| 1 | /** \file vector.cpp
|
|---|
| 2 | *
|
|---|
| 3 | * Function implementations for the class vector.
|
|---|
| 4 | *
|
|---|
| 5 | */
|
|---|
| 6 |
|
|---|
| 7 |
|
|---|
| 8 | #include "defs.hpp"
|
|---|
| 9 | #include "gslmatrix.hpp"
|
|---|
| 10 | #include "leastsquaremin.hpp"
|
|---|
| 11 | #include "memoryallocator.hpp"
|
|---|
| 12 | #include "vector.hpp"
|
|---|
| 13 | #include "Helpers/fast_functions.hpp"
|
|---|
| 14 | #include "Helpers/Assert.hpp"
|
|---|
| 15 | #include "Plane.hpp"
|
|---|
| 16 | #include "Exceptions/LinearDependenceException.hpp"
|
|---|
| 17 |
|
|---|
| 18 | #include <gsl/gsl_linalg.h>
|
|---|
| 19 | #include <gsl/gsl_matrix.h>
|
|---|
| 20 | #include <gsl/gsl_permutation.h>
|
|---|
| 21 | #include <gsl/gsl_vector.h>
|
|---|
| 22 |
|
|---|
| 23 | /************************************ Functions for class vector ************************************/
|
|---|
| 24 |
|
|---|
| 25 | /** Constructor of class vector.
|
|---|
| 26 | */
|
|---|
| 27 | Vector::Vector()
|
|---|
| 28 | {
|
|---|
| 29 | x[0] = x[1] = x[2] = 0.;
|
|---|
| 30 | };
|
|---|
| 31 |
|
|---|
| 32 | /** Constructor of class vector.
|
|---|
| 33 | */
|
|---|
| 34 | Vector::Vector(const double x1, const double x2, const double x3)
|
|---|
| 35 | {
|
|---|
| 36 | x[0] = x1;
|
|---|
| 37 | x[1] = x2;
|
|---|
| 38 | x[2] = x3;
|
|---|
| 39 | };
|
|---|
| 40 |
|
|---|
| 41 | /**
|
|---|
| 42 | * Copy constructor
|
|---|
| 43 | */
|
|---|
| 44 | Vector::Vector(const Vector& src)
|
|---|
| 45 | {
|
|---|
| 46 | x[0] = src[0];
|
|---|
| 47 | x[1] = src[1];
|
|---|
| 48 | x[2] = src[2];
|
|---|
| 49 | }
|
|---|
| 50 |
|
|---|
| 51 | /**
|
|---|
| 52 | * Assignment operator
|
|---|
| 53 | */
|
|---|
| 54 | Vector& Vector::operator=(const Vector& src){
|
|---|
| 55 | // check for self assignment
|
|---|
| 56 | if(&src!=this){
|
|---|
| 57 | x[0] = src[0];
|
|---|
| 58 | x[1] = src[1];
|
|---|
| 59 | x[2] = src[2];
|
|---|
| 60 | }
|
|---|
| 61 | return *this;
|
|---|
| 62 | }
|
|---|
| 63 |
|
|---|
| 64 | /** Desctructor of class vector.
|
|---|
| 65 | */
|
|---|
| 66 | Vector::~Vector() {};
|
|---|
| 67 |
|
|---|
| 68 | /** Calculates square of distance between this and another vector.
|
|---|
| 69 | * \param *y array to second vector
|
|---|
| 70 | * \return \f$| x - y |^2\f$
|
|---|
| 71 | */
|
|---|
| 72 | double Vector::DistanceSquared(const Vector &y) const
|
|---|
| 73 | {
|
|---|
| 74 | double res = 0.;
|
|---|
| 75 | for (int i=NDIM;i--;)
|
|---|
| 76 | res += (x[i]-y[i])*(x[i]-y[i]);
|
|---|
| 77 | return (res);
|
|---|
| 78 | };
|
|---|
| 79 |
|
|---|
| 80 | /** Calculates distance between this and another vector.
|
|---|
| 81 | * \param *y array to second vector
|
|---|
| 82 | * \return \f$| x - y |\f$
|
|---|
| 83 | */
|
|---|
| 84 | double Vector::Distance(const Vector &y) const
|
|---|
| 85 | {
|
|---|
| 86 | return (sqrt(DistanceSquared(y)));
|
|---|
| 87 | };
|
|---|
| 88 |
|
|---|
| 89 | /** Calculates distance between this and another vector in a periodic cell.
|
|---|
| 90 | * \param *y array to second vector
|
|---|
| 91 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
|---|
| 92 | * \return \f$| x - y |\f$
|
|---|
| 93 | */
|
|---|
| 94 | double Vector::PeriodicDistance(const Vector &y, const double * const cell_size) const
|
|---|
| 95 | {
|
|---|
| 96 | double res = Distance(y), tmp, matrix[NDIM*NDIM];
|
|---|
| 97 | Vector Shiftedy, TranslationVector;
|
|---|
| 98 | int N[NDIM];
|
|---|
| 99 | matrix[0] = cell_size[0];
|
|---|
| 100 | matrix[1] = cell_size[1];
|
|---|
| 101 | matrix[2] = cell_size[3];
|
|---|
| 102 | matrix[3] = cell_size[1];
|
|---|
| 103 | matrix[4] = cell_size[2];
|
|---|
| 104 | matrix[5] = cell_size[4];
|
|---|
| 105 | matrix[6] = cell_size[3];
|
|---|
| 106 | matrix[7] = cell_size[4];
|
|---|
| 107 | matrix[8] = cell_size[5];
|
|---|
| 108 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
|---|
| 109 | for (N[0]=-1;N[0]<=1;N[0]++)
|
|---|
| 110 | for (N[1]=-1;N[1]<=1;N[1]++)
|
|---|
| 111 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
|---|
| 112 | // create the translation vector
|
|---|
| 113 | TranslationVector.Zero();
|
|---|
| 114 | for (int i=NDIM;i--;)
|
|---|
| 115 | TranslationVector.x[i] = (double)N[i];
|
|---|
| 116 | TranslationVector.MatrixMultiplication(matrix);
|
|---|
| 117 | // add onto the original vector to compare with
|
|---|
| 118 | Shiftedy = y + TranslationVector;
|
|---|
| 119 | // get distance and compare with minimum so far
|
|---|
| 120 | tmp = Distance(Shiftedy);
|
|---|
| 121 | if (tmp < res) res = tmp;
|
|---|
| 122 | }
|
|---|
| 123 | return (res);
|
|---|
| 124 | };
|
|---|
| 125 |
|
|---|
| 126 | /** Calculates distance between this and another vector in a periodic cell.
|
|---|
| 127 | * \param *y array to second vector
|
|---|
| 128 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
|---|
| 129 | * \return \f$| x - y |^2\f$
|
|---|
| 130 | */
|
|---|
| 131 | double Vector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
|
|---|
| 132 | {
|
|---|
| 133 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
|
|---|
| 134 | Vector Shiftedy, TranslationVector;
|
|---|
| 135 | int N[NDIM];
|
|---|
| 136 | matrix[0] = cell_size[0];
|
|---|
| 137 | matrix[1] = cell_size[1];
|
|---|
| 138 | matrix[2] = cell_size[3];
|
|---|
| 139 | matrix[3] = cell_size[1];
|
|---|
| 140 | matrix[4] = cell_size[2];
|
|---|
| 141 | matrix[5] = cell_size[4];
|
|---|
| 142 | matrix[6] = cell_size[3];
|
|---|
| 143 | matrix[7] = cell_size[4];
|
|---|
| 144 | matrix[8] = cell_size[5];
|
|---|
| 145 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
|---|
| 146 | for (N[0]=-1;N[0]<=1;N[0]++)
|
|---|
| 147 | for (N[1]=-1;N[1]<=1;N[1]++)
|
|---|
| 148 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
|---|
| 149 | // create the translation vector
|
|---|
| 150 | TranslationVector.Zero();
|
|---|
| 151 | for (int i=NDIM;i--;)
|
|---|
| 152 | TranslationVector.x[i] = (double)N[i];
|
|---|
| 153 | TranslationVector.MatrixMultiplication(matrix);
|
|---|
| 154 | // add onto the original vector to compare with
|
|---|
| 155 | Shiftedy = y + TranslationVector;
|
|---|
| 156 | // get distance and compare with minimum so far
|
|---|
| 157 | tmp = DistanceSquared(Shiftedy);
|
|---|
| 158 | if (tmp < res) res = tmp;
|
|---|
| 159 | }
|
|---|
| 160 | return (res);
|
|---|
| 161 | };
|
|---|
| 162 |
|
|---|
| 163 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
|---|
| 164 | * \param *out ofstream for debugging messages
|
|---|
| 165 | * Tries to translate a vector into each adjacent neighbouring cell.
|
|---|
| 166 | */
|
|---|
| 167 | void Vector::KeepPeriodic(const double * const matrix)
|
|---|
| 168 | {
|
|---|
| 169 | // int N[NDIM];
|
|---|
| 170 | // bool flag = false;
|
|---|
| 171 | //vector Shifted, TranslationVector;
|
|---|
| 172 | Vector TestVector;
|
|---|
| 173 | // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
|---|
| 174 | // Log() << Verbose(2) << "Vector is: ";
|
|---|
| 175 | // Output(out);
|
|---|
| 176 | // Log() << Verbose(0) << endl;
|
|---|
| 177 | TestVector = (*this);
|
|---|
| 178 | TestVector.InverseMatrixMultiplication(matrix);
|
|---|
| 179 | for(int i=NDIM;i--;) { // correct periodically
|
|---|
| 180 | if (TestVector.x[i] < 0) { // get every coefficient into the interval [0,1)
|
|---|
| 181 | TestVector.x[i] += ceil(TestVector.x[i]);
|
|---|
| 182 | } else {
|
|---|
| 183 | TestVector.x[i] -= floor(TestVector.x[i]);
|
|---|
| 184 | }
|
|---|
| 185 | }
|
|---|
| 186 | TestVector.MatrixMultiplication(matrix);
|
|---|
| 187 | (*this) = TestVector;
|
|---|
| 188 | // Log() << Verbose(2) << "New corrected vector is: ";
|
|---|
| 189 | // Output(out);
|
|---|
| 190 | // Log() << Verbose(0) << endl;
|
|---|
| 191 | // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
|
|---|
| 192 | };
|
|---|
| 193 |
|
|---|
| 194 | /** Calculates scalar product between this and another vector.
|
|---|
| 195 | * \param *y array to second vector
|
|---|
| 196 | * \return \f$\langle x, y \rangle\f$
|
|---|
| 197 | */
|
|---|
| 198 | double Vector::ScalarProduct(const Vector &y) const
|
|---|
| 199 | {
|
|---|
| 200 | double res = 0.;
|
|---|
| 201 | for (int i=NDIM;i--;)
|
|---|
| 202 | res += x[i]*y[i];
|
|---|
| 203 | return (res);
|
|---|
| 204 | };
|
|---|
| 205 |
|
|---|
| 206 |
|
|---|
| 207 | /** Calculates VectorProduct between this and another vector.
|
|---|
| 208 | * -# returns the Product in place of vector from which it was initiated
|
|---|
| 209 | * -# ATTENTION: Only three dim.
|
|---|
| 210 | * \param *y array to vector with which to calculate crossproduct
|
|---|
| 211 | * \return \f$ x \times y \f&
|
|---|
| 212 | */
|
|---|
| 213 | void Vector::VectorProduct(const Vector &y)
|
|---|
| 214 | {
|
|---|
| 215 | Vector tmp;
|
|---|
| 216 | tmp[0] = x[1]* (y[2]) - x[2]* (y[1]);
|
|---|
| 217 | tmp[1] = x[2]* (y[0]) - x[0]* (y[2]);
|
|---|
| 218 | tmp[2] = x[0]* (y[1]) - x[1]* (y[0]);
|
|---|
| 219 | (*this) = tmp;
|
|---|
| 220 | };
|
|---|
| 221 |
|
|---|
| 222 |
|
|---|
| 223 | /** projects this vector onto plane defined by \a *y.
|
|---|
| 224 | * \param *y normal vector of plane
|
|---|
| 225 | * \return \f$\langle x, y \rangle\f$
|
|---|
| 226 | */
|
|---|
| 227 | void Vector::ProjectOntoPlane(const Vector &y)
|
|---|
| 228 | {
|
|---|
| 229 | Vector tmp = y;
|
|---|
| 230 | tmp.Normalize();
|
|---|
| 231 | tmp *= ScalarProduct(tmp);
|
|---|
| 232 | (*this) -= tmp;
|
|---|
| 233 | };
|
|---|
| 234 |
|
|---|
| 235 | /** Calculates the minimum distance of this vector to the plane.
|
|---|
| 236 | * \param *out output stream for debugging
|
|---|
| 237 | * \param *PlaneNormal normal of plane
|
|---|
| 238 | * \param *PlaneOffset offset of plane
|
|---|
| 239 | * \return distance to plane
|
|---|
| 240 | */
|
|---|
| 241 | double Vector::DistanceToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const
|
|---|
| 242 | {
|
|---|
| 243 | // first create part that is orthonormal to PlaneNormal with withdraw
|
|---|
| 244 | Vector temp = (*this) - PlaneOffset;
|
|---|
| 245 | temp.MakeNormalTo(PlaneNormal);
|
|---|
| 246 | temp *= -1.;
|
|---|
| 247 | // then add connecting vector from plane to point
|
|---|
| 248 | temp += (*this);
|
|---|
| 249 | temp -= PlaneOffset;
|
|---|
| 250 | double sign = temp.ScalarProduct(PlaneNormal);
|
|---|
| 251 | if (fabs(sign) > MYEPSILON)
|
|---|
| 252 | sign /= fabs(sign);
|
|---|
| 253 | else
|
|---|
| 254 | sign = 0.;
|
|---|
| 255 |
|
|---|
| 256 | return (temp.Norm()*sign);
|
|---|
| 257 | };
|
|---|
| 258 |
|
|---|
| 259 | /** Calculates the projection of a vector onto another \a *y.
|
|---|
| 260 | * \param *y array to second vector
|
|---|
| 261 | */
|
|---|
| 262 | void Vector::ProjectIt(const Vector &y)
|
|---|
| 263 | {
|
|---|
| 264 | Vector helper = y;
|
|---|
| 265 | helper.Scale(-(ScalarProduct(y)));
|
|---|
| 266 | AddVector(helper);
|
|---|
| 267 | };
|
|---|
| 268 |
|
|---|
| 269 | /** Calculates the projection of a vector onto another \a *y.
|
|---|
| 270 | * \param *y array to second vector
|
|---|
| 271 | * \return Vector
|
|---|
| 272 | */
|
|---|
| 273 | Vector Vector::Projection(const Vector &y) const
|
|---|
| 274 | {
|
|---|
| 275 | Vector helper = y;
|
|---|
| 276 | helper.Scale((ScalarProduct(y)/y.NormSquared()));
|
|---|
| 277 |
|
|---|
| 278 | return helper;
|
|---|
| 279 | };
|
|---|
| 280 |
|
|---|
| 281 | /** Calculates norm of this vector.
|
|---|
| 282 | * \return \f$|x|\f$
|
|---|
| 283 | */
|
|---|
| 284 | double Vector::Norm() const
|
|---|
| 285 | {
|
|---|
| 286 | return (sqrt(NormSquared()));
|
|---|
| 287 | };
|
|---|
| 288 |
|
|---|
| 289 | /** Calculates squared norm of this vector.
|
|---|
| 290 | * \return \f$|x|^2\f$
|
|---|
| 291 | */
|
|---|
| 292 | double Vector::NormSquared() const
|
|---|
| 293 | {
|
|---|
| 294 | return (ScalarProduct(*this));
|
|---|
| 295 | };
|
|---|
| 296 |
|
|---|
| 297 | /** Normalizes this vector.
|
|---|
| 298 | */
|
|---|
| 299 | void Vector::Normalize()
|
|---|
| 300 | {
|
|---|
| 301 | double res = 0.;
|
|---|
| 302 | for (int i=NDIM;i--;)
|
|---|
| 303 | res += this->x[i]*this->x[i];
|
|---|
| 304 | if (fabs(res) > MYEPSILON)
|
|---|
| 305 | res = 1./sqrt(res);
|
|---|
| 306 | Scale(&res);
|
|---|
| 307 | };
|
|---|
| 308 |
|
|---|
| 309 | /** Zeros all components of this vector.
|
|---|
| 310 | */
|
|---|
| 311 | void Vector::Zero()
|
|---|
| 312 | {
|
|---|
| 313 | for (int i=NDIM;i--;)
|
|---|
| 314 | this->x[i] = 0.;
|
|---|
| 315 | };
|
|---|
| 316 |
|
|---|
| 317 | /** Zeros all components of this vector.
|
|---|
| 318 | */
|
|---|
| 319 | void Vector::One(const double one)
|
|---|
| 320 | {
|
|---|
| 321 | for (int i=NDIM;i--;)
|
|---|
| 322 | this->x[i] = one;
|
|---|
| 323 | };
|
|---|
| 324 |
|
|---|
| 325 | /** Initialises all components of this vector.
|
|---|
| 326 | */
|
|---|
| 327 | void Vector::Init(const double x1, const double x2, const double x3)
|
|---|
| 328 | {
|
|---|
| 329 | x[0] = x1;
|
|---|
| 330 | x[1] = x2;
|
|---|
| 331 | x[2] = x3;
|
|---|
| 332 | };
|
|---|
| 333 |
|
|---|
| 334 | /** Checks whether vector has all components zero.
|
|---|
| 335 | * @return true - vector is zero, false - vector is not
|
|---|
| 336 | */
|
|---|
| 337 | bool Vector::IsZero() const
|
|---|
| 338 | {
|
|---|
| 339 | return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
|
|---|
| 340 | };
|
|---|
| 341 |
|
|---|
| 342 | /** Checks whether vector has length of 1.
|
|---|
| 343 | * @return true - vector is normalized, false - vector is not
|
|---|
| 344 | */
|
|---|
| 345 | bool Vector::IsOne() const
|
|---|
| 346 | {
|
|---|
| 347 | return (fabs(Norm() - 1.) < MYEPSILON);
|
|---|
| 348 | };
|
|---|
| 349 |
|
|---|
| 350 | /** Checks whether vector is normal to \a *normal.
|
|---|
| 351 | * @return true - vector is normalized, false - vector is not
|
|---|
| 352 | */
|
|---|
| 353 | bool Vector::IsNormalTo(const Vector &normal) const
|
|---|
| 354 | {
|
|---|
| 355 | if (ScalarProduct(normal) < MYEPSILON)
|
|---|
| 356 | return true;
|
|---|
| 357 | else
|
|---|
| 358 | return false;
|
|---|
| 359 | };
|
|---|
| 360 |
|
|---|
| 361 | /** Checks whether vector is normal to \a *normal.
|
|---|
| 362 | * @return true - vector is normalized, false - vector is not
|
|---|
| 363 | */
|
|---|
| 364 | bool Vector::IsEqualTo(const Vector &a) const
|
|---|
| 365 | {
|
|---|
| 366 | bool status = true;
|
|---|
| 367 | for (int i=0;i<NDIM;i++) {
|
|---|
| 368 | if (fabs(x[i] - a[i]) > MYEPSILON)
|
|---|
| 369 | status = false;
|
|---|
| 370 | }
|
|---|
| 371 | return status;
|
|---|
| 372 | };
|
|---|
| 373 |
|
|---|
| 374 | /** Calculates the angle between this and another vector.
|
|---|
| 375 | * \param *y array to second vector
|
|---|
| 376 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
|---|
| 377 | */
|
|---|
| 378 | double Vector::Angle(const Vector &y) const
|
|---|
| 379 | {
|
|---|
| 380 | double norm1 = Norm(), norm2 = y.Norm();
|
|---|
| 381 | double angle = -1;
|
|---|
| 382 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
|---|
| 383 | angle = this->ScalarProduct(y)/norm1/norm2;
|
|---|
| 384 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
|---|
| 385 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
|---|
| 386 | if (angle < -1)
|
|---|
| 387 | angle = -1;
|
|---|
| 388 | if (angle > 1)
|
|---|
| 389 | angle = 1;
|
|---|
| 390 | return acos(angle);
|
|---|
| 391 | };
|
|---|
| 392 |
|
|---|
| 393 |
|
|---|
| 394 | double& Vector::operator[](size_t i){
|
|---|
| 395 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
|---|
| 396 | return x[i];
|
|---|
| 397 | }
|
|---|
| 398 |
|
|---|
| 399 | const double& Vector::operator[](size_t i) const{
|
|---|
| 400 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
|---|
| 401 | return x[i];
|
|---|
| 402 | }
|
|---|
| 403 |
|
|---|
| 404 | double& Vector::at(size_t i){
|
|---|
| 405 | return (*this)[i];
|
|---|
| 406 | }
|
|---|
| 407 |
|
|---|
| 408 | const double& Vector::at(size_t i) const{
|
|---|
| 409 | return (*this)[i];
|
|---|
| 410 | }
|
|---|
| 411 |
|
|---|
| 412 | double* Vector::get(){
|
|---|
| 413 | return x;
|
|---|
| 414 | }
|
|---|
| 415 |
|
|---|
| 416 | /** Compares vector \a to vector \a b component-wise.
|
|---|
| 417 | * \param a base vector
|
|---|
| 418 | * \param b vector components to add
|
|---|
| 419 | * \return a == b
|
|---|
| 420 | */
|
|---|
| 421 | bool Vector::operator==(const Vector& b) const
|
|---|
| 422 | {
|
|---|
| 423 | bool status = true;
|
|---|
| 424 | for (int i=0;i<NDIM;i++)
|
|---|
| 425 | status = status && (fabs((*this)[i] - b[i]) < MYEPSILON);
|
|---|
| 426 | return status;
|
|---|
| 427 | };
|
|---|
| 428 |
|
|---|
| 429 | /** Sums vector \a to this lhs component-wise.
|
|---|
| 430 | * \param a base vector
|
|---|
| 431 | * \param b vector components to add
|
|---|
| 432 | * \return lhs + a
|
|---|
| 433 | */
|
|---|
| 434 | const Vector& Vector::operator+=(const Vector& b)
|
|---|
| 435 | {
|
|---|
| 436 | this->AddVector(b);
|
|---|
| 437 | return *this;
|
|---|
| 438 | };
|
|---|
| 439 |
|
|---|
| 440 | /** Subtracts vector \a from this lhs component-wise.
|
|---|
| 441 | * \param a base vector
|
|---|
| 442 | * \param b vector components to add
|
|---|
| 443 | * \return lhs - a
|
|---|
| 444 | */
|
|---|
| 445 | const Vector& Vector::operator-=(const Vector& b)
|
|---|
| 446 | {
|
|---|
| 447 | this->SubtractVector(b);
|
|---|
| 448 | return *this;
|
|---|
| 449 | };
|
|---|
| 450 |
|
|---|
| 451 | /** factor each component of \a a times a double \a m.
|
|---|
| 452 | * \param a base vector
|
|---|
| 453 | * \param m factor
|
|---|
| 454 | * \return lhs.x[i] * m
|
|---|
| 455 | */
|
|---|
| 456 | const Vector& operator*=(Vector& a, const double m)
|
|---|
| 457 | {
|
|---|
| 458 | a.Scale(m);
|
|---|
| 459 | return a;
|
|---|
| 460 | };
|
|---|
| 461 |
|
|---|
| 462 | /** Sums two vectors \a and \b component-wise.
|
|---|
| 463 | * \param a first vector
|
|---|
| 464 | * \param b second vector
|
|---|
| 465 | * \return a + b
|
|---|
| 466 | */
|
|---|
| 467 | Vector const Vector::operator+(const Vector& b) const
|
|---|
| 468 | {
|
|---|
| 469 | Vector x = *this;
|
|---|
| 470 | x.AddVector(b);
|
|---|
| 471 | return x;
|
|---|
| 472 | };
|
|---|
| 473 |
|
|---|
| 474 | /** Subtracts vector \a from \b component-wise.
|
|---|
| 475 | * \param a first vector
|
|---|
| 476 | * \param b second vector
|
|---|
| 477 | * \return a - b
|
|---|
| 478 | */
|
|---|
| 479 | Vector const Vector::operator-(const Vector& b) const
|
|---|
| 480 | {
|
|---|
| 481 | Vector x = *this;
|
|---|
| 482 | x.SubtractVector(b);
|
|---|
| 483 | return x;
|
|---|
| 484 | };
|
|---|
| 485 |
|
|---|
| 486 | /** Factors given vector \a a times \a m.
|
|---|
| 487 | * \param a vector
|
|---|
| 488 | * \param m factor
|
|---|
| 489 | * \return m * a
|
|---|
| 490 | */
|
|---|
| 491 | Vector const operator*(const Vector& a, const double m)
|
|---|
| 492 | {
|
|---|
| 493 | Vector x(a);
|
|---|
| 494 | x.Scale(m);
|
|---|
| 495 | return x;
|
|---|
| 496 | };
|
|---|
| 497 |
|
|---|
| 498 | /** Factors given vector \a a times \a m.
|
|---|
| 499 | * \param m factor
|
|---|
| 500 | * \param a vector
|
|---|
| 501 | * \return m * a
|
|---|
| 502 | */
|
|---|
| 503 | Vector const operator*(const double m, const Vector& a )
|
|---|
| 504 | {
|
|---|
| 505 | Vector x(a);
|
|---|
| 506 | x.Scale(m);
|
|---|
| 507 | return x;
|
|---|
| 508 | };
|
|---|
| 509 |
|
|---|
| 510 | ostream& operator<<(ostream& ost, const Vector& m)
|
|---|
| 511 | {
|
|---|
| 512 | ost << "(";
|
|---|
| 513 | for (int i=0;i<NDIM;i++) {
|
|---|
| 514 | ost << m[i];
|
|---|
| 515 | if (i != 2)
|
|---|
| 516 | ost << ",";
|
|---|
| 517 | }
|
|---|
| 518 | ost << ")";
|
|---|
| 519 | return ost;
|
|---|
| 520 | };
|
|---|
| 521 |
|
|---|
| 522 | /** Scales each atom coordinate by an individual \a factor.
|
|---|
| 523 | * \param *factor pointer to scaling factor
|
|---|
| 524 | */
|
|---|
| 525 | void Vector::Scale(const double ** const factor)
|
|---|
| 526 | {
|
|---|
| 527 | for (int i=NDIM;i--;)
|
|---|
| 528 | x[i] *= (*factor)[i];
|
|---|
| 529 | };
|
|---|
| 530 |
|
|---|
| 531 | void Vector::Scale(const double * const factor)
|
|---|
| 532 | {
|
|---|
| 533 | for (int i=NDIM;i--;)
|
|---|
| 534 | x[i] *= *factor;
|
|---|
| 535 | };
|
|---|
| 536 |
|
|---|
| 537 | void Vector::Scale(const double factor)
|
|---|
| 538 | {
|
|---|
| 539 | for (int i=NDIM;i--;)
|
|---|
| 540 | x[i] *= factor;
|
|---|
| 541 | };
|
|---|
| 542 |
|
|---|
| 543 | /** Translate atom by given vector.
|
|---|
| 544 | * \param trans[] translation vector.
|
|---|
| 545 | */
|
|---|
| 546 | void Vector::Translate(const Vector &trans)
|
|---|
| 547 | {
|
|---|
| 548 | for (int i=NDIM;i--;)
|
|---|
| 549 | x[i] += trans[i];
|
|---|
| 550 | };
|
|---|
| 551 |
|
|---|
| 552 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
|
|---|
| 553 | * \param *M matrix of box
|
|---|
| 554 | * \param *Minv inverse matrix
|
|---|
| 555 | */
|
|---|
| 556 | void Vector::WrapPeriodically(const double * const M, const double * const Minv)
|
|---|
| 557 | {
|
|---|
| 558 | MatrixMultiplication(Minv);
|
|---|
| 559 | // truncate to [0,1] for each axis
|
|---|
| 560 | for (int i=0;i<NDIM;i++) {
|
|---|
| 561 | x[i] += 0.5; // set to center of box
|
|---|
| 562 | while (x[i] >= 1.)
|
|---|
| 563 | x[i] -= 1.;
|
|---|
| 564 | while (x[i] < 0.)
|
|---|
| 565 | x[i] += 1.;
|
|---|
| 566 | }
|
|---|
| 567 | MatrixMultiplication(M);
|
|---|
| 568 | };
|
|---|
| 569 |
|
|---|
| 570 | /** Do a matrix multiplication.
|
|---|
| 571 | * \param *matrix NDIM_NDIM array
|
|---|
| 572 | */
|
|---|
| 573 | void Vector::MatrixMultiplication(const double * const M)
|
|---|
| 574 | {
|
|---|
| 575 | Vector C;
|
|---|
| 576 | // do the matrix multiplication
|
|---|
| 577 | C.x[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
|
|---|
| 578 | C.x[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
|
|---|
| 579 | C.x[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
|
|---|
| 580 | // transfer the result into this
|
|---|
| 581 | for (int i=NDIM;i--;)
|
|---|
| 582 | x[i] = C.x[i];
|
|---|
| 583 | };
|
|---|
| 584 |
|
|---|
| 585 | /** Do a matrix multiplication with the \a *A' inverse.
|
|---|
| 586 | * \param *matrix NDIM_NDIM array
|
|---|
| 587 | */
|
|---|
| 588 | bool Vector::InverseMatrixMultiplication(const double * const A)
|
|---|
| 589 | {
|
|---|
| 590 | Vector C;
|
|---|
| 591 | double B[NDIM*NDIM];
|
|---|
| 592 | double detA = RDET3(A);
|
|---|
| 593 | double detAReci;
|
|---|
| 594 |
|
|---|
| 595 | // calculate the inverse B
|
|---|
| 596 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
|---|
| 597 | detAReci = 1./detA;
|
|---|
| 598 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
|---|
| 599 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
|---|
| 600 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
|---|
| 601 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
|---|
| 602 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
|---|
| 603 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
|---|
| 604 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
|---|
| 605 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
|---|
| 606 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
|---|
| 607 |
|
|---|
| 608 | // do the matrix multiplication
|
|---|
| 609 | C.x[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
|
|---|
| 610 | C.x[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
|
|---|
| 611 | C.x[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
|
|---|
| 612 | // transfer the result into this
|
|---|
| 613 | for (int i=NDIM;i--;)
|
|---|
| 614 | x[i] = C.x[i];
|
|---|
| 615 | return true;
|
|---|
| 616 | } else {
|
|---|
| 617 | return false;
|
|---|
| 618 | }
|
|---|
| 619 | };
|
|---|
| 620 |
|
|---|
| 621 |
|
|---|
| 622 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
|---|
| 623 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
|---|
| 624 | * \param *x1 first vector
|
|---|
| 625 | * \param *x2 second vector
|
|---|
| 626 | * \param *x3 third vector
|
|---|
| 627 | * \param *factors three-component vector with the factor for each given vector
|
|---|
| 628 | */
|
|---|
| 629 | void Vector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
|
|---|
| 630 | {
|
|---|
| 631 | (*this) = (factors[0]*x1) +
|
|---|
| 632 | (factors[1]*x2) +
|
|---|
| 633 | (factors[2]*x3);
|
|---|
| 634 | };
|
|---|
| 635 |
|
|---|
| 636 | /** Mirrors atom against a given plane.
|
|---|
| 637 | * \param n[] normal vector of mirror plane.
|
|---|
| 638 | */
|
|---|
| 639 | void Vector::Mirror(const Vector &n)
|
|---|
| 640 | {
|
|---|
| 641 | double projection;
|
|---|
| 642 | projection = ScalarProduct(n)/n.NormSquared(); // remove constancy from n (keep as logical one)
|
|---|
| 643 | // withdraw projected vector twice from original one
|
|---|
| 644 | for (int i=NDIM;i--;)
|
|---|
| 645 | x[i] -= 2.*projection*n[i];
|
|---|
| 646 | };
|
|---|
| 647 |
|
|---|
| 648 |
|
|---|
| 649 | /** Calculates orthonormal vector to one given vector.
|
|---|
| 650 | * Just subtracts the projection onto the given vector from this vector.
|
|---|
| 651 | * The removed part of the vector is Vector::Projection()
|
|---|
| 652 | * \param *x1 vector
|
|---|
| 653 | * \return true - success, false - vector is zero
|
|---|
| 654 | */
|
|---|
| 655 | bool Vector::MakeNormalTo(const Vector &y1)
|
|---|
| 656 | {
|
|---|
| 657 | bool result = false;
|
|---|
| 658 | double factor = y1.ScalarProduct(*this)/y1.NormSquared();
|
|---|
| 659 | Vector x1 = factor * y1 ;
|
|---|
| 660 | SubtractVector(x1);
|
|---|
| 661 | for (int i=NDIM;i--;)
|
|---|
| 662 | result = result || (fabs(x[i]) > MYEPSILON);
|
|---|
| 663 |
|
|---|
| 664 | return result;
|
|---|
| 665 | };
|
|---|
| 666 |
|
|---|
| 667 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
|---|
| 668 | * Just scan how many components of given *vector are unequal to zero and
|
|---|
| 669 | * try to get the skp of both to be zero accordingly.
|
|---|
| 670 | * \param *vector given vector
|
|---|
| 671 | * \return true - success, false - failure (null vector given)
|
|---|
| 672 | */
|
|---|
| 673 | bool Vector::GetOneNormalVector(const Vector &GivenVector)
|
|---|
| 674 | {
|
|---|
| 675 | int Components[NDIM]; // contains indices of non-zero components
|
|---|
| 676 | int Last = 0; // count the number of non-zero entries in vector
|
|---|
| 677 | int j; // loop variables
|
|---|
| 678 | double norm;
|
|---|
| 679 |
|
|---|
| 680 | for (j=NDIM;j--;)
|
|---|
| 681 | Components[j] = -1;
|
|---|
| 682 | // find two components != 0
|
|---|
| 683 | for (j=0;j<NDIM;j++)
|
|---|
| 684 | if (fabs(GivenVector[j]) > MYEPSILON)
|
|---|
| 685 | Components[Last++] = j;
|
|---|
| 686 |
|
|---|
| 687 | switch(Last) {
|
|---|
| 688 | case 3: // threecomponent system
|
|---|
| 689 | case 2: // two component system
|
|---|
| 690 | norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
|
|---|
| 691 | x[Components[2]] = 0.;
|
|---|
| 692 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
|---|
| 693 | x[Components[1]] = -1./GivenVector[Components[1]] / norm;
|
|---|
| 694 | x[Components[0]] = 1./GivenVector[Components[0]] / norm;
|
|---|
| 695 | return true;
|
|---|
| 696 | break;
|
|---|
| 697 | case 1: // one component system
|
|---|
| 698 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
|---|
| 699 | x[(Components[0]+2)%NDIM] = 0.;
|
|---|
| 700 | x[(Components[0]+1)%NDIM] = 1.;
|
|---|
| 701 | x[Components[0]] = 0.;
|
|---|
| 702 | return true;
|
|---|
| 703 | break;
|
|---|
| 704 | default:
|
|---|
| 705 | return false;
|
|---|
| 706 | }
|
|---|
| 707 | };
|
|---|
| 708 |
|
|---|
| 709 | /** Adds vector \a *y componentwise.
|
|---|
| 710 | * \param *y vector
|
|---|
| 711 | */
|
|---|
| 712 | void Vector::AddVector(const Vector &y)
|
|---|
| 713 | {
|
|---|
| 714 | for (int i=NDIM;i--;)
|
|---|
| 715 | this->x[i] += y[i];
|
|---|
| 716 | }
|
|---|
| 717 |
|
|---|
| 718 | /** Adds vector \a *y componentwise.
|
|---|
| 719 | * \param *y vector
|
|---|
| 720 | */
|
|---|
| 721 | void Vector::SubtractVector(const Vector &y)
|
|---|
| 722 | {
|
|---|
| 723 | for (int i=NDIM;i--;)
|
|---|
| 724 | this->x[i] -= y[i];
|
|---|
| 725 | }
|
|---|
| 726 |
|
|---|
| 727 | /** Copy vector \a y componentwise.
|
|---|
| 728 | * \param y vector
|
|---|
| 729 | */
|
|---|
| 730 | void Vector::CopyVector(const Vector &y)
|
|---|
| 731 | {
|
|---|
| 732 | // check for self assignment
|
|---|
| 733 | if(&y!=this) {
|
|---|
| 734 | for (int i=NDIM;i--;)
|
|---|
| 735 | this->x[i] = y.x[i];
|
|---|
| 736 | }
|
|---|
| 737 | }
|
|---|
| 738 |
|
|---|
| 739 | // this function is completely unused so it is deactivated until new uses arrive and a new
|
|---|
| 740 | // place can be found
|
|---|
| 741 | #if 0
|
|---|
| 742 | /** Solves a vectorial system consisting of two orthogonal statements and a norm statement.
|
|---|
| 743 | * This is linear system of equations to be solved, however of the three given (skp of this vector\
|
|---|
| 744 | * with either of the three hast to be zero) only two are linear independent. The third equation
|
|---|
| 745 | * is that the vector should be of magnitude 1 (orthonormal). This all leads to a case-based solution
|
|---|
| 746 | * where very often it has to be checked whether a certain value is zero or not and thus forked into
|
|---|
| 747 | * another case.
|
|---|
| 748 | * \param *x1 first vector
|
|---|
| 749 | * \param *x2 second vector
|
|---|
| 750 | * \param *y third vector
|
|---|
| 751 | * \param alpha first angle
|
|---|
| 752 | * \param beta second angle
|
|---|
| 753 | * \param c norm of final vector
|
|---|
| 754 | * \return a vector with \f$\langle x1,x2 \rangle=A\f$, \f$\langle x1,y \rangle = B\f$ and with norm \a c.
|
|---|
| 755 | * \bug this is not yet working properly
|
|---|
| 756 | */
|
|---|
| 757 | bool Vector::SolveSystem(Vector * x1, Vector * x2, Vector * y, const double alpha, const double beta, const double c)
|
|---|
| 758 | {
|
|---|
| 759 | double D1,D2,D3,E1,E2,F1,F2,F3,p,q=0., A, B1, B2, C;
|
|---|
| 760 | double ang; // angle on testing
|
|---|
| 761 | double sign[3];
|
|---|
| 762 | int i,j,k;
|
|---|
| 763 | A = cos(alpha) * x1->Norm() * c;
|
|---|
| 764 | B1 = cos(beta + M_PI/2.) * y->Norm() * c;
|
|---|
| 765 | B2 = cos(beta) * x2->Norm() * c;
|
|---|
| 766 | C = c * c;
|
|---|
| 767 | Log() << Verbose(2) << "A " << A << "\tB " << B1 << "\tC " << C << endl;
|
|---|
| 768 | int flag = 0;
|
|---|
| 769 | if (fabs(x1->x[0]) < MYEPSILON) { // check for zero components for the later flipping and back-flipping
|
|---|
| 770 | if (fabs(x1->x[1]) > MYEPSILON) {
|
|---|
| 771 | flag = 1;
|
|---|
| 772 | } else if (fabs(x1->x[2]) > MYEPSILON) {
|
|---|
| 773 | flag = 2;
|
|---|
| 774 | } else {
|
|---|
| 775 | return false;
|
|---|
| 776 | }
|
|---|
| 777 | }
|
|---|
| 778 | switch (flag) {
|
|---|
| 779 | default:
|
|---|
| 780 | case 0:
|
|---|
| 781 | break;
|
|---|
| 782 | case 2:
|
|---|
| 783 | flip(x1->x[0],x1->x[1]);
|
|---|
| 784 | flip(x2->x[0],x2->x[1]);
|
|---|
| 785 | flip(y->x[0],y->x[1]);
|
|---|
| 786 | //flip(x[0],x[1]);
|
|---|
| 787 | flip(x1->x[1],x1->x[2]);
|
|---|
| 788 | flip(x2->x[1],x2->x[2]);
|
|---|
| 789 | flip(y->x[1],y->x[2]);
|
|---|
| 790 | //flip(x[1],x[2]);
|
|---|
| 791 | case 1:
|
|---|
| 792 | flip(x1->x[0],x1->x[1]);
|
|---|
| 793 | flip(x2->x[0],x2->x[1]);
|
|---|
| 794 | flip(y->x[0],y->x[1]);
|
|---|
| 795 | //flip(x[0],x[1]);
|
|---|
| 796 | flip(x1->x[1],x1->x[2]);
|
|---|
| 797 | flip(x2->x[1],x2->x[2]);
|
|---|
| 798 | flip(y->x[1],y->x[2]);
|
|---|
| 799 | //flip(x[1],x[2]);
|
|---|
| 800 | break;
|
|---|
| 801 | }
|
|---|
| 802 | // now comes the case system
|
|---|
| 803 | D1 = -y->x[0]/x1->x[0]*x1->x[1]+y->x[1];
|
|---|
| 804 | D2 = -y->x[0]/x1->x[0]*x1->x[2]+y->x[2];
|
|---|
| 805 | D3 = y->x[0]/x1->x[0]*A-B1;
|
|---|
| 806 | Log() << Verbose(2) << "D1 " << D1 << "\tD2 " << D2 << "\tD3 " << D3 << "\n";
|
|---|
| 807 | if (fabs(D1) < MYEPSILON) {
|
|---|
| 808 | Log() << Verbose(2) << "D1 == 0!\n";
|
|---|
| 809 | if (fabs(D2) > MYEPSILON) {
|
|---|
| 810 | Log() << Verbose(3) << "D2 != 0!\n";
|
|---|
| 811 | x[2] = -D3/D2;
|
|---|
| 812 | E1 = A/x1->x[0] + x1->x[2]/x1->x[0]*D3/D2;
|
|---|
| 813 | E2 = -x1->x[1]/x1->x[0];
|
|---|
| 814 | Log() << Verbose(3) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
|---|
| 815 | F1 = E1*E1 + 1.;
|
|---|
| 816 | F2 = -E1*E2;
|
|---|
| 817 | F3 = E1*E1 + D3*D3/(D2*D2) - C;
|
|---|
| 818 | Log() << Verbose(3) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
|---|
| 819 | if (fabs(F1) < MYEPSILON) {
|
|---|
| 820 | Log() << Verbose(4) << "F1 == 0!\n";
|
|---|
| 821 | Log() << Verbose(4) << "Gleichungssystem linear\n";
|
|---|
| 822 | x[1] = F3/(2.*F2);
|
|---|
| 823 | } else {
|
|---|
| 824 | p = F2/F1;
|
|---|
| 825 | q = p*p - F3/F1;
|
|---|
| 826 | Log() << Verbose(4) << "p " << p << "\tq " << q << endl;
|
|---|
| 827 | if (q < 0) {
|
|---|
| 828 | Log() << Verbose(4) << "q < 0" << endl;
|
|---|
| 829 | return false;
|
|---|
| 830 | }
|
|---|
| 831 | x[1] = p + sqrt(q);
|
|---|
| 832 | }
|
|---|
| 833 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
|---|
| 834 | } else {
|
|---|
| 835 | Log() << Verbose(2) << "Gleichungssystem unterbestimmt\n";
|
|---|
| 836 | return false;
|
|---|
| 837 | }
|
|---|
| 838 | } else {
|
|---|
| 839 | E1 = A/x1->x[0]+x1->x[1]/x1->x[0]*D3/D1;
|
|---|
| 840 | E2 = x1->x[1]/x1->x[0]*D2/D1 - x1->x[2];
|
|---|
| 841 | Log() << Verbose(2) << "E1 " << E1 << "\tE2 " << E2 << "\n";
|
|---|
| 842 | F1 = E2*E2 + D2*D2/(D1*D1) + 1.;
|
|---|
| 843 | F2 = -(E1*E2 + D2*D3/(D1*D1));
|
|---|
| 844 | F3 = E1*E1 + D3*D3/(D1*D1) - C;
|
|---|
| 845 | Log() << Verbose(2) << "F1 " << F1 << "\tF2 " << F2 << "\tF3 " << F3 << "\n";
|
|---|
| 846 | if (fabs(F1) < MYEPSILON) {
|
|---|
| 847 | Log() << Verbose(3) << "F1 == 0!\n";
|
|---|
| 848 | Log() << Verbose(3) << "Gleichungssystem linear\n";
|
|---|
| 849 | x[2] = F3/(2.*F2);
|
|---|
| 850 | } else {
|
|---|
| 851 | p = F2/F1;
|
|---|
| 852 | q = p*p - F3/F1;
|
|---|
| 853 | Log() << Verbose(3) << "p " << p << "\tq " << q << endl;
|
|---|
| 854 | if (q < 0) {
|
|---|
| 855 | Log() << Verbose(3) << "q < 0" << endl;
|
|---|
| 856 | return false;
|
|---|
| 857 | }
|
|---|
| 858 | x[2] = p + sqrt(q);
|
|---|
| 859 | }
|
|---|
| 860 | x[1] = (-D2 * x[2] - D3)/D1;
|
|---|
| 861 | x[0] = A/x1->x[0] - x1->x[1]/x1->x[0]*x[1] + x1->x[2]/x1->x[0]*x[2];
|
|---|
| 862 | }
|
|---|
| 863 | switch (flag) { // back-flipping
|
|---|
| 864 | default:
|
|---|
| 865 | case 0:
|
|---|
| 866 | break;
|
|---|
| 867 | case 2:
|
|---|
| 868 | flip(x1->x[0],x1->x[1]);
|
|---|
| 869 | flip(x2->x[0],x2->x[1]);
|
|---|
| 870 | flip(y->x[0],y->x[1]);
|
|---|
| 871 | flip(x[0],x[1]);
|
|---|
| 872 | flip(x1->x[1],x1->x[2]);
|
|---|
| 873 | flip(x2->x[1],x2->x[2]);
|
|---|
| 874 | flip(y->x[1],y->x[2]);
|
|---|
| 875 | flip(x[1],x[2]);
|
|---|
| 876 | case 1:
|
|---|
| 877 | flip(x1->x[0],x1->x[1]);
|
|---|
| 878 | flip(x2->x[0],x2->x[1]);
|
|---|
| 879 | flip(y->x[0],y->x[1]);
|
|---|
| 880 | //flip(x[0],x[1]);
|
|---|
| 881 | flip(x1->x[1],x1->x[2]);
|
|---|
| 882 | flip(x2->x[1],x2->x[2]);
|
|---|
| 883 | flip(y->x[1],y->x[2]);
|
|---|
| 884 | flip(x[1],x[2]);
|
|---|
| 885 | break;
|
|---|
| 886 | }
|
|---|
| 887 | // one z component is only determined by its radius (without sign)
|
|---|
| 888 | // thus check eight possible sign flips and determine by checking angle with second vector
|
|---|
| 889 | for (i=0;i<8;i++) {
|
|---|
| 890 | // set sign vector accordingly
|
|---|
| 891 | for (j=2;j>=0;j--) {
|
|---|
| 892 | k = (i & pot(2,j)) << j;
|
|---|
| 893 | Log() << Verbose(2) << "k " << k << "\tpot(2,j) " << pot(2,j) << endl;
|
|---|
| 894 | sign[j] = (k == 0) ? 1. : -1.;
|
|---|
| 895 | }
|
|---|
| 896 | Log() << Verbose(2) << i << ": sign matrix is " << sign[0] << "\t" << sign[1] << "\t" << sign[2] << "\n";
|
|---|
| 897 | // apply sign matrix
|
|---|
| 898 | for (j=NDIM;j--;)
|
|---|
| 899 | x[j] *= sign[j];
|
|---|
| 900 | // calculate angle and check
|
|---|
| 901 | ang = x2->Angle (this);
|
|---|
| 902 | Log() << Verbose(1) << i << "th angle " << ang << "\tbeta " << cos(beta) << " :\t";
|
|---|
| 903 | if (fabs(ang - cos(beta)) < MYEPSILON) {
|
|---|
| 904 | break;
|
|---|
| 905 | }
|
|---|
| 906 | // unapply sign matrix (is its own inverse)
|
|---|
| 907 | for (j=NDIM;j--;)
|
|---|
| 908 | x[j] *= sign[j];
|
|---|
| 909 | }
|
|---|
| 910 | return true;
|
|---|
| 911 | };
|
|---|
| 912 |
|
|---|
| 913 | #endif
|
|---|
| 914 |
|
|---|
| 915 | /**
|
|---|
| 916 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and
|
|---|
| 917 | * their offset.
|
|---|
| 918 | *
|
|---|
| 919 | * @param offest for the origin of the parallelepiped
|
|---|
| 920 | * @param three vectors forming the matrix that defines the shape of the parallelpiped
|
|---|
| 921 | */
|
|---|
| 922 | bool Vector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
|
|---|
| 923 | {
|
|---|
| 924 | Vector a = (*this) - offset;
|
|---|
| 925 | a.InverseMatrixMultiplication(parallelepiped);
|
|---|
| 926 | bool isInside = true;
|
|---|
| 927 |
|
|---|
| 928 | for (int i=NDIM;i--;)
|
|---|
| 929 | isInside = isInside && ((a.x[i] <= 1) && (a.x[i] >= 0));
|
|---|
| 930 |
|
|---|
| 931 | return isInside;
|
|---|
| 932 | }
|
|---|