---|
| 54 | double tpow(double x, int n)
|
---|
| 55 | #endif
|
---|
[a0bcf1] | 56 | {
|
---|
| 57 | double y = 1;
|
---|
| 58 | int neg = (n < 0);
|
---|
| 59 |
|
---|
| 60 | if (neg) n = -n;
|
---|
| 61 |
|
---|
| 62 | while (n) {
|
---|
| 63 | if (n & 1) y *= x;
|
---|
| 64 | x *= x;
|
---|
| 65 | n >>= 1;
|
---|
| 66 | }
|
---|
| 67 | return neg ? 1.0/y : y;
|
---|
| 68 | }
|
---|
| 69 |
|
---|
| 70 |
|
---|
| 71 | /** Modulo function.
|
---|
| 72 | * Normal modulo operation, yet return value is >=0
|
---|
| 73 | * \param n denominator
|
---|
| 74 | * \param m divisor
|
---|
| 75 | * \return modulo >=0
|
---|
| 76 | */
|
---|
[08a794b] | 77 | #ifdef HAVE_INLINE
|
---|
[a0bcf1] | 78 | inline int Rest(int n, int m) /* normale modulo-Funktion, Ausgabe>=0 */
|
---|
[08a794b] | 79 | #else
|
---|
| 80 | int Rest(int n, int m) /* normale modulo-Funktion, Ausgabe>=0 */
|
---|
| 81 | #endif
|
---|
[a0bcf1] | 82 | {
|
---|
| 83 | int q = n%m;
|
---|
| 84 | if (q >= 0) return (q);
|
---|
| 85 | return ((q) + m);
|
---|
| 86 | }
|
---|
| 87 |
|
---|
| 88 | /* Rechnungen */
|
---|
| 89 |
|
---|
| 90 | /** Real 3x3 inverse of matrix.
|
---|
| 91 | * Calculates the inverse of a matrix by b_ij = A_ij/det(A), where
|
---|
| 92 | * is A_ij is the matrix with row j and column i removed.
|
---|
| 93 | * \param B inverse matrix array (set by function)
|
---|
| 94 | * \param A matrix array to be inverted
|
---|
| 95 | * \return 0 - error: det A == 0, 1 - success
|
---|
| 96 | */
|
---|
[08a794b] | 97 | #ifdef HAVE_INLINE
|
---|
[a0bcf1] | 98 | inline int RMatReci3(double B[NDIM_NDIM], const double A[NDIM_NDIM])
|
---|
[08a794b] | 99 | #else
|
---|
| 100 | int RMatReci3(double B[NDIM_NDIM], const double A[NDIM_NDIM])
|
---|
| 101 | #endif
|
---|
[a0bcf1] | 102 | {
|
---|
| 103 | double detA = RDET3(A);
|
---|
| 104 | double detAReci;
|
---|
| 105 | if (detA == 0.0) return 1; // RDET3(A) yields precisely zero if A irregular
|
---|
| 106 | detAReci = 1./detA;
|
---|
| 107 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
---|
| 108 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
---|
| 109 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
---|
| 110 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
---|
| 111 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
---|
| 112 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
---|
| 113 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
---|
| 114 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
---|
| 115 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
---|
| 116 | return 0;
|
---|
| 117 | }
|
---|
| 118 |
|
---|
| 119 | /** Real 3x3 Matrix multiplication.
|
---|
| 120 | * Hard-coded falk scheme for multiplication of matrix1 * matrix2
|
---|
| 121 | * \param C product matrix
|
---|
| 122 | * \param A matrix1 array
|
---|
| 123 | * \param B matrix2 array
|
---|
| 124 | */
|
---|
[08a794b] | 125 | #ifdef HAVE_INLINE
|
---|
[a0bcf1] | 126 | inline void RMatMat33(double C[NDIM*NDIM], const double A[NDIM*NDIM], const double B[NDIM*NDIM])
|
---|
[08a794b] | 127 | #else
|
---|
| 128 | void RMatMat33(double C[NDIM*NDIM], const double A[NDIM*NDIM], const double B[NDIM*NDIM])
|
---|
| 129 | #endif
|
---|
[a0bcf1] | 130 | {
|
---|
| 131 | C[0] = A[0]*B[0]+A[3]*B[1]+A[6]*B[2];
|
---|
| 132 | C[1] = A[1]*B[0]+A[4]*B[1]+A[7]*B[2];
|
---|
| 133 | C[2] = A[2]*B[0]+A[5]*B[1]+A[8]*B[2];
|
---|
| 134 | C[3] = A[0]*B[3]+A[3]*B[4]+A[6]*B[5];
|
---|
| 135 | C[4] = A[1]*B[3]+A[4]*B[4]+A[7]*B[5];
|
---|
| 136 | C[5] = A[2]*B[3]+A[5]*B[4]+A[8]*B[5];
|
---|
| 137 | C[6] = A[0]*B[6]+A[3]*B[7]+A[6]*B[8];
|
---|
| 138 | C[7] = A[1]*B[6]+A[4]*B[7]+A[7]*B[8];
|
---|
| 139 | C[8] = A[2]*B[6]+A[5]*B[7]+A[8]*B[8];
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | /** Real 3x3 Matrix vector multiplication.
|
---|
| 143 | * hard-coded falk scheme for multiplication of matrix * vector
|
---|
| 144 | * \param C resulting vector
|
---|
| 145 | * \param M matrix array
|
---|
| 146 | * \param V vector array
|
---|
| 147 | */
|
---|
[08a794b] | 148 | #ifdef HAVE_INLINE
|
---|
[a0bcf1] | 149 | inline void RMat33Vec3(double C[NDIM], const double M[NDIM*NDIM], const double V[NDIM])
|
---|
[08a794b] | 150 | #else
|
---|
| 151 | void RMat33Vec3(double C[NDIM], const double M[NDIM*NDIM], const double V[NDIM])
|
---|
| 152 | #endif
|
---|
[a0bcf1] | 153 | {
|
---|
| 154 | C[0] = M[0]*V[0]+M[3]*V[1]+M[6]*V[2];
|
---|
| 155 | C[1] = M[1]*V[0]+M[4]*V[1]+M[7]*V[2];
|
---|
| 156 | C[2] = M[2]*V[0]+M[5]*V[1]+M[8]*V[2];
|
---|
| 157 | }
|
---|
| 158 |
|
---|
| 159 | /** Real 3x3 vector Matrix multiplication.
|
---|
| 160 | * hard-coded falk scheme for multiplication of vector * matrix
|
---|
| 161 | * \param C resulting vector
|
---|
| 162 | * \param V vector array
|
---|
| 163 | * \param M matrix array
|
---|
| 164 | */
|
---|
[08a794b] | 165 | #ifdef HAVE_INLINE
|
---|
[a0bcf1] | 166 | inline void RVec3Mat33(double C[NDIM], const double V[NDIM], const double M[NDIM*NDIM])
|
---|
[08a794b] | 167 | #else
|
---|
| 168 | void RVec3Mat33(double C[NDIM], const double V[NDIM], const double M[NDIM*NDIM])
|
---|
| 169 | #endif
|
---|
[a0bcf1] | 170 | {
|
---|
| 171 | C[0] = V[0]*M[0]+V[1]*M[1]+V[2]*M[2];
|
---|
| 172 | C[1] = V[0]*M[3]+V[1]*M[4]+V[2]*M[5];
|
---|
| 173 | C[2] = V[0]*M[6]+V[1]*M[7]+V[2]*M[8];
|
---|
| 174 | }
|
---|
| 175 |
|
---|
| 176 | /** Real 3x3 vector product.
|
---|
| 177 | * vector product of vector1 x vector 2
|
---|
| 178 | * \param V resulting orthogonal vector
|
---|
| 179 | * \param A vector1 array
|
---|
| 180 | * \param B vector2 array
|
---|
| 181 | */
|
---|
[08a794b] | 182 | #ifdef HAVE_INLINE
|
---|
[a0bcf1] | 183 | inline void VP3(double V[NDIM], double A[NDIM], double B[NDIM])
|
---|
[08a794b] | 184 | #else
|
---|
| 185 | void VP3(double V[NDIM], double A[NDIM], double B[NDIM])
|
---|
| 186 | #endif
|
---|
[a0bcf1] | 187 | {
|
---|
| 188 | V[0] = A[1]*B[2]-A[2]*B[1];
|
---|
| 189 | V[1] = A[2]*B[0]-A[0]*B[2];
|
---|
| 190 | V[2] = A[0]*B[1]-A[1]*B[0];
|
---|
| 191 | }
|
---|
| 192 |
|
---|
| 193 | /** Real transposition of 3x3 Matrix.
|
---|
| 194 | * \param *A Matrix
|
---|
| 195 | */
|
---|
| 196 | #ifdef HAVE_INLINE
|
---|
[08a794b] | 197 | inline void RTranspose3(double *A)
|
---|
[a0bcf1] | 198 | #else
|
---|
[08a794b] | 199 | void RTranspose3(double *A)
|
---|
[a0bcf1] | 200 | #endif
|
---|
[08a794b] | 201 | {
|
---|
[a0bcf1] | 202 | double dummy = A[1];
|
---|
| 203 | A[1] = A[3];
|
---|
| 204 | A[3] = dummy;
|
---|
| 205 | dummy = A[2];
|
---|
| 206 | A[2] = A[6];
|
---|
| 207 | A[6] = dummy;
|
---|
| 208 | dummy = A[5];
|
---|
| 209 | A[5] = A[7];
|
---|
| 210 | A[7] = dummy;
|
---|
| 211 | }
|
---|
| 212 |
|
---|
| 213 | /** Scalar product.
|
---|
| 214 | * \param *a first vector
|
---|
| 215 | * \param *b second vector
|
---|
| 216 | * \param n dimension
|
---|
| 217 | * \return scalar product of a with b
|
---|
| 218 | */
|
---|
| 219 | #ifdef HAVE_INLINE
|
---|
[08a794b] | 220 | inline double SP(const double *a, const double *b, const int n)
|
---|
[a0bcf1] | 221 | #else
|
---|
[08a794b] | 222 | double SP(const double *a, const double *b, const int n)
|
---|
[a0bcf1] | 223 | #endif
|
---|
[08a794b] | 224 | {
|
---|
[a0bcf1] | 225 | int i;
|
---|
| 226 | double dummySP;
|
---|
| 227 | dummySP = 0;
|
---|
| 228 | for (i = 0; i < n; i++) {
|
---|
| 229 | dummySP += ((a[i]) * (b[i]));
|
---|
| 230 | }
|
---|
| 231 | return dummySP;
|
---|
| 232 | }
|
---|
| 233 |
|
---|
| 234 | /** Euclidian distance.
|
---|
| 235 | * \param *a first vector
|
---|
| 236 | * \param *b second vector
|
---|
| 237 | * \param n dimension
|
---|
| 238 | * \return sqrt(a-b)
|
---|
| 239 | */
|
---|
[08a794b] | 240 | #ifdef HAVE_INLINE
|
---|
| 241 | inline double Dist(const double *a, const double *b, const int n)
|
---|
| 242 | #else
|
---|
| 243 | double Dist(const double *a, const double *b, const int n)
|
---|
| 244 | #endif
|
---|
| 245 | {
|
---|
[a0bcf1] | 246 | int i;
|
---|
| 247 | double dummyDist = 0;
|
---|
| 248 | for (i = 0; i < n; i++) {
|
---|
| 249 | dummyDist += (a[i]-b[i])*(a[i]-b[i]);
|
---|
| 250 | }
|
---|
| 251 | return (sqrt(dummyDist));
|
---|
| 252 | }
|
---|
| 253 |
|
---|
| 254 |
|
---|
| 255 | /** Multiplication with real scalar.
|
---|
| 256 | * \param *a vector (changed)
|
---|
| 257 | * \param c scalar
|
---|
| 258 | * \param n dimension
|
---|
| 259 | */
|
---|
[08a794b] | 260 | #ifdef HAVE_INLINE
|
---|
[a0bcf1] | 261 | inline void SM(double *a, const double c, const int n)
|
---|
[08a794b] | 262 | #else
|
---|
| 263 | void SM(double *a, const double c, const int n)
|
---|
| 264 | #endif
|
---|
[a0bcf1] | 265 | {
|
---|
| 266 | int i;
|
---|
| 267 | for (i = 0; i < n; i++) a[i] *= c;
|
---|
| 268 | }
|
---|
| 269 |
|
---|
| 270 | /** nullify vector.
|
---|
| 271 | * sets all components of vector /a a to zero.
|
---|
| 272 | * \param *a vector (changed)
|
---|
| 273 | * \param n dimension
|
---|
| 274 | */
|
---|
| 275 | #ifdef HAVE_INLINE
|
---|
[08a794b] | 276 | inline void NV(double *a, const int n)
|
---|
[a0bcf1] | 277 | #else
|
---|
[08a794b] | 278 | void NV(double *a, const int n)
|
---|
[a0bcf1] | 279 | #endif
|
---|
[08a794b] | 280 | {
|
---|
[a0bcf1] | 281 | int i;
|
---|
| 282 | for (i = 0; i < n; i++) a[i] = 0;
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | /** Differential step sum.
|
---|
| 286 | * Sums up entries from array *dx, taking each \a incx of it, \a n times.
|
---|
| 287 | * \param n number of steps
|
---|
| 288 | * \param *dx incremental value array
|
---|
| 289 | * \param incx step width
|
---|
| 290 | * \return sum_i+=incx dx[i]
|
---|
| 291 | * \sa Simps
|
---|
| 292 | */
|
---|
| 293 | #ifdef HAVE_INLINE
|
---|
[08a794b] | 294 | inline double dSum(int n, double *dx, int incx)
|
---|
[a0bcf1] | 295 | #else
|
---|
[08a794b] | 296 | double dSum(int n, double *dx, int incx)
|
---|
[a0bcf1] | 297 | #endif
|
---|
[08a794b] | 298 | {
|
---|
[a0bcf1] | 299 | int i;
|
---|
| 300 | double res;
|
---|
| 301 | if (n <= 0) return(0.0);
|
---|
| 302 | res = dx[0];
|
---|
| 303 | for(i = incx+1; i <= n*incx; i +=incx)
|
---|
| 304 | res += dx[i-1];
|
---|
| 305 | return (res);
|
---|
| 306 | }
|
---|
| 307 |
|
---|
| 308 | /** Simpson formula for integration.
|
---|
| 309 | * \a f is replaced by a polynomial of 2nd degree in order
|
---|
| 310 | * to approximate the integral
|
---|
| 311 | * \param n number of sampling points
|
---|
| 312 | * \param *f function value array
|
---|
| 313 | * \param h half the width of the integration interval
|
---|
| 314 | * \return \f$\int_a^b f(x) dx = \frac{h}{3} (y_0 + 4 y_1 + 2 y_2 + 4 y_3 + ... + 2 y_{n-2} + 4 y_{n-1} + y_n)\f$
|
---|
| 315 | * \sa dSum() - used by this function.
|
---|
| 316 | */
|
---|
| 317 | #ifdef HAVE_INLINE
|
---|
[08a794b] | 318 | inline double Simps(int n, double *f, double h)
|
---|
[a0bcf1] | 319 | #else
|
---|
[08a794b] | 320 | double Simps(int n, double *f, double h)
|
---|
[a0bcf1] | 321 | #endif
|
---|
[08a794b] | 322 | {
|
---|
[a0bcf1] | 323 | double res;
|
---|
| 324 | int nm12=(n-1)/2;
|
---|
| 325 | if (nm12*2 != n-1) {
|
---|
| 326 | fprintf(stderr,"Simps: wrong n in Simps");
|
---|
| 327 | }
|
---|
| 328 | res = 4.*dSum(nm12,&f[1],2)+2.*dSum(nm12-1,&f[2],2)+f[0]+f[n-1];
|
---|
| 329 | return(res*h/3.);
|
---|
| 330 | }
|
---|
| 331 |
|
---|
| 332 | /* derf */
|
---|
| 333 |
|
---|
| 334 | #ifndef HAVE_GSL_GSL_SF_ERF_H
|
---|
| 335 | /** Logarithm of Gamma function.
|
---|
| 336 | * \param xx x-value for function
|
---|
| 337 | * \return ln(gamma(xx))
|
---|
| 338 | * \note formula and coefficients are taken from "Numerical Receipes in C"
|
---|
| 339 | */
|
---|
| 340 | static double gammln(double xx) {
|
---|
| 341 | int j;
|
---|
| 342 | double x,tmp,ser;
|
---|
| 343 | double stp = 2.50662827465;
|
---|
| 344 | double cof[6] = { 76.18009173,-86.50532033,24.01409822,-1.231739516,.120858003e-2,-.536382e-5 };
|
---|
| 345 | x = xx -1.;
|
---|
| 346 | tmp = x+5.5;
|
---|
| 347 | tmp = (x+0.5)*log(tmp)-tmp;
|
---|
| 348 | ser = 1.;
|
---|
| 349 | for(j=0;j<6;j++) {
|
---|
| 350 | x+=1.0;
|
---|
| 351 | ser+=cof[j]/x;
|
---|
| 352 | }
|
---|
| 353 | return(tmp+log(stp*ser));
|
---|
| 354 | }
|
---|
| 355 |
|
---|
| 356 | /** Series used by gammp().
|
---|
| 357 | * \param a
|
---|
| 358 | * \param x
|
---|
| 359 | * \bug when x equals 0 is 0 returned?
|
---|
| 360 | * \note formula and coefficients are taken from "Numerical Receipes in C"
|
---|
| 361 | * \warning maximum precision 1e-7
|
---|
| 362 | */
|
---|
| 363 | static double gser(double a, double x) {
|
---|
| 364 | double gln = gammln(a);
|
---|
| 365 | double ap,sum,del;
|
---|
| 366 | int n;
|
---|
| 367 | if (x <= 0.) {
|
---|
| 368 | if (x < 0.) {
|
---|
| 369 | return(0.0);
|
---|
| 370 | }
|
---|
| 371 | }
|
---|
| 372 | ap=a;
|
---|
| 373 | sum=1./a;
|
---|
| 374 | del=sum;
|
---|
| 375 | for (n=1;n<=100;n++) {
|
---|
| 376 | ap += 1.;
|
---|
| 377 | del *=x/ap;
|
---|
| 378 | sum += del;
|
---|
| 379 | if(fabs(del) < fabs(sum)*1.e-7) {
|
---|
| 380 | return(sum*exp(-x+a*log(x)-gln));
|
---|
| 381 | }
|
---|
| 382 | }
|
---|
| 383 | return(sum*exp(-x+a*log(x)-gln));
|
---|
| 384 | }
|
---|
| 385 |
|
---|
| 386 | /** Continued fraction used by gammp().
|
---|
| 387 | * \param a
|
---|
| 388 | * \param x
|
---|
| 389 | * \note formula and coefficients are taken from "Numerical Receipes in C"
|
---|
| 390 | */
|
---|
| 391 | static double gcf(double a, double x) {
|
---|
| 392 | double gln = gammln(a);
|
---|
| 393 | double gold = 0.0;
|
---|
| 394 | double a0 = 1.;
|
---|
| 395 | double a1 = x;
|
---|
| 396 | double b0 = 0.;
|
---|
| 397 | double b1 = 1.;
|
---|
| 398 | double fac = 1.;
|
---|
| 399 | double an,ana,anf,g=0.0;
|
---|
| 400 | int n;
|
---|
| 401 | for (n=1; n <= 100; n++) {
|
---|
| 402 | an = n;
|
---|
| 403 | ana = an-a;
|
---|
| 404 | a0=(a1+a0*ana)*fac;
|
---|
| 405 | b0=(b1+b0*ana)*fac;
|
---|
| 406 | anf=an*fac;
|
---|
| 407 | a1=x*a0+anf*a1;
|
---|
| 408 | b1=x*b0+anf*b1;
|
---|
| 409 | if(a1 != 0.) {
|
---|
| 410 | fac=1./a1;
|
---|
| 411 | g=b1*fac;
|
---|
| 412 | if (fabs((g-gold)/g)<1.e-7) {
|
---|
| 413 | return(exp(-x+a*log(x)-gln)*g);
|
---|
| 414 | }
|
---|
| 415 | }
|
---|
| 416 | }
|
---|
| 417 | return(exp(-x+a*log(x)-gln)*g);
|
---|
| 418 | }
|
---|
| 419 |
|
---|
| 420 | /** Incomplete gamma function.
|
---|
| 421 | * Either calculated via series gser() or via continued fraction gcf()
|
---|
| 422 | * Needed by derf()
|
---|
| 423 | * \f[
|
---|
| 424 | * gammp(a,x) = \frac{1}{\gamma(a)} \int_x^\infty t^{a-1} \exp(-t) dt
|
---|
| 425 | * \f]
|
---|
| 426 | * \param a
|
---|
| 427 | * \param x
|
---|
| 428 | * \return f(a,x) = (x < 1+a) ? gser(a,x) : 1-gcf(a,x)
|
---|
| 429 | * \note formula and coefficients are taken from "Numerical Receipes in C"
|
---|
| 430 | */
|
---|
| 431 | static double gammp(double a, double x) {
|
---|
| 432 | double res;
|
---|
| 433 | if (x < a+1.) {
|
---|
| 434 | res = gser(a,x);
|
---|
| 435 | } else {
|
---|
| 436 | res = 1.-gcf(a,x);
|
---|
| 437 | }
|
---|
| 438 | return(res);
|
---|
| 439 | }
|
---|
| 440 | #endif
|
---|
| 441 |
|
---|
| 442 | /** Error function of integrated normal distribution.
|
---|
| 443 | * Either realized via GSL function gsl_sf_erf or via gammp()
|
---|
| 444 | * \f[
|
---|
| 445 | erf(x) = \frac{2}{\sqrt{\pi}} \int^x_0 \exp(-t^2) dt
|
---|
| 446 | = \pi^{-1/2} \gamma(\frac{1}{2},x^2)
|
---|
| 447 | * \f]
|
---|
| 448 | * \param x
|
---|
| 449 | * \return f(x) = sign(x) * gammp(0.5,x^2)
|
---|
| 450 | * \sa gammp
|
---|
| 451 | */
|
---|
| 452 | #ifdef HAVE_INLINE
|
---|
[08a794b] | 453 | inline double derf(double x)
|
---|
[a0bcf1] | 454 | #else
|
---|
[08a794b] | 455 | double derf(double x)
|
---|
[a0bcf1] | 456 | #endif
|
---|
[08a794b] | 457 | {
|
---|
[a0bcf1] | 458 | double res;
|
---|
| 459 | #ifdef HAVE_GSL_GSL_SF_ERF_H
|
---|
| 460 | // call gsl instead of numerical recipes routines
|
---|
| 461 | res = gsl_sf_erf(x);
|
---|
| 462 | #else
|
---|
| 463 | if (x < 0) {
|
---|
| 464 | res = -gammp(0.5,x*x);
|
---|
| 465 | } else {
|
---|
| 466 | res = gammp(0.5,x*x);
|
---|
| 467 | }
|
---|
| 468 | #endif
|
---|
| 469 | return(res);
|
---|
| 470 | }
|
---|
| 471 |
|
---|
| 472 | /** Sets array to zero.
|
---|
| 473 | * \param *a pointer to the double array
|
---|
| 474 | * \param n number of array elements
|
---|
| 475 | */
|
---|
[08a794b] | 476 | #ifdef HAVE_INLINE
|
---|
[a0bcf1] | 477 | inline void SetArrayToDouble0(double *a, int n)
|
---|
[08a794b] | 478 | #else
|
---|
| 479 | void SetArrayToDouble0(double *a, int n)
|
---|
| 480 | #endif
|
---|
[a0bcf1] | 481 | {
|
---|
| 482 | int i;
|
---|
| 483 | for(i=0;i<n;i++) a[i] = 0.0;
|
---|
| 484 | }
|
---|
| 485 |
|
---|
| 486 | /** Print complex 3x3 matrix.
|
---|
| 487 | * Checks if matrix has only zero entries, if not print each to screen: (re, im) ...
|
---|
| 488 | * \param M matrix array
|
---|
| 489 | */
|
---|
| 490 | void PrintCMat330(fftw_complex M[NDIM_NDIM])
|
---|
| 491 | {
|
---|
| 492 | int i,p=0;
|
---|
| 493 | for (i=0;i<NDIM_NDIM;i++)
|
---|
| 494 | if (M[i].re != 0.0 || M[i].im != 0.0) p++;
|
---|
| 495 | if (p) {
|
---|
| 496 | for (i=0;i<NDIM_NDIM;i++) fprintf(stderr," (%f %f)", M[i].re, M[i].im);
|
---|
| 497 | fprintf(stderr,"\n");
|
---|
| 498 | }
|
---|
| 499 | }
|
---|
| 500 |
|
---|
| 501 | /** Print real 3x3 matrix.
|
---|
| 502 | * Checks if matrix has only zero entries, if not print each to screen: re ...
|
---|
| 503 | * \param M matrix array
|
---|
| 504 | */
|
---|
| 505 | void PrintRMat330(fftw_real M[NDIM_NDIM])
|
---|
| 506 | {
|
---|
| 507 | int i,p=0;
|
---|
| 508 | for (i=0;i<NDIM_NDIM;i++)
|
---|
| 509 | if (M[i] != 0.0) p++;
|
---|
| 510 | if (p) {
|
---|
| 511 | for (i=0;i<NDIM_NDIM;i++) fprintf(stderr," %f", M[i]);
|
---|
| 512 | fprintf(stderr,"\n");
|
---|
| 513 | }
|
---|
| 514 | }
|
---|
| 515 |
|
---|
| 516 | /** Print complex 3-dim vector.
|
---|
| 517 | * Checks if vector has only zero entries, if not print each to screen: (re, im) ...
|
---|
| 518 | * \param M vector array
|
---|
| 519 | */
|
---|
| 520 | void PrintCVec30(fftw_complex M[NDIM])
|
---|
| 521 | {
|
---|
| 522 | int i,p=0;
|
---|
| 523 | for (i=0;i<NDIM;i++)
|
---|
| 524 | if (M[i].re != 0.0 || M[i].im != 0.0) p++;
|
---|
| 525 | if (p) {
|
---|
| 526 | for (i=0;i<NDIM;i++) fprintf(stderr," (%f %f)", M[i].re, M[i].im);
|
---|
| 527 | fprintf(stderr,"\n");
|
---|
| 528 | }
|
---|
| 529 | }
|
---|
| 530 |
|
---|
| 531 | /** Print real 3-dim vector.
|
---|
| 532 | * Checks if vector has only zero entries, if not print each to screen: re ...
|
---|
| 533 | * \param M matrix array
|
---|
| 534 | */
|
---|
| 535 | void PrintRVec30(fftw_real M[NDIM])
|
---|
| 536 | {
|
---|
| 537 | int i,p=0;
|
---|
| 538 | for (i=0;i<NDIM;i++)
|
---|
| 539 | if (M[i] != 0.0) p++;
|
---|
| 540 | if (p) {
|
---|
| 541 | for (i=0;i<NDIM;i++) fprintf(stderr," %f", M[i]);
|
---|
| 542 | fprintf(stderr,"\n");
|
---|
| 543 | }
|
---|
| 544 | }
|
---|
| 545 |
|
---|
| 546 | /** Rotates \a matrix, such that simultaneously given \a vector is aligned with z axis.
|
---|
| 547 | * Is used to rotate the unit cell in case of an external magnetic field. This field
|
---|
| 548 | * is rotated so that it aligns with z axis in order to simplify necessary perturbation
|
---|
| 549 | * calculations (only one component of each perturbed wave function necessary then).
|
---|
| 550 | * \param vector which is aligned with z axis by rotation \a Q
|
---|
| 551 | * \param Q return rotation matrix
|
---|
| 552 | * \param matrix which is transformed under the above rotation \a Q
|
---|
| 553 | */
|
---|
| 554 | void RotateToAlign(fftw_real Q[NDIM_NDIM], fftw_real matrix[NDIM_NDIM], fftw_real vector[NDIM]) {
|
---|
| 555 | double tmp[NDIM_NDIM], Q1[NDIM_NDIM], Qtmp[NDIM_NDIM];
|
---|
| 556 | double alpha, beta, new_y;
|
---|
| 557 | int i,j ;
|
---|
| 558 |
|
---|
| 559 | // calculate rotation angles
|
---|
| 560 | if (vector[0] < MYEPSILON) {
|
---|
| 561 | alpha = 0;
|
---|
| 562 | } else if (vector[1] > MYEPSILON) {
|
---|
| 563 | alpha = atan(-vector[0]/vector[1]);
|
---|
| 564 | } else alpha = PI/2;
|
---|
| 565 | new_y = -sin(alpha)*vector[0]+cos(alpha)*vector[1];
|
---|
| 566 | if (new_y < MYEPSILON) {
|
---|
| 567 | beta = 0;
|
---|
| 568 | } else if (vector[2] > MYEPSILON) {
|
---|
| 569 | beta = atan(-new_y/vector[2]);//asin(-vector[1]/vector[2]);
|
---|
| 570 | } else beta = PI/2;
|
---|
| 571 |
|
---|
| 572 | // create temporary matrix copy
|
---|
| 573 | // set Q to identity
|
---|
| 574 | for (i=0;i<NDIM;i++)
|
---|
| 575 | for (j=0;j<NDIM;j++) {
|
---|
| 576 | Q[i*NDIM+j] = (i == j) ? 1 : 0;
|
---|
| 577 | tmp[i*NDIM+j] = matrix[i*NDIM+j];
|
---|
| 578 | }
|
---|
| 579 |
|
---|
| 580 | // construct rotation matrices
|
---|
| 581 | Q1[0] = cos(alpha);
|
---|
| 582 | Q1[1] = sin(alpha);
|
---|
| 583 | Q1[2] = 0;
|
---|
| 584 | Q1[3] = -sin(alpha);
|
---|
| 585 | Q1[4] = cos(alpha);
|
---|
| 586 | Q1[5] = 0;
|
---|
| 587 | Q1[6] = 0;
|
---|
| 588 | Q1[7] = 0;
|
---|
| 589 | Q1[8] = 1;
|
---|
| 590 | // apply rotation and store
|
---|
| 591 | RMatMat33(tmp,Q1,matrix);
|
---|
| 592 | RMatMat33(Qtmp,Q1,Q);
|
---|
| 593 |
|
---|
| 594 | Q1[0] = 1;
|
---|
| 595 | Q1[1] = 0;
|
---|
| 596 | Q1[2] = 0;
|
---|
| 597 | Q1[3] = 0;
|
---|
| 598 | Q1[4] = cos(beta);
|
---|
| 599 | Q1[5] = sin(beta);
|
---|
| 600 | Q1[6] = 0;
|
---|
| 601 | Q1[7] = -sin(beta);
|
---|
| 602 | Q1[8] = cos(beta);
|
---|
| 603 | // apply rotation and store
|
---|
| 604 | RMatMat33(matrix,Q1,tmp);
|
---|
| 605 | RMatMat33(Q,Q1,Qtmp);
|
---|
| 606 |
|
---|
| 607 | // in order to avoid unncessary calculations, set everything below epsilon to zero
|
---|
| 608 | for (i=0;i<NDIM_NDIM;i++) {
|
---|
| 609 | matrix[i] = (fabs(matrix[i]) > MYEPSILON) ? matrix[i] : 0;
|
---|
| 610 | Q[i] = (fabs(Q[i]) > MYEPSILON) ? Q[i] : 0;
|
---|
| 611 | }
|
---|
| 612 | }
|
---|