/** \file myfft.c * FastFourierTransformations for parallel computing. * Implements FFT on multiple machines using fftw package. The most important * routines are the hither and back transformations: fft_3d_real_to_complex() and * fft_3d_complex_to_real(). For fftw plans are needed, which are created by * fft_3d_create_plan() and destroyed by fft_3d_destroy_plan(). Plan weights * can be copied CopyElementOnepw() and there are sort critera GetKeyOnepw(), * GetKeyOnepw2PZI().\n * Wave functions can - for the purpose of testing - be filled with random values * by InitDataTestR(). * Project: ParallelCarParrinello \author Jan Hamaekers \date 2000 File: myfft.c $Id: myfft.c,v 1.23 2007/02/05 15:28:39 foo Exp $ */ #include #include #include #include #include // use double precision fft when we have it #ifdef HAVE_CONFIG_H #include #endif #ifdef HAVE_DFFTW_H #include "dfftw.h" #else #include "fftw.h" #endif #ifdef HAVE_DRFFTW_H #include "drfftw.h" #else #include "rfftw.h" #endif #include"data.h" #include"helpers.h" #include"output.h" #include"errors.h" #include"mergesort2.h" #include"mymath.h" #include"myfft.h" /** Returns negative value of the weight of a plan_weight as sort critera. * \param *a plan_weight array * \param i index of element * \param *Args unused (only for contingency) */ static double GetKeyOnepw(void *a, int i, void *Args) { return(-((struct plan_weight *)a)[i].weight); } /** Returns "index + twice the process number + \a Args[2]" of a plan_weight as sort critera. * \a Args[2] is only added if: Index % \a Args[1] != Args[1] - 1 * \param *a plan_weight array * \param i index of element * \param *Args */ static double GetKeyOnepw2PZI(void *a, int i, void *Args) { return(((struct plan_weight *)a)[i].Index+((int *)Args)[2]*( ( ((struct plan_weight *)a)[i].Index%((int *)Args)[1]!=((int *)Args)[1]-1)+2*(((struct plan_weight *)a)[i].PE))); } /** Copies one element from a plan weight array \a *b to another \a *a. * Copies from \a i-th element of \a *a index, weight and PE to \a *b * \param *a source plan weight array * \param i index of source element * \param *b destination plan weight array * \param j index of destination element */ static void CopyElementOnepw(void *a, int i, void *b, int j) { ((struct plan_weight *)a)[i].Index = ((struct plan_weight *)b)[j].Index; ((struct plan_weight *)a)[i].weight = ((struct plan_weight *)b)[j].weight; ((struct plan_weight *)a)[i].PE = ((struct plan_weight *)b)[j].PE; } /** Creates a 3d plan for the FFT to use in transforms. * \sa fft_plan_3d * \param *P Problem at hand * \param comm MPI Communicator * \param E_cut Energy cutoff * \param MaxLevel number of lattice levels * \param *LevelSizes size increas factor from level to level for MaxLevel's * \param GBasisSQ[] scalar product of reciprocal basis vectors * \param N[] mesh points per dimension NDIM * \param *MaxNoOfnFields maximum number of NFields per level * \param **NFields NField per level per field */ struct fft_plan_3d *fft_3d_create_plan(struct Problem *P, MPI_Comm comm, const double E_cut, const int MaxLevel, const int *LevelSizes, const double GBasisSQ[NDIM], const int N[NDIM], const int *MaxNoOfnFields, int **NFields) { struct fft_plan_3d *plan; int *MaxNFields; int i; int j; int ny; int Index; int LevelSize=1; // factorial level increase from 0th to maxlevel int n[NDIM]; int Args[3]; double weight; // Initialization of plan plan = (struct fft_plan_3d *) Malloc(sizeof(struct fft_plan_3d),"create_plan"); plan->P = P; plan->local_data = NULL; plan->work = NULL; plan->MaxLevel = MaxLevel; plan->LevelSizes = (int *) Malloc(sizeof(int)*MaxLevel,"create_plan: MaxLevels"); for (i=0; i < MaxLevel; i++) { LevelSize *= LevelSizes[i]; plan->LevelSizes[i] = LevelSizes[i]; } plan->E_cut = E_cut; plan->LevelSize = LevelSize; if (N[0] % LevelSize != 0 || N[1] % LevelSize != 0 || N[2] % LevelSize != 0) Error(SomeError,"create_plan: N[0] % LevelSize != 0 || N[1] % LevelSize != 0 || N[2] % LevelSize != 0"); // MPI part of plan MPI_Comm_dup(comm, &plan->comm); // Duplicates an existing communicator with all its cached information MPI_Comm_size(plan->comm, &plan->MaxPE); // Determines the size of the group associated with a communictor MPI_Comm_rank(plan->comm, &plan->myPE); // Determines the rank of the calling process in the communicator plan->PENo = (int *) Malloc(2*sizeof(int)*plan->MaxPE,"create_plan: PENo"); // Malloc 2 ints per process in communicator group for (i=0; i < 2*plan->MaxPE; i++) // all set to zero plan->PENo[i] = 0; for (i=0; i < NDIM; i++) { plan->N[i] = N[i]; plan->GBasisSQ[i] = GBasisSQ[i]; plan->NLSR[i] = N[i] / LevelSize; } plan->Maxpw = (N[1] / LevelSize) * ((N[2] / LevelSize)/2+1); if (P->Call.out[LeaderOut]) fprintf(stderr,"Create_Plan: E_cut %g, N[] %i %i %i, LS %i, Maxpw %i\n",E_cut, N[0],N[1],N[2], LevelSize, plan->Maxpw); if (plan->NLSR[0] % plan->MaxPE != 0 || plan->Maxpw % plan->MaxPE != 0) // check if dividable among processes Error(SomeError,"create_plan: plan->NLSR[0] % plan->MaxPE != 0 || plan->Maxpw % plan->MaxPE != 0"); plan->pw = (struct plan_weight *) Malloc(plan->Maxpw*sizeof(struct plan_weight),"create_plan_weight"); // Allocating plan weight plan->pwFS = (struct plan_weight *) Malloc((plan->Maxpw+1)*sizeof(struct plan_weight),"create_plan_weight_FS"); for (n[1]=0; n[1] < plan->NLSR[1]; n[1]++) { for (n[2]=0; n[2] < (plan->NLSR[2]/2+1); n[2]++) { ny = (n[1] >= (plan->NLSR[1]/2+1) ? n[1]-plan->NLSR[1] : n[1]); Index = CalcRowMajor2D(n[1],n[2],plan->NLSR[1],plan->NLSR[2]/2+1); plan->pw[Index].Index = Index; //fprintf(stderr,"(%i) plan->pw[%i] = %i\n",P->Par.me,Index, plan->pw[Index].Index); if (GBasisSQ[0] < MYEPSILON) fprintf(stderr,"fft_3d_create_plan: GBasisSQ[0] = %lg\n",GBasisSQ[0]); weight = (2.*E_cut/(LevelSize*LevelSize)-ny*ny*GBasisSQ[1]-n[2]*n[2]*GBasisSQ[2])/GBasisSQ[0]; if (weight > 0.0) plan->pw[Index].weight = sqrt(weight); else plan->pw[Index].weight = 0.0; if (n[2] == plan->NLSR[2]/2) plan->pw[Index].weight += 4.*sqrt(2.*E_cut/(LevelSize*LevelSize)/GBasisSQ[0]); if (n[2] == 0) plan->pw[Index].weight += 2.*sqrt(2.*E_cut/(LevelSize*LevelSize)/GBasisSQ[0]); } } naturalmergesort(plan->pw,plan->pwFS,0,plan->Maxpw-1,&GetKeyOnepw,NULL,&CopyElementOnepw); if (plan->Maxpw < plan->MaxPE) Error(SomeError,"create_plan: plan->Maxpw < plan->MaxPE"); if (plan->Maxpw / plan->MaxPE < plan->NLSR[1] + plan->NLSR[1]/plan->MaxPE) Error(SomeError,"create_plan: plan->Maxpw / plan->MaxPE < plan->NLSR[1] + plan->NLSR[1]/plan->MaxPE"); for (i=0; i < plan->Maxpw; i++) { if (i < plan->NLSR[1]) { plan->pw[i].PE = i % plan->MaxPE; } else { if (i-plan->NLSR[1] < plan->NLSR[1]) { plan->pw[i].PE = 0; } else { if (i-2*plan->NLSR[1] < (plan->MaxPE-1)*plan->NLSR[1]) { plan->pw[i].PE = ((i%(plan->MaxPE-1))+1); } else { plan->pw[i].PE = i%plan->MaxPE; } } } plan->PENo[2*(i % plan->MaxPE)]++; if (plan->pw[i].Index%(plan->NLSR[2]/2+1) == plan->NLSR[2]/2) plan->pw[i].weight -= 4.*sqrt(2.*E_cut/(LevelSize*LevelSize)/GBasisSQ[0]); if (plan->pw[i].Index%(plan->NLSR[2]/2+1) == 0) { plan->pw[i].weight -= 2.*sqrt(2.*E_cut/(LevelSize*LevelSize)/GBasisSQ[0]); if (plan->pw[i].Index%(plan->NLSR[2]/2+1) >= plan->NLSR[2]/2+1) { plan->pw[i].weight = 0.0; } else { if (plan->pw[i].Index % (plan->NLSR[2]/2+1) == 0) { plan->PENo[2*(plan->pw[i].PE)+1] += floor(plan->pw[i].weight)+1; } else { plan->PENo[2*(plan->pw[i].PE)+1] += 2*floor(plan->pw[i].weight)+1; } } } else { plan->PENo[2*(plan->pw[i].PE)+1] += 2*floor(plan->pw[i].weight)+1; } } plan->LocalMaxpw = plan->PENo[2*plan->myPE]; Args[0]=plan->MaxPE; Args[1]=plan->NLSR[2]/2+1; Args[2]=plan->Maxpw; naturalmergesort(plan->pw,plan->pwFS,0,plan->Maxpw-1,&GetKeyOnepw2PZI,Args,&CopyElementOnepw); for (j=0; j < plan->MaxPE; j++) { for (i= plan->NLSR[1]/plan->MaxPE-1; i >= 0; i--) { /*if (i != 0 && i+plan->LocalMaxpw*j >= i*(plan->NLSR[1]/2+1)+plan->LocalMaxpw*j) Error(SomeError,"Createplan: i != 0 && i+plan->LocalMaxpw*j ? i*(plan->NLSR[2]/2+1)+plan->LocalMaxpw*j");*/ CopyElementOnepw(plan->pwFS,plan->LocalMaxpw,plan->pw,i+plan->LocalMaxpw*j); CopyElementOnepw(plan->pw,i+plan->LocalMaxpw*j,plan->pw,(i+1)*(plan->NLSR[2]/2+1)-1+plan->LocalMaxpw*j); CopyElementOnepw(plan->pw,(i+1)*(plan->NLSR[2]/2+1)-1+plan->LocalMaxpw*j,plan->pwFS,plan->LocalMaxpw); } } plan->Localpw = &plan->pw[plan->myPE*plan->LocalMaxpw]; if (P->Call.out[PsiOut]) { fprintf(stderr,"pw\n"); for (i=plan->myPE*plan->LocalMaxpw; i < (plan->myPE+1)*plan->LocalMaxpw; i++) // print my local weights fprintf(stderr,"(%i)W(%g)I(%i)P(%i) ",i,plan->pw[i].weight,plan->pw[i].Index,plan->pw[i].PE); fprintf(stderr,"\n"); } if (P->Call.out[LeaderOut]) { fprintf(stderr,"pwPENo\n"); for (i=0; i < plan->MaxPE; i++) fprintf(stderr,"(%i)W(%i)X(%i) ",i,plan->PENo[2*i+1],plan->PENo[2*i]); fprintf(stderr,"\n"); } Free(plan->pwFS); plan->pwFS = NULL; plan->Lev_CR_RC = (int *) Malloc(2*sizeof(int)*MaxLevel,"create_plan: Lev_CR_RC"); for (i=0; i < 2*MaxLevel; i++) plan->Lev_CR_RC[i] = 1; plan->Levplan = (struct LevelPlan *) Malloc(sizeof(struct LevelPlan)*MaxLevel,"create_plan:Levplan"); plan->MaxNoOfnFields = (int *) Malloc(sizeof(int)*MaxLevel,"create_plan:MaxNoOfnFields"); for (i=0; iMaxNoOfnFields[i] = MaxNoOfnFields[i]; plan->NFields = (int **) Malloc(sizeof(int *)*MaxLevel,"create_plan:NFields"); MaxNFields = (int *) Malloc(sizeof(int)*MaxLevel,"create_plan:MaxNFields"); for (i=0; iNFields[i] = (int *) Malloc(sizeof(int )*MaxNoOfnFields[i],"create_plan:NFields"); MaxNFields[i] = 0; for (j=0; j < plan->MaxNoOfnFields[i]; j++) { plan->NFields[i][j] = NFields[i][j]; if (NFields[i][j] < 1) Error(SomeError,"Create_plan: NFields[j] < 1"); if (NFields[i][j] > MaxNFields[i]) MaxNFields[i] = NFields[i][j]; } } plan->LevelBlockSize = plan->LevelSize*plan->LevelSize*plan->LevelSize; for (i=MaxLevel-1; i >= 0; i--) { if (i == MaxLevel-1) plan->Levplan[i].LevelFactor = LevelSizes[MaxLevel-1]; else plan->Levplan[i].LevelFactor = plan->Levplan[i+1].LevelFactor*LevelSizes[i]; for (j=0; j < NDIM; j++) plan->Levplan[i].N[j] = plan->NLSR[j]*plan->Levplan[i].LevelFactor; plan->Levplan[i].LevelNo = i; plan->LocalDataSize = (plan->Levplan[i].N[0]*plan->Levplan[i].N[1]*(plan->Levplan[i].N[2]/2+1)*MaxNFields[i])/plan->MaxPE; plan->LocalWorkSize = plan->LocalDataSize; plan->local_data = (fftw_complex *) Realloc(plan->local_data, sizeof(fftw_complex)*plan->LocalDataSize,"create_plan: localdata"); plan->work = (fftw_complex *) Realloc(plan->work, sizeof(fftw_complex)*plan->LocalWorkSize,"create_plan: work"); plan->Levplan[i].ny = plan->Levplan[i].N[1]; plan->Levplan[i].local_ny = plan->Levplan[i].N[1]/plan->MaxPE; plan->Levplan[i].nz = plan->Levplan[i].N[2]/2+1; plan->Levplan[i].local_nx = plan->Levplan[i].N[0]/plan->MaxPE; plan->Levplan[i].nx = plan->Levplan[i].N[0]; plan->Levplan[i].start_nx = plan->Levplan[i].local_nx * plan->myPE; plan->Levplan[i].local_nyz = plan->Levplan[i].local_ny*plan->Levplan[i].nz; plan->Levplan[i].nyz = plan->Levplan[i].ny*plan->Levplan[i].nz; fprintf(stderr,"(%i) nlocal (x%i, y%i, yz%i), n (%i, %i, %i), N (%i, %i, %i)\n", P->Par.me, plan->Levplan[i].local_nx, plan->Levplan[i].local_ny, plan->Levplan[i].local_nyz, plan->Levplan[i].nx, plan->Levplan[i].ny, plan->Levplan[i].nz, plan->Levplan[i].N[0], plan->Levplan[i].N[1], plan->Levplan[i].N[2]); plan->Levplan[i].LocalSizeC = plan->Levplan[i].nx*plan->Levplan[i].local_nyz; plan->Levplan[i].LocalSizeR = plan->Levplan[i].local_nx*plan->Levplan[i].ny*plan->Levplan[i].N[2]; plan->Levplan[i].LevelBlockSize = plan->Levplan[i].LevelFactor* plan->Levplan[i].LevelFactor*plan->Levplan[i].LevelFactor; plan->Levplan[i].SendRecvBlockSize = plan->Levplan[i].local_nyz*plan->Levplan[i].local_nx; plan->Levplan[i].PermBlockSize = plan->Levplan[i].LevelFactor; if (P->Call.out[LeaderOut]) fprintf(stderr,"Create_Plan: Level(%i) LevelFactor(%i) LevelBlockSize(%i)\n",i,plan->Levplan[i].LevelFactor, plan->Levplan[i].LevelBlockSize); if (plan->Lev_CR_RC[2*i]) { plan->Levplan[i].xplanCR = (fftw_plan *) Malloc(sizeof(fftw_plan)*plan->MaxNoOfnFields[i],"Create_Plan: xplanCR"); plan->Levplan[i].yzplanCR = (rfftwnd_plan *) Malloc(sizeof(rfftwnd_plan)*plan->MaxNoOfnFields[i],"Create_Plan: yzplanCR"); for (j=0; jMaxNoOfnFields[i]; j++) { plan->Levplan[i].xplanCR[j] = fftw_create_plan_specific(plan->Levplan[i].N[0], FFTW_BACKWARD, fftw_flag | FFTW_OUT_OF_PLACE,plan->local_data,plan->NFields[i][j],plan->work,plan->NFields[i][j]*plan->Levplan[i].local_nyz); plan->Levplan[i].yzplanCR[j] = rfftw2d_create_plan_specific(plan->Levplan[i].N[1], plan->Levplan[i].N[2], FFTW_COMPLEX_TO_REAL, fftw_flag | FFTW_OUT_OF_PLACE,(fftw_real *)plan->local_data,plan->NFields[i][j],(fftw_real *)plan->work,plan->NFields[i][j]); } } else { plan->Levplan[i].xplanCR = NULL; plan->Levplan[i].yzplanCR = NULL; } if (plan->Lev_CR_RC[2*i+1]) { plan->Levplan[i].xplanRC = (fftw_plan *) Malloc(sizeof(fftw_plan)*plan->MaxNoOfnFields[i],"Create_Plan: xplanRC"); plan->Levplan[i].yzplanRC = (rfftwnd_plan *) Malloc(sizeof(rfftwnd_plan)*plan->MaxNoOfnFields[i],"Create_Plan: yzplanRC"); for (j=0; jMaxNoOfnFields[i]; j++) { plan->Levplan[i].xplanRC[j] = fftw_create_plan_specific(plan->Levplan[i].N[0], FFTW_FORWARD, fftw_flag | FFTW_OUT_OF_PLACE,plan->local_data,plan->NFields[i][j]*plan->Levplan[i].local_nyz,plan->work,plan->NFields[i][j]); plan->Levplan[i].yzplanRC[j] = rfftw2d_create_plan_specific(plan->Levplan[i].N[1], plan->Levplan[i].N[2], FFTW_REAL_TO_COMPLEX, fftw_flag | FFTW_OUT_OF_PLACE,(fftw_real *)plan->local_data,plan->NFields[i][j],(fftw_real *)plan->work,plan->NFields[i][j]); } } else { plan->Levplan[i].xplanRC = NULL; plan->Levplan[i].yzplanRC = NULL; } } if (plan->local_data != NULL) { Free(plan->local_data); plan->local_data = NULL; } if (plan->work != NULL) { Free(plan->work); plan->work = NULL; } Free(MaxNFields); return plan; } void fft_3d_destroy_plan(const struct Problem *P, struct fft_plan_3d *plan) { int i,j; //if (P->Call.out[LeaderOut]) fprintf(stderr,"Destroy_Plan\n"); for (i=0; i< plan->MaxLevel; i++) { for (j=0; j< plan->MaxNoOfnFields[i]; j++) { fftw_destroy_plan(plan->Levplan[i].xplanCR[j]); fftw_destroy_plan(plan->Levplan[i].xplanRC[j]); rfftwnd_destroy_plan(plan->Levplan[i].yzplanCR[j]); rfftwnd_destroy_plan(plan->Levplan[i].yzplanRC[j]); } Free(plan->Levplan[i].xplanCR); Free(plan->Levplan[i].xplanRC); Free(plan->Levplan[i].yzplanCR); Free(plan->Levplan[i].yzplanRC); Free(plan->NFields[i]); } Free(plan->MaxNoOfnFields); Free(plan->NFields); Free(plan->Levplan); Free(plan->PENo); plan->PENo = NULL; Free(plan->LevelSizes); plan->LevelSizes = NULL; Free(plan->Lev_CR_RC); plan->Lev_CR_RC = NULL; Free(plan->pw); plan->pw = NULL; plan->Levplan = NULL; MPI_Comm_free(&plan->comm); Free(plan); } static void FirstDimTransCR(const struct fft_plan_3d *plan, const struct LevelPlan *Lplan, const int nFieldsNo, fftw_complex *local_data, fftw_complex *work) { /* local_data -> work */ int local_nyz = Lplan->local_nyz; int nx = Lplan->N[0]; int fft_iter; int nFields = plan->NFields[Lplan->LevelNo][nFieldsNo]; fftw_plan fft_x = Lplan->xplanCR[nFieldsNo]; if (nFields > 1) { for (fft_iter = 0; fft_iter < local_nyz; ++fft_iter) fftw(fft_x, nFields, local_data + (nx * nFields) * fft_iter, nFields, 1, work+nFields*fft_iter, nFields*local_nyz, 1); } else fftw(fft_x, local_nyz, local_data, 1, nx, work, local_nyz, 1); } static void OtherDimTransCR(const struct fft_plan_3d *plan, const struct LevelPlan *Lplan, const int nFieldsNo, fftw_complex *local_data, fftw_complex *work) { /* work -> local_data */ int local_nx = Lplan->local_nx; int nyz = Lplan->nyz; int fft_iter; int rnyz = Lplan->N[1]*Lplan->N[2]; int nFields = plan->NFields[Lplan->LevelNo][nFieldsNo]; rfftwnd_plan fft = Lplan->yzplanCR[nFieldsNo]; if (nFields > 1) { for (fft_iter = 0; fft_iter < local_nx; ++fft_iter) rfftwnd_complex_to_real(fft, nFields, ((fftw_complex *) work)+ (nyz * nFields) * fft_iter, nFields, 1, ((fftw_real *)local_data)+ (rnyz * nFields) * fft_iter , nFields, 1); } else { rfftwnd_complex_to_real(fft, local_nx, (fftw_complex *) work, 1, nyz, (fftw_real *)local_data , 1, rnyz); } } static void TransposeMPICR(const struct fft_plan_3d *plan, const struct LevelPlan *Lplan, const int el_size, double *local_data, double *work) { /* work -> local_data */ MPI_Alltoall(work, Lplan->SendRecvBlockSize * el_size, MPI_DOUBLE, local_data, Lplan->SendRecvBlockSize * el_size, MPI_DOUBLE, plan->comm); } static void LocalPermutationCR(const struct fft_plan_3d *plan, const struct LevelPlan *Lplan, const int el_size, double *local_data, double *work) { /* data -> work */ int x,PEy,ly,z,Z,Y,srcIndex,destIndex,Index,cpyes,Ly; int lnx=Lplan->local_nx,lny=plan->NLSR[1]/plan->MaxPE,nz=plan->NLSR[2]/2+1,MaxPE=plan->MaxPE,ny=plan->NLSR[1]; int es = el_size*Lplan->PermBlockSize; int LevelFactor = Lplan->LevelFactor; int snz = (nz-1)*es+el_size; struct plan_weight *pw = plan->pw; for (x=0; x < lnx; x++) for (PEy=0; PEy < MaxPE; PEy++) for (ly=0; ly < lny; ly++) for (Ly=0; Ly < LevelFactor;Ly++) for (z=0; z < nz; z++) { Z = z*es; srcIndex = Z+snz*(Ly+LevelFactor*(ly+lny*(x+lnx*(PEy)))); Index = pw[z+nz*(ly+lny*PEy)].Index; Z = Index%nz; Z = Z*es; Y = ((Index/nz)*LevelFactor+Ly); destIndex = Z+snz*(Y+LevelFactor*ny*(x)); cpyes = (z == nz-1 ? el_size : es); memcpy( &work[destIndex], &local_data[srcIndex], cpyes * sizeof(double)); } } // does complex to real 3d fftransformation (reciprocal base -> real base) /** Inverse Fast Fourier Transformation of plane wave coefficients. * If given state is \f$\langle \chi_{i,G} | \psi_i (r) \rangle \f$, result is \f$| \psi_i (r) \rangle\f$ * Calls subsequently (reverse order of calling as in fft_3d_real_to_complex()) * -# FirstDimTransCR()\n * -# TransposeMPICR()\n * -# LocalPermutationCR()\n * -# OtherDimTransCR()\n * \param *plan the transformation plan * \param Level current level number * \param nFieldsNo number of parallel ffts (in case of LevelUp) * \param *local_data real base wave function coefficients, \f$\psi_i (G)\f$, on return \f$\psi_i (r)\f$ * \param *work temporary array for coefficients * \warning coefficients in \a *local_date and *work are destroyed! * \note Due to the symmetry of the reciprocal coefficients, not all of them are stored in memory. Thus * the whole set must be rebuild before this inverse transformation can be called. From 0 to * LatticeLevel::MaxG copied to negative counterpart and for 0 to LatticeLevel::MaxDoubleG the * complex conjugate must be formed (see \ref density.c). */ void fft_3d_complex_to_real(const struct fft_plan_3d *plan, const int Level, const int nFieldsNo, fftw_complex *local_data, fftw_complex *work) { /* local data -> local_data, work destroyed */ int el_size = (sizeof(fftw_complex) / sizeof(double)); int nFields = plan->NFields[Level][nFieldsNo]; struct LevelPlan *Lplan = &plan->Levplan[Level]; if (!plan->Lev_CR_RC[2*Level]) Error(SomeError,"fft_3d_complex_to_real: !plan->Lev_CR_RC[2*i]"); if (nFieldsNo < 0 || nFieldsNo >= plan->MaxNoOfnFields[Level]) Error(SomeError,"fft_3d_complex_to_real: nFieldsNo < 0 || nFieldsNo >= plan->MaxNoOfnFields[Level]"); el_size *= nFields; //if (isnan(work[0].re)) //fprintf(stderr,"fft_3d_complex_to_real,FirstDimTransCR: before work %lg\n",work[0].re); FirstDimTransCR(plan, Lplan, nFieldsNo, local_data, work); //if (isnan(work[0].re)) //fprintf(stderr,"fft_3d_complex_to_real,FirstDimTransCR: after work %lg\n",work[0].re); TransposeMPICR(plan, Lplan, el_size, (double *)local_data, (double *)work); LocalPermutationCR(plan, Lplan, el_size, (double *)local_data, (double *)work); OtherDimTransCR(plan, Lplan, nFieldsNo, local_data, work); } static void FirstDimTransRC(const struct fft_plan_3d *plan, const struct LevelPlan *Lplan, const int nFieldsNo, fftw_complex *local_data, fftw_complex *work) { /* work -> local_data */ int local_nyz = Lplan->local_nyz; int nx = Lplan->N[0]; int fft_iter; int nFields = plan->NFields[Lplan->LevelNo][nFieldsNo]; fftw_plan fft_x = Lplan->xplanRC[nFieldsNo]; if (nFields > 1) { for (fft_iter = 0; fft_iter < local_nyz; ++fft_iter) fftw(fft_x, nFields, work+nFields*fft_iter, nFields*local_nyz, 1, local_data + (nx * nFields) * fft_iter, nFields, 1); } else fftw(fft_x, local_nyz, work, local_nyz, 1, local_data, 1, nx); } static void OtherDimTransRC(const struct fft_plan_3d *plan, const struct LevelPlan *Lplan, const int nFieldsNo, fftw_complex *local_data, fftw_complex *work) { /* local_data -> work */ int local_nx = Lplan->local_nx; int nyz = Lplan->nyz; int rnyz = Lplan->N[1]*Lplan->N[2]; int fft_iter; int nFields = plan->NFields[Lplan->LevelNo][nFieldsNo]; rfftwnd_plan fft = Lplan->yzplanRC[nFieldsNo]; if (nFields > 1) { for (fft_iter = 0; fft_iter < local_nx; ++fft_iter) rfftwnd_real_to_complex(fft, nFields, ((fftw_real *) local_data) + (rnyz * nFields) * fft_iter, nFields, 1, ((fftw_complex *)work)+ (nyz * nFields) * fft_iter , nFields, 1); } else { rfftwnd_real_to_complex(fft, local_nx, (fftw_real *) local_data, 1, rnyz, (fftw_complex *) work , 1, nyz); } } static void TransposeMPIRC(const struct fft_plan_3d *plan, const struct LevelPlan *Lplan, const int el_size, double *local_data, double *work) { /* local_data -> work */ MPI_Alltoall(local_data, Lplan->SendRecvBlockSize * el_size, MPI_DOUBLE, work, Lplan->SendRecvBlockSize * el_size, MPI_DOUBLE, plan->comm); } static void LocalPermutationRC(const struct fft_plan_3d *plan, const struct LevelPlan *Lplan, const int el_size, double *local_data, double *work) { /* work -> data*/ int x,PEy,ly,z,Z,Y,srcIndex,destIndex,Index,cpyes,Ly; int lnx=Lplan->local_nx,lny=plan->NLSR[1]/plan->MaxPE,nz=plan->NLSR[2]/2+1,MaxPE=plan->MaxPE,ny=plan->NLSR[1]; int es = el_size*Lplan->PermBlockSize; int LevelFactor = Lplan->LevelFactor; int snz = (nz-1)*es+el_size; struct plan_weight *pw = plan->pw; for (x=0; x < lnx; x++) for (PEy=0; PEy < MaxPE; PEy++) for (ly=0; ly < lny; ly++) for (Ly=0; Ly < LevelFactor;Ly++) for (z=0; z < nz; z++) { Z = z*es; destIndex = Z+snz*(Ly+LevelFactor*(ly+lny*(x+lnx*(PEy)))); Index = pw[z+nz*(ly+lny*PEy)].Index; Z = Index%nz; Z = Z*es; Y = ((Index/nz)*LevelFactor+Ly); srcIndex = Z+snz*(Y+LevelFactor*ny*(x)); cpyes = (z == nz-1 ? el_size : es); memcpy( &local_data[destIndex], &work[srcIndex], cpyes * sizeof(double)); } } /** Normal Fast Fourier Transformation of plane wave coefficients. * If given state is \f$| \psi_i (r) \rangle \f$, result is \f$\langle \chi_{i,G} | \psi_i (r) \rangle\f$ * Calls subsequently * -# OtherDimTransRC()\n * -# LocalPermutationRC()\n * -# TransposeMPIRC()\n * -# FirstDimTransRC()\n * \param *plan the transformation plan * \param Level current level number * \param nFieldsNo number of parallel ffts (in case of LevelUp) * \param *local_data real base wave function coefficients, \f$\psi_i (r)\f$, on return \f$\psi_i (G)\f$ * \param *work temporary array for coefficients * \warning coefficients in \a *local_date and *work are destroyed! */ void fft_3d_real_to_complex(const struct fft_plan_3d *plan, const int Level, const int nFieldsNo, fftw_complex *local_data, fftw_complex *work) { /* local data -> local_data, work destroyed */ int el_size = (sizeof(fftw_complex) / sizeof(double)); int nFields = plan->NFields[Level][nFieldsNo]; struct LevelPlan *Lplan = &plan->Levplan[Level]; if (!plan->Lev_CR_RC[2*Level+1]) Error(SomeError,"fft_3d_real_to_complex: !plan->Lev_CR_RC[2*i+1]"); if (nFieldsNo < 0 || nFieldsNo >= plan->MaxNoOfnFields[Level]) Error(SomeError,"fft_3d_real_to_complex: nFieldsNo < 0 || nFieldsNo >= plan->MaxNoOfnFields[Level]"); el_size *= nFields; OtherDimTransRC(plan, Lplan, nFieldsNo, local_data, work); LocalPermutationRC(plan, Lplan, el_size, (double *)local_data, (double *)work); TransposeMPIRC(plan, Lplan, el_size, (double *)local_data, (double *)work); FirstDimTransRC(plan, Lplan, nFieldsNo, local_data, work); } /** Fills \a *local_data with random values. * \param *plan fft plan * \param Level current level number * \param nFields number of nFields (of parallel ffts) * \param *local_data array of coefficients to be set at random values */ void InitDataTestR(const struct fft_plan_3d *plan, const int Level, const int nFields,fftw_real *local_data) { int x,y,z,n,Index,i; int Nx = plan->Levplan[Level].N[0]/plan->MaxPE; int Ny = plan->Levplan[Level].N[1]; int Nz = plan->Levplan[Level].N[2]; srand((unsigned int)Level); for (i=0;imyPE*Nx*Ny*Nz*nFields;i++) rand(); for (x=0; x < Nx; x++) { for (y = 0; y < Ny; y++) { for (z = 0; z < Nz; z++) { for (n=0; n < nFields; n++) { Index = n+nFields*(z+Nz*(y+Ny*(x))); local_data[Index]=1.-2.*(rand()/(double)RAND_MAX); } } } } } /* static void OutputDataTestWR(const struct fft_plan_3d *plan, const int Level, const int nFields,fftw_real *local_data,FILE *target) { int x,y,z,n,Index; int Nx = plan->Levplan[Level].N[0]/plan->MaxPE; int Ny = plan->Levplan[Level].N[1]; int Nz = plan->Levplan[Level].N[2]; fprintf(target,"Level=%i\n",Level); for (x=0; x < Nx; x++) { fprintf(target,"x=%i\n",x+Nx*plan->myPE); for (y = 0; y < Ny; y++) { fprintf(target,"y=%5i ",y); for (z = 0; z < Nz; z++) { for (n=0; n < nFields; n++) { Index = n+nFields*(z+2*(Nz/2+1)*(y+Ny*(x))); fprintf(target,"%10.5f ",local_data[Index]); } } fprintf(target,"\n"); } } } static void OutputDataTestR(const struct fft_plan_3d *plan, const int Level, const int nFields,fftw_real *local_data, double factor,FILE *target) { int x,y,z,n,Index; int Nx = plan->Levplan[Level].N[0]/plan->MaxPE; int Ny = plan->Levplan[Level].N[1]; int Nz = plan->Levplan[Level].N[2]; fprintf(target,"Level=%i\n",Level); for (x=0; x < Nx; x++) { fprintf(target,"x=%i\n",x+Nx*plan->myPE); for (y = 0; y < Ny; y++) { fprintf(target,"y=%5i ",y); for (z = 0; z < Nz; z++) { for (n=0; n < nFields; n++) { Index = n+nFields*(z+Nz*(y+Ny*(x))); fprintf(target,"%10.5f ",local_data[Index]*factor); } } fprintf(target,"\n"); } } } static void InitDataTestWR(const struct fft_plan_3d *plan, const int Level, const int nFields,fftw_real *local_data) { int i,x,y,z,n,Index,Value=0; int Nx = plan->Levplan[Level].N[0]/plan->MaxPE; int Ny = plan->Levplan[Level].N[1]; int Nz = plan->Levplan[Level].N[2]; srand(Level); for (i=0;imyPE*Nx*Ny*Nz*nFields;i++) rand(); for (x=0; x < Nx; x++) { for (y = 0; y < Ny; y++) { for (z = 0; z < Nz; z++) { for (n=0; n < nFields; n++) { Index = n+nFields*(z+2*(Nz/2+1)*(y+Ny*(x))); local_data[Index] = 1.-2.*(rand()/(double)RAND_MAX); Value++; } } } } } static void OutputDataTestWCA(const struct fft_plan_3d *plan, const int Level, const int nFields,fftw_complex *local_data,double factor,FILE *target) { int x,y,z,yz,n,Index,Y,Z,YZ; int Nx = plan->Levplan[Level].N[0]; int Ny = plan->Levplan[Level].N[1]/plan->MaxPE; int Nz = plan->Levplan[Level].N[2]/2+1; int NZ = plan->NLSR[2]/2+1; fprintf(target,"Level=%i\n",Level); for (y = 0; y < Ny; y++) { for (z = 0; z < Nz; z++) { Y = (y+plan->myPE*Ny)/plan->Levplan[Level].LevelFactor; Z = z/plan->Levplan[Level].LevelFactor; YZ = Z+NZ*Y; yz = z+Nz*y; fprintf(target,"yz=%i(%i)\n",yz+plan->myPE*Ny*Nz,YZ); for (x=0; x < Nx; x++) { for (n=0; n < nFields; n++) { Index = n+nFields*(z+Nz*(x+Nx*(y))); fprintf(target,"%10.5f %10.5f ",local_data[Index].re*factor,local_data[Index].im*factor); } } fprintf(target,"\n"); } } } static void OutputDataTestCA(const struct fft_plan_3d *plan, const int Level, const int nFields,fftw_complex *local_data,double factor,FILE *target) { int x,yz,n,Index,Y,Z,YZ,y,z; int Nx = plan->Levplan[Level].nx; int Ny = plan->Levplan[Level].local_ny ; int Nz = plan->Levplan[Level].nz; int Nyz = Ny*Nz; int NZ = plan->NLSR[2]/2+1; fprintf(target,"Level=%i\n",Level); for (y = 0; y < Ny; y++) { for (z = 0; z < Nz; z++) { Y = (y+plan->myPE*Ny)/plan->Levplan[Level].LevelFactor; Z = z/plan->Levplan[Level].LevelFactor; YZ = Z+NZ*Y; YZ = plan->pw[YZ].Index; yz = z+Nz*y; fprintf(target,"yz=%i(%i)\n",yz+plan->myPE*Nyz,YZ); for (x=0; x < Nx; x++) { for (n=0; n < nFields; n++) { Index = n+nFields*(x+Nx*(yz)); fprintf(target,"%10.5f %10.5f ",((double *)local_data)[2*Index]*factor,((double *)local_data)[2*Index+1]*factor); } } fprintf(target,"\n"); } } } static void InitDataTestCA(const struct fft_plan_3d *plan, const int Level, const int nFields,fftw_complex *local_data) { int x,yz,n,Index,Y,Z,YZ,y,z,Value=0; int Nx = plan->Levplan[Level].nx; int Ny = plan->Levplan[Level].local_ny ; int Nz = plan->Levplan[Level].nz; int Nyz = plan->Levplan[Level].ny*Nz; int NZ = plan->NLSR[2]/2+1; int YY; for (y = 0; y < Ny; y++) { for (z = 0; z < Nz; z++) { Y = (y+plan->myPE*Ny)/plan->Levplan[Level].LevelFactor; YY = (y+plan->myPE*Ny)%plan->Levplan[Level].LevelFactor; Z = z/plan->Levplan[Level].Level; YZ = Z+NZ*Y; YZ = plan->pw[YZ].Index; Z = (YZ%NZ)*plan->Levplan[Level].LevelFactor+(z)%plan->Levplan[Level].LevelFactor; yz = Z+Nz*(((YZ/NZ)*plan->Levplan[Level].LevelFactor+YY)); for (x=0; x < Nx; x++) { for (n=0; n < nFields; n++) { Index = n+nFields*(x+Nx*(z+Nz*y)); Value = n+nFields*(yz+Nyz*x); local_data[Index].re = Value*2; local_data[Index].im = Value*2+1; } } } } } static void OutputDataTestCB(const struct fft_plan_3d *plan, const int Level, const int nFields,fftw_complex *local_data,double factor,FILE *target) { int x,yz,n,Index,Y,Z,YZ,y,z; int Nx = plan->Levplan[Level].local_nx; int Ny = plan->Levplan[Level].ny ; int Nz = plan->Levplan[Level].nz; int NZ = plan->NLSR[2]/2+1; fprintf(target,"Level=%i\n",Level); for (x=0; x < Nx; x++) { fprintf(target,"x=%i\n",x+plan->myPE*Nx); for (y = 0; y < Ny; y++) { for (z = 0; z < Nz; z++) { Y = (y)/plan->Levplan[Level].LevelFactor; Z = z/plan->Levplan[Level].LevelFactor; YZ = Z+NZ*Y; YZ = plan->pw[YZ].Index; yz = z+Nz*y; for (n=0; n < nFields; n++) { Index = n+nFields*(yz+Ny*Nz*(x)); fprintf(target,"%10.5f %10.5f ",local_data[Index].re*factor,local_data[Index].im*factor); } } fprintf(target,"\n"); } } } void fft_3d_c2r_r2c_Test(struct Problem *P, const struct fft_plan_3d *plan, const int nFields) { int i,j,Max=10; double time1, time2, timeCR, timeRC, time1CR, time1RC, factor =1.0; int local_nx, local_x_start, local_ny_after_transpose,local_y_start_after_transpose,total_local_size; FILE *data0,*data1,*data0C,*data1C; OpenFileNo2(P,&data0,".data0",plan->myPE,"w",P->Call.out[ReadOut]); OpenFileNo2(P,&data1,".data1",plan->myPE,"w",P->Call.out[ReadOut]); OpenFileNo2(P,&data0C,".data0C",plan->myPE,"w",P->Call.out[ReadOut]); OpenFileNo2(P,&data1C,".data1C",plan->myPE,"w",P->Call.out[ReadOut]); fprintf(stderr, "(%i)C2RTest: \n", P->Par.me); for (i=plan->MaxLevel-1; i >= 0; i--) { timeCR = 0; timeRC = 0; time1RC = 0; time1CR = 0; fprintf(stderr,"PE(%i) L(%i) Nx(%i) Nyz(%i) nF(%i)\n",plan->myPE,i,plan->Levplan[i].N[0],plan->Levplan[i].local_nyz,nFields); factor = 1./(plan->Levplan[i].N[0]*plan->Levplan[i].N[1]*plan->Levplan[i].N[2]); for (j=0; j < Max; j++) { InitDataTestR(plan,i,nFields,(fftw_real *)plan->local_data); time1 = GetTime(); fft_3d_real_to_complex(plan,i,nFields,plan->local_data, plan->work); time2 = GetTime(); timeRC += (time2 - time1); time1 = GetTime(); fft_3d_complex_to_real(plan,i,nFields,plan->local_data, plan->work); time2 = GetTime(); timeCR += (time2 - time1); } fprintf(stderr,"PE(%i): L(%i) CR:sec(%g) RC:sec(%g)\n",plan->myPE, i, timeCR, timeRC); } fclose(data0); fclose(data1); fclose(data0C); fclose(data1C); } */