| [a0bcf1] | 1 | /** \file mymath.c
 | 
|---|
 | 2 |  * Linear algebra mathematical routines.
 | 
|---|
 | 3 |  * Small library of often needed mathematical routines such as hard-coded
 | 
|---|
 | 4 |  * vector VP3(), scalar SP(), matrix products RMat33Vec3(), RMatMat33(), RVec3Mat33(),
 | 
|---|
 | 5 |  * multiplication with scalar SM(), euclidian distance Dist(),inverse RMatReci3(),
 | 
|---|
 | 6 |  * transposed RTranspose3(), modulo Rest(), nullifying NV(), SetArrayToDouble0(),
 | 
|---|
 | 7 |  * gamma function gammln(), gaussian error function derf(), integration via
 | 
|---|
 | 8 |  * Simpsons Rule Simps().\n
 | 
|---|
 | 9 |  * Also for printing matrixes PrintCMat330(), PrintRMat330() and vectors
 | 
|---|
 | 10 |  * PrintCVec30(), PrintRVec30() to screen.\n
 | 
|---|
 | 11 |  * All specialized for 3x3 real or complex ones.\n
 | 
|---|
 | 12 |  * Rather specialized is RotateToAlign() which is needed in transforming the whole coordinate
 | 
|---|
 | 13 |  * system in order to align a certain vector.
 | 
|---|
 | 14 |  * 
 | 
|---|
 | 15 |   Project: ParallelCarParrinello
 | 
|---|
 | 16 |  \author Jan Hamaekers
 | 
|---|
 | 17 |  \date 2000
 | 
|---|
 | 18 | 
 | 
|---|
 | 19 |   File: helpers.c
 | 
|---|
 | 20 |   $Id: mymath.c,v 1.25 2007-03-29 13:38:30 foo Exp $
 | 
|---|
 | 21 | */
 | 
|---|
 | 22 | 
 | 
|---|
 | 23 | #include<stdlib.h>
 | 
|---|
 | 24 | #include<stdio.h>
 | 
|---|
 | 25 | #include<stddef.h>
 | 
|---|
 | 26 | #include<math.h>
 | 
|---|
 | 27 | #include<string.h>
 | 
|---|
 | 28 | #include"mymath.h"
 | 
|---|
 | 29 | 
 | 
|---|
 | 30 | // use double precision fft when we have it
 | 
|---|
 | 31 | #ifdef HAVE_CONFIG_H
 | 
|---|
 | 32 | #include <config.h>
 | 
|---|
 | 33 | #endif
 | 
|---|
 | 34 | 
 | 
|---|
 | 35 | #ifdef HAVE_DFFTW_H
 | 
|---|
 | 36 | #include "dfftw.h"
 | 
|---|
 | 37 | #else
 | 
|---|
 | 38 | #include "fftw.h"
 | 
|---|
 | 39 | #endif
 | 
|---|
 | 40 | 
 | 
|---|
 | 41 | #ifdef HAVE_GSL_GSL_SF_ERF_H
 | 
|---|
 | 42 | #include "gsl/gsl_sf_erf.h"
 | 
|---|
 | 43 | #endif
 | 
|---|
 | 44 | 
 | 
|---|
 | 45 | 
 | 
|---|
 | 46 | /** efficiently compute x^n
 | 
|---|
 | 47 |  * \param x argument
 | 
|---|
 | 48 |  * \param n potency
 | 
|---|
 | 49 |  * \return \f$x^n\f$
 | 
|---|
 | 50 |  */
 | 
|---|
| [08a794b] | 51 | #ifdef HAVE_INLINE
 | 
|---|
| [a0bcf1] | 52 | inline double tpow(double x, int n)
 | 
|---|
| [08a794b] | 53 | #else
 | 
|---|
 | 54 | double tpow(double x, int n)
 | 
|---|
 | 55 | #endif
 | 
|---|
| [a0bcf1] | 56 | {
 | 
|---|
 | 57 |   double y = 1;
 | 
|---|
 | 58 |   int neg = (n < 0);
 | 
|---|
 | 59 | 
 | 
|---|
 | 60 |   if (neg) n = -n;
 | 
|---|
 | 61 | 
 | 
|---|
 | 62 |   while (n) {
 | 
|---|
 | 63 |     if (n & 1) y *= x;
 | 
|---|
 | 64 |     x *= x;
 | 
|---|
 | 65 |     n >>= 1;
 | 
|---|
 | 66 |   }
 | 
|---|
 | 67 |   return neg ? 1.0/y : y;
 | 
|---|
 | 68 | }
 | 
|---|
 | 69 | 
 | 
|---|
 | 70 | 
 | 
|---|
 | 71 | /** Modulo function.
 | 
|---|
 | 72 |  * Normal modulo operation, yet return value is >=0
 | 
|---|
 | 73 |  * \param n     denominator
 | 
|---|
 | 74 |  * \param m divisor
 | 
|---|
 | 75 |  * \return modulo >=0
 | 
|---|
 | 76 |  */
 | 
|---|
| [08a794b] | 77 | #ifdef HAVE_INLINE
 | 
|---|
| [a0bcf1] | 78 | inline int Rest(int n, int m) /* normale modulo-Funktion, Ausgabe>=0 */
 | 
|---|
| [08a794b] | 79 | #else
 | 
|---|
 | 80 | int Rest(int n, int m) /* normale modulo-Funktion, Ausgabe>=0 */
 | 
|---|
 | 81 | #endif
 | 
|---|
| [a0bcf1] | 82 | {
 | 
|---|
 | 83 |   int q = n%m;
 | 
|---|
 | 84 |   if (q >= 0) return (q);
 | 
|---|
 | 85 |   return ((q) + m);
 | 
|---|
 | 86 | }
 | 
|---|
 | 87 | 
 | 
|---|
 | 88 | /* Rechnungen */
 | 
|---|
 | 89 | 
 | 
|---|
 | 90 | /** Real 3x3 inverse of matrix.
 | 
|---|
 | 91 |  * Calculates the inverse of a matrix by b_ij = A_ij/det(A), where
 | 
|---|
 | 92 |  * is A_ij is the matrix with row j and column i removed.
 | 
|---|
 | 93 |  * \param B     inverse matrix array (set by function)
 | 
|---|
 | 94 |  * \param A matrix array to be inverted
 | 
|---|
 | 95 |  * \return 0 - error: det A == 0, 1 - success
 | 
|---|
 | 96 |  */
 | 
|---|
| [08a794b] | 97 | #ifdef HAVE_INLINE
 | 
|---|
| [a0bcf1] | 98 | inline int RMatReci3(double B[NDIM_NDIM], const double A[NDIM_NDIM])
 | 
|---|
| [08a794b] | 99 | #else
 | 
|---|
 | 100 | int RMatReci3(double B[NDIM_NDIM], const double A[NDIM_NDIM])
 | 
|---|
 | 101 | #endif
 | 
|---|
| [a0bcf1] | 102 | {
 | 
|---|
 | 103 |   double detA = RDET3(A);
 | 
|---|
 | 104 |   double detAReci;
 | 
|---|
 | 105 |   if (detA == 0.0) return 1;  // RDET3(A) yields precisely zero if A irregular
 | 
|---|
 | 106 |   detAReci = 1./detA;
 | 
|---|
 | 107 |   B[0] =  detAReci*RDET2(A[4],A[5],A[7],A[8]);          // A_11
 | 
|---|
 | 108 |   B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]);          // A_12
 | 
|---|
 | 109 |   B[2] =  detAReci*RDET2(A[1],A[2],A[4],A[5]);          // A_13
 | 
|---|
 | 110 |   B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]);          // A_21
 | 
|---|
 | 111 |   B[4] =  detAReci*RDET2(A[0],A[2],A[6],A[8]);          // A_22
 | 
|---|
 | 112 |   B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]);          // A_23
 | 
|---|
 | 113 |   B[6] =  detAReci*RDET2(A[3],A[4],A[6],A[7]);          // A_31
 | 
|---|
 | 114 |   B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]);          // A_32
 | 
|---|
 | 115 |   B[8] =  detAReci*RDET2(A[0],A[1],A[3],A[4]);          // A_33
 | 
|---|
 | 116 |   return 0;
 | 
|---|
 | 117 | }
 | 
|---|
 | 118 | 
 | 
|---|
 | 119 | /** Real 3x3 Matrix multiplication.
 | 
|---|
 | 120 |  * Hard-coded falk scheme for multiplication of matrix1 * matrix2
 | 
|---|
 | 121 |  * \param C     product matrix
 | 
|---|
 | 122 |  * \param A matrix1 array
 | 
|---|
 | 123 |  * \param B matrix2 array
 | 
|---|
 | 124 |  */
 | 
|---|
| [08a794b] | 125 | #ifdef HAVE_INLINE
 | 
|---|
| [a0bcf1] | 126 | inline void RMatMat33(double C[NDIM*NDIM], const double A[NDIM*NDIM], const double B[NDIM*NDIM])
 | 
|---|
| [08a794b] | 127 | #else
 | 
|---|
 | 128 | void RMatMat33(double C[NDIM*NDIM], const double A[NDIM*NDIM], const double B[NDIM*NDIM])
 | 
|---|
 | 129 | #endif
 | 
|---|
| [a0bcf1] | 130 | {
 | 
|---|
 | 131 |   C[0] = A[0]*B[0]+A[3]*B[1]+A[6]*B[2];
 | 
|---|
 | 132 |   C[1] = A[1]*B[0]+A[4]*B[1]+A[7]*B[2];
 | 
|---|
 | 133 |   C[2] = A[2]*B[0]+A[5]*B[1]+A[8]*B[2];
 | 
|---|
 | 134 |   C[3] = A[0]*B[3]+A[3]*B[4]+A[6]*B[5];
 | 
|---|
 | 135 |   C[4] = A[1]*B[3]+A[4]*B[4]+A[7]*B[5];
 | 
|---|
 | 136 |   C[5] = A[2]*B[3]+A[5]*B[4]+A[8]*B[5];
 | 
|---|
 | 137 |   C[6] = A[0]*B[6]+A[3]*B[7]+A[6]*B[8];
 | 
|---|
 | 138 |   C[7] = A[1]*B[6]+A[4]*B[7]+A[7]*B[8];
 | 
|---|
 | 139 |   C[8] = A[2]*B[6]+A[5]*B[7]+A[8]*B[8];
 | 
|---|
 | 140 | }
 | 
|---|
 | 141 | 
 | 
|---|
 | 142 | /** Real 3x3 Matrix vector multiplication.
 | 
|---|
 | 143 |  * hard-coded falk scheme for multiplication of matrix * vector
 | 
|---|
 | 144 |  * \param C resulting vector
 | 
|---|
 | 145 |  * \param M     matrix array
 | 
|---|
 | 146 |  * \param V vector array
 | 
|---|
 | 147 |  */
 | 
|---|
| [08a794b] | 148 | #ifdef HAVE_INLINE
 | 
|---|
| [a0bcf1] | 149 | inline void RMat33Vec3(double C[NDIM], const double M[NDIM*NDIM], const double V[NDIM])
 | 
|---|
| [08a794b] | 150 | #else
 | 
|---|
 | 151 | void RMat33Vec3(double C[NDIM], const double M[NDIM*NDIM], const double V[NDIM])
 | 
|---|
 | 152 | #endif
 | 
|---|
| [a0bcf1] | 153 | {
 | 
|---|
 | 154 |   C[0] = M[0]*V[0]+M[3]*V[1]+M[6]*V[2];
 | 
|---|
 | 155 |   C[1] = M[1]*V[0]+M[4]*V[1]+M[7]*V[2];
 | 
|---|
 | 156 |   C[2] = M[2]*V[0]+M[5]*V[1]+M[8]*V[2];
 | 
|---|
 | 157 | }
 | 
|---|
 | 158 | 
 | 
|---|
 | 159 | /** Real 3x3 vector Matrix multiplication.
 | 
|---|
 | 160 |  * hard-coded falk scheme for multiplication of vector * matrix
 | 
|---|
 | 161 |  * \param C resulting vector
 | 
|---|
 | 162 |  * \param V vector array
 | 
|---|
 | 163 |  * \param M     matrix array
 | 
|---|
 | 164 |  */
 | 
|---|
| [08a794b] | 165 | #ifdef HAVE_INLINE
 | 
|---|
| [a0bcf1] | 166 | inline void RVec3Mat33(double C[NDIM], const double V[NDIM], const double M[NDIM*NDIM])
 | 
|---|
| [08a794b] | 167 | #else
 | 
|---|
 | 168 | void RVec3Mat33(double C[NDIM], const double V[NDIM], const double M[NDIM*NDIM])
 | 
|---|
 | 169 | #endif
 | 
|---|
| [a0bcf1] | 170 | {
 | 
|---|
 | 171 |   C[0] = V[0]*M[0]+V[1]*M[1]+V[2]*M[2];
 | 
|---|
 | 172 |   C[1] = V[0]*M[3]+V[1]*M[4]+V[2]*M[5];
 | 
|---|
 | 173 |   C[2] = V[0]*M[6]+V[1]*M[7]+V[2]*M[8];
 | 
|---|
 | 174 | }
 | 
|---|
 | 175 | 
 | 
|---|
 | 176 | /** Real 3x3 vector product.
 | 
|---|
 | 177 |  * vector product of vector1 x vector 2
 | 
|---|
 | 178 |  * \param V     resulting orthogonal vector
 | 
|---|
 | 179 |  * \param A vector1 array
 | 
|---|
 | 180 |  * \param B vector2 array
 | 
|---|
 | 181 |  */
 | 
|---|
| [08a794b] | 182 | #ifdef HAVE_INLINE
 | 
|---|
| [a0bcf1] | 183 | inline void VP3(double V[NDIM], double A[NDIM], double B[NDIM])
 | 
|---|
| [08a794b] | 184 | #else
 | 
|---|
 | 185 | void VP3(double V[NDIM], double A[NDIM], double B[NDIM])
 | 
|---|
 | 186 | #endif
 | 
|---|
| [a0bcf1] | 187 | {
 | 
|---|
 | 188 |   V[0] = A[1]*B[2]-A[2]*B[1];
 | 
|---|
 | 189 |   V[1] = A[2]*B[0]-A[0]*B[2];
 | 
|---|
 | 190 |   V[2] = A[0]*B[1]-A[1]*B[0];
 | 
|---|
 | 191 | }
 | 
|---|
 | 192 | 
 | 
|---|
 | 193 | /** Real transposition of 3x3 Matrix.
 | 
|---|
 | 194 |  * \param *A Matrix
 | 
|---|
 | 195 |  */
 | 
|---|
 | 196 | #ifdef HAVE_INLINE
 | 
|---|
| [08a794b] | 197 | inline void RTranspose3(double *A)
 | 
|---|
| [a0bcf1] | 198 | #else
 | 
|---|
| [08a794b] | 199 | void RTranspose3(double *A)
 | 
|---|
| [a0bcf1] | 200 | #endif
 | 
|---|
| [08a794b] | 201 | {
 | 
|---|
| [a0bcf1] | 202 |   double dummy = A[1];
 | 
|---|
 | 203 |   A[1] = A[3];
 | 
|---|
 | 204 |   A[3] = dummy;
 | 
|---|
 | 205 |   dummy = A[2];
 | 
|---|
 | 206 |   A[2] = A[6];
 | 
|---|
 | 207 |   A[6] = dummy;
 | 
|---|
 | 208 |   dummy = A[5];
 | 
|---|
 | 209 |   A[5] = A[7];
 | 
|---|
 | 210 |   A[7] = dummy;
 | 
|---|
 | 211 | }
 | 
|---|
 | 212 | 
 | 
|---|
 | 213 | /** Scalar product.
 | 
|---|
 | 214 |  * \param *a first vector
 | 
|---|
 | 215 |  * \param *b second vector
 | 
|---|
 | 216 |  * \param n dimension
 | 
|---|
 | 217 |  * \return scalar product of a with b
 | 
|---|
 | 218 |  */
 | 
|---|
 | 219 | #ifdef HAVE_INLINE
 | 
|---|
| [08a794b] | 220 | inline double SP(const double *a, const double *b, const int n)
 | 
|---|
| [a0bcf1] | 221 | #else
 | 
|---|
| [08a794b] | 222 | double SP(const double *a, const double *b, const int n)
 | 
|---|
| [a0bcf1] | 223 | #endif
 | 
|---|
| [08a794b] | 224 | {
 | 
|---|
| [a0bcf1] | 225 |   int i;
 | 
|---|
 | 226 |   double dummySP;
 | 
|---|
 | 227 |   dummySP = 0;
 | 
|---|
 | 228 |   for (i = 0; i < n; i++) {
 | 
|---|
 | 229 |     dummySP += ((a[i]) * (b[i]));
 | 
|---|
 | 230 |   }
 | 
|---|
 | 231 |   return dummySP;
 | 
|---|
 | 232 | }
 | 
|---|
 | 233 | 
 | 
|---|
 | 234 | /** Euclidian distance.
 | 
|---|
 | 235 |  * \param *a first vector
 | 
|---|
 | 236 |  * \param *b second vector
 | 
|---|
 | 237 |  * \param n dimension
 | 
|---|
 | 238 |  * \return sqrt(a-b)
 | 
|---|
 | 239 |  */
 | 
|---|
| [08a794b] | 240 | #ifdef HAVE_INLINE
 | 
|---|
 | 241 | inline double Dist(const double *a, const double *b, const int n)
 | 
|---|
 | 242 | #else
 | 
|---|
 | 243 | double Dist(const double *a, const double *b, const int n)
 | 
|---|
 | 244 | #endif
 | 
|---|
 | 245 | {
 | 
|---|
| [a0bcf1] | 246 |   int i;
 | 
|---|
 | 247 |   double dummyDist = 0;
 | 
|---|
 | 248 |   for (i = 0; i < n; i++) {
 | 
|---|
 | 249 |     dummyDist += (a[i]-b[i])*(a[i]-b[i]);
 | 
|---|
 | 250 |   }
 | 
|---|
 | 251 |   return (sqrt(dummyDist));
 | 
|---|
 | 252 | }
 | 
|---|
 | 253 |      
 | 
|---|
 | 254 | 
 | 
|---|
 | 255 | /** Multiplication with real scalar.
 | 
|---|
 | 256 |  * \param *a vector     (changed)
 | 
|---|
 | 257 |  * \param c scalar
 | 
|---|
 | 258 |  * \param n dimension
 | 
|---|
 | 259 |  */
 | 
|---|
| [08a794b] | 260 | #ifdef HAVE_INLINE
 | 
|---|
| [a0bcf1] | 261 | inline void SM(double *a, const double c, const int n)
 | 
|---|
| [08a794b] | 262 | #else
 | 
|---|
 | 263 | void SM(double *a, const double c, const int n)
 | 
|---|
 | 264 | #endif
 | 
|---|
| [a0bcf1] | 265 | {
 | 
|---|
 | 266 |   int i;
 | 
|---|
 | 267 |   for (i = 0; i < n; i++) a[i] *= c;
 | 
|---|
 | 268 | }
 | 
|---|
 | 269 | 
 | 
|---|
 | 270 | /** nullify vector.
 | 
|---|
 | 271 |  * sets all components of vector /a a to zero.
 | 
|---|
 | 272 |  * \param *a vector (changed)
 | 
|---|
 | 273 |  * \param n dimension
 | 
|---|
 | 274 |  */
 | 
|---|
 | 275 | #ifdef HAVE_INLINE
 | 
|---|
| [08a794b] | 276 | inline void NV(double *a, const int n)
 | 
|---|
| [a0bcf1] | 277 | #else
 | 
|---|
| [08a794b] | 278 | void NV(double *a, const int n)
 | 
|---|
| [a0bcf1] | 279 | #endif
 | 
|---|
| [08a794b] | 280 | {
 | 
|---|
| [a0bcf1] | 281 |   int i;
 | 
|---|
 | 282 |   for (i = 0; i < n; i++) a[i] = 0;
 | 
|---|
 | 283 | }
 | 
|---|
 | 284 | 
 | 
|---|
 | 285 | /** Differential step sum.
 | 
|---|
 | 286 |  * Sums up entries from array *dx, taking each \a incx of it, \a n times.
 | 
|---|
 | 287 |  * \param n number of steps
 | 
|---|
 | 288 |  * \param *dx incremental value array
 | 
|---|
 | 289 |  * \param incx step width
 | 
|---|
 | 290 |  * \return sum_i+=incx dx[i]
 | 
|---|
 | 291 |  * \sa Simps
 | 
|---|
 | 292 |  */
 | 
|---|
 | 293 | #ifdef HAVE_INLINE
 | 
|---|
| [08a794b] | 294 | inline double dSum(int n, double *dx, int incx)
 | 
|---|
| [a0bcf1] | 295 | #else
 | 
|---|
| [08a794b] | 296 | double dSum(int n, double *dx, int incx)
 | 
|---|
| [a0bcf1] | 297 | #endif
 | 
|---|
| [08a794b] | 298 | {
 | 
|---|
| [a0bcf1] | 299 |   int i;
 | 
|---|
 | 300 |   double res;
 | 
|---|
 | 301 |   if (n <= 0) return(0.0);
 | 
|---|
 | 302 |   res = dx[0];
 | 
|---|
 | 303 |   for(i = incx+1; i <= n*incx; i +=incx) 
 | 
|---|
 | 304 |     res += dx[i-1];
 | 
|---|
 | 305 |   return (res);
 | 
|---|
 | 306 | }
 | 
|---|
 | 307 | 
 | 
|---|
 | 308 | /** Simpson formula for integration.
 | 
|---|
 | 309 |  * \a f is replaced by a polynomial of 2nd degree in order
 | 
|---|
 | 310 |  * to approximate the integral
 | 
|---|
 | 311 |  * \param n number of sampling points
 | 
|---|
 | 312 |  * \param *f function value array
 | 
|---|
 | 313 |  * \param h half the width of the integration interval
 | 
|---|
 | 314 |  * \return \f$\int_a^b f(x) dx = \frac{h}{3} (y_0 + 4 y_1 + 2 y_2 + 4 y_3 + ... + 2 y_{n-2} + 4 y_{n-1} + y_n)\f$
 | 
|---|
 | 315 |  * \sa dSum() - used by this function.
 | 
|---|
 | 316 |  */
 | 
|---|
 | 317 | #ifdef HAVE_INLINE
 | 
|---|
| [08a794b] | 318 | inline double Simps(int n, double *f, double h)
 | 
|---|
| [a0bcf1] | 319 | #else
 | 
|---|
| [08a794b] | 320 | double Simps(int n, double *f, double h)
 | 
|---|
| [a0bcf1] | 321 | #endif
 | 
|---|
| [08a794b] | 322 | {
 | 
|---|
| [a0bcf1] | 323 |   double res;
 | 
|---|
 | 324 |   int nm12=(n-1)/2;
 | 
|---|
 | 325 |   if (nm12*2 != n-1) { 
 | 
|---|
 | 326 |     fprintf(stderr,"Simps: wrong n in Simps");
 | 
|---|
 | 327 |   }
 | 
|---|
 | 328 |   res = 4.*dSum(nm12,&f[1],2)+2.*dSum(nm12-1,&f[2],2)+f[0]+f[n-1];
 | 
|---|
 | 329 |   return(res*h/3.);
 | 
|---|
 | 330 | }
 | 
|---|
 | 331 | 
 | 
|---|
 | 332 | /* derf */
 | 
|---|
 | 333 | 
 | 
|---|
 | 334 | #ifndef HAVE_GSL_GSL_SF_ERF_H
 | 
|---|
 | 335 | /** Logarithm of Gamma function.
 | 
|---|
 | 336 |  * \param xx x-value for function
 | 
|---|
 | 337 |  * \return ln(gamma(xx))
 | 
|---|
 | 338 |  * \note formula and coefficients are taken from "Numerical Receipes in C"
 | 
|---|
 | 339 |  */
 | 
|---|
 | 340 | static double gammln(double xx) {
 | 
|---|
 | 341 |   int j;
 | 
|---|
 | 342 |   double x,tmp,ser;
 | 
|---|
 | 343 |   double stp = 2.50662827465;
 | 
|---|
 | 344 |   double cof[6] = { 76.18009173,-86.50532033,24.01409822,-1.231739516,.120858003e-2,-.536382e-5 };
 | 
|---|
 | 345 |   x = xx -1.;
 | 
|---|
 | 346 |   tmp = x+5.5;
 | 
|---|
 | 347 |   tmp = (x+0.5)*log(tmp)-tmp;
 | 
|---|
 | 348 |   ser = 1.;
 | 
|---|
 | 349 |   for(j=0;j<6;j++) {
 | 
|---|
 | 350 |     x+=1.0;
 | 
|---|
 | 351 |     ser+=cof[j]/x;
 | 
|---|
 | 352 |   }
 | 
|---|
 | 353 |   return(tmp+log(stp*ser));
 | 
|---|
 | 354 | }
 | 
|---|
 | 355 | 
 | 
|---|
 | 356 | /** Series used by gammp().
 | 
|---|
 | 357 |  * \param a
 | 
|---|
 | 358 |  * \param x
 | 
|---|
 | 359 |  * \bug when x equals 0 is 0 returned?
 | 
|---|
 | 360 |  * \note formula and coefficients are taken from "Numerical Receipes in C"
 | 
|---|
 | 361 |  * \warning maximum precision 1e-7
 | 
|---|
 | 362 |  */
 | 
|---|
 | 363 | static double gser(double a, double x) {
 | 
|---|
 | 364 |   double gln = gammln(a);
 | 
|---|
 | 365 |   double ap,sum,del;
 | 
|---|
 | 366 |   int n;
 | 
|---|
 | 367 |   if (x <= 0.) {
 | 
|---|
 | 368 |     if (x < 0.) {
 | 
|---|
 | 369 |       return(0.0);
 | 
|---|
 | 370 |     }
 | 
|---|
 | 371 |   }
 | 
|---|
 | 372 |   ap=a;
 | 
|---|
 | 373 |   sum=1./a;
 | 
|---|
 | 374 |   del=sum;
 | 
|---|
 | 375 |   for (n=1;n<=100;n++) {
 | 
|---|
 | 376 |     ap += 1.;
 | 
|---|
 | 377 |     del *=x/ap;
 | 
|---|
 | 378 |     sum += del;
 | 
|---|
 | 379 |     if(fabs(del) < fabs(sum)*1.e-7) {
 | 
|---|
 | 380 |       return(sum*exp(-x+a*log(x)-gln));
 | 
|---|
 | 381 |     }
 | 
|---|
 | 382 |   }
 | 
|---|
 | 383 |   return(sum*exp(-x+a*log(x)-gln));
 | 
|---|
 | 384 | }
 | 
|---|
 | 385 | 
 | 
|---|
 | 386 | /** Continued fraction used by gammp().
 | 
|---|
 | 387 |  * \param a
 | 
|---|
 | 388 |  * \param x
 | 
|---|
 | 389 |  * \note formula and coefficients are taken from "Numerical Receipes in C"
 | 
|---|
 | 390 |  */
 | 
|---|
 | 391 | static double gcf(double a, double x) {
 | 
|---|
 | 392 |   double gln = gammln(a);
 | 
|---|
 | 393 |   double gold = 0.0;
 | 
|---|
 | 394 |   double a0 = 1.;
 | 
|---|
 | 395 |   double a1 = x;
 | 
|---|
 | 396 |   double b0 = 0.;
 | 
|---|
 | 397 |   double b1 = 1.;
 | 
|---|
 | 398 |   double fac = 1.;
 | 
|---|
 | 399 |   double an,ana,anf,g=0.0;
 | 
|---|
 | 400 |   int n;
 | 
|---|
 | 401 |   for (n=1; n <= 100; n++) {
 | 
|---|
 | 402 |     an = n;
 | 
|---|
 | 403 |     ana = an-a;
 | 
|---|
 | 404 |     a0=(a1+a0*ana)*fac;
 | 
|---|
 | 405 |     b0=(b1+b0*ana)*fac;
 | 
|---|
 | 406 |     anf=an*fac;
 | 
|---|
 | 407 |     a1=x*a0+anf*a1;
 | 
|---|
 | 408 |     b1=x*b0+anf*b1;
 | 
|---|
 | 409 |     if(a1 != 0.) {
 | 
|---|
 | 410 |       fac=1./a1;
 | 
|---|
 | 411 |       g=b1*fac;
 | 
|---|
 | 412 |       if (fabs((g-gold)/g)<1.e-7) {
 | 
|---|
 | 413 |                                 return(exp(-x+a*log(x)-gln)*g);
 | 
|---|
 | 414 |       }
 | 
|---|
 | 415 |     }
 | 
|---|
 | 416 |   }
 | 
|---|
 | 417 |   return(exp(-x+a*log(x)-gln)*g);
 | 
|---|
 | 418 | }
 | 
|---|
 | 419 | 
 | 
|---|
 | 420 | /** Incomplete gamma function.
 | 
|---|
 | 421 |  * Either calculated via series gser() or via continued fraction gcf()
 | 
|---|
 | 422 |  * Needed by derf()
 | 
|---|
 | 423 |  * \f[
 | 
|---|
 | 424 |  *      gammp(a,x) = \frac{1}{\gamma(a)} \int_x^\infty t^{a-1} \exp(-t) dt
 | 
|---|
 | 425 |  * \f]
 | 
|---|
 | 426 |  * \param a
 | 
|---|
 | 427 |  * \param x
 | 
|---|
 | 428 |  * \return f(a,x) =  (x < 1+a) ?  gser(a,x) : 1-gcf(a,x)
 | 
|---|
 | 429 |  * \note formula and coefficients are taken from "Numerical Receipes in C"
 | 
|---|
 | 430 |  */
 | 
|---|
 | 431 | static double gammp(double a, double x) {
 | 
|---|
 | 432 |   double res;
 | 
|---|
 | 433 |   if (x < a+1.) {
 | 
|---|
 | 434 |     res = gser(a,x);
 | 
|---|
 | 435 |   } else {
 | 
|---|
 | 436 |     res = 1.-gcf(a,x);
 | 
|---|
 | 437 |   }
 | 
|---|
 | 438 |   return(res);
 | 
|---|
 | 439 | }
 | 
|---|
 | 440 | #endif
 | 
|---|
 | 441 | 
 | 
|---|
 | 442 | /** Error function of integrated normal distribution.
 | 
|---|
 | 443 |  * Either realized via GSL function gsl_sf_erf or via gammp()
 | 
|---|
 | 444 |  * \f[
 | 
|---|
 | 445 |         erf(x) = \frac{2}{\sqrt{\pi}} \int^x_0 \exp(-t^2) dt 
 | 
|---|
 | 446 |                                  = \pi^{-1/2} \gamma(\frac{1}{2},x^2)
 | 
|---|
 | 447 |  * \f]
 | 
|---|
 | 448 |  * \param x
 | 
|---|
 | 449 |  * \return f(x) = sign(x) * gammp(0.5,x^2)
 | 
|---|
 | 450 |  * \sa gammp
 | 
|---|
 | 451 |  */
 | 
|---|
 | 452 | #ifdef HAVE_INLINE
 | 
|---|
| [08a794b] | 453 | inline double derf(double x)
 | 
|---|
| [a0bcf1] | 454 | #else
 | 
|---|
| [08a794b] | 455 | double derf(double x)
 | 
|---|
| [a0bcf1] | 456 | #endif
 | 
|---|
| [08a794b] | 457 | {
 | 
|---|
| [a0bcf1] | 458 |   double res;
 | 
|---|
 | 459 |   #ifdef HAVE_GSL_GSL_SF_ERF_H
 | 
|---|
 | 460 |           // call gsl instead of numerical recipes routines
 | 
|---|
 | 461 |         res = gsl_sf_erf(x);
 | 
|---|
 | 462 |   #else
 | 
|---|
 | 463 |            if (x < 0) {
 | 
|---|
 | 464 |             res = -gammp(0.5,x*x);
 | 
|---|
 | 465 |           } else {
 | 
|---|
 | 466 |             res = gammp(0.5,x*x);
 | 
|---|
 | 467 |           }
 | 
|---|
 | 468 |         #endif
 | 
|---|
 | 469 |   return(res);
 | 
|---|
 | 470 | }
 | 
|---|
 | 471 | 
 | 
|---|
 | 472 | /** Sets array to zero.
 | 
|---|
 | 473 |  * \param *a pointer to the double array
 | 
|---|
 | 474 |  * \param n number of array elements
 | 
|---|
 | 475 |  */
 | 
|---|
| [08a794b] | 476 | #ifdef HAVE_INLINE
 | 
|---|
| [a0bcf1] | 477 | inline void SetArrayToDouble0(double *a, int n)
 | 
|---|
| [08a794b] | 478 | #else
 | 
|---|
 | 479 | void SetArrayToDouble0(double *a, int n)
 | 
|---|
 | 480 | #endif
 | 
|---|
| [a0bcf1] | 481 | {
 | 
|---|
 | 482 |   int i;
 | 
|---|
 | 483 |   for(i=0;i<n;i++) a[i] = 0.0;
 | 
|---|
 | 484 | }
 | 
|---|
 | 485 | 
 | 
|---|
 | 486 | /** Print complex 3x3 matrix.
 | 
|---|
 | 487 |  * Checks if matrix has only zero entries, if not print each to screen: (re, im) ...
 | 
|---|
 | 488 |  * \param M matrix array
 | 
|---|
 | 489 |  */
 | 
|---|
 | 490 | void PrintCMat330(fftw_complex M[NDIM_NDIM])
 | 
|---|
 | 491 | {
 | 
|---|
 | 492 |   int i,p=0;
 | 
|---|
 | 493 |   for (i=0;i<NDIM_NDIM;i++)
 | 
|---|
 | 494 |     if (M[i].re != 0.0 || M[i].im != 0.0) p++;
 | 
|---|
 | 495 |   if (p) {
 | 
|---|
 | 496 |     for (i=0;i<NDIM_NDIM;i++) fprintf(stderr," (%f %f)", M[i].re, M[i].im);
 | 
|---|
 | 497 |     fprintf(stderr,"\n");
 | 
|---|
 | 498 |   }
 | 
|---|
 | 499 | }
 | 
|---|
 | 500 | 
 | 
|---|
 | 501 | /** Print real 3x3 matrix.
 | 
|---|
 | 502 |  * Checks if matrix has only zero entries, if not print each to screen: re ...
 | 
|---|
 | 503 |  * \param M matrix array
 | 
|---|
 | 504 |  */
 | 
|---|
 | 505 | void PrintRMat330(fftw_real M[NDIM_NDIM])
 | 
|---|
 | 506 | {
 | 
|---|
 | 507 |   int i,p=0;
 | 
|---|
 | 508 |   for (i=0;i<NDIM_NDIM;i++)
 | 
|---|
 | 509 |     if (M[i] != 0.0) p++;
 | 
|---|
 | 510 |   if (p) {
 | 
|---|
 | 511 |     for (i=0;i<NDIM_NDIM;i++) fprintf(stderr," %f", M[i]);
 | 
|---|
 | 512 |     fprintf(stderr,"\n");
 | 
|---|
 | 513 |   }
 | 
|---|
 | 514 | }
 | 
|---|
 | 515 | 
 | 
|---|
 | 516 | /** Print complex 3-dim vector.
 | 
|---|
 | 517 |  * Checks if vector has only zero entries, if not print each to screen: (re, im) ...
 | 
|---|
 | 518 |  * \param M vector array
 | 
|---|
 | 519 |  */
 | 
|---|
 | 520 | void PrintCVec30(fftw_complex M[NDIM])
 | 
|---|
 | 521 | {
 | 
|---|
 | 522 |   int i,p=0;
 | 
|---|
 | 523 |   for (i=0;i<NDIM;i++)
 | 
|---|
 | 524 |     if (M[i].re != 0.0 || M[i].im != 0.0) p++;
 | 
|---|
 | 525 |   if (p) {
 | 
|---|
 | 526 |     for (i=0;i<NDIM;i++) fprintf(stderr," (%f %f)", M[i].re, M[i].im);
 | 
|---|
 | 527 |     fprintf(stderr,"\n");
 | 
|---|
 | 528 |   }
 | 
|---|
 | 529 | }
 | 
|---|
 | 530 | 
 | 
|---|
 | 531 | /** Print real 3-dim vector.
 | 
|---|
 | 532 |  * Checks if vector has only zero entries, if not print each to screen: re ...
 | 
|---|
 | 533 |  * \param M matrix array
 | 
|---|
 | 534 |  */
 | 
|---|
 | 535 | void PrintRVec30(fftw_real M[NDIM])
 | 
|---|
 | 536 | {
 | 
|---|
 | 537 |   int i,p=0;
 | 
|---|
 | 538 |   for (i=0;i<NDIM;i++)
 | 
|---|
 | 539 |     if (M[i] != 0.0) p++;
 | 
|---|
 | 540 |   if (p) {
 | 
|---|
 | 541 |     for (i=0;i<NDIM;i++) fprintf(stderr," %f", M[i]);
 | 
|---|
 | 542 |     fprintf(stderr,"\n");
 | 
|---|
 | 543 |   }
 | 
|---|
 | 544 | }
 | 
|---|
 | 545 | 
 | 
|---|
 | 546 | /** Rotates \a matrix, such that simultaneously given \a vector is aligned with z axis.
 | 
|---|
 | 547 |  * Is used to rotate the unit cell in case of an external magnetic field. This field
 | 
|---|
 | 548 |  * is rotated so that it aligns with z axis in order to simplify necessary perturbation
 | 
|---|
 | 549 |  * calculations (only one component of each perturbed wave function necessary then).
 | 
|---|
 | 550 |  * \param vector which is aligned with z axis by rotation \a Q
 | 
|---|
 | 551 |  * \param Q return rotation matrix
 | 
|---|
 | 552 |  * \param matrix which is transformed under the above rotation \a Q
 | 
|---|
 | 553 |  */
 | 
|---|
 | 554 | void RotateToAlign(fftw_real Q[NDIM_NDIM], fftw_real matrix[NDIM_NDIM], fftw_real vector[NDIM]) {
 | 
|---|
 | 555 |   double tmp[NDIM_NDIM], Q1[NDIM_NDIM], Qtmp[NDIM_NDIM];
 | 
|---|
 | 556 |   double alpha, beta, new_y;
 | 
|---|
 | 557 |   int i,j ;
 | 
|---|
 | 558 |     
 | 
|---|
 | 559 |   // calculate rotation angles
 | 
|---|
 | 560 |   if (vector[0] < MYEPSILON) {
 | 
|---|
 | 561 |     alpha = 0;
 | 
|---|
 | 562 |   } else if (vector[1] > MYEPSILON) {
 | 
|---|
 | 563 |       alpha = atan(-vector[0]/vector[1]);
 | 
|---|
 | 564 |     } else alpha = PI/2; 
 | 
|---|
 | 565 |   new_y = -sin(alpha)*vector[0]+cos(alpha)*vector[1];
 | 
|---|
 | 566 |   if (new_y < MYEPSILON) {
 | 
|---|
 | 567 |     beta = 0;
 | 
|---|
 | 568 |   } else if (vector[2] > MYEPSILON) {
 | 
|---|
 | 569 |       beta = atan(-new_y/vector[2]);//asin(-vector[1]/vector[2]);
 | 
|---|
 | 570 |     } else beta = PI/2;
 | 
|---|
 | 571 | 
 | 
|---|
 | 572 |   // create temporary matrix copy
 | 
|---|
 | 573 |   // set Q to identity
 | 
|---|
 | 574 |   for (i=0;i<NDIM;i++)
 | 
|---|
 | 575 |     for (j=0;j<NDIM;j++) {
 | 
|---|
 | 576 |       Q[i*NDIM+j] = (i == j) ? 1 : 0;
 | 
|---|
 | 577 |       tmp[i*NDIM+j] = matrix[i*NDIM+j];
 | 
|---|
 | 578 |     }
 | 
|---|
 | 579 |   
 | 
|---|
 | 580 |   // construct rotation matrices
 | 
|---|
 | 581 |   Q1[0] = cos(alpha);
 | 
|---|
 | 582 |   Q1[1] = sin(alpha);
 | 
|---|
 | 583 |   Q1[2] = 0;
 | 
|---|
 | 584 |   Q1[3] = -sin(alpha);
 | 
|---|
 | 585 |   Q1[4] = cos(alpha);
 | 
|---|
 | 586 |   Q1[5] = 0;
 | 
|---|
 | 587 |   Q1[6] = 0;
 | 
|---|
 | 588 |   Q1[7] = 0;
 | 
|---|
 | 589 |   Q1[8] = 1;
 | 
|---|
 | 590 |   // apply rotation and store
 | 
|---|
 | 591 |   RMatMat33(tmp,Q1,matrix);
 | 
|---|
 | 592 |   RMatMat33(Qtmp,Q1,Q);
 | 
|---|
 | 593 | 
 | 
|---|
 | 594 |   Q1[0] = 1;
 | 
|---|
 | 595 |   Q1[1] = 0;
 | 
|---|
 | 596 |   Q1[2] = 0;
 | 
|---|
 | 597 |   Q1[3] = 0;
 | 
|---|
 | 598 |   Q1[4] = cos(beta);
 | 
|---|
 | 599 |   Q1[5] = sin(beta);
 | 
|---|
 | 600 |   Q1[6] = 0;
 | 
|---|
 | 601 |   Q1[7] = -sin(beta);
 | 
|---|
 | 602 |   Q1[8] = cos(beta);
 | 
|---|
 | 603 |   // apply rotation and store
 | 
|---|
 | 604 |   RMatMat33(matrix,Q1,tmp);
 | 
|---|
 | 605 |   RMatMat33(Q,Q1,Qtmp);
 | 
|---|
 | 606 | 
 | 
|---|
 | 607 |   // in order to avoid unncessary calculations, set everything below epsilon to zero
 | 
|---|
 | 608 |   for (i=0;i<NDIM_NDIM;i++) {
 | 
|---|
 | 609 |     matrix[i] = (fabs(matrix[i]) > MYEPSILON) ? matrix[i] : 0;
 | 
|---|
 | 610 |     Q[i] = (fabs(Q[i]) > MYEPSILON) ? Q[i] : 0;
 | 
|---|
 | 611 |   }
 | 
|---|
 | 612 | }
 | 
|---|