1 | /** \file ions.c
|
---|
2 | * Ionic Force, speed, coordinate and energy calculation.
|
---|
3 | * Herein are all the routines for the molecular dynamics calculations such as
|
---|
4 | * reading of configuration files IonsInitRead() and
|
---|
5 | * free'ing RemoveIonsRead(),
|
---|
6 | * summing up forces CalculateIonForce(),
|
---|
7 | * correcting for temperature CorrectVelocities(),
|
---|
8 | * or for fixation center of balance CorrectForces(),
|
---|
9 | * outputting them to file OutputIonForce(),
|
---|
10 | * calculating kinetic CalculateEnergyIonsU(), ewald CalculateEwald() energies,
|
---|
11 | * moving ion UpdateIonsR() (position) UpdateIonsU() (speed),
|
---|
12 | * scaling to match some temperature ScaleTemp()
|
---|
13 | * are gathered.
|
---|
14 | * Finally, needed for structure optimization GetOuterStop() evaluates the stop
|
---|
15 | * condition of a minimal mean force acting on each ion.
|
---|
16 | *
|
---|
17 | Project: ParallelCarParrinello
|
---|
18 | \author Jan Hamaekers
|
---|
19 | \date 2000
|
---|
20 |
|
---|
21 | File: ions.c
|
---|
22 | $Id: ions.c,v 1.34 2007/02/05 16:15:27 foo Exp $
|
---|
23 | */
|
---|
24 |
|
---|
25 | #include <stdlib.h>
|
---|
26 | #include <stdio.h>
|
---|
27 | #include <stddef.h>
|
---|
28 | #include <math.h>
|
---|
29 | #include <string.h>
|
---|
30 | #include <unistd.h>
|
---|
31 | #include <gsl/gsl_randist.h>
|
---|
32 | #include "mymath.h"
|
---|
33 |
|
---|
34 |
|
---|
35 | // use double precision fft when we have it
|
---|
36 | #ifdef HAVE_CONFIG_H
|
---|
37 | #include <config.h>
|
---|
38 | #endif
|
---|
39 |
|
---|
40 | #ifdef HAVE_DFFTW_H
|
---|
41 | #include "dfftw.h"
|
---|
42 | #else
|
---|
43 | #include "fftw.h"
|
---|
44 | #endif
|
---|
45 |
|
---|
46 | #include "data.h"
|
---|
47 | #include "errors.h"
|
---|
48 | #include "helpers.h"
|
---|
49 | #include "mymath.h"
|
---|
50 | #include "ions.h"
|
---|
51 | #include "init.h"
|
---|
52 |
|
---|
53 | /** Readin of Thermostat related values from parameter file.
|
---|
54 | * \param *P Problem at hand
|
---|
55 | * \param *source parameter file
|
---|
56 | */
|
---|
57 | void InitThermostats(struct Problem *P, FILE *source)
|
---|
58 | {
|
---|
59 | struct FileData *F = &P->Files;
|
---|
60 | struct Ions *I = &P->Ion;
|
---|
61 | char *thermo = MallocString(12, "IonsInitRead: thermo");
|
---|
62 | int j;
|
---|
63 |
|
---|
64 | // initialize the naming stuff and all
|
---|
65 | I->ThermostatImplemented = (int *) Malloc((MaxThermostats)*(sizeof(int)), "IonsInitRead: *ThermostatImplemented");
|
---|
66 | I->ThermostatNames = (char **) Malloc((MaxThermostats)*(sizeof(char *)), "IonsInitRead: *ThermostatNames");
|
---|
67 | for (j=0;j<MaxThermostats;j++)
|
---|
68 | I->ThermostatNames[j] = (char *) MallocString(12*(sizeof(char)), "IonsInitRead: ThermostatNames[]");
|
---|
69 | strcpy(I->ThermostatNames[0],"None");
|
---|
70 | I->ThermostatImplemented[0] = 1;
|
---|
71 | strcpy(I->ThermostatNames[1],"Woodcock");
|
---|
72 | I->ThermostatImplemented[1] = 1;
|
---|
73 | strcpy(I->ThermostatNames[2],"Gaussian");
|
---|
74 | I->ThermostatImplemented[2] = 1;
|
---|
75 | strcpy(I->ThermostatNames[3],"Langevin");
|
---|
76 | I->ThermostatImplemented[3] = 1;
|
---|
77 | strcpy(I->ThermostatNames[4],"Berendsen");
|
---|
78 | I->ThermostatImplemented[4] = 1;
|
---|
79 | strcpy(I->ThermostatNames[5],"NoseHoover");
|
---|
80 | I->ThermostatImplemented[5] = 1;
|
---|
81 | I->Thermostat = -1;
|
---|
82 | if (F->MeOutMes) fprintf(F->TemperatureFile, "# %s\t%s\t%s --- ","Step", "ActualTemp(1)", "ActualTemp(2)");
|
---|
83 |
|
---|
84 | // read desired Thermostat from file along with needed additional parameters
|
---|
85 | if (ParseForParameter(P->Call.out[ReadOut],source,"Thermostat", 0, 1, 1, string_type, thermo, 1, optional)) {
|
---|
86 | if (strcmp(thermo, I->ThermostatNames[0]) == 0) { // None
|
---|
87 | if (I->ThermostatImplemented[0] == 1) {
|
---|
88 | I->Thermostat = None;
|
---|
89 | } else {
|
---|
90 | if (P->Par.me == 0)
|
---|
91 | fprintf(stderr, "(%i) Warning: %s thermostat not implemented, falling back to None.", P->Par.me, I->ThermostatNames[0]);
|
---|
92 | I->Thermostat = None;
|
---|
93 | }
|
---|
94 | } else if (strcmp(thermo, I->ThermostatNames[1]) == 0) { // Woodcock
|
---|
95 | if (I->ThermostatImplemented[1] == 1) {
|
---|
96 | I->Thermostat = Woodcock;
|
---|
97 | ParseForParameter(P->Call.out[ReadOut],source,"Thermostat", 0, 2, 1, int_type, &P->R.ScaleTempStep, 1, critical); // read scaling frequency
|
---|
98 | } else {
|
---|
99 | if (P->Par.me == 0)
|
---|
100 | fprintf(stderr, "(%i) Warning: %s thermostat not implemented, falling back to None.", P->Par.me, I->ThermostatNames[1]);
|
---|
101 | I->Thermostat = None;
|
---|
102 | }
|
---|
103 | } else if (strcmp(thermo, I->ThermostatNames[2]) == 0) { // Gaussian
|
---|
104 | if (I->ThermostatImplemented[2] == 1) {
|
---|
105 | I->Thermostat = Gaussian;
|
---|
106 | ParseForParameter(P->Call.out[ReadOut],source,"Thermostat", 0, 2, 1, int_type, &P->R.ScaleTempStep, 1, critical); // read collision rate
|
---|
107 | } else {
|
---|
108 | if (P->Par.me == 0)
|
---|
109 | fprintf(stderr, "(%i) Warning: %s thermostat not implemented, falling back to None.", P->Par.me, I->ThermostatNames[2]);
|
---|
110 | I->Thermostat = None;
|
---|
111 | }
|
---|
112 | } else if (strcmp(thermo, I->ThermostatNames[3]) == 0) { // Langevin
|
---|
113 | if (I->ThermostatImplemented[3] == 1) {
|
---|
114 | I->Thermostat = Langevin;
|
---|
115 | ParseForParameter(P->Call.out[ReadOut],source,"Thermostat", 0, 2, 1, double_type, &P->R.TempFrequency, 1, critical); // read gamma
|
---|
116 | if (ParseForParameter(P->Call.out[ReadOut],source,"Thermostat", 0, 3, 1, double_type, &P->R.alpha, 1, optional)) {
|
---|
117 | if (P->Par.me == 0)
|
---|
118 | fprintf(stderr,"(%i) Extended Stochastic Thermostat detected with interpolation coefficient %lg\n", P->Par.me, P->R.alpha);
|
---|
119 | } else {
|
---|
120 | P->R.alpha = 1.;
|
---|
121 | }
|
---|
122 | } else {
|
---|
123 | if (P->Par.me == 0)
|
---|
124 | fprintf(stderr, "(%i) Warning: %s thermostat not implemented, falling back to None.", P->Par.me, I->ThermostatNames[3]);
|
---|
125 | I->Thermostat = None;
|
---|
126 | }
|
---|
127 | } else if (strcmp(thermo, I->ThermostatNames[4]) == 0) { // Berendsen
|
---|
128 | if (I->ThermostatImplemented[4] == 1) {
|
---|
129 | I->Thermostat = Berendsen;
|
---|
130 | ParseForParameter(P->Call.out[ReadOut],source,"Thermostat", 0, 2, 1, double_type, &P->R.TempFrequency, 1, critical); // read \tau_T
|
---|
131 | } else {
|
---|
132 | if (P->Par.me == 0)
|
---|
133 | fprintf(stderr, "(%i) Warning: %s thermostat not implemented, falling back to None.", P->Par.me, I->ThermostatNames[4]);
|
---|
134 | I->Thermostat = None;
|
---|
135 | }
|
---|
136 | } else if (strcmp(thermo, I->ThermostatNames[5]) == 0) { // Nose-Hoover
|
---|
137 | if (I->ThermostatImplemented[5] == 1) {
|
---|
138 | I->Thermostat = NoseHoover;
|
---|
139 | ParseForParameter(P->Call.out[ReadOut],source,"Thermostat", 0, 2, 1, double_type, &P->R.HooverMass, 1, critical); // read Hoovermass
|
---|
140 | P->R.alpha = 0.;
|
---|
141 | } else {
|
---|
142 | if (P->Par.me == 0)
|
---|
143 | fprintf(stderr, "(%i) Warning: %s thermostat not implemented, falling back to None.", P->Par.me, I->ThermostatNames[5]);
|
---|
144 | I->Thermostat = None;
|
---|
145 | }
|
---|
146 | }
|
---|
147 | if (I->Thermostat == -1) {
|
---|
148 | if (P->Par.me == 0)
|
---|
149 | fprintf(stderr,"(%i) Warning: thermostat name was not understood!\n", P->Par.me);
|
---|
150 | I->Thermostat = None;
|
---|
151 | }
|
---|
152 | } else {
|
---|
153 | if ((P->R.MaxOuterStep > 0) && (P->R.TargetTemp != 0))
|
---|
154 | debug(P, "No thermostat chosen despite finite temperature MD, falling back to None.");
|
---|
155 | I->Thermostat = None;
|
---|
156 | }
|
---|
157 | if (F->MeOutMes) fprintf(F->TemperatureFile, "%s Thermostat\n",I->ThermostatNames[(int)I->Thermostat]);
|
---|
158 | Free(thermo, "InitThermostats: thermo");
|
---|
159 | }
|
---|
160 |
|
---|
161 | /** Parses for a given keyword the ion coordinates and velocites.
|
---|
162 | * \param *P Problem at hand, contains pointer to Ion and IonType structure
|
---|
163 | * \param *source
|
---|
164 | * \param *keyword keyword string
|
---|
165 | * \param repetition which repeated version of the keyword shall be read by ReadParameters()
|
---|
166 | * \param relative whether atom coordinates are relative to unit cell size or absolute
|
---|
167 | * \param Bohr conversion factor to atomiclength (e.g. 1.0 if coordinates in bohr radius, 0.529... if given in Angstrom)
|
---|
168 | * \param sigma variance of maxwell-boltzmann distribution
|
---|
169 | * \param *R where to put the read coordinates
|
---|
170 | * \param *U where to put the read velocities
|
---|
171 | * \param *IMT whether its MoveType#FixedIon or not
|
---|
172 | * \return if 1 - success, 0 - failure
|
---|
173 | */
|
---|
174 | int ParseIonsCoordinatesAndVelocities(struct Problem *P, FILE *source, char *keyword, int repetition, int relative, double sigma, double *R, double *U, int *IMT)
|
---|
175 | {
|
---|
176 | //struct RunStruct *Run = &P->R;
|
---|
177 | struct Ions *I = &P->Ion;
|
---|
178 | struct Lattice *L = &P->Lat;
|
---|
179 | int k;
|
---|
180 | double R_trafo[3];
|
---|
181 | gsl_rng * r;
|
---|
182 | const gsl_rng_type * T;
|
---|
183 | double Bohr = (I->IsAngstroem) ? ANGSTROEMINBOHRRADIUS : 1.;
|
---|
184 |
|
---|
185 | gsl_rng_env_setup();
|
---|
186 | T = gsl_rng_default;
|
---|
187 | r = gsl_rng_alloc (T);
|
---|
188 | if (ParseForParameter(P->Call.out[ReadOut],source, keyword, 0, 1, 1, double_type, &R_trafo[0], repetition, optional) &&
|
---|
189 | ParseForParameter(P->Call.out[ReadOut],source, keyword, 0, 2, 1, double_type, &R_trafo[1], repetition, optional) &&
|
---|
190 | ParseForParameter(P->Call.out[ReadOut],source, keyword, 0, 3, 1, double_type, &R_trafo[2], repetition, optional) &&
|
---|
191 | ParseForParameter(P->Call.out[ReadOut],source, keyword, 0, 4, 1, int_type, IMT, repetition, optional)) {
|
---|
192 | // if read successful, then try also parsing velocities
|
---|
193 | if ((ParseForParameter(P->Call.out[ReadOut],source, keyword, 0, 5, 1, double_type, &U[0], repetition, optional)) &&
|
---|
194 | (ParseForParameter(P->Call.out[ReadOut],source, keyword, 0, 6, 1, double_type, &U[1], repetition, optional)) &&
|
---|
195 | (ParseForParameter(P->Call.out[ReadOut],source, keyword, 0, 7, 1, double_type, &U[2], repetition, optional))) {
|
---|
196 | //nothing
|
---|
197 | } else { // if no velocities specified, set to maxwell-boltzmann distributed
|
---|
198 | if ((I->Thermostat != None)) {
|
---|
199 | if (P->Par.me == 0) fprintf(stderr, "(%i) Missing velocities of ion %s: Maxwell-Boltzmann with %lg\n", P->Par.me, keyword, sigma);
|
---|
200 | for (k=0;k<NDIM;k++)
|
---|
201 | U[k] = gsl_ran_gaussian (r, sigma);
|
---|
202 | } else {
|
---|
203 | for (k=0;k<NDIM;k++)
|
---|
204 | U[k] = 0.;
|
---|
205 | }
|
---|
206 | }
|
---|
207 | // change if coordinates were relative
|
---|
208 | if (relative) {
|
---|
209 | //fprintf(stderr,"(%i)Ion coordinates are relative %i ... \n",P->Par.me, relative);
|
---|
210 | RMat33Vec3(R, L->RealBasis, R_trafo); // multiply with real basis
|
---|
211 | } else {
|
---|
212 | for (k=0;k<NDIM;k++) // otherweise just copy to vector
|
---|
213 | R[k] = R_trafo[k];
|
---|
214 | }
|
---|
215 | // check if given MoveType is valid
|
---|
216 | if (*IMT < 0 || *IMT >= MaxIonMoveType) {
|
---|
217 | fprintf(stderr,"Bad Ion MoveType set to MoveIon for %s\n", keyword);
|
---|
218 | *IMT = 0;
|
---|
219 | }
|
---|
220 | if (!relative) {
|
---|
221 | //fprintf(stderr,"converting with %lg\n", Bohr);
|
---|
222 | SM(R, Bohr, NDIM); // convert angstroem to bohrradius
|
---|
223 | SM(U, Bohr, NDIM); // convert angstroem to bohrradius
|
---|
224 | }
|
---|
225 | // finally periodicly correct coordinates to remain in unit cell
|
---|
226 | RMat33Vec3(R_trafo, L->InvBasis, R);
|
---|
227 | for (k=0; k <NDIM; k++) { // periodic correction until within unit cell
|
---|
228 | while (R_trafo[k] < 0)
|
---|
229 | R_trafo[k] += 1.0;
|
---|
230 | while (R_trafo[k] >= 1.0)
|
---|
231 | R_trafo[k] -= 1.0;
|
---|
232 | }
|
---|
233 | RMat33Vec3(R, L->RealBasis, R_trafo);
|
---|
234 | // print coordinates if desired
|
---|
235 | if ((P->Call.out[ReadOut])) {
|
---|
236 | fprintf(stderr,"(%i) coordinates of Ion %s: (x,y,z) = (",P->Par.me, keyword);
|
---|
237 | for(k=0;k<NDIM;k++) {
|
---|
238 | fprintf(stderr,"%lg ",R[k]);
|
---|
239 | if (k != NDIM-1) fprintf(stderr,", ");
|
---|
240 | else fprintf(stderr,")\n");
|
---|
241 | }
|
---|
242 | }
|
---|
243 | gsl_rng_free (r);
|
---|
244 | return 1;
|
---|
245 | } else {
|
---|
246 | for (k=0;k<NDIM;k++) {
|
---|
247 | U[k] = R[k] = 0.;
|
---|
248 | }
|
---|
249 | *IMT = 0;
|
---|
250 | gsl_rng_free (r);
|
---|
251 | return 0;
|
---|
252 | }
|
---|
253 | }
|
---|
254 |
|
---|
255 | /** Readin of the ion section of parameter file.
|
---|
256 | * Among others the following paramaters are read from file:
|
---|
257 | * Ions::MaxTypes, IonType::Max_IonsOfType, IonType::Z, IonType::R,
|
---|
258 | * IonType:IMT, ...
|
---|
259 | * \param P Problem at hand (containing Ions and Lattice structures)
|
---|
260 | * \param *source file pointer
|
---|
261 | */
|
---|
262 | void IonsInitRead(struct Problem *P, FILE *source) {
|
---|
263 | struct Ions *I = &P->Ion;
|
---|
264 | //struct RunStruct *Run = &P->R;
|
---|
265 | int i,it,j,IMT,d,me, count;
|
---|
266 | int relative; // whether read-in coordinate are relative (1) or absolute
|
---|
267 | double Bohr = ANGSTROEMINBOHRRADIUS; /* Angstroem */
|
---|
268 | double sigma, R[3], U[3];
|
---|
269 | struct IonConstrained *ptr = NULL;
|
---|
270 |
|
---|
271 | I->Max_TotalIons = 0;
|
---|
272 | I->TotalZval = 0;
|
---|
273 | MPI_Comm_rank(MPI_COMM_WORLD, &me);
|
---|
274 | ParseForParameter(P->Call.out[ReadOut],source,"RCut", 0, 1, 1, double_type, &I->R_cut, 1, critical);
|
---|
275 | ParseForParameter(P->Call.out[ReadOut],source,"IsAngstroem", 0, 1, 1, int_type, &I->IsAngstroem, 1, critical);
|
---|
276 | if (!I->IsAngstroem) {
|
---|
277 | Bohr = 1.0;
|
---|
278 | } else { // adapt RealBasis (is in Angstroem as well)
|
---|
279 | SM(P->Lat.RealBasis, Bohr, NDIM_NDIM);
|
---|
280 | RMatReci3(P->Lat.InvBasis, P->Lat.RealBasis);
|
---|
281 | }
|
---|
282 | ParseForParameter(P->Call.out[ReadOut],source,"MaxTypes", 0, 1, 1, int_type, &I->Max_Types, 1, critical);
|
---|
283 | I->I = (struct IonType *) Malloc(sizeof(struct IonType)*I->Max_Types, "IonsInitRead: IonType");
|
---|
284 | if (!ParseForParameter(P->Call.out[ReadOut],source,"RelativeCoord", 0, 1, 1, int_type, &relative, 1, optional))
|
---|
285 | relative = 0;
|
---|
286 | if (!ParseForParameter(P->Call.out[ReadOut],source,"StructOpt", 0, 1, 1, int_type, &I->StructOpt, 1, optional))
|
---|
287 | I->StructOpt = 0;
|
---|
288 |
|
---|
289 | InitThermostats(P, source);
|
---|
290 |
|
---|
291 | /* Ions Data */
|
---|
292 | I->RLatticeVec = NULL;
|
---|
293 | I->TotalMass = 0;
|
---|
294 | char *free_name, *name;
|
---|
295 | name = free_name = Malloc(255*sizeof(char),"IonsInitRead: Name");
|
---|
296 | for (i=0; i < I->Max_Types; i++) {
|
---|
297 | sprintf(name,"Ion_Type%i",i+1);
|
---|
298 | I->I[i].corecorr = NotCoreCorrected;
|
---|
299 | I->I[i].Name = MallocString(255, "IonsInitRead: Name");
|
---|
300 | I->I[i].Symbol = MallocString(255, "IonsInitRead: Symbol");
|
---|
301 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 1, 1, int_type, &I->I[i].Max_IonsOfType, 1, critical);
|
---|
302 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 2, 1, int_type, &I->I[i].Z, 1, critical);
|
---|
303 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 3, 1, double_type, &I->I[i].rgauss, 1, critical);
|
---|
304 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 4, 1, int_type, &I->I[i].l_max, 1, critical);
|
---|
305 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 5, 1, int_type, &I->I[i].l_loc, 1, critical);
|
---|
306 | ParseForParameter(P->Call.out[ReadOut],source, name, 0, 6, 1, double_type, &I->I[i].IonMass, 1, critical);
|
---|
307 | if(!ParseForParameter(P->Call.out[ReadOut],source, name, 0, 7, 1, string_type, &I->I[i].Name[0], 1, optional))
|
---|
308 | sprintf(&I->I[i].Name[0],"type%i",i);
|
---|
309 | if(!ParseForParameter(P->Call.out[ReadOut],source, name, 0, 8, 1, string_type, &I->I[i].Symbol[0], 1, optional))
|
---|
310 | sprintf(&I->I[i].Symbol[0],"t%i",i);
|
---|
311 | if (P->Call.out[ReadOut]) fprintf(stderr,"(%i) Element name: %s, symbol: %s\n",P->Par.me, I->I[i].Name, I->I[i].Symbol);
|
---|
312 | I->I[i].moment = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: moment");
|
---|
313 | I->I[i].sigma = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma");
|
---|
314 | I->I[i].sigma_rezi = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma_rezi");
|
---|
315 | I->I[i].sigma_PAS = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma_PAS");
|
---|
316 | I->I[i].sigma_rezi_PAS = (double **) Malloc(sizeof(double *) * I->I[i].Max_IonsOfType, "IonsInitRead: sigma_rezi_PAS");
|
---|
317 | for (it=0;it<I->I[i].Max_IonsOfType;it++) {
|
---|
318 | I->I[i].moment[it] = (double *) Malloc(sizeof(double) * NDIM*NDIM, "IonsInitRead: moment");
|
---|
319 | I->I[i].sigma[it] = (double *) Malloc(sizeof(double) * NDIM*NDIM, "IonsInitRead: sigma");
|
---|
320 | I->I[i].sigma_rezi[it] = (double *) Malloc(sizeof(double) * NDIM*NDIM, "IonsInitRead: sigma_rezi");
|
---|
321 | I->I[i].sigma_PAS[it] = (double *) Malloc(sizeof(double) * NDIM, "IonsInitRead: sigma_PAS");
|
---|
322 | I->I[i].sigma_rezi_PAS[it] = (double *) Malloc(sizeof(double) * NDIM, "IonsInitRead: sigma_rezi_PAS");
|
---|
323 | }
|
---|
324 | //I->I[i].IonFac = I->I[i].IonMass;
|
---|
325 | I->I[i].IonMass *= Units2Electronmass; // in config given in amu not in "atomic units" (electron mass, m_e = 1)
|
---|
326 | // proportional factor between electron and proton mass
|
---|
327 | I->I[i].IonFac = Units2Electronmass/I->I[i].IonMass;
|
---|
328 | I->TotalMass += I->I[i].Max_IonsOfType*I->I[i].IonMass;
|
---|
329 | sigma = sqrt(P->R.TargetTemp/I->I[i].IonMass);
|
---|
330 | I->I[i].ZFactor = -I->I[i].Z*4.*PI;
|
---|
331 | I->I[i].alpha = (double *) Malloc(sizeof(double) * I->I[i].Max_IonsOfType, "IonsInitRead: alpha");
|
---|
332 | I->I[i].R = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: R");
|
---|
333 | I->I[i].R_old = (double *) Malloc(sizeof(double) *NDIM* I->I[i].Max_IonsOfType, "IonsInitRead: R_old");
|
---|
334 | I->I[i].R_old_old = (double *) Malloc(sizeof(double) *NDIM* I->I[i].Max_IonsOfType, "IonsInitRead: R_old_old");
|
---|
335 | I->I[i].Constraints = (struct IonConstrained **) Malloc(sizeof(struct IonConstrained *)*I->I[i].Max_IonsOfType, "IonsInitRead: **Constraints");
|
---|
336 | for (it=0;it<I->I[i].Max_IonsOfType;it++)
|
---|
337 | I->I[i].Constraints[it] = NULL;
|
---|
338 | I->I[i].FIon = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIon");
|
---|
339 | I->I[i].FIon_old = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIon_old");
|
---|
340 | SetArrayToDouble0(I->I[i].FIon_old, NDIM*I->I[i].Max_IonsOfType);
|
---|
341 | I->I[i].SearchDir = Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: SearchDir");
|
---|
342 | I->I[i].GammaA = Malloc(sizeof(double) * I->I[i].Max_IonsOfType, "IonsInitRead: GammaA");
|
---|
343 | SetArrayToDouble0(I->I[i].GammaA, I->I[i].Max_IonsOfType);
|
---|
344 | I->I[i].U = (double *) Malloc(sizeof(double) *NDIM* I->I[i].Max_IonsOfType, "IonsInitRead: U");
|
---|
345 | SetArrayToDouble0(I->I[i].U, NDIM*I->I[i].Max_IonsOfType);
|
---|
346 | I->I[i].SFactor = NULL;
|
---|
347 | I->I[i].IMT = (enum IonMoveType *) Malloc(sizeof(enum IonMoveType) * I->I[i].Max_IonsOfType, "IonsInitRead: IMT");
|
---|
348 | I->I[i].FIonL = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIonL");
|
---|
349 | I->I[i].FIonNL = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FIonNL");
|
---|
350 | I->I[i].FMagnetic = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FMagnetic");
|
---|
351 | I->I[i].FConstraint = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FConstraint");
|
---|
352 | I->I[i].FEwald = (double *) Malloc(sizeof(double) * NDIM * I->I[i].Max_IonsOfType, "IonsInitRead: FEwald");
|
---|
353 | I->I[i].alpha = (double *) Malloc(sizeof(double) * I->I[i].Max_IonsOfType, "IonsInitRead: alpha");
|
---|
354 | // now parse ion coordination
|
---|
355 | for (j=0; j < I->I[i].Max_IonsOfType; j++) {
|
---|
356 | I->I[i].alpha[j] = 2.;
|
---|
357 | sprintf(name,"Ion_Type%i_%i",i+1,j+1);
|
---|
358 | for (d=0; d <NDIM; d++) // transfor to old and old_old coordinates as well
|
---|
359 | I->I[i].FMagnetic[d+j*NDIM] = 0.;
|
---|
360 | // first ones are starting positions
|
---|
361 | if ((count = ParseIonsCoordinatesAndVelocities(P, source, name, 1, relative, sigma, &I->I[i].R[NDIM*j], &I->I[i].U[NDIM*j], &IMT))) {
|
---|
362 | for (d=0; d <NDIM; d++) // transfor to old and old_old coordinates as well
|
---|
363 | I->I[i].R_old_old[d+NDIM*j] = I->I[i].R_old[d+NDIM*j] = I->I[i].R[d+NDIM*j];
|
---|
364 | I->I[i].IMT[j] = IMT;
|
---|
365 | if (P->Call.out[ReadOut]) fprintf(stderr, "(%i) R[%d,%d] = (%lg, %lg, %lg)\n", P->Par.me, i,j,I->I[i].R[0+NDIM*j],I->I[i].R[1+NDIM*j],I->I[i].R[2+NDIM*j]);
|
---|
366 | if (P->Call.out[ReadOut]) fprintf(stderr, "(%i) U[%d,%d] = (%lg, %lg, %lg)\n", P->Par.me, i,j,I->I[i].U[0+NDIM*j],I->I[i].U[1+NDIM*j],I->I[i].U[2+NDIM*j]);
|
---|
367 | if (P->Call.out[ReadOut]) fprintf(stderr, "(%i) IMT[%d,%d] = %i\n", P->Par.me, i,j,I->I[i].IMT[j]);
|
---|
368 | } else {
|
---|
369 | Error(SomeError, "Could not find or parse coordinates of an ion");
|
---|
370 | }
|
---|
371 | // following ones are constrained motions
|
---|
372 | while (ParseIonsCoordinatesAndVelocities(P, source, name, ++count, relative, sigma, R, U, &IMT)) {
|
---|
373 | if (P->Call.out[ReadOut]) fprintf(stderr, "(%i) Constrained read %d ...\n", P->Par.me, count-1);
|
---|
374 | ptr = AddConstraintItem(&I->I[i], j); // allocate memory
|
---|
375 | for (d=0; d< NDIM; d++) { // fill the constraint item
|
---|
376 | ptr->R[d] = R[d];
|
---|
377 | ptr->U[d] = U[d];
|
---|
378 | }
|
---|
379 | ptr->IMT = IMT;
|
---|
380 | ptr->step = count-1;
|
---|
381 | if (P->Call.out[ReadOut]) fprintf(stderr, "(%i) R[%d,%d] = (%lg, %lg, %lg)\n", P->Par.me, i,j,ptr->R[0],ptr->R[1],ptr->R[2]);
|
---|
382 | if (P->Call.out[ReadOut]) fprintf(stderr, "(%i) U[%d,%d] = (%lg, %lg, %lg)\n", P->Par.me, i,j,ptr->U[0],ptr->U[1],ptr->U[2]);
|
---|
383 | if (P->Call.out[ReadOut]) fprintf(stderr, "(%i) IMT[%d,%d] = %i\n", P->Par.me, i,j,ptr->IMT);
|
---|
384 | }
|
---|
385 | //if (P->Call.out[ReadOut])
|
---|
386 | fprintf(stderr,"(%i) A total of %d additional constrained moves for ion (%d,%d) was parsed.\n", P->Par.me, count-2, i,j);
|
---|
387 |
|
---|
388 | I->Max_TotalIons++;
|
---|
389 | }
|
---|
390 | }
|
---|
391 | Free(free_name, "IonsInitRead: free_name");
|
---|
392 | I->Max_Max_IonsOfType = 0;
|
---|
393 | for (i=0; i < I->Max_Types; i++)
|
---|
394 | I->Max_Max_IonsOfType = MAX(I->Max_Max_IonsOfType, I->I[i].Max_IonsOfType);
|
---|
395 | I->FTemp = (double *) Malloc(sizeof(double) * NDIM * I->Max_Max_IonsOfType, "IonsInitRead:");
|
---|
396 | }
|
---|
397 |
|
---|
398 | /** Allocates memory for a IonConstrained item and adds to end of list.
|
---|
399 | * \param *I IonType structure
|
---|
400 | * \param ion which ion of the type
|
---|
401 | * \return pointer to created item
|
---|
402 | */
|
---|
403 | struct IonConstrained * AddConstraintItem(struct IonType *I, int ion)
|
---|
404 | {
|
---|
405 | struct IonConstrained **ptr = &(I->Constraints[ion]);
|
---|
406 | while (*ptr != NULL) { // advance to end of list
|
---|
407 | ptr = &((*ptr)->next);
|
---|
408 | }
|
---|
409 | // allocated memory for structure and items within
|
---|
410 | *ptr = (struct IonConstrained *) Malloc(sizeof(struct IonConstrained), "CreateConstraintItem: IonConstrained");
|
---|
411 | (*ptr)->R = (double *) Malloc(sizeof(double)*NDIM, "AddConstraintItem: *R");
|
---|
412 | (*ptr)->U = (double *) Malloc(sizeof(double)*NDIM, "AddConstraintItem: *U");
|
---|
413 | (*ptr)->next = NULL;
|
---|
414 | return *ptr;
|
---|
415 | }
|
---|
416 |
|
---|
417 | /** Removes first of item of IonConstrained list for given \a ion.
|
---|
418 | * Frees memory of items within and then
|
---|
419 | * \param *I IonType structure
|
---|
420 | * \param ion which ion of the type
|
---|
421 | * \return 1 - success, 0 - failure (list is already empty, start pointer was NULL)
|
---|
422 | */
|
---|
423 | int RemoveConstraintItem(struct IonType *I, int ion)
|
---|
424 | {
|
---|
425 | struct IonConstrained **ptr = &(I->Constraints[ion]);
|
---|
426 | struct IonConstrained *next_ptr;
|
---|
427 | if (*ptr != NULL) {
|
---|
428 | next_ptr = (*ptr)->next;
|
---|
429 | Free((*ptr)->R, "RemoveConstraintItem: R");
|
---|
430 | Free((*ptr)->U, "RemoveConstraintItem: U");
|
---|
431 | Free((*ptr), "RemoveConstraintItem: IonConstrained structure");
|
---|
432 | *ptr = next_ptr; // set start of list to next item (automatically is null if ptr was last item)
|
---|
433 | return 1;
|
---|
434 | } else {
|
---|
435 | return 0;
|
---|
436 | }
|
---|
437 | }
|
---|
438 |
|
---|
439 | /** Calculated Ewald force.
|
---|
440 | * The basic idea of the ewald method is to add a countercharge - here of gaussian form -
|
---|
441 | * which shields the long-range charges making them effectively short-ranged, while the
|
---|
442 | * countercharges themselves can be analytically (here by (hidden) Fouriertransform: it's
|
---|
443 | * added to the electron density) integrated and withdrawn.
|
---|
444 | * \f[
|
---|
445 | * E_{K-K} = \frac{1}{2} \sum_L \sum_{K=\{(I_s,I_a,J_s,J_a)|R_{I_s,I_a} - R_{J_s,J_a} - L\neq 0\}} \frac{Z_{I_s} Z_{J_s}} {|R_{I_s,I_a} - R_{J_s,J_a} - L|}
|
---|
446 | * \textnormal{erfc} \Bigl ( \frac{|R_{I_s,I_a} - R_{J_s,J_a} - L|} {\sqrt{r_{I_s}^{Gauss}+r_{J_s}^{Gauss}}}\Bigr )
|
---|
447 | * \qquad (4.10)
|
---|
448 | * \f]
|
---|
449 | * Calculates the core-to-core force between the ions of all super cells.
|
---|
450 | * In order for this series to converge there must be a certain summation
|
---|
451 | * applied, which is the ewald summation and which is nothing else but to move
|
---|
452 | * in a circular motion from the current cell to the outside up to Ions::R_cut.
|
---|
453 | * \param *P Problem at hand
|
---|
454 | * \param first if != 0 table mirror cells to take into (local!) account of ewald summation
|
---|
455 | */
|
---|
456 | void CalculateEwald(struct Problem *P, int first)
|
---|
457 | {
|
---|
458 | int r,is1,is2,ia1,ia2,ir,ir2,i,j,k,ActualVec,MaxVec,MaxCell,Is_Neighb_Cell,LocalActualVec; //,is
|
---|
459 | int MaxPar=P->Par.procs, ParMe=P->Par.me, MaxLocalVec, StartVec;
|
---|
460 | double rcut2,r2,erre2,addesr,addpre,arg,fac,gkl,esr,fxx,repand;
|
---|
461 | double R1[3];
|
---|
462 | double R2[3];
|
---|
463 | double R3[3];
|
---|
464 | double t[3];
|
---|
465 | struct Lattice *L = &P->Lat;
|
---|
466 | struct PseudoPot *PP = &P->PP;
|
---|
467 | struct Ions *I = &P->Ion;
|
---|
468 | if (first) {
|
---|
469 | SpeedMeasure(P, InitSimTime, StopTimeDo);
|
---|
470 | rcut2 = I->R_cut*I->R_cut;
|
---|
471 | ActualVec = 0; // counts number of cells taken into account
|
---|
472 | MaxCell = (int)(5.*I->R_cut/pow(L->Volume,1./3.)); // the number of cells in each direction is prop. to axis length over cutoff
|
---|
473 | if (MaxCell < 2) MaxCell = 2; // take at least 2
|
---|
474 | for (i = -MaxCell; i <= MaxCell; i++) {
|
---|
475 | for (j = -MaxCell; j <= MaxCell; j++) {
|
---|
476 | for (k = -MaxCell; k <= MaxCell; k++) {
|
---|
477 | r2 = 0.;
|
---|
478 | for (ir=0; ir <NDIM; ir++) { // t is the offset vector pointing to distant cell (only diagonal entries)
|
---|
479 | t[ir] = i*L->RealBasis[0*NDIM+ir]+j*L->RealBasis[1*NDIM+ir]+k*L->RealBasis[2*NDIM+ir];
|
---|
480 | r2 = t[ir]*t[ir]; // is squared distance to other cell
|
---|
481 | }
|
---|
482 | Is_Neighb_Cell = ((abs(i)<=1) && (abs(j)<=1) && (abs(k)<=1)); // whether it's directly adjacent
|
---|
483 | if ((r2 <= rcut2) || Is_Neighb_Cell) { // if it's either adjacent or within cutoff, count it in
|
---|
484 | ActualVec++;
|
---|
485 | }
|
---|
486 | }
|
---|
487 | }
|
---|
488 | }
|
---|
489 | MaxVec = ActualVec; // store number of cells
|
---|
490 | I->MaxVec = ActualVec;
|
---|
491 | MaxLocalVec = MaxVec / MaxPar; // share among processes
|
---|
492 | StartVec = ParMe*MaxLocalVec; // for this process start at its patch
|
---|
493 | r = MaxVec % MaxPar; // rest not fitting...
|
---|
494 | if (ParMe >= r) { // ones who don't get extra cells have to shift their start vector
|
---|
495 | StartVec += r;
|
---|
496 | } else { // others get extra cell and have to shift also by a bit
|
---|
497 | StartVec += ParMe;
|
---|
498 | MaxLocalVec++;
|
---|
499 | }
|
---|
500 | I->MaxLocalVec = MaxLocalVec;
|
---|
501 | LocalActualVec = ActualVec = 0;
|
---|
502 | // now go through the same loop again and note down every offset vector for cells in this process' patch
|
---|
503 | if (MaxLocalVec != 0) {
|
---|
504 | I->RLatticeVec = (double *)
|
---|
505 | Realloc(I->RLatticeVec, sizeof(double)*NDIM*MaxLocalVec, "CalculateEwald: I->RLatticeVec");
|
---|
506 | } else {
|
---|
507 | fprintf(stderr,"(%i) Warning in Ewald summation: Got MaxLocalVec == 0\n", P->Par.me);
|
---|
508 | }
|
---|
509 | for (i = -MaxCell; i <= MaxCell; i++) {
|
---|
510 | for (j = -MaxCell; j <= MaxCell; j++) {
|
---|
511 | for (k = -MaxCell; k <= MaxCell; k++) {
|
---|
512 | r2 = 0.;
|
---|
513 | for (ir=0; ir <NDIM; ir++) { // create offset vector from diagonal entries
|
---|
514 | t[ir] = i*L->RealBasis[0*NDIM+ir]+j*L->RealBasis[1*NDIM+ir]+k*L->RealBasis[2*NDIM+ir];
|
---|
515 | r2 = t[ir]*t[ir];
|
---|
516 | }
|
---|
517 | Is_Neighb_Cell = ((abs(i)<=1) && (abs(j)<=1) && (abs(k)<=1));
|
---|
518 | if ((r2 <= rcut2) || Is_Neighb_Cell) { // if adjacent or within cutoff ...
|
---|
519 | if (ActualVec >= StartVec && ActualVec < StartVec+MaxLocalVec) { // ... and belongs to patch, store 'em
|
---|
520 | I->RLatticeVec[0+NDIM*LocalActualVec] = t[0];
|
---|
521 | I->RLatticeVec[1+NDIM*LocalActualVec] = t[1];
|
---|
522 | I->RLatticeVec[2+NDIM*LocalActualVec] = t[2];
|
---|
523 | LocalActualVec++;
|
---|
524 | }
|
---|
525 | ActualVec++;
|
---|
526 | }
|
---|
527 | }
|
---|
528 | }
|
---|
529 | }
|
---|
530 | SpeedMeasure(P, InitSimTime, StartTimeDo);
|
---|
531 | }
|
---|
532 | SpeedMeasure(P, EwaldTime, StartTimeDo);
|
---|
533 |
|
---|
534 | // first set everything to zero
|
---|
535 | esr = 0.0;
|
---|
536 | //for (is1=0;is1 < I->Max_Types; is1++)
|
---|
537 | // then take each ion of each type once
|
---|
538 | for (is1=0;is1 < I->Max_Types; is1++) {
|
---|
539 | // reset FTemp for IonType
|
---|
540 | for (ia1=0;ia1 < I->I[is1].Max_IonsOfType; ia1++)
|
---|
541 | for (i=0; i< NDIM; i++)
|
---|
542 | I->FTemp[i+NDIM*(ia1)] = 0.;
|
---|
543 | // then sum for each on of the IonType
|
---|
544 | for (ia1=0;ia1 < I->I[is1].Max_IonsOfType; ia1++) {
|
---|
545 | for (i=0;i<NDIM;i++) {
|
---|
546 | R1[i]=I->I[is1].R[i+NDIM*ia1]; // R1 is local coordinate of current first ion
|
---|
547 | }
|
---|
548 | for (ir2=0;ir2<I->MaxLocalVec;ir2++) { // for every cell of local patch (each with the same atoms)
|
---|
549 | for (is2=0;is2 < I->Max_Types; is2++) { // and for each ion of each type a second time
|
---|
550 | // gkl = 1./(sqrt(r_is1,gauss^2 + r_is2,gauss^2))
|
---|
551 | gkl=1./sqrt(I->I[is1].rgauss*I->I[is1].rgauss + I->I[is2].rgauss*I->I[is2].rgauss);
|
---|
552 | for (ia2=0;ia2<I->I[is2].Max_IonsOfType; ia2++) {
|
---|
553 | for (i=0;i<3;i++) {
|
---|
554 | R2[i]=I->RLatticeVec[i+NDIM*ir2]+I->I[is2].R[i+NDIM*ia2]; // R2 is coordinate of current second ion in the distant cell!
|
---|
555 | }
|
---|
556 |
|
---|
557 | erre2=0.0;
|
---|
558 | for (i=0;i<NDIM;i++) {
|
---|
559 | R3[i] = R1[i]-R2[i]; // R3 = R_is1,ia1 - R_is2,ia2 - L
|
---|
560 | erre2+=R3[i]*R3[i]; // erre2 = |R_is1,ia1 - R_is2,ia2 - L|^2
|
---|
561 | }
|
---|
562 | if (erre2 > MYEPSILON) { // appears as one over ... in fac, thus check if zero
|
---|
563 | arg = sqrt(erre2); // arg = |R_is1,ia1 - R_is2,ia2 - L|
|
---|
564 | fac=PP->zval[is1]*PP->zval[is2]/arg*0.5; // fac = -1/2 * Z_is1 * Z_is2 / arg
|
---|
565 |
|
---|
566 | arg *= gkl; // arg = |R_is1,ia1 - R_is2,ia2 - L|/(sqrt(r_is1,gauss^2 + r_is2,gauss^2))
|
---|
567 | addesr = derf(arg);
|
---|
568 | addesr = (1.-addesr)*fac; // complementary error function: addesr = 1/2*erfc(arg)/|R_is1,ia1 - R_is2,ia2 - L|
|
---|
569 | esr += addesr;
|
---|
570 | addpre=exp(-arg*arg)*gkl;
|
---|
571 | addpre = PP->fac1sqrtPI*PP->zval[is1]*PP->zval[is2]*addpre; // addpre = exp(-|R_is1,ia1 - R_is2,ia2 - L|^2/(r_is1,gauss^2 + r_is2,gauss^2))/(sqrt(pi)*sqrt(r_is1,gauss^2 + r_is2,gauss^2))
|
---|
572 | repand = (addesr+addpre)/erre2;
|
---|
573 | // if ((fabs(repand) > MYEPSILON)) {
|
---|
574 | // fprintf(stderr,"(%i) Ewald[is%d,ia%d/is%d,ia%d,(%d)]: Z1 %lg, Z2 %lg\tpre %lg\t esr %lg\t fac %lg\t arg %lg\tR3 (%lg,%lg,%lg)\n", P->Par.me, is1, ia1, is2, ia2, ir2, PP->zval[is1], PP->zval[is2],addpre,addesr, fac, arg, R3[0], R3[1], R3[2]);
|
---|
575 | // }
|
---|
576 | for (i=0;i<NDIM;i++) {
|
---|
577 | fxx=repand*R3[i];
|
---|
578 | // if ((fabs(repand) > MYEPSILON)) {
|
---|
579 | // fprintf(stderr,"%i %i %i %i %i %g\n",is1+1,ia1+1,is2+1,ia2+1,i+1,fxx);
|
---|
580 | // }
|
---|
581 | I->FTemp[i+NDIM*(ia1)] += fxx*2.0; // actio = reactio?
|
---|
582 | //I->FTemp[i+NDIM*(ia2)] -= fxx;
|
---|
583 | }
|
---|
584 | }
|
---|
585 | }
|
---|
586 | }
|
---|
587 | }
|
---|
588 | }
|
---|
589 | MPI_Allreduce (I->FTemp , I->I[is1].FEwald, NDIM*I->I[is1].Max_IonsOfType, MPI_DOUBLE, MPI_SUM, P->Par.comm);
|
---|
590 | }
|
---|
591 | SpeedMeasure(P, EwaldTime, StopTimeDo);
|
---|
592 | //for (is=0;is < I->Max_Types; is++) {
|
---|
593 | //}
|
---|
594 | MPI_Allreduce ( &esr, &L->E->AllTotalIonsEnergy[EwaldEnergy], 1, MPI_DOUBLE, MPI_SUM, P->Par.comm);
|
---|
595 | // fprintf(stderr,"\n");
|
---|
596 | }
|
---|
597 |
|
---|
598 | /** Sum up all forces acting on Ions.
|
---|
599 | * IonType::FIon = IonType::FEwald + IonType::FIonL + IonType::FIonNL + IonType::FMagnetic for all
|
---|
600 | * dimensions #NDIM and each Ion of IonType
|
---|
601 | * \param *P Problem at hand
|
---|
602 | */
|
---|
603 | void CalculateIonForce(struct Problem *P)
|
---|
604 | {
|
---|
605 | struct Ions *I = &P->Ion;
|
---|
606 | int i,j,d;
|
---|
607 | for (i=0; i < I->Max_Types; i++)
|
---|
608 | for (j=0; j < I->I[i].Max_IonsOfType; j++)
|
---|
609 | for (d=0; d<NDIM;d++)
|
---|
610 | I->I[i].FIon[d+j*NDIM] = (I->I[i].FEwald[d+j*NDIM] + I->I[i].FIonL[d+j*NDIM] + I->I[i].FIonNL[d+j*NDIM] + I->I[i].FMagnetic[d+j*NDIM]);
|
---|
611 | }
|
---|
612 |
|
---|
613 | /** Write Forces to FileData::ForcesFile.
|
---|
614 | * goes through all Ions per IonType and each dimension of #NDIM and prints in one line:
|
---|
615 | * Position IonType::R, total force Ion IonType::FIon, local force IonType::FIonL,
|
---|
616 | * non-local IonType::FIonNL, ewald force IonType::FEwald
|
---|
617 | * \param *P Problem at hand
|
---|
618 | */
|
---|
619 | void OutputIonForce(struct Problem *P)
|
---|
620 | {
|
---|
621 | struct RunStruct *R = &P->R;
|
---|
622 | struct FileData *F = &P->Files;
|
---|
623 | struct Ions *I = &P->Ion;
|
---|
624 | FILE *fout = NULL;
|
---|
625 | int i,j;
|
---|
626 | if (F->MeOutMes != 1) return;
|
---|
627 | fout = F->ForcesFile;
|
---|
628 | for (i=0; i < I->Max_Types; i++)
|
---|
629 | for (j=0; j < I->I[i].Max_IonsOfType; j++)
|
---|
630 | fprintf(fout, "%i\t%i\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\t%e\n", i,j,
|
---|
631 | I->I[i].R[0+j*NDIM], I->I[i].R[1+j*NDIM], I->I[i].R[2+j*NDIM],
|
---|
632 | I->I[i].FIon[0+j*NDIM], I->I[i].FIon[1+j*NDIM], I->I[i].FIon[2+j*NDIM],
|
---|
633 | I->I[i].FIonL[0+j*NDIM], I->I[i].FIonL[1+j*NDIM], I->I[i].FIonL[2+j*NDIM],
|
---|
634 | I->I[i].FIonNL[0+j*NDIM], I->I[i].FIonNL[1+j*NDIM], I->I[i].FIonNL[2+j*NDIM],
|
---|
635 | I->I[i].FEwald[0+j*NDIM], I->I[i].FEwald[1+j*NDIM], I->I[i].FEwald[2+j*NDIM]);
|
---|
636 | fflush(fout);
|
---|
637 | fprintf(fout, "MeanForce:\t%e\n", R->MeanForce[0]);
|
---|
638 | }
|
---|
639 |
|
---|
640 | /** Reads Forces from CallOptions::ForcesFile.
|
---|
641 | * goes through all Ions per IonType and each dimension of #NDIM and parses in one line:
|
---|
642 | * Position IonType::R, total force Ion IonType::FIon, local force IonType::FIonL,
|
---|
643 | * non-local IonType::FIonNL, ewald force IonType::FEwald
|
---|
644 | * \param *P Problem at hand
|
---|
645 | */
|
---|
646 | void ParseIonForce(struct Problem *P)
|
---|
647 | {
|
---|
648 | //struct RunStruct *Run = &P->R;
|
---|
649 | struct Ions *I = &P->Ion;
|
---|
650 | FILE *finput = NULL;
|
---|
651 | char line[1024];
|
---|
652 | int i,j;
|
---|
653 | double i1, j1;
|
---|
654 | double R[NDIM];
|
---|
655 |
|
---|
656 | if (P->Call.ForcesFile == NULL) return;
|
---|
657 | finput = fopen(P->Call.ForcesFile, "r");
|
---|
658 | //fprintf(stderr, "File pointer says %p\n", finput);
|
---|
659 | if (finput == NULL)
|
---|
660 | Error(InitReading, "ForcesFile does not exist.");
|
---|
661 | fscanf(finput, "%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\t%s\n", line,line,line,line,line,line,line,line,line,line,line,line,line,line,line,line,line,line,line,line); // skip header line
|
---|
662 | for (i=0; i < I->Max_Types; i++)
|
---|
663 | for (j=0; j < I->I[i].Max_IonsOfType; j++)
|
---|
664 | if (feof(finput)) {
|
---|
665 | Error(InitReading, "ForcesFile does not contain enough lines.");
|
---|
666 | } else {
|
---|
667 | //fscanf(finput, "%s\n", line);
|
---|
668 | //if (strlen(line) < 100) {
|
---|
669 | //fprintf(stderr, "i %d, j %d, length of line %ld, line %s.\n", i,j, strlen(line), line);
|
---|
670 | //Error(InitReading, "ForcesFile does not contain enough lines or line is faulty.");
|
---|
671 | //} else
|
---|
672 | //fprintf(stderr, "Parsed line: '%s'\n", line);
|
---|
673 | fscanf(finput, "%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\t%le\n", &i1,&j1,
|
---|
674 | &R[0], &R[1], &R[2],
|
---|
675 | &I->I[i].FIon[0+j*NDIM], &I->I[i].FIon[1+j*NDIM], &I->I[i].FIon[2+j*NDIM],
|
---|
676 | &I->I[i].FIonL[0+j*NDIM], &I->I[i].FIonL[1+j*NDIM], &I->I[i].FIonL[2+j*NDIM],
|
---|
677 | &I->I[i].FIonNL[0+j*NDIM], &I->I[i].FIonNL[1+j*NDIM], &I->I[i].FIonNL[2+j*NDIM],
|
---|
678 | &I->I[i].FMagnetic[0+j*NDIM], &I->I[i].FMagnetic[1+j*NDIM], &I->I[i].FMagnetic[2+j*NDIM],
|
---|
679 | &I->I[i].FEwald[0+j*NDIM], &I->I[i].FEwald[1+j*NDIM], &I->I[i].FEwald[2+j*NDIM]);
|
---|
680 | if ((i != (int)i1) || (j != (int)j1))
|
---|
681 | Error(InitReading, "Line does not match to desired ion.");
|
---|
682 | }
|
---|
683 | fclose(finput);
|
---|
684 | //fprintf(stderr, "MeanForce:\t%e\n", Run->MeanForce[0]);
|
---|
685 | };
|
---|
686 |
|
---|
687 | /** Frees memory IonType.
|
---|
688 | * All pointers from IonType and the pointer on it are free'd
|
---|
689 | * \param *I Ions structure to be free'd
|
---|
690 | * \sa IonsInitRead where memory is allocated
|
---|
691 | */
|
---|
692 | void RemoveIonsRead(struct Ions *I)
|
---|
693 | {
|
---|
694 | int i, it;
|
---|
695 | for (i=0; i < I->Max_Types; i++) {
|
---|
696 | Free(I->I[i].Name, "RemoveIonsRead: I->I[i].Name");
|
---|
697 | Free(I->I[i].Symbol, "RemoveIonsRead: I->I[i].Symbol");
|
---|
698 | for (it=0;it<I->I[i].Max_IonsOfType;it++) {
|
---|
699 | Free(I->I[i].moment[it], "RemoveIonsRead: I->I[i].moment[it]");
|
---|
700 | Free(I->I[i].sigma[it], "RemoveIonsRead: I->I[i].sigma[it]");
|
---|
701 | Free(I->I[i].sigma_rezi[it], "RemoveIonsRead: I->I[i].sigma_rezi[it]");
|
---|
702 | Free(I->I[i].sigma_PAS[it], "RemoveIonsRead: I->I[i].sigma_PAS[it]");
|
---|
703 | Free(I->I[i].sigma_rezi_PAS[it], "RemoveIonsRead: I->I[i].sigma_rezi_PAS[it]");
|
---|
704 | while (RemoveConstraintItem(&I->I[i], it)); // empty the constrained item list
|
---|
705 | }
|
---|
706 | Free(I->I[i].sigma, "RemoveIonsRead: I->I[i].sigma");
|
---|
707 | Free(I->I[i].sigma_rezi, "RemoveIonsRead: I->I[i].sigma_rezi");
|
---|
708 | Free(I->I[i].sigma_PAS, "RemoveIonsRead: I->I[i].sigma_PAS");
|
---|
709 | Free(I->I[i].sigma_rezi_PAS, "RemoveIonsRead: I->I[i].sigma_rezi_PAS");
|
---|
710 | Free(I->I[i].R, "RemoveIonsRead: I->I[i].R");
|
---|
711 | Free(I->I[i].R_old, "RemoveIonsRead: I->I[i].R_old");
|
---|
712 | Free(I->I[i].R_old_old, "RemoveIonsRead: I->I[i].R_old_old");
|
---|
713 | Free(I->I[i].Constraints, "RemoveIonsRead: I->I[i].Constraints");
|
---|
714 | Free(I->I[i].FIon, "RemoveIonsRead: I->I[i].FIon");
|
---|
715 | Free(I->I[i].FIon_old, "RemoveIonsRead: I->I[i].FIon_old");
|
---|
716 | Free(I->I[i].SearchDir, "RemoveIonsRead: I->I[i].SearchDir");
|
---|
717 | Free(I->I[i].GammaA, "RemoveIonsRead: I->I[i].GammaA");
|
---|
718 | Free(I->I[i].FIonL, "RemoveIonsRead: I->I[i].FIonL");
|
---|
719 | Free(I->I[i].FIonNL, "RemoveIonsRead: I->I[i].FIonNL");
|
---|
720 | Free(I->I[i].FMagnetic, "RemoveIonsRead: I->I[i].FMagnetic");
|
---|
721 | Free(I->I[i].U, "RemoveIonsRead: I->I[i].U");
|
---|
722 | Free(I->I[i].SFactor, "RemoveIonsRead: I->I[i].SFactor");
|
---|
723 | Free(I->I[i].IMT, "RemoveIonsRead: I->I[i].IMT");
|
---|
724 | Free(I->I[i].FEwald, "RemoveIonsRead: I->I[i].FEwald");
|
---|
725 | Free(I->I[i].alpha, "RemoveIonsRead: I->I[i].alpha");
|
---|
726 | }
|
---|
727 | if (I->R_cut == 0.0)
|
---|
728 | Free(I->RLatticeVec, "RemoveIonsRead: I->RLatticeVec");
|
---|
729 | Free(I->FTemp, "RemoveIonsRead: I->FTemp");
|
---|
730 | Free(I->I, "RemoveIonsRead: I->I");
|
---|
731 | }
|
---|
732 |
|
---|
733 | /** Shifts center of gravity of ion forces IonType::FIon.
|
---|
734 | * First sums up all forces of movable ions to a "force temperature",
|
---|
735 | * then reduces each force by this temp, so that all in all
|
---|
736 | * the net force is 0.
|
---|
737 | * \param *P Problem at hand
|
---|
738 | * \sa CorrectVelocity
|
---|
739 | * \note why is FTemp not divided by number of ions: is probably correct, but this
|
---|
740 | * function was not really meaningful from the beginning.
|
---|
741 | */
|
---|
742 | void CorrectForces(struct Problem *P)
|
---|
743 | {
|
---|
744 | struct Ions *I = &P->Ion;
|
---|
745 | double *FIon;
|
---|
746 | double FTemp[NDIM];
|
---|
747 | int is, ia, d;
|
---|
748 | for (d=0; d<NDIM; d++)
|
---|
749 | FTemp[d] = 0;
|
---|
750 | for (is=0; is < I->Max_Types; is++) { // calculate force temperature for each type ...
|
---|
751 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // .. and each ion of this type ...
|
---|
752 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
753 | if (I->I[is].IMT[ia] == MoveIon) { // .. if it's movable
|
---|
754 | for (d=0; d<NDIM; d++)
|
---|
755 | FTemp[d] += FIon[d];
|
---|
756 | }
|
---|
757 | }
|
---|
758 | }
|
---|
759 | for (is=0; is < I->Max_Types; is++) { // and then reduce each by this value
|
---|
760 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
761 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
762 | if (I->I[is].IMT[ia] == MoveIon) {
|
---|
763 | for (d=0; d<NDIM; d++)
|
---|
764 | FIon[d] -= FTemp[d]; // (?) why not -= FTemp[d]/I->Max_TotalIons
|
---|
765 | }
|
---|
766 | }
|
---|
767 | }
|
---|
768 | }
|
---|
769 |
|
---|
770 |
|
---|
771 | /** Shifts center of gravity of ion velocities (rather momentums).
|
---|
772 | * First sums up ion speed U times their IonMass (summed up for each
|
---|
773 | * dimension), then reduces the velocity by temp per Ions::TotalMass (so here
|
---|
774 | * total number of Ions is included)
|
---|
775 | * \param *P Problem at hand
|
---|
776 | * \sa CorrectForces
|
---|
777 | */
|
---|
778 | void CorrectVelocity(struct Problem *P)
|
---|
779 | {
|
---|
780 | struct Ions *I = &P->Ion;
|
---|
781 | double *U;
|
---|
782 | double UTemp[NDIM];
|
---|
783 | int is, ia, d;
|
---|
784 | for (d=0; d<NDIM; d++)
|
---|
785 | UTemp[d] = 0;
|
---|
786 | for (is=0; is < I->Max_Types; is++) { // all types ...
|
---|
787 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // ... all ions per type ...
|
---|
788 | U = &I->I[is].U[NDIM*ia];
|
---|
789 | if (I->I[is].IMT[ia] == MoveIon) { // ... if it's movable
|
---|
790 | for (d=0; d<NDIM; d++)
|
---|
791 | UTemp[d] += I->I[is].IonMass*U[d];
|
---|
792 | }
|
---|
793 | }
|
---|
794 | }
|
---|
795 | for (is=0; is < I->Max_Types; is++) {
|
---|
796 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
797 | U = &I->I[is].U[NDIM*ia];
|
---|
798 | if (I->I[is].IMT[ia] == MoveIon) {
|
---|
799 | for (d=0; d<NDIM; d++)
|
---|
800 | U[d] -= UTemp[d]/I->TotalMass; // shift by mean velocity over mass and number of ions
|
---|
801 | }
|
---|
802 | }
|
---|
803 | }
|
---|
804 | }
|
---|
805 |
|
---|
806 | /** Moves ions according to calculated force.
|
---|
807 | * Goes through each type of IonType and each ion therein, takes mass and
|
---|
808 | * Newton to move each ion to new coordinates IonType::R, while remembering the last
|
---|
809 | * two coordinates and the last force of the ion. Coordinates R are being
|
---|
810 | * transformed to inverted base, shifted by +-1.0 and back-transformed to
|
---|
811 | * real base.
|
---|
812 | * \param *P Problem at hand
|
---|
813 | * \sa CalculateIonForce
|
---|
814 | * \sa UpdateIonsU
|
---|
815 | * \warning U is not changed here, only used to move the ion.
|
---|
816 | */
|
---|
817 | void UpdateIonsR(struct Problem *P)
|
---|
818 | {
|
---|
819 | struct Ions *I = &P->Ion;
|
---|
820 | int is, ia, d;
|
---|
821 | double *R, *R_old, *R_old_old, *FIon, *FIon_old, *U, *FIonL, *FIonNL, *FEwald;
|
---|
822 | double IonMass, a;
|
---|
823 | double sR[NDIM], sRold[NDIM], sRoldold[NDIM];
|
---|
824 | const int delta_t = P->R.delta_t;
|
---|
825 | for (is=0; is < I->Max_Types; is++) { // go through all types ...
|
---|
826 | IonMass = I->I[is].IonMass;
|
---|
827 | if (IonMass < MYEPSILON) fprintf(stderr,"UpdateIonsR: IonMass = %lg",IonMass);
|
---|
828 | a = delta_t*0.5/IonMass; // F/m = a and thus: s = 0.5 * F/m * t^2 + v * t =: t * (F * a + v)
|
---|
829 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // .. and each ion of the type
|
---|
830 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
831 | FIonL = &I->I[is].FIonL[NDIM*ia];
|
---|
832 | FIonNL = &I->I[is].FIonNL[NDIM*ia];
|
---|
833 | FEwald = &I->I[is].FEwald[NDIM*ia];
|
---|
834 | FIon_old = &I->I[is].FIon_old[NDIM*ia];
|
---|
835 | U = &I->I[is].U[NDIM*ia];
|
---|
836 | R = &I->I[is].R[NDIM*ia];
|
---|
837 | R_old = &I->I[is].R_old[NDIM*ia];
|
---|
838 | R_old_old = &I->I[is].R_old_old[NDIM*ia];
|
---|
839 | if (I->I[is].IMT[ia] == MoveIon) {
|
---|
840 | for (d=0; d<NDIM; d++) {
|
---|
841 | R_old_old[d] = R_old[d]; // shift old values
|
---|
842 | R_old[d] = R[d];
|
---|
843 | R[d] += delta_t*(U[d]+a*FIon[d]); // F = m * a and s = 0.5 * a * t^2
|
---|
844 | FIon_old[d] = FIon[d]; // store old force
|
---|
845 | FIon[d] = 0; // zero all as a sign that's been moved
|
---|
846 | FIonL[d] = 0;
|
---|
847 | FIonNL[d] = 0;
|
---|
848 | FEwald[d] = 0;
|
---|
849 | }
|
---|
850 | RMat33Vec3(sR, P->Lat.InvBasis, R);
|
---|
851 | RMat33Vec3(sRold, P->Lat.InvBasis, R_old);
|
---|
852 | RMat33Vec3(sRoldold, P->Lat.InvBasis, R_old_old);
|
---|
853 | for (d=0; d <NDIM; d++) {
|
---|
854 | while (sR[d] < 0) {
|
---|
855 | sR[d] += 1.0;
|
---|
856 | sRold[d] += 1.0;
|
---|
857 | sRoldold[d] += 1.0;
|
---|
858 | }
|
---|
859 | while (sR[d] >= 1.0) {
|
---|
860 | sR[d] -= 1.0;
|
---|
861 | sRold[d] -= 1.0;
|
---|
862 | sRoldold[d] -= 1.0;
|
---|
863 | }
|
---|
864 | }
|
---|
865 | RMat33Vec3(R, P->Lat.RealBasis, sR);
|
---|
866 | RMat33Vec3(R_old, P->Lat.RealBasis, sRold);
|
---|
867 | RMat33Vec3(R_old_old, P->Lat.RealBasis, sRoldold);
|
---|
868 | }
|
---|
869 | }
|
---|
870 | }
|
---|
871 | }
|
---|
872 |
|
---|
873 | /** Resets the forces array.
|
---|
874 | * \param *P Problem at hand
|
---|
875 | */
|
---|
876 | void ResetForces(struct Problem *P)
|
---|
877 | {
|
---|
878 | struct Ions *I = &P->Ion;
|
---|
879 | double *FIon, *FIonL, *FIonNL, *FEwald;
|
---|
880 | int is, ia, d;
|
---|
881 | for (is=0; is < I->Max_Types; is++) { // go through all types ...
|
---|
882 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) { // .. and each ion of the type
|
---|
883 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
884 | FIonL = &I->I[is].FIonL[NDIM*ia];
|
---|
885 | FIonNL = &I->I[is].FIonNL[NDIM*ia];
|
---|
886 | FEwald = &I->I[is].FEwald[NDIM*ia];
|
---|
887 | for (d=0; d<NDIM; d++) {
|
---|
888 | FIon[d] = 0.; // zero all as a sign that's been moved
|
---|
889 | FIonL[d] = 0.;
|
---|
890 | FIonNL[d] = 0.;
|
---|
891 | FEwald[d] = 0.;
|
---|
892 | }
|
---|
893 | }
|
---|
894 | }
|
---|
895 | };
|
---|
896 |
|
---|
897 | /** Changes ion's velocity according to acting force.
|
---|
898 | * IonType::U is changed by the weighted force of actual step and last one
|
---|
899 | * according to Newton.
|
---|
900 | * \param *P Problem at hand
|
---|
901 | * \sa UpdateIonsR
|
---|
902 | * \sa CalculateIonForce
|
---|
903 | * \warning R is not changed here.
|
---|
904 | */
|
---|
905 | void UpdateIonsU(struct Problem *P)
|
---|
906 | {
|
---|
907 | struct Ions *I = &P->Ion;
|
---|
908 | int is, ia, d;
|
---|
909 | double *FIon, *FIon_old, *U;
|
---|
910 | double IonMass, a;
|
---|
911 | const int delta_t = P->R.delta_t;
|
---|
912 | for (is=0; is < I->Max_Types; is++) {
|
---|
913 | IonMass = I->I[is].IonMass;
|
---|
914 | if (IonMass < MYEPSILON) fprintf(stderr,"UpdateIonsU: IonMass = %lg",IonMass);
|
---|
915 | a = delta_t*0.5/IonMass; // (F+F_old)/2m = a and thus: v = (F+F_old)/2m * t = (F + F_old) * a
|
---|
916 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
917 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
918 | FIon_old = &I->I[is].FIon_old[NDIM*ia];
|
---|
919 | U = &I->I[is].U[NDIM*ia];
|
---|
920 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
921 | for (d=0; d<NDIM; d++) {
|
---|
922 | U[d] += a * (FIon[d]+FIon_old[d]);
|
---|
923 | }
|
---|
924 | }
|
---|
925 | }
|
---|
926 | }
|
---|
927 |
|
---|
928 | /** CG process to optimise structure.
|
---|
929 | * \param *P Problem at hand
|
---|
930 | */
|
---|
931 | void UpdateIons(struct Problem *P)
|
---|
932 | {
|
---|
933 | struct Ions *I = &P->Ion;
|
---|
934 | int is, ia, d;
|
---|
935 | double *R, *R_old, *R_old_old, *FIon, *S, *GammaA;
|
---|
936 | double IonFac, GammaB; //, GammaT;
|
---|
937 | double FNorm, StepNorm;
|
---|
938 | for (is=0; is < I->Max_Types; is++) {
|
---|
939 | IonFac = I->I[is].IonFac;
|
---|
940 | GammaA = I->I[is].GammaA;
|
---|
941 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
942 | FIon = &I->I[is].FIon[NDIM*ia];
|
---|
943 | S = &I->I[is].SearchDir[NDIM*ia];
|
---|
944 | GammaB = GammaA[ia];
|
---|
945 | GammaA[ia] = RSP3(FIon,S);
|
---|
946 | FNorm = sqrt(RSP3(FIon,FIon));
|
---|
947 | StepNorm = log(1.+IonFac*FNorm); // Fix Hack
|
---|
948 | if (FNorm != 0)
|
---|
949 | StepNorm /= sqrt(RSP3(FIon,FIon));
|
---|
950 | else
|
---|
951 | StepNorm = 0;
|
---|
952 | //if (GammaB != 0.0) {
|
---|
953 | // GammaT = GammaA[ia]/GammaB;
|
---|
954 | // for (d=0; d>NDIM; d++)
|
---|
955 | // S[d] = FIon[d]+GammaT*S[d];
|
---|
956 | // } else {
|
---|
957 | for (d=0; d<NDIM; d++)
|
---|
958 | S[d] = StepNorm*FIon[d];
|
---|
959 | // }
|
---|
960 | R = &I->I[is].R[NDIM*ia];
|
---|
961 | R_old = &I->I[is].R_old[NDIM*ia];
|
---|
962 | R_old_old = &I->I[is].R_old_old[NDIM*ia];
|
---|
963 | if (I->I[is].IMT[ia] == MoveIon)
|
---|
964 | for (d=0; d<NDIM; d++) {
|
---|
965 | R_old_old[d] = R_old[d];
|
---|
966 | R_old[d] = R[d];
|
---|
967 | R[d] += S[d]; // FixHack*IonFac;
|
---|
968 | }
|
---|
969 | }
|
---|
970 | }
|
---|
971 | }
|
---|
972 |
|
---|
973 | /** Print coordinates of all ions to stdout.
|
---|
974 | * \param *P Problem at hand
|
---|
975 | * \param actual (1 - don't at current RunStruct#OuterStep, 0 - do)
|
---|
976 | */
|
---|
977 | void OutputIonCoordinates(struct Problem *P, int actual)
|
---|
978 | {
|
---|
979 | //struct RunStruct *R = &P->R;
|
---|
980 | struct Ions *I = &P->Ion;
|
---|
981 | char filename[255];
|
---|
982 | FILE *output;
|
---|
983 | int is, ia, nr = 0;
|
---|
984 | double Bohr = (I->IsAngstroem) ? 1./ANGSTROEMINBOHRRADIUS : 1.;
|
---|
985 | /* if (P->Par.me == 0 && P->Call.out[ReadOut]) {
|
---|
986 | fprintf(stderr, "(%i) ======= Differential Ion Coordinates =========\n",P->Par.me);
|
---|
987 | for (is=0; is < I->Max_Types; is++)
|
---|
988 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++)
|
---|
989 | //fprintf(stderr, "(%i) R[%i/%i][%i/%i] = (%e,%e,%e)\n", P->Par.me, is, I->Max_Types, ia, I->I[is].Max_IonsOfType, I->I[is].R[NDIM*ia+0],I->I[is].R[NDIM*ia+1],I->I[is].R[NDIM*ia+2]);
|
---|
990 | fprintf(stderr, "Ion_Type%i_%i\t%.6f\t%.6f\t%.6f\t0\t# Atom from StructOpt\n", is+1, ia+1, I->I[is].R[NDIM*ia+0]-I->I[is].R_old[NDIM*ia+0],I->I[is].R[NDIM*ia+1]-I->I[is].R_old[NDIM*ia+1],I->I[is].R[NDIM*ia+2]-I->I[is].R_old[NDIM*ia+2]);
|
---|
991 | fprintf(stderr, "(%i) =========================================\n",P->Par.me);
|
---|
992 | }*/
|
---|
993 | if (actual)
|
---|
994 | sprintf(filename, "%s.MD", P->Call.MainParameterFile);
|
---|
995 | else
|
---|
996 | sprintf(filename, "%s.opt", P->Call.MainParameterFile);
|
---|
997 | if (((actual) && (P->R.OuterStep <= 0)) || ((!actual) && (P->R.StructOptStep == 1))) { // on first step write complete config file
|
---|
998 | WriteParameters(P, filename);
|
---|
999 | } else { // afterwards simply add the current ion coordinates as constrained steps
|
---|
1000 | if ((P->Par.me == 0) && (output = fopen(filename,"a"))) {
|
---|
1001 | fprintf(output,"# ====== MD step %d ========= \n", (actual) ? P->R.OuterStep : P->R.StructOptStep);
|
---|
1002 | for (is=0; is < I->Max_Types; is++)
|
---|
1003 | for (ia=0;ia<I->I[is].Max_IonsOfType;ia++) {
|
---|
1004 | fprintf(output,"Ion_Type%i_%i\t%2.9f\t%2.9f\t%2.9f\t%i\t%2.9f\t%2.9f\t%2.9f\t# Number in molecule %i\n", is+1, ia+1, I->I[is].R[0+NDIM*ia]*Bohr, I->I[is].R[1+NDIM*ia]*Bohr, I->I[is].R[2+NDIM*ia]*Bohr, I->I[is].IMT[ia], I->I[is].U[0+NDIM*ia]*Bohr, I->I[is].U[1+NDIM*ia]*Bohr, I->I[is].U[2+NDIM*ia]*Bohr, ++nr);
|
---|
1005 | }
|
---|
1006 | fflush(output);
|
---|
1007 | }
|
---|
1008 | }
|
---|
1009 | }
|
---|
1010 |
|
---|
1011 | /** Calculates kinetic energy (Ions::EKin) of movable Ions.
|
---|
1012 | * Does 0.5 / IonType::IonMass * IonTye::U^2 for each Ion,
|
---|
1013 | * also retrieves actual temperatur by 2/3 from just
|
---|
1014 | * calculated Ions::EKin.
|
---|
1015 | * \param *P Problem at hand
|
---|
1016 | */
|
---|
1017 | void CalculateEnergyIonsU(struct Problem *P)
|
---|
1018 | {
|
---|
1019 | struct Ions *I = &P->Ion;
|
---|
1020 | int is, ia, d;
|
---|
1021 | double *U;
|
---|
1022 | double IonMass, a, ekin = 0;
|
---|
1023 | for (is=0; is < I->Max_Types; is++) {
|
---|
1024 | IonMass = I->I[is].IonMass;
|
---|
1025 | a = 0.5*IonMass;
|
---|
1026 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
1027 | U = &I->I[is].U[NDIM*ia];
|
---|
1028 | //if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
|
---|
1029 | for (d=0; d<NDIM; d++) {
|
---|
1030 | ekin += a * U[d]*U[d];
|
---|
1031 | }
|
---|
1032 | }
|
---|
1033 | }
|
---|
1034 | I->EKin = ekin;
|
---|
1035 | I->ActualTemp = (2./(3.*I->Max_TotalIons)*I->EKin);
|
---|
1036 | }
|
---|
1037 |
|
---|
1038 | /** Scales ion velocities to match temperature.
|
---|
1039 | * In order to match Ions::ActualTemp with desired RunStruct::TargetTemp
|
---|
1040 | * each velocity in each dimension (for all types, all ions) is scaled
|
---|
1041 | * with the ratio of these two. Ions::EKin is recalculated.
|
---|
1042 | * \param *P Problem at hand
|
---|
1043 | */
|
---|
1044 | void ScaleTemp(struct Problem *P)
|
---|
1045 | {
|
---|
1046 | struct Ions *I = &P->Ion;
|
---|
1047 | int is, ia, d;
|
---|
1048 | double *U;
|
---|
1049 | double IonMass, a, ekin = 0;
|
---|
1050 | if (I->ActualTemp < MYEPSILON) fprintf(stderr,"ScaleTemp: I->ActualTemp = %lg",I->ActualTemp);
|
---|
1051 | double ScaleTempFactor = sqrt(P->R.TargetTemp/I->ActualTemp);
|
---|
1052 | for (is=0; is < I->Max_Types; is++) {
|
---|
1053 | IonMass = I->I[is].IonMass;
|
---|
1054 | a = 0.5*IonMass;
|
---|
1055 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
1056 | U = &I->I[is].U[NDIM*ia];
|
---|
1057 | //if (I->I[is].IMT[ia] == MoveIon) // even FixedIon moves, only not by other's forces
|
---|
1058 | for (d=0; d<NDIM; d++) {
|
---|
1059 | U[d] *= ScaleTempFactor;
|
---|
1060 | ekin += a * U[d]*U[d];
|
---|
1061 | }
|
---|
1062 | }
|
---|
1063 | }
|
---|
1064 | I->EKin = ekin;
|
---|
1065 | I->ActualTemp = (2./(3.*I->Max_TotalIons)*I->EKin);
|
---|
1066 | }
|
---|
1067 |
|
---|
1068 | /** Calculates mean force vector as stop criteria in structure optimization.
|
---|
1069 | * Calculates a mean force vector per ion as the usual euclidian norm over total
|
---|
1070 | * number of ions and dimensions, being the sum of each ion force (for all type,
|
---|
1071 | * all ions, all dims) squared.
|
---|
1072 | * The mean force is archived in RunStruct::MeanForce and printed to screen.
|
---|
1073 | * \param *P Problem at hand
|
---|
1074 | */
|
---|
1075 | void GetOuterStop(struct Problem *P)
|
---|
1076 | {
|
---|
1077 | struct RunStruct *R = &P->R;
|
---|
1078 | struct Ions *I = &P->Ion;
|
---|
1079 | int is, ia, IonNo=0, i, d;
|
---|
1080 | double MeanForce = 0.0;
|
---|
1081 | for (is=0; is < I->Max_Types; is++)
|
---|
1082 | for (ia=0; ia < I->I[is].Max_IonsOfType; ia++) {
|
---|
1083 | IonNo++;
|
---|
1084 | for (d=0; d <NDIM; d++)
|
---|
1085 | MeanForce += I->I[is].FIon[d+NDIM*ia]*I->I[is].FIon[d+NDIM*ia];
|
---|
1086 | }
|
---|
1087 | for (i=MAXOLD-1; i > 0; i--)
|
---|
1088 | R->MeanForce[i] = R->MeanForce[i-1];
|
---|
1089 | MeanForce = sqrt(MeanForce/(IonNo*NDIM));
|
---|
1090 | R->MeanForce[0] = MeanForce;
|
---|
1091 | if (P->Call.out[LeaderOut] && (P->Par.me == 0))
|
---|
1092 | fprintf(stderr,"MeanForce = %e\n", R->MeanForce[0]);
|
---|
1093 | }
|
---|
1094 |
|
---|
1095 |
|
---|