source: molecuilder/src/molecules.cpp@ 8efbfc

Last change on this file since 8efbfc was 8efbfc, checked in by Frederik Heber <heber@…>, 17 years ago

FragmentMolecule(): status variable used when checking adjacency file was faulty used

After the splitting up into new functions StoreAdj...() and CheckAdj...(), status was not used properly anymore. Now, it gathers per AND conjunction the status of the three steps (ill ListOfAtoms, CheckAdj, ParseKeySets).

  • Property mode set to 100644
File size: 185.8 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=0;i<num;i++) {
24 for(int j=0;j<NDIM;j++)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 last_atom = 0;
50 elemente = teil;
51 AtomCount = 0;
52 BondCount = 0;
53 NoNonBonds = 0;
54 NoNonHydrogen = 0;
55 NoCyclicBonds = 0;
56 ListOfBondsPerAtom = NULL;
57 NumberOfBondsPerAtom = NULL;
58 ElementCount = 0;
59 for(int i=0;i<MAX_ELEMENTS;i++)
60 ElementsInMolecule[i] = 0;
61 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
62 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
63};
64
65/** Destructor of class molecule.
66 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
67 */
68molecule::~molecule()
69{
70 if (ListOfBondsPerAtom != NULL)
71 for(int i=0;i<AtomCount;i++)
72 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
73 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
74 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
75 CleanupMolecule();
76 delete(first);
77 delete(last);
78 delete(end);
79 delete(start);
80};
81
82/** Adds given atom \a *pointer from molecule list.
83 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
84 * \param *pointer allocated and set atom
85 * \return true - succeeded, false - atom not found in list
86 */
87bool molecule::AddAtom(atom *pointer)
88{
89 if (pointer != NULL) {
90 pointer->sort = &pointer->nr;
91 pointer->nr = last_atom++; // increase number within molecule
92 AtomCount++;
93 if (pointer->type != NULL) {
94 if (ElementsInMolecule[pointer->type->Z] == 0)
95 ElementCount++;
96 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
97 if (pointer->type->Z != 1)
98 NoNonHydrogen++;
99 if (pointer->Name == NULL) {
100 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
101 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
102 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
103 }
104 }
105 return add(pointer, end);
106 } else
107 return false;
108};
109
110/** Adds a copy of the given atom \a *pointer from molecule list.
111 * Increases molecule::last_atom and gives last number to added atom.
112 * \param *pointer allocated and set atom
113 * \return true - succeeded, false - atom not found in list
114 */
115atom * molecule::AddCopyAtom(atom *pointer)
116{
117 if (pointer != NULL) {
118 atom *walker = new atom();
119 walker->type = pointer->type; // copy element of atom
120 walker->x.CopyVector(&pointer->x); // copy coordination
121 walker->v.CopyVector(&pointer->v); // copy velocity
122 walker->FixedIon = pointer->FixedIon;
123 walker->sort = &walker->nr;
124 walker->nr = last_atom++; // increase number within molecule
125 walker->father = pointer; //->GetTrueFather();
126 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
127 strcpy (walker->Name, pointer->Name);
128 add(walker, end);
129 if ((pointer->type != NULL) && (pointer->type->Z != 1))
130 NoNonHydrogen++;
131 AtomCount++;
132 return walker;
133 } else
134 return NULL;
135};
136
137/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
138 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
139 * a different scheme when adding \a *replacement atom for the given one.
140 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
141 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
142 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalVector().
143 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
144 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
145 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
146 * hydrogens forming this angle with *origin.
147 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
148 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
149 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
150 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
151 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
152 * \f]
153 * vector::GetNormalVector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalVector creates
154 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
155 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
156 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
157 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
158 * \f]
159 * as the coordination of all three atoms in the coordinate system of these three vectors:
160 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
161 *
162 * \param *out output stream for debugging
163 * \param *Bond pointer to bond between \a *origin and \a *replacement
164 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
165 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
166 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
167 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
168 * \param NumBond number of bonds in \a **BondList
169 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
170 * \return number of atoms added, if < bond::BondDegree then something went wrong
171 * \todo double and triple bonds splitting (always use the tetraeder angle!)
172 */
173bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
174{
175 double bondlength; // bond length of the bond to be replaced/cut
176 double bondangle; // bond angle of the bond to be replaced/cut
177 double BondRescale; // rescale value for the hydrogen bond length
178 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
179 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
180 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
181 int i; // loop variable
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 vector OrthoVector1, OrthoVector2; // temporary vectors in coordination construction
184 vector InBondVector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188 *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondVector.CopyVector(&TopReplacement->x);
191 InBondVector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondVector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondVector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198 *out << Verbose(4) << "InBondVector is: ";
199 InBondVector.Output(out);
200 *out << endl;
201 OrthoVector1.Zero();
202 for (int i=0;i<NDIM;i++) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 OrthoVector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 OrthoVector1.MatrixMultiplication(matrix);
210 InBondVector.SubtractVector(&OrthoVector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondVector.Norm();
213 *out << Verbose(4) << "Corrected InBondVector is now: ";
214 InBondVector.Output(out);
215 *out << endl;
216 } // periodic correction finished
217
218 InBondVector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondVector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondVector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247 FirstOtherAtom->x.Output(out);
248 *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273 *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && OrthoVector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 OrthoVector1.GetOneNormalVector(&InBondVector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //OrthoVector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 OrthoVector1.MakeNormalVector(&InBondVector);
285 OrthoVector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << OrthoVector1.Norm() << " and " << InBondVector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondVector ";
306// InBondVector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// OrthoVector1.Output(out);
310// *out << endl;
311 *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(i=0;i<NDIM;i++) { // rotate by half the bond angle in both directions (InBondVector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(i=0;i<NDIM;i++) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329 FirstOtherAtom->x.Output(out);
330 *out << endl;
331 *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332 SecondOtherAtom->x.Output(out);
333 *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondVector
360 AllWentWell = AllWentWell && OrthoVector1.GetOneNormalVector(&InBondVector);
361 *out << Verbose(3) << "Orthovector1: ";
362 OrthoVector1.Output(out);
363 *out << endl;
364 AllWentWell = AllWentWell && OrthoVector2.MakeNormalVector(&InBondVector, &OrthoVector1);
365 *out << Verbose(3) << "Orthovector2: ";
366 OrthoVector2.Output(out);
367 *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for OrthVector1
375 g = b/2.; // length for OrthVector2
376 *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377 *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402 *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403 FirstOtherAtom->x.Output(out);
404 *out << endl;
405 *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406 SecondOtherAtom->x.Output(out);
407 *out << endl;
408 *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409 ThirdOtherAtom->x.Output(out);
410 *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427 *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *first = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 for(i=0;i<NumberOfAtoms;i++){
459 first = new atom;
460 getline(xyzfile,line,'\n');
461 istringstream *item = new istringstream(line);
462 //istringstream input(line);
463 cout << Verbose(1) << "Reading: " << line << endl;
464 *item >> shorthand;
465 *item >> x[0];
466 *item >> x[1];
467 *item >> x[2];
468 first->type = elemente->FindElement(shorthand);
469 if (first->type == NULL) {
470 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
471 first->type = elemente->FindElement(1);
472 }
473 for(j=0;j<NDIM;j++)
474 first->x.x[j] = x[j];
475 AddAtom(first); // add to molecule
476 delete(item);
477 }
478 xyzfile.close();
479 delete(input);
480 return true;
481};
482
483/** Creates a copy of this molecule.
484 * \return copy of molecule
485 */
486molecule *molecule::CopyMolecule()
487{
488 molecule *copy = new molecule(elemente);
489 atom *CurrentAtom = NULL;
490 atom *LeftAtom = NULL, *RightAtom = NULL;
491 atom *Walker = NULL;
492
493 // copy all atoms
494 Walker = start;
495 while(Walker->next != end) {
496 Walker = Walker->next;
497 CurrentAtom = copy->AddCopyAtom(Walker);
498 }
499
500 // copy all bonds
501 bond *Binder = first;
502 bond *NewBond = NULL;
503 while(Binder->next != last) {
504 Binder = Binder->next;
505 // get the pendant atoms of current bond in the copy molecule
506 LeftAtom = copy->start;
507 while (LeftAtom->next != copy->end) {
508 LeftAtom = LeftAtom->next;
509 if (LeftAtom->father == Binder->leftatom)
510 break;
511 }
512 RightAtom = copy->start;
513 while (RightAtom->next != copy->end) {
514 RightAtom = RightAtom->next;
515 if (RightAtom->father == Binder->rightatom)
516 break;
517 }
518 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
519 NewBond->Cyclic = Binder->Cyclic;
520 if (Binder->Cyclic)
521 copy->NoCyclicBonds++;
522 NewBond->Type = Binder->Type;
523 }
524 // correct fathers
525 Walker = copy->start;
526 while(Walker->next != copy->end) {
527 Walker = Walker->next;
528 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
529 Walker->father = Walker; // set father to itself (copy of a whole molecule)
530 else
531 Walker->father = Walker->father->father; // set father to original's father
532 }
533 // copy values
534 copy->CountAtoms((ofstream *)&cout);
535 copy->CountElements();
536 if (first->next != last) { // if adjaceny list is present
537 copy->BondDistance = BondDistance;
538 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
539 }
540
541 return copy;
542};
543
544/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
545 * Also updates molecule::BondCount and molecule::NoNonBonds.
546 * \param *first first atom in bond
547 * \param *second atom in bond
548 * \return pointer to bond or NULL on failure
549 */
550bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
551{
552 bond *Binder = NULL;
553 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
554 Binder = new bond(atom1, atom2, degree, BondCount++);
555 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
556 NoNonBonds++;
557 add(Binder, last);
558 } else {
559 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
560 }
561 return Binder;
562};
563
564/** Remove bond from bond chain list.
565 * \todo Function not implemented yet
566 * \param *pointer bond pointer
567 * \return true - bound found and removed, false - bond not found/removed
568 */
569bool molecule::RemoveBond(bond *pointer)
570{
571 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
572 removewithoutcheck(pointer);
573 return true;
574};
575
576/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
577 * \todo Function not implemented yet
578 * \param *BondPartner atom to be removed
579 * \return true - bounds found and removed, false - bonds not found/removed
580 */
581bool molecule::RemoveBonds(atom *BondPartner)
582{
583 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
584 return false;
585};
586
587/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
588 * \param *dim vector class
589 */
590void molecule::SetBoxDimension(vector *dim)
591{
592 cell_size[0] = dim->x[0];
593 cell_size[1] = 0.;
594 cell_size[2] = dim->x[1];
595 cell_size[3] = 0.;
596 cell_size[4] = 0.;
597 cell_size[5] = dim->x[2];
598};
599
600/** Centers the edge of the atoms at (0,0,0).
601 * \param *out output stream for debugging
602 * \param *max coordinates of other edge, specifying box dimensions.
603 */
604void molecule::CenterEdge(ofstream *out, vector *max)
605{
606 vector *min = new vector;
607
608 *out << Verbose(3) << "Begin of CenterEdge." << endl;
609 atom *ptr = start->next; // start at first in list
610 if (ptr != end) { //list not empty?
611 for (int i=0;i<NDIM;i++) {
612 max->x[i] = ptr->x.x[i];
613 min->x[i] = ptr->x.x[i];
614 }
615 while (ptr->next != end) { // continue with second if present
616 ptr = ptr->next;
617 //ptr->Output(1,1,out);
618 for (int i=0;i<NDIM;i++) {
619 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
620 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
621 }
622 }
623 *out << Verbose(4) << "Maximum is ";
624 max->Output(out);
625 *out << ", Minimum is ";
626 min->Output(out);
627 *out << endl;
628
629 for (int i=0;i<NDIM;i++) {
630 min->x[i] *= -1.;
631 max->x[i] += min->x[i];
632 }
633 Translate(min);
634 }
635 delete(min);
636 *out << Verbose(3) << "End of CenterEdge." << endl;
637};
638
639/** Centers the center of the atoms at (0,0,0).
640 * \param *out output stream for debugging
641 * \param *center return vector for translation vector
642 */
643void molecule::CenterOrigin(ofstream *out, vector *center)
644{
645 int Num = 0;
646 atom *ptr = start->next; // start at first in list
647
648 for(int i=0;i<NDIM;i++) // zero center vector
649 center->x[i] = 0.;
650
651 if (ptr != end) { //list not empty?
652 while (ptr->next != end) { // continue with second if present
653 ptr = ptr->next;
654 Num++;
655 center->AddVector(&ptr->x);
656 }
657 center->Scale(-1./Num); // divide through total number (and sign for direction)
658 Translate(center);
659 }
660};
661
662/** Centers the center of gravity of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *center return vector for translation vector
665 */
666void molecule::CenterGravity(ofstream *out, vector *center)
667{
668 double Num = 0;
669 atom *ptr = start->next; // start at first in list
670 vector tmp;
671
672 for(int i=0;i<NDIM;i++) // zero center vector
673 center->x[i] = 0.;
674
675 if (ptr != end) { //list not empty?
676 while (ptr->next != end) { // continue with second if present
677 ptr = ptr->next;
678 Num += ptr->type->mass;
679 tmp.CopyVector(&ptr->x);
680 tmp.Scale(ptr->type->mass); // scale by mass
681 center->AddVector(&tmp);
682 }
683 center->Scale(-1./Num); // divide through total mass (and sign for direction)
684 Translate(center);
685 }
686};
687
688/** Scales all atoms by \a *factor.
689 * \param *factor pointer to scaling factor
690 */
691void molecule::Scale(double **factor)
692{
693 atom *ptr = start;
694
695 while (ptr->next != end) {
696 ptr = ptr->next;
697 ptr->x.Scale(factor);
698 }
699};
700
701/** Translate all atoms by given vector.
702 * \param trans[] translation vector.
703 */
704void molecule::Translate(const vector *trans)
705{
706 atom *ptr = start;
707
708 while (ptr->next != end) {
709 ptr = ptr->next;
710 ptr->x.Translate(trans);
711 }
712};
713
714/** Mirrors all atoms against a given plane.
715 * \param n[] normal vector of mirror plane.
716 */
717void molecule::Mirror(const vector *n)
718{
719 atom *ptr = start;
720
721 while (ptr->next != end) {
722 ptr = ptr->next;
723 ptr->x.Mirror(n);
724 }
725};
726
727/** Determines center of gravity (yet not considering atom masses).
728 * \param CenterOfGravity reference to return vector
729 */
730void molecule::DetermineCenterOfGravity(vector &CenterOfGravity)
731{
732 atom *Walker = start;
733 bond *Binder = NULL;
734 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
735 double tmp;
736 bool flag;
737 vector TestVector, TranslationVector;
738
739 do {
740 CenterOfGravity.Zero();
741 flag = true;
742 while (Walker->next != end) {
743 Walker = Walker->next;
744#ifdef ADDHYDROGEN
745 if (Walker->type->Z != 1) {
746#endif
747 TestVector.CopyVector(&Walker->x);
748 TestVector.InverseMatrixMultiplication(matrix);
749 TranslationVector.Zero();
750 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
751 Binder = ListOfBondsPerAtom[Walker->nr][i];
752 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
753 for (int j=0;j<NDIM;j++) {
754 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
755 if ((fabs(tmp)) > BondDistance) {
756 flag = false;
757 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
758 if (tmp > 0)
759 TranslationVector.x[j] -= 1.;
760 else
761 TranslationVector.x[j] += 1.;
762 }
763 }
764 }
765 TestVector.AddVector(&TranslationVector);
766 TestVector.MatrixMultiplication(matrix);
767 CenterOfGravity.AddVector(&TestVector);
768 cout << Verbose(1) << "Vector is: ";
769 TestVector.Output((ofstream *)&cout);
770 cout << endl;
771#ifdef ADDHYDROGEN
772 // now also change all hydrogens
773 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
774 Binder = ListOfBondsPerAtom[Walker->nr][i];
775 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
776 TestVector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
777 TestVector.InverseMatrixMultiplication(matrix);
778 TestVector.AddVector(&TranslationVector);
779 TestVector.MatrixMultiplication(matrix);
780 CenterOfGravity.AddVector(&TestVector);
781 cout << Verbose(1) << "Hydrogen Vector is: ";
782 TestVector.Output((ofstream *)&cout);
783 cout << endl;
784 }
785 }
786 }
787#endif
788 }
789 } while (!flag);
790 Free((void **)&matrix, "molecule::DetermineCenterOfGravity: *matrix");
791 CenterOfGravity.Scale(1./(double)AtomCount);
792};
793
794/** Align all atoms in such a manner that given vector \a *n is along z axis.
795 * \param n[] alignment vector.
796 */
797void molecule::Align(vector *n)
798{
799 atom *ptr = start;
800 double alpha, tmp;
801 vector z_axis;
802 z_axis.x[0] = 0.;
803 z_axis.x[1] = 0.;
804 z_axis.x[2] = 1.;
805
806 // rotate on z-x plane
807 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
808 alpha = atan(-n->x[0]/n->x[2]);
809 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
810 while (ptr->next != end) {
811 ptr = ptr->next;
812 tmp = ptr->x.x[0];
813 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
814 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
815 }
816 // rotate n vector
817 tmp = n->x[0];
818 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
819 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
820 cout << Verbose(1) << "alignment vector after first rotation: ";
821 n->Output((ofstream *)&cout);
822 cout << endl;
823
824 // rotate on z-y plane
825 ptr = start;
826 alpha = atan(-n->x[1]/n->x[2]);
827 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 tmp = ptr->x.x[1];
831 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
832 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
833 }
834 // rotate n vector (for consistency check)
835 tmp = n->x[1];
836 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
837 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
838
839 cout << Verbose(1) << "alignment vector after second rotation: ";
840 n->Output((ofstream *)&cout);
841 cout << Verbose(1) << endl;
842 cout << Verbose(0) << "End of Aligning all atoms." << endl;
843};
844
845/** Removes atom from molecule list.
846 * \param *pointer atom to be removed
847 * \return true - succeeded, false - atom not found in list
848 */
849bool molecule::RemoveAtom(atom *pointer)
850{
851 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
852 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
853 else
854 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
855 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
856 ElementCount--;
857 return remove(pointer, start, end);
858};
859
860/** Removes every atom from molecule list.
861 * \return true - succeeded, false - atom not found in list
862 */
863bool molecule::CleanupMolecule()
864{
865 return (cleanup(start,end) && cleanup(first,last));
866};
867
868/** Finds an atom specified by its continuous number.
869 * \param Nr number of atom withim molecule
870 * \return pointer to atom or NULL
871 */
872atom * molecule::FindAtom(int Nr) const{
873 atom * walker = find(&Nr, start,end);
874 if (walker != NULL) {
875 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
876 return walker;
877 } else {
878 cout << Verbose(0) << "Atom not found in list." << endl;
879 return NULL;
880 }
881};
882
883/** Asks for atom number, and checks whether in list.
884 * \param *text question before entering
885 */
886atom * molecule::AskAtom(char *text)
887{
888 int No;
889 atom *ion = NULL;
890 do {
891 //cout << Verbose(0) << "============Atom list==========================" << endl;
892 //mol->Output((ofstream *)&cout);
893 //cout << Verbose(0) << "===============================================" << endl;
894 cout << Verbose(0) << text;
895 cin >> No;
896 ion = this->FindAtom(No);
897 } while (ion == NULL);
898 return ion;
899};
900
901/** Checks if given coordinates are within cell volume.
902 * \param *x array of coordinates
903 * \return true - is within, false - out of cell
904 */
905bool molecule::CheckBounds(const vector *x) const
906{
907 bool result = true;
908 int j =-1;
909 for (int i=0;i<3;i++) {
910 j += i+1;
911 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
912 }
913 //return result;
914 return true; /// probably not gonna use the check no more
915};
916
917/** Calculates sum over least square distance to line hidden in \a *x.
918 * \param *x offset and direction vector
919 * \param *params pointer to lsq_params structure
920 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
921 */
922double LeastSquareDistance (const gsl_vector * x, void * params)
923{
924 double res = 0, t;
925 vector a,b,c,d;
926 struct lsq_params *par = (struct lsq_params *)params;
927 atom *ptr = par->mol->start;
928
929 // initialize vectors
930 a.x[0] = gsl_vector_get(x,0);
931 a.x[1] = gsl_vector_get(x,1);
932 a.x[2] = gsl_vector_get(x,2);
933 b.x[0] = gsl_vector_get(x,3);
934 b.x[1] = gsl_vector_get(x,4);
935 b.x[2] = gsl_vector_get(x,5);
936 // go through all atoms
937 while (ptr != par->mol->end) {
938 ptr = ptr->next;
939 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
940 c.CopyVector(&ptr->x); // copy vector to temporary one
941 c.SubtractVector(&a); // subtract offset vector
942 t = c.ScalarProduct(&b); // get direction parameter
943 d.CopyVector(&b); // and create vector
944 d.Scale(&t);
945 c.SubtractVector(&d); // ... yielding distance vector
946 res += d.ScalarProduct((const vector *)&d); // add squared distance
947 }
948 }
949 return res;
950};
951
952/** By minimizing the least square distance gains alignment vector.
953 * \bug this is not yet working properly it seems
954 */
955void molecule::GetAlignVector(struct lsq_params * par) const
956{
957 int np = 6;
958
959 const gsl_multimin_fminimizer_type *T =
960 gsl_multimin_fminimizer_nmsimplex;
961 gsl_multimin_fminimizer *s = NULL;
962 gsl_vector *ss;
963 gsl_multimin_function minex_func;
964
965 size_t iter = 0, i;
966 int status;
967 double size;
968
969 /* Initial vertex size vector */
970 ss = gsl_vector_alloc (np);
971
972 /* Set all step sizes to 1 */
973 gsl_vector_set_all (ss, 1.0);
974
975 /* Starting point */
976 par->x = gsl_vector_alloc (np);
977 par->mol = this;
978
979 gsl_vector_set (par->x, 0, 0.0); // offset
980 gsl_vector_set (par->x, 1, 0.0);
981 gsl_vector_set (par->x, 2, 0.0);
982 gsl_vector_set (par->x, 3, 0.0); // direction
983 gsl_vector_set (par->x, 4, 0.0);
984 gsl_vector_set (par->x, 5, 1.0);
985
986 /* Initialize method and iterate */
987 minex_func.f = &LeastSquareDistance;
988 minex_func.n = np;
989 minex_func.params = (void *)par;
990
991 s = gsl_multimin_fminimizer_alloc (T, np);
992 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
993
994 do
995 {
996 iter++;
997 status = gsl_multimin_fminimizer_iterate(s);
998
999 if (status)
1000 break;
1001
1002 size = gsl_multimin_fminimizer_size (s);
1003 status = gsl_multimin_test_size (size, 1e-2);
1004
1005 if (status == GSL_SUCCESS)
1006 {
1007 printf ("converged to minimum at\n");
1008 }
1009
1010 printf ("%5d ", (int)iter);
1011 for (i = 0; i < (size_t)np; i++)
1012 {
1013 printf ("%10.3e ", gsl_vector_get (s->x, i));
1014 }
1015 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1016 }
1017 while (status == GSL_CONTINUE && iter < 100);
1018
1019 for (i=0;i<(size_t)np;i++)
1020 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1021 //gsl_vector_free(par->x);
1022 gsl_vector_free(ss);
1023 gsl_multimin_fminimizer_free (s);
1024};
1025
1026/** Prints molecule to *out.
1027 * \param *out output stream
1028 */
1029bool molecule::Output(ofstream *out)
1030{
1031 element *runner = elemente->start;
1032 atom *walker = NULL;
1033 int ElementNo, AtomNo;
1034 CountElements();
1035
1036 if (out == NULL) {
1037 return false;
1038 } else {
1039 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1040 ElementNo = 0;
1041 while (runner->next != elemente->end) { // go through every element
1042 runner = runner->next;
1043 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1044 ElementNo++;
1045 AtomNo = 0;
1046 walker = start;
1047 while (walker->next != end) { // go through every atom of this element
1048 walker = walker->next;
1049 if (walker->type == runner) { // if this atom fits to element
1050 AtomNo++;
1051 walker->Output(ElementNo, AtomNo, out);
1052 }
1053 }
1054 }
1055 }
1056 return true;
1057 }
1058};
1059
1060/** Output of element before the actual coordination list.
1061 * \param *out stream pointer
1062 */
1063bool molecule::Checkout(ofstream *out) const
1064{
1065 return elemente->Checkout(out, ElementsInMolecule);
1066};
1067
1068/** Prints molecule to *out as xyz file.
1069 * \param *out output stream
1070 */
1071bool molecule::OutputXYZ(ofstream *out) const
1072{
1073 atom *walker = NULL;
1074 int No = 0;
1075 time_t now;
1076
1077 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1078 walker = start;
1079 while (walker->next != end) { // go through every atom and count
1080 walker = walker->next;
1081 No++;
1082 }
1083 if (out != NULL) {
1084 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1085 walker = start;
1086 while (walker->next != end) { // go through every atom of this element
1087 walker = walker->next;
1088 walker->OutputXYZLine(out);
1089 }
1090 return true;
1091 } else
1092 return false;
1093};
1094
1095/** Brings molecule::AtomCount and atom::*Name up-to-date.
1096 * \param *out output stream for debugging
1097 */
1098void molecule::CountAtoms(ofstream *out)
1099{
1100 int i = 0;
1101 atom *Walker = start;
1102 while (Walker->next != end) {
1103 Walker = Walker->next;
1104 i++;
1105 }
1106 if ((AtomCount == 0) || (i != AtomCount)) {
1107 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1108 AtomCount = i;
1109
1110 // count NonHydrogen atoms and give each atom a unique name
1111 if (AtomCount != 0) {
1112 i=0;
1113 NoNonHydrogen = 0;
1114 Walker = start;
1115 while (Walker->next != end) {
1116 Walker = Walker->next;
1117 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1118 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1119 NoNonHydrogen++;
1120 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1121 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1122 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1123 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1124 i++;
1125 }
1126 } else
1127 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1128 }
1129};
1130
1131/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1132 */
1133void molecule::CountElements()
1134{
1135 int i = 0;
1136 for(i=0;i<MAX_ELEMENTS;i++)
1137 ElementsInMolecule[i] = 0;
1138 ElementCount = 0;
1139
1140 atom *walker = start;
1141 while (walker->next != end) {
1142 walker = walker->next;
1143 ElementsInMolecule[walker->type->Z]++;
1144 i++;
1145 }
1146 for(i=0;i<MAX_ELEMENTS;i++)
1147 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1148};
1149
1150/** Counts all cyclic bonds and returns their number.
1151 * \note Hydrogen bonds can never by cyclic, thus no check for that
1152 * \param *out output stream for debugging
1153 * \return number opf cyclic bonds
1154 */
1155int molecule::CountCyclicBonds(ofstream *out)
1156{
1157 int No = 0;
1158 int MinimumRingSize;
1159 MoleculeLeafClass *Subgraphs = NULL;
1160 bond *Binder = first;
1161 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1162 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1163 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
1164 while (Subgraphs->next != NULL) {
1165 Subgraphs = Subgraphs->next;
1166 delete(Subgraphs->previous);
1167 }
1168 delete(Subgraphs);
1169 }
1170 while(Binder->next != last) {
1171 Binder = Binder->next;
1172 if (Binder->Cyclic)
1173 No++;
1174 }
1175 return No;
1176};
1177
1178/** Returns Shading as a char string.
1179 * \param color the Shading
1180 * \return string of the flag
1181 */
1182char * molecule::GetColor(enum Shading color)
1183{
1184 switch(color) {
1185 case white:
1186 return "white";
1187 break;
1188 case lightgray:
1189 return "lightgray";
1190 break;
1191 case darkgray:
1192 return "darkgray";
1193 break;
1194 case black:
1195 return "black";
1196 break;
1197 default:
1198 return "uncolored";
1199 break;
1200 };
1201};
1202
1203
1204/** Counts necessary number of valence electrons and returns number and SpinType.
1205 * \param configuration containing everything
1206 */
1207void molecule::CalculateOrbitals(class config &configuration)
1208{
1209 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1210 for(int i=0;i<MAX_ELEMENTS;i++) {
1211 if (ElementsInMolecule[i] != 0) {
1212 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1213 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1214 }
1215 }
1216 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1217 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1218 configuration.MaxPsiDouble /= 2;
1219 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1220 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1221 configuration.ProcPEGamma /= 2;
1222 configuration.ProcPEPsi *= 2;
1223 } else {
1224 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1225 configuration.ProcPEPsi = 1;
1226 }
1227 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1228};
1229
1230/** Creates an adjacency list of the molecule.
1231 * Generally, we use the CSD approach to bond recognition, that is the the distance
1232 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1233 * a threshold t = 0.4 Angstroem.
1234 * To make it O(N log N) the function uses the linked-cell technique as follows:
1235 * The procedure is step-wise:
1236 * -# Remove every bond in list
1237 * -# Count the atoms in the molecule with CountAtoms()
1238 * -# partition cell into smaller linked cells of size \a bonddistance
1239 * -# put each atom into its corresponding cell
1240 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1241 * -# create the list of bonds via CreateListOfBondsPerAtom()
1242 * -# correct the bond degree iteratively (single->double->triple bond)
1243 * -# finally print the bond list to \a *out if desired
1244 * \param *out out stream for printing the matrix, NULL if no output
1245 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1246 */
1247void molecule::CreateAdjacencyList(ofstream *out, double bonddistance)
1248{
1249 atom *Walker = NULL, *OtherWalker = NULL;
1250 int No, NoBonds;
1251 bond *Binder = NULL;
1252 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1253 molecule **CellList;
1254 double distance, MinDistance, MaxDistance;
1255 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1256 vector x;
1257
1258 BondDistance = bonddistance;
1259 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1260 // remove every bond from the list
1261 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1262 cleanup(first,last);
1263 }
1264
1265 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1266 CountAtoms(out);
1267 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1268
1269 if (AtomCount != 0) {
1270 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1271 j=-1;
1272 for (int i=0;i<NDIM;i++) {
1273 j += i+1;
1274 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1275 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1276 }
1277 // 2a. allocate memory for the cell list
1278 NumberCells = divisor[0]*divisor[1]*divisor[2];
1279 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1280 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1281 for (int i=0;i<NumberCells;i++)
1282 CellList[i] = NULL;
1283
1284 // 2b. put all atoms into its corresponding list
1285 Walker = start;
1286 while(Walker->next != end) {
1287 Walker = Walker->next;
1288 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1289 //Walker->x.Output(out);
1290 //*out << "." << endl;
1291 // compute the cell by the atom's coordinates
1292 j=-1;
1293 for (int i=0;i<NDIM;i++) {
1294 j += i+1;
1295 x.CopyVector(&(Walker->x));
1296 x.KeepPeriodic(out, matrix);
1297 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1298 }
1299 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1300 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1301 // add copy atom to this cell
1302 if (CellList[index] == NULL) // allocate molecule if not done
1303 CellList[index] = new molecule(elemente);
1304 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1305 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1306 }
1307 //for (int i=0;i<NumberCells;i++)
1308 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1309
1310 // 3a. go through every cell
1311 for (N[0]=0;N[0]<divisor[0];N[0]++)
1312 for (N[1]=0;N[1]<divisor[1];N[1]++)
1313 for (N[2]=0;N[2]<divisor[2];N[2]++) {
1314 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1315 if (CellList[Index] != NULL) { // if there atoms in this cell
1316 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1317 // 3b. for every atom therein
1318 Walker = CellList[Index]->start;
1319 while (Walker->next != CellList[Index]->end) { // go through every atom
1320 Walker = Walker->next;
1321 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1322 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1323 for (n[0]=-1;n[0]<=1;n[0]++)
1324 for (n[1]=-1;n[1]<=1;n[1]++)
1325 for (n[2]=-1;n[2]<=1;n[2]++) {
1326 // compute the index of this comparison cell and make it periodic
1327 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1328 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1329 if (CellList[index] != NULL) { // if there are any atoms in this cell
1330 OtherWalker = CellList[index]->start;
1331 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1332 OtherWalker = OtherWalker->next;
1333 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1334 /// \todo periodic check is missing here!
1335 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1336 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1337 MaxDistance = MinDistance + BONDTHRESHOLD;
1338 MinDistance -= BONDTHRESHOLD;
1339 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1340 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1341 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1342 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1343 } else {
1344 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1345 }
1346 }
1347 }
1348 }
1349 }
1350 }
1351 }
1352 // 4. free the cell again
1353 for (int i=0;i<NumberCells;i++)
1354 if (CellList[i] != NULL) {
1355 delete(CellList[i]);
1356 }
1357 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1358
1359 // create the adjacency list per atom
1360 CreateListOfBondsPerAtom(out);
1361
1362 // correct Bond degree of each bond by checking of updated(!) sum of bond degree for an atom match its valence count
1363 // bond degrres are correctled iteratively by one, so that 2-2 instead of 1-3 or 3-1 corrections are favoured: We want
1364 // a rather symmetric distribution of higher bond degrees
1365 if (BondCount != 0) {
1366 NoCyclicBonds = 0;
1367 *out << Verbose(1) << "correct Bond degree of each bond" << endl;
1368 do {
1369 No = 0; // No acts as breakup flag (if 1 we still continue)
1370 Walker = start;
1371 while (Walker->next != end) { // go through every atom
1372 Walker = Walker->next;
1373 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1374 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1375 // count valence of first partner (updated!), might have changed during last bond partner
1376 NoBonds = 0;
1377 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1378 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1379 *out << Verbose(3) << "Walker: " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1380 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check NoBonds of other atom
1381 // count valence of second partner
1382 NoBonds = 0;
1383 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1384 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1385 *out << Verbose(3) << "OtherWalker: " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1386 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) // increase bond degree by one
1387 ListOfBondsPerAtom[Walker->nr][i]->BondDegree++;
1388 }
1389 }
1390 }
1391 } while (No);
1392
1393 } else
1394 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1395 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
1396
1397 // output bonds for debugging (if bond chain list was correctly installed)
1398 *out << Verbose(1) << endl << "From contents of bond chain list:";
1399 Binder = first;
1400 while(Binder->next != last) {
1401 Binder = Binder->next;
1402 *out << *Binder << "\t" << endl;
1403 }
1404 *out << endl;
1405 } else
1406 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1407 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1408 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1409};
1410
1411/** Performs a Depth-First search on this molecule.
1412 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1413 * articulations points, ...
1414 * We use the algorithm from [Even, Graph Algorithms, p.62].
1415 * \param *out output stream for debugging
1416 * \param ReturnStack true - return pointer to atom stack of separable components, false - return NULL
1417 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1418 * \return list of each disconnected subgraph as an individual molecule class structure
1419 */
1420MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, bool ReturnStack, int &MinimumRingSize)
1421{
1422 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1423 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1424 MoleculeLeafClass *LeafWalker = SubGraphs;
1425 int CurrentGraphNr = 0, OldGraphNr;
1426 int CyclicBonds;
1427 int ComponentNumber = 0;
1428 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1429 bond *Binder = NULL;
1430 bool BackStepping = false;
1431
1432 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1433
1434 ResetAllBondsToUnused();
1435 ResetAllAtomNumbers();
1436 InitComponentNumbers();
1437 while (Root != end) { // if there any atoms at all
1438 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1439 AtomStack->ClearStack();
1440
1441 // put into new subgraph molecule and add this to list of subgraphs
1442 LeafWalker = new MoleculeLeafClass(LeafWalker);
1443 LeafWalker->Leaf = new molecule(elemente);
1444 LeafWalker->Leaf->AddCopyAtom(Root);
1445
1446 OldGraphNr = CurrentGraphNr;
1447 Walker = Root;
1448 do { // (10)
1449 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1450 if (!BackStepping) { // if we don't just return from (8)
1451 Walker->GraphNr = CurrentGraphNr;
1452 Walker->LowpointNr = CurrentGraphNr;
1453 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1454 AtomStack->Push(Walker);
1455 CurrentGraphNr++;
1456 }
1457 do { // (3) if Walker has no unused egdes, go to (5)
1458 BackStepping = false; // reset backstepping flag for (8)
1459 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1460 Binder = FindNextUnused(Walker);
1461 if (Binder == NULL)
1462 break;
1463 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1464 // (4) Mark Binder used, ...
1465 Binder->MarkUsed(black);
1466 OtherAtom = Binder->GetOtherAtom(Walker);
1467 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1468 if (OtherAtom->GraphNr != -1) {
1469 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1470 Binder->Type = BackEdge;
1471 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1472 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1473 } else {
1474 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1475 Binder->Type = TreeEdge;
1476 OtherAtom->Ancestor = Walker;
1477 Walker = OtherAtom;
1478 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1479 break;
1480 }
1481 Binder = NULL;
1482 } while (1); // (3)
1483 if (Binder == NULL) {
1484 *out << Verbose(2) << "No more Unused Bonds." << endl;
1485 break;
1486 } else
1487 Binder = NULL;
1488 } while (1); // (2)
1489
1490 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1491 if ((Walker == Root) && (Binder == NULL))
1492 break;
1493
1494 // (5) if Ancestor of Walker is ...
1495 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1496 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1497 // (6) (Ancestor of Walker is not Root)
1498 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1499 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1500 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1501 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1502 } else {
1503 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1504 Walker->Ancestor->SeparationVertex = true;
1505 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1506 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1507 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1508 SetNextComponentNumber(Walker, ComponentNumber);
1509 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1510 do {
1511 OtherAtom = AtomStack->PopLast();
1512 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1513 SetNextComponentNumber(OtherAtom, ComponentNumber);
1514 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1515 } while (OtherAtom != Walker);
1516 ComponentNumber++;
1517 }
1518 // (8) Walker becomes its Ancestor, go to (3)
1519 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1520 Walker = Walker->Ancestor;
1521 BackStepping = true;
1522 }
1523 if (!BackStepping) { // coming from (8) want to go to (3)
1524 // (9) remove all from stack till Walker (including), these and Root form a component
1525 AtomStack->Output(out);
1526 SetNextComponentNumber(Root, ComponentNumber);
1527 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1528 SetNextComponentNumber(Walker, ComponentNumber);
1529 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1530 do {
1531 OtherAtom = AtomStack->PopLast();
1532 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1533 SetNextComponentNumber(OtherAtom, ComponentNumber);
1534 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1535 } while (OtherAtom != Walker);
1536 ComponentNumber++;
1537
1538 // (11) Root is separation vertex, set Walker to Root and go to (4)
1539 Walker = Root;
1540 Binder = FindNextUnused(Walker);
1541 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
1542 if (Binder != NULL) { // Root is separation vertex
1543 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
1544 Walker->SeparationVertex = true;
1545 }
1546 }
1547 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
1548
1549 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
1550 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
1551 LeafWalker->Leaf->Output(out);
1552 *out << endl;
1553
1554 // step on to next root
1555 while ((Root != end) && (Root->GraphNr != -1)) {
1556 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
1557 if (Root->GraphNr != -1) // if already discovered, step on
1558 Root = Root->next;
1559 }
1560 }
1561 // set cyclic bond criterium on "same LP" basis
1562 Binder = first;
1563 while(Binder->next != last) {
1564 Binder = Binder->next;
1565 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
1566 Binder->Cyclic = true;
1567 NoCyclicBonds++;
1568 }
1569 }
1570
1571 // correct cyclic bonds that are not included in "same LP" argument
1572 Binder = first;
1573 while (Binder->next != last) {
1574 Binder = Binder->next;
1575 Walker = Binder->leftatom;
1576 OtherAtom = Binder->rightatom;
1577 // now check whether both have a cyclic bond in their list
1578 CyclicBonds = 0; // counts cyclic bonds;
1579 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1580 if ((CyclicBonds == 0) && (ListOfBondsPerAtom[Walker->nr][i]->Cyclic))
1581 CyclicBonds = 1;
1582 for(int i=0;i<NumberOfBondsPerAtom[OtherAtom->nr];i++)
1583 if ((CyclicBonds == 1) && (ListOfBondsPerAtom[OtherAtom->nr][i]->Cyclic))
1584 CyclicBonds = 2;
1585 Binder->Cyclic = (Binder->Cyclic) || (CyclicBonds == 2); // set the Cyclic criterium either or ...
1586 }
1587
1588 // further analysis of the found cycles (print rings, get minimum cycle length)
1589 CyclicStructureAnalysis(out, MinimumRingSize);
1590 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
1591 Walker = start;
1592 while (Walker->next != end) {
1593 Walker = Walker->next;
1594 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
1595 OutputComponentNumber(out, Walker);
1596 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
1597 }
1598
1599 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
1600 Binder = first;
1601 while(Binder->next != last) {
1602 Binder = Binder->next;
1603 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
1604 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
1605 OutputComponentNumber(out, Binder->leftatom);
1606 *out << " === ";
1607 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
1608 OutputComponentNumber(out, Binder->rightatom);
1609 *out << ">." << endl;
1610 if (Binder->Cyclic) // cyclic ??
1611 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
1612 }
1613
1614 // further analysis of the found cycles (print rings, get minimum cycle length)
1615 CyclicStructureAnalysis(out, MinimumRingSize);
1616
1617 // free all and exit
1618 delete(AtomStack);
1619 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
1620 return SubGraphs;
1621};
1622
1623/** Analyses the cycles found and returns minimum of all cycle lengths.
1624 * \param *out output stream for debugging
1625 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1626 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
1627 */
1628void molecule::CyclicStructureAnalysis(ofstream *out, int &MinimumRingSize)
1629{
1630 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1631 int LP;
1632 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Runner = NULL;
1633 bond *Binder = NULL;
1634 int RingSize, NumCycles;
1635
1636 // go through every atom
1637 AtomStack->ClearStack();
1638 int *NoCyclicBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1639 Walker = start;
1640 while (Walker->next != end) {
1641 Walker = Walker->next;
1642 NoCyclicBondsPerAtom[Walker->nr] = 0;
1643 // check whether it's connected to cyclic bonds and count per atom
1644 // 0 means not part of a cycle, 2 means in a cycle, 3 or more means interconnection site of cycles
1645 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
1646 Binder = ListOfBondsPerAtom[Walker->nr][i];
1647 NoCyclicBondsPerAtom[Walker->nr] += (int) Binder->Cyclic;
1648 if (NoCyclicBondsPerAtom[Walker->nr] == 3) //push all intersections
1649 AtomStack->Push(Walker);
1650 }
1651 }
1652 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1653 for(int i=0;i<AtomCount;i++) {
1654 *out << NoCyclicBondsPerAtom[i] << " ";
1655 }
1656 *out << endl;
1657 *out << Verbose(1) << "Analysing cycles ... " << endl;
1658 MinimumRingSize = -1;
1659 NumCycles = 0;
1660 while (!AtomStack->IsEmpty()) {
1661 Walker = AtomStack->PopFirst();
1662 if (NoCyclicBondsPerAtom[Walker->nr] > 1) {
1663 NoCyclicBondsPerAtom[Walker->nr]--; // remove one for being intersection
1664 RingSize = 0;
1665 *out << Verbose(2) << "Current intersection is " << *Walker << ", expect to find " << NoCyclicBondsPerAtom[Walker->nr] << " cycles." << endl;
1666 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1667 Binder = ListOfBondsPerAtom[Walker->nr][i];
1668 OtherAtom = Binder->GetOtherAtom(Walker);
1669 // note down the LowPoint number of this cycle
1670 if (NoCyclicBondsPerAtom[OtherAtom->nr] > 1) {
1671 LP = OtherAtom->LowpointNr;
1672 NoCyclicBondsPerAtom[Walker->nr]--; // walker is start of cycle
1673 if (LP != Walker->LowpointNr)
1674 *out << Verbose(2) << "Tributary cycle: ... <-> " << Walker->Name;
1675 else
1676 *out << Verbose(2) << "Main cycle: ... <-> " << Walker->Name;
1677 Root = Walker; // root acts as predecessor marker so that we don't step back accidentally
1678 RingSize = 1;
1679 do {
1680 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++) { // search among its bonds for next in cycle (same lowpoint nr)
1681 Runner = ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom);
1682 if (((Runner->LowpointNr == LP) || (Runner->LowpointNr == Walker->LowpointNr)) && (Runner != Root)) {
1683 // first check is to stay in the cycle
1684 // middle check is allow for getting back into main cycle briefly from tributary cycle (just one step, then while further down stops)
1685 // last check is not step back
1686 *out << " <-> " << OtherAtom->Name;
1687 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1688 Root = OtherAtom;
1689 OtherAtom = Runner;
1690 NoCyclicBondsPerAtom[Root->nr]--;
1691 RingSize++;
1692 break;
1693 }
1694 }
1695 } while ((OtherAtom->LowpointNr == LP) && (Walker != OtherAtom) && (Root->LowpointNr == OtherAtom->LowpointNr));
1696 // now check if the LP is different from Walker's, as then there is one more bond to follow
1697 if (LP != Walker->LowpointNr) {
1698 // find last bond to home base
1699 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++)
1700 if (ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom) == Root) {
1701 *out << " <-> " << OtherAtom->Name;
1702 RingSize++;
1703 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1704 }
1705 } else {
1706 // we have made the complete cycle
1707 }
1708 *out << " <-> ... with cycle length of " << RingSize << "." << endl;
1709 NumCycles++;
1710 if ((RingSize < MinimumRingSize) || (MinimumRingSize == -1))
1711 MinimumRingSize = RingSize;
1712 }
1713 }
1714 }
1715 }
1716
1717 // print NoCyclicBondsPerAtom to visually check of all are zero
1718 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1719 for(int i=0;i<AtomCount;i++) {
1720 if (NoCyclicBondsPerAtom[i] > 0)
1721 cerr << "There was an error in molecule::CyclicStructureAnalysis!" << endl;
1722 *out << NoCyclicBondsPerAtom[i] << " ";
1723 }
1724 *out << endl;
1725
1726 if (MinimumRingSize != -1)
1727 *out << Verbose(1) << "Minimum ring size is " << MinimumRingSize << ", over " << NumCycles << " cycles total." << endl;
1728 else
1729 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
1730
1731 Free((void **)&NoCyclicBondsPerAtom, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1732 delete(AtomStack);
1733};
1734
1735/** Sets the next component number.
1736 * This is O(N) as the number of bonds per atom is bound.
1737 * \param *vertex atom whose next atom::*ComponentNr is to be set
1738 * \param nr number to use
1739 */
1740void molecule::SetNextComponentNumber(atom *vertex, int nr)
1741{
1742 int i=0;
1743 if (vertex != NULL) {
1744 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
1745 if (vertex->ComponentNr[i] == -1) { // check if not yet used
1746 vertex->ComponentNr[i] = nr;
1747 break;
1748 }
1749 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
1750 break; // breaking here will not cause error!
1751 }
1752 if (i == NumberOfBondsPerAtom[vertex->nr])
1753 cerr << "Error: All Component entries are already occupied!" << endl;
1754 } else
1755 cerr << "Error: Given vertex is NULL!" << endl;
1756};
1757
1758/** Output a list of flags, stating whether the bond was visited or not.
1759 * \param *out output stream for debugging
1760 */
1761void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
1762{
1763 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1764 *out << vertex->ComponentNr[i] << " ";
1765};
1766
1767/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
1768 */
1769void molecule::InitComponentNumbers()
1770{
1771 atom *Walker = start;
1772 while(Walker->next != end) {
1773 Walker = Walker->next;
1774 if (Walker->ComponentNr != NULL)
1775 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
1776 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
1777 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1778 Walker->ComponentNr[i] = -1;
1779 }
1780};
1781
1782/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
1783 * \param *vertex atom to regard
1784 * \return bond class or NULL
1785 */
1786bond * molecule::FindNextUnused(atom *vertex)
1787{
1788 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1789 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
1790 return(ListOfBondsPerAtom[vertex->nr][i]);
1791 return NULL;
1792};
1793
1794/** Resets bond::Used flag of all bonds in this molecule.
1795 * \return true - success, false - -failure
1796 */
1797void molecule::ResetAllBondsToUnused()
1798{
1799 bond *Binder = first;
1800 while (Binder->next != last) {
1801 Binder = Binder->next;
1802 Binder->ResetUsed();
1803 }
1804};
1805
1806/** Resets atom::nr to -1 of all atoms in this molecule.
1807 */
1808void molecule::ResetAllAtomNumbers()
1809{
1810 atom *Walker = start;
1811 while (Walker->next != end) {
1812 Walker = Walker->next;
1813 Walker->GraphNr = -1;
1814 }
1815};
1816
1817/** Output a list of flags, stating whether the bond was visited or not.
1818 * \param *out output stream for debugging
1819 * \param *list
1820 */
1821void OutputAlreadyVisited(ofstream *out, int *list)
1822{
1823 *out << Verbose(4) << "Already Visited Bonds:\t";
1824 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
1825 *out << endl;
1826};
1827
1828/** Estimates by educated guessing (using upper limit) the expected number of fragments.
1829 * The upper limit is
1830 * \f[
1831 * n = N \cdot C^k
1832 * \f]
1833 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
1834 * \param *out output stream for debugging
1835 * \param order bond order k
1836 * \return number n of fragments
1837 */
1838int molecule::GuesstimateFragmentCount(ofstream *out, int order)
1839{
1840 int c = 0;
1841 int FragmentCount;
1842 // get maximum bond degree
1843 atom *Walker = start;
1844 while (Walker->next != end) {
1845 Walker = Walker->next;
1846 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
1847 }
1848 FragmentCount = NoNonHydrogen*(1 << (c*order));
1849 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
1850 return FragmentCount;
1851};
1852
1853/** Scans a single line for number and puts them into \a KeySet.
1854 * \param *out output stream for debugging
1855 * \param *buffer buffer to scan
1856 * \param &CurrentSet filled KeySet on return
1857 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
1858 */
1859bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
1860{
1861 stringstream line;
1862 int AtomNr;
1863 int status = 0;
1864
1865 line.str(buffer);
1866 while (!line.eof()) {
1867 line >> AtomNr;
1868 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1869 CurrentSet.insert(AtomNr);
1870 status++;
1871 } // else it's "-1" or else and thus must not be added
1872 }
1873 return (status != 0);
1874};
1875
1876/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
1877 * \param *out output stream for debugging
1878 * \param *path path to file
1879 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1880 * \param *FragmentList NULL, filled on return
1881 * \param IsAngstroem whether we have Ansgtroem or bohrradius
1882 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
1883 */
1884bool molecule::ParseKeySetFile(ofstream *out, char *path, atom **ListOfAtoms, MoleculeListClass *&FragmentList, bool IsAngstroem)
1885{
1886 bool status = true;
1887 ifstream KeySetFile;
1888 stringstream line;
1889 char *filename = (char *) Malloc(sizeof(char)*255, "molecule::ParseKeySetFile - filename");
1890
1891 if (FragmentList != NULL) { // check list pointer
1892 cerr << "Error: FragmentList was not NULL as supposed to be, already atoms present therein?" << endl;
1893 return false;
1894 }
1895 cout << Verbose(1) << "Parsing the KeySet file ... ";
1896 // open file and read
1897 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
1898 KeySetFile.open(filename);
1899 if (KeySetFile != NULL) {
1900 // each line represents a new fragment
1901 int NumberOfFragments = 0;
1902 char *buffer = (char *) Malloc(sizeof(char)*255, "molecule::ParseKeySetFile - *buffer");
1903 // 1. scan through file to know number of fragments
1904 while (!KeySetFile.eof()) {
1905 KeySetFile.getline(buffer, 255);
1906 if (strlen(buffer) > 0) // there is at least on possible number on the parsed line
1907 NumberOfFragments++;
1908 }
1909 // 2. allocate the MoleculeListClass accordingly
1910 FragmentList = new MoleculeListClass(NumberOfFragments, AtomCount);
1911 // 3. Clear File, go to beginning and parse again, now adding found ids to each keyset and converting into molecules
1912 KeySetFile.clear();
1913 KeySetFile.seekg(ios::beg);
1914 NumberOfFragments = 0;
1915 while ((!KeySetFile.eof()) && (FragmentList->NumberOfMolecules > NumberOfFragments)) {
1916 KeySetFile.getline(buffer, 255);
1917 KeySet CurrentSet;
1918 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) // if at least one valid atom was added, write config
1919 FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
1920 }
1921 // 4. Free and done
1922 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
1923 cout << "done." << endl;
1924 } else {
1925 cout << "File not found." << endl;
1926 status = false;
1927 }
1928 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
1929
1930 return status;
1931};
1932
1933/** Storing the bond structure of a molecule to file.
1934 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
1935 * \param *out output stream for debugging
1936 * \param *path path to file
1937 * \return true - file written successfully, false - writing failed
1938 */
1939bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
1940{
1941 ofstream AdjacencyFile;
1942 atom *Walker = NULL;
1943 char *filename = (char *) Malloc(sizeof(char)*255, "molecule::StoreAdjacencyToFile - filename");
1944 bool status = true;
1945
1946 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, ADJACENCYFILE);
1947 AdjacencyFile.open(filename);
1948 cout << Verbose(1) << "Saving adjacency list ... ";
1949 if (AdjacencyFile != NULL) {
1950 Walker = start;
1951 while(Walker->next != end) {
1952 Walker = Walker->next;
1953 AdjacencyFile << Walker->nr << "\t";
1954 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1955 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
1956 AdjacencyFile << endl;
1957 }
1958 AdjacencyFile.close();
1959 cout << "done." << endl;
1960 } else {
1961 cout << "failed." << endl;
1962 status = false;
1963 }
1964 Free((void **)&filename, "molecule::StoreAdjacencyToFile - filename");
1965
1966 return status;
1967};
1968
1969/** Checks contents of adjacency file against bond structure in structure molecule.
1970 * \param *out output stream for debugging
1971 * \param *path path to file
1972 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
1973 * \return true - structure is equal, false - not equivalence
1974 */
1975bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
1976{
1977 char *filename = (char *) Malloc(sizeof(char)*255, "molecule::CheckAdjacencyFileAgainstMolecule - filename");
1978 ifstream File;
1979 bool status = true;
1980
1981 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, ADJACENCYFILE);
1982 File.open(filename);
1983 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ...";
1984 if (File != NULL) {
1985 // allocate storage structure
1986 int NonMatchNumber = 0; // will number of atoms with differing bond structure
1987 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
1988 int CurrentBondsOfAtom;
1989 // Parse the file line by line and count the bonds
1990 while (!File.eof()) {
1991 File.getline(filename, 255);
1992 stringstream line;
1993 line.str(filename);
1994 int AtomNr = -1;
1995 line >> AtomNr;
1996 CurrentBondsOfAtom = -1; // we count one too far due to line end
1997 // parse into structure
1998 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1999 while (!line.eof())
2000 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2001 // compare against present bonds
2002 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2003 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2004 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2005 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2006 int j = 0;
2007 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2008 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2009 ListOfAtoms[AtomNr] = NULL;
2010 NonMatchNumber++;
2011 status = false;
2012 //out << "[" << id << "]\t";
2013 } else {
2014 //out << id << "\t";
2015 }
2016 }
2017 //out << endl;
2018 } else {
2019 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2020 status = false;
2021 }
2022 }
2023 }
2024 File.close();
2025 File.clear();
2026 if (status) { // if equal we parse the KeySetFile
2027 *out << " done: Equal." << endl;
2028 status = true;
2029 } else
2030 *out << " done: Not equal by " << NonMatchNumber << " atoms." << endl;
2031 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2032 } else {
2033 *out << " Adjacency file not found." << endl;
2034 status = false;
2035 }
2036 Free((void **)&filename, "molecule::CheckAdjacencyFileAgainstMolecule - filename");
2037
2038 return status;
2039};
2040
2041/** Performs a many-body bond order analysis for a given bond order.
2042 * Writes for each fragment a config file.
2043 * \param *out output stream for debugging
2044 * \param BottomUpOrder up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2045 * \param TopDownOrder up to how many neighbouring bonds a fragment contains in BondOrderScheme::TopDown scheme
2046 * \param Scheme which BondOrderScheme to use for the fragmentation
2047 * \param *configuration configuration for writing config files for each fragment
2048 * \param CutCyclic whether to add cut cyclic bond or to saturate
2049 */
2050void molecule::FragmentMolecule(ofstream *out, int BottomUpOrder, int TopDownOrder, enum BondOrderScheme Scheme, config *configuration, enum CutCyclicBond CutCyclic)
2051{
2052 MoleculeListClass **BondFragments = NULL;
2053 MoleculeListClass *FragmentList = NULL;
2054 atom *Walker = NULL;
2055 int *SortIndex = NULL;
2056 element *runner = NULL;
2057 int AtomNo;
2058 int MinimumRingSize;
2059 int TotalFragmentCounter = 0;
2060 int FragmentCounter = 0;
2061 MoleculeLeafClass *MolecularWalker = NULL;
2062 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2063 fstream File;
2064 bool status = true;
2065
2066 cout << endl;
2067#ifdef ADDHYDROGEN
2068 cout << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2069#else
2070 cout << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2071#endif
2072
2073 // fill the adjacency list
2074 CreateListOfBondsPerAtom(out);
2075
2076 // === compare it with adjacency file ===
2077 atom **ListOfAtoms = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMolecule - **ListOfAtoms");
2078 Walker = start;
2079 while (Walker->next != end) { // create a lookup table (Atom::nr -> atom) used as a marker table lateron
2080 Walker = Walker->next;
2081 if ((Walker->nr >= 0) && (Walker->nr < AtomCount)) {
2082 ListOfAtoms[Walker->nr] = Walker;
2083 } else
2084 break;
2085 }
2086 if (Walker->next != end) { // everything went alright
2087 *out << " range of nuclear ids exceeded [0, AtomCount)." << endl;
2088 status = false;
2089 }
2090 status = status && CheckAdjacencyFileAgainstMolecule(out, configuration->GetDefaultPath(), ListOfAtoms);
2091 if (status) { // NULL entries in ListOfAtoms contain NonMatches
2092 status = status && ParseKeySetFile(out, configuration->GetDefaultPath(), ListOfAtoms, FragmentList, configuration->GetIsAngstroem());
2093 }
2094 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2095
2096 // =================================== Begin of FRAGMENTATION ===============================
2097 if (!status) {
2098 // === store Adjacency file ===
2099 StoreAdjacencyToFile(out, configuration->GetDefaultPath());
2100
2101 // === first perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs ===
2102 Subgraphs = DepthFirstSearchAnalysis((ofstream *)&cout, false, MinimumRingSize);
2103 MolecularWalker = Subgraphs;
2104 // fill the bond structure of the individually stored subgraphs
2105 while (MolecularWalker->next != NULL) {
2106 MolecularWalker = MolecularWalker->next;
2107 cout << Verbose(1) << "Creating adjacency list for subgraph " << MolecularWalker << "." << endl;
2108 MolecularWalker->Leaf->CreateAdjacencyList((ofstream *)&cout, BondDistance);
2109 MolecularWalker->Leaf->CreateListOfBondsPerAtom((ofstream *)&cout);
2110 }
2111
2112 // === fragment all subgraphs ===
2113 if ((MinimumRingSize != -1) && ((BottomUpOrder >= MinimumRingSize) || (TopDownOrder >= MinimumRingSize))) {
2114 cout << Verbose(0) << "Bond order greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
2115 } else {
2116 FragmentCounter = 0;
2117 MolecularWalker = Subgraphs;
2118 // count subgraphs
2119 while (MolecularWalker->next != NULL) {
2120 MolecularWalker = MolecularWalker->next;
2121 FragmentCounter++;
2122 }
2123 BondFragments = (MoleculeListClass **) Malloc(sizeof(MoleculeListClass *)*FragmentCounter, "molecule::FragmentMolecule - **BondFragments");
2124 // fill the bond fragment list
2125 FragmentCounter = 0;
2126 MolecularWalker = Subgraphs;
2127 while (MolecularWalker->next != NULL) {
2128 MolecularWalker = MolecularWalker->next;
2129 cout << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2130 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2131 // output ListOfBondsPerAtom for debugging
2132 *out << Verbose(0) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
2133 Walker = MolecularWalker->Leaf->start;
2134 while (Walker->next != MolecularWalker->Leaf->end) {
2135 Walker = Walker->next;
2136 #ifdef ADDHYDROGEN
2137 if (Walker->type->Z != 1) { // regard only non-hydrogen
2138 #endif
2139 *out << Verbose(0) << "Atom " << Walker->Name << " has Bonds: "<<endl;
2140 for(int j=0;j<MolecularWalker->Leaf->NumberOfBondsPerAtom[Walker->nr];j++) {
2141 *out << Verbose(1) << *(MolecularWalker->Leaf->ListOfBondsPerAtom)[Walker->nr][j] << endl;
2142 }
2143 #ifdef ADDHYDROGEN
2144 }
2145 #endif
2146 }
2147 *out << endl;
2148
2149 *out << Verbose(0) << endl << " ========== BOND ENERGY ========================= " << endl;
2150 *out << Verbose(0) << "Begin of bond fragmentation." << endl;
2151 BondFragments[FragmentCounter] = NULL;
2152 if (Scheme == ANOVA) {
2153 BondFragments[FragmentCounter] = MolecularWalker->Leaf->FragmentBOSSANOVA(out,BottomUpOrder,configuration);
2154 }
2155 if ((Scheme == BottomUp) || (Scheme == Combined)) { // get overlapping subgraphs
2156 BondFragments[FragmentCounter] = FragmentList = MolecularWalker->Leaf->FragmentBottomUp(out, BottomUpOrder, configuration, CutCyclic);
2157 }
2158 if (Scheme == TopDown) { // initialise top level with whole molecule
2159 *out << Verbose(2) << "Initial memory allocating and initialising for whole molecule." << endl;
2160 FragmentList = new MoleculeListClass(1, MolecularWalker->Leaf->AtomCount);
2161 FragmentList->ListOfMolecules[0] = MolecularWalker->Leaf->CopyMolecule();
2162 FragmentList->TEList[0] = 1.;
2163 }
2164 if ((Scheme == Combined) || (Scheme == TopDown)) {
2165 *out << Verbose(1) << "Calling TopDown." << endl;
2166 BondFragments[FragmentCounter] = FragmentList->FragmentTopDown(out, TopDownOrder, BondDistance, configuration, CutCyclic);
2167 // remove this molecule from list again and free wrapper list
2168 delete(FragmentList);
2169 FragmentList = NULL;
2170 }
2171 } else {
2172 cout << Verbose(0) << "Connection matrix has not yet been generated!" << endl;
2173 }
2174 TotalFragmentCounter += BondFragments[FragmentCounter]->NumberOfMolecules;
2175 FragmentCounter++; // next fragment list
2176 }
2177 }
2178
2179 // === combine bond fragments list into a single one ===
2180 FragmentList = new MoleculeListClass(TotalFragmentCounter, AtomCount);
2181 TotalFragmentCounter = 0;
2182 for (int i=0;i<FragmentCounter;i++) {
2183 for(int j=0;j<BondFragments[i]->NumberOfMolecules;j++) {
2184 FragmentList->ListOfMolecules[TotalFragmentCounter] = BondFragments[i]->ListOfMolecules[j];
2185 BondFragments[i]->ListOfMolecules[j] = NULL;
2186 FragmentList->TEList[TotalFragmentCounter++] = BondFragments[i]->TEList[j];
2187 }
2188 delete(BondFragments[i]);
2189 }
2190 Free((void **)&BondFragments, "molecule::FragmentMolecule - **BondFragments");
2191 } else
2192 cout << Verbose(0) << "Using fragments reconstructed from the KeySetFile." << endl;
2193 // ==================================== End of FRAGMENTATION ================================
2194
2195 // === Save fragments' configuration to disk ===
2196 if (FragmentList != NULL) {
2197 // create a SortIndex to map from BFS labels to the sequence in which the atoms are given in the config file
2198 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2199 for(int i=0;i<AtomCount;i++)
2200 SortIndex[i] = -1;
2201 runner = elemente->start;
2202 AtomNo = 0;
2203 while (runner->next != elemente->end) { // go through every element
2204 runner = runner->next;
2205 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2206 Walker = start;
2207 while (Walker->next != end) { // go through every atom of this element
2208 Walker = Walker->next;
2209 if (Walker->type->Z == runner->Z) // if this atom fits to element
2210 SortIndex[Walker->nr] = AtomNo++;
2211 }
2212 }
2213 }
2214 *out << Verbose(1) << "Writing " << FragmentList->NumberOfMolecules << " possible bond fragmentation configs" << endl;
2215 if (FragmentList->OutputConfigForListOfFragments("BondFragment", configuration, SortIndex))
2216 *out << Verbose(1) << "All configs written." << endl;
2217 else
2218 *out << Verbose(1) << "Some configs' writing failed." << endl;
2219 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
2220
2221 // restore orbital and Stop values
2222 CalculateOrbitals(*configuration);
2223
2224 // free memory for bond part
2225 *out << Verbose(1) << "Freeing bond memory" << endl;
2226 delete(FragmentList); // remove bond molecule from memory
2227 FragmentList = NULL;
2228 } else
2229 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
2230 // free subgraph memory again
2231 if (Subgraphs != NULL) {
2232 while (Subgraphs->next != NULL) {
2233 Subgraphs = Subgraphs->next;
2234 delete(Subgraphs->previous);
2235 }
2236 delete(Subgraphs);
2237 }
2238
2239 *out << Verbose(0) << "End of bond fragmentation." << endl;
2240};
2241
2242/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
2243 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
2244 * bond chain list, using molecule::AtomCount and molecule::BondCount.
2245 * Allocates memory, fills the array and exits
2246 * \param *out output stream for debugging
2247 */
2248void molecule::CreateListOfBondsPerAtom(ofstream *out)
2249{
2250 bond *Binder = NULL;
2251 atom *Walker = NULL;
2252 int TotalDegree;
2253 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
2254
2255 // re-allocate memory
2256 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
2257 if (ListOfBondsPerAtom != NULL) {
2258 for(int i=0;i<AtomCount;i++)
2259 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
2260 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
2261 }
2262 if (NumberOfBondsPerAtom != NULL)
2263 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
2264 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
2265 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
2266
2267 // reset bond counts per atom
2268 for(int i=0;i<AtomCount;i++)
2269 NumberOfBondsPerAtom[i] = 0;
2270 // count bonds per atom
2271 Binder = first;
2272 while (Binder->next != last) {
2273 Binder = Binder->next;
2274 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
2275 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
2276 }
2277 // allocate list of bonds per atom
2278 for(int i=0;i<AtomCount;i++)
2279 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
2280 // clear the list again, now each NumberOfBondsPerAtom marks current free field
2281 for(int i=0;i<AtomCount;i++)
2282 NumberOfBondsPerAtom[i] = 0;
2283 // fill the list
2284 Binder = first;
2285 while (Binder->next != last) {
2286 Binder = Binder->next;
2287 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
2288 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
2289 }
2290
2291 // output list for debugging
2292 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
2293 Walker = start;
2294 while (Walker->next != end) {
2295 Walker = Walker->next;
2296 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
2297 TotalDegree = 0;
2298 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
2299 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
2300 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2301 }
2302 *out << " -- TotalDegree: " << TotalDegree << endl;
2303 }
2304 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
2305};
2306
2307/** Splits up a molecule into atomic, non-hydrogen, hydrogen-saturated fragments.
2308 * \param *out output stream for debugging
2309 * \param NumberOfTopAtoms number to initialise second parameter of MoleculeListClass with
2310 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2311 * \param factor additional factor TE and forces factors are multiplied with
2312 * \param CutCyclic whether to add cut cyclic bond or to saturate
2313 * \return MoleculelistClass of pointer to each atomic fragment.
2314 */
2315MoleculeListClass * molecule::GetAtomicFragments(ofstream *out, int NumberOfTopAtoms, bool IsAngstroem, double factor, enum CutCyclicBond CutCyclic)
2316{
2317 atom *TopAtom = NULL, *BottomAtom = NULL; // Top = this, Bottom = AtomicFragment->ListOfMolecules[No]
2318 atom *Walker = NULL;
2319 MoleculeListClass *AtomicFragments = NULL;
2320 atom **AtomList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::GetAtomicFragments: **AtomList");
2321 for (int i=0;i<AtomCount;i++)
2322 AtomList[i] = NULL;
2323 bond **BondList = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::GetAtomicFragments: **AtomList");
2324 for (int i=0;i<BondCount;i++)
2325 BondList[i] = NULL;
2326 int No = 0, Cyclic;
2327
2328 *out << Verbose(0) << "Begin of GetAtomicFragments." << endl;
2329
2330 *out << Verbose(1) << "Atoms in Molecule: ";
2331 Walker = start;
2332 while (Walker->next != end) {
2333 Walker = Walker->next;
2334 *out << Walker << "\t";
2335 }
2336 *out << endl;
2337#ifdef ADDHYDROGEN
2338 if (NoNonHydrogen != 0) {
2339 AtomicFragments = new MoleculeListClass(NoNonHydrogen, NumberOfTopAtoms);
2340 } else {
2341 *out << Verbose(1) << "NoNonHydrogen is " << NoNonHydrogen << ", can't allocated MoleculeListClass." << endl;
2342#else
2343 if (AtomCount != 0) {
2344 AtomicFragments = new MoleculeListClass(AtomCount, NumberOfTopAtoms);
2345 } else {
2346 *out << Verbose(1) << "AtomCount is " << AtomCount << ", can't allocated MoleculeListClass." << endl;
2347#endif
2348 return (AtomicFragments);
2349 }
2350
2351 TopAtom = start;
2352 while (TopAtom->next != end) {
2353 TopAtom = TopAtom->next;
2354 //for(int i=0;i<AtomCount;i++) {
2355#ifdef ADDHYDROGEN
2356 if (TopAtom->type->Z != 1) { // regard only non-hydrogen
2357#endif
2358 //TopAtom = AtomsInMolecule[i];
2359 *out << Verbose(1) << "Current non-Hydrogen Atom: " << TopAtom->Name << endl;
2360
2361 // go through all bonds to check if cyclic
2362 Cyclic = 0;
2363 for(int i=0;i<NumberOfBondsPerAtom[TopAtom->nr];i++)
2364 Cyclic += (ListOfBondsPerAtom[TopAtom->nr][i]->Cyclic) ? 1 : 0;
2365
2366#ifdef ADDHYDROGEN
2367 if (No > NoNonHydrogen) {
2368#else
2369 if (No > AtomCount) {
2370#endif
2371 *out << Verbose(1) << "Access on created AtomicFragmentsListOfMolecules[" << No << "] beyond NumberOfMolecules " << AtomicFragments->NumberOfMolecules << "." << endl;
2372 break;
2373 }
2374 if (AtomList[TopAtom->nr] == NULL) {
2375 // create new molecule
2376 AtomicFragments->ListOfMolecules[No] = new molecule(elemente); // allocate memory
2377 AtomicFragments->TEList[No] = factor;
2378 AtomicFragments->ListOfMolecules[No]->BondDistance = BondDistance;
2379
2380 // add central atom
2381 BottomAtom = AtomicFragments->ListOfMolecules[No]->AddCopyAtom(TopAtom); // add this central atom to molecule
2382 AtomList[TopAtom->nr] = BottomAtom; // mark down in list
2383
2384 // create fragment
2385 *out << Verbose(1) << "New fragment around atom: " << TopAtom->Name << endl;
2386 BreadthFirstSearchAdd(out,AtomicFragments->ListOfMolecules[No], AtomList, BondList, TopAtom, NULL, 0, IsAngstroem, (Cyclic == 0) ? SaturateBond : CutCyclic);
2387 AtomicFragments->ListOfMolecules[No]->CountAtoms(out);
2388 // actually we now have to reset both arrays to NULL again, but BFS is overkill anyway for getting the atomic fragments
2389 // thus we do it in O(1) and avoid the O(n) which would make this routine O(N^2)!
2390 AtomList[TopAtom->nr] = NULL; // remove this fragment's central atom again from the list
2391
2392 *out << Verbose(1) << "Atoms in Fragment " << TopAtom->nr << ": ";
2393 Walker = AtomicFragments->ListOfMolecules[No]->start;
2394 while (Walker->next != AtomicFragments->ListOfMolecules[No]->end) {
2395 Walker = Walker->next;
2396 //for(int k=0;k<AtomicFragments->ListOfMolecules[No]->AtomCount;k++)
2397 *out << Walker << "(" << Walker->father << ")\t";
2398 }
2399 *out << endl;
2400 No++;
2401 }
2402#ifdef ADDHYDROGEN
2403 } else
2404 *out << Verbose(1) << "Current Hydrogen Atom: " << TopAtom->Name << endl;
2405#endif
2406 }
2407
2408 // output of full list before reduction
2409 if (AtomicFragments != NULL) {
2410 *out << "AtomicFragments: ";
2411 AtomicFragments->Output(out);
2412 *out << endl;
2413 } else
2414 *out << Verbose(1) << "AtomicFragments is zero on return, splitting failed." << endl;
2415
2416 // Reducing the atomic fragments
2417 if (AtomicFragments != NULL) {
2418 // check whether there are equal fragments by GetMappingToUniqueFragments
2419 AtomicFragments->ReduceToUniqueList(out, &cell_size[0], BondDistance);
2420 } else
2421 *out << Verbose(1) << "AtomicFragments is zero, reducing failed." << endl;
2422 Free((void **)&BondList, "molecule::GetAtomicFragments: **BondList");
2423 Free((void **)&AtomList, "molecule::GetAtomicFragments: **AtomList");
2424 *out << Verbose(0) << "End of GetAtomicFragments." << endl;
2425 return (AtomicFragments);
2426};
2427
2428/** Splits up the bond in a molecule into a left and a right fragment.
2429 * \param *out output stream for debugging
2430 * \param *Bond bond to broken up into getting allocated ...
2431 * \param *LeftFragment ... left fragment molecule ... (ptr to the memory cell wherein the adress for the Fragment is to be stored)
2432 * \param *RightFragment ... and right fragment molecule to be returned.(ptr to the memory cell wherein the adress for the Fragment is to be stored)
2433 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2434 * \param CutCyclic whether to add cut cyclic bond or not
2435 * \sa FragmentTopDown()
2436 */
2437void molecule::FragmentMoleculeByBond(ofstream *out, bond *Bond, molecule **LeftFragment, molecule **RightFragment, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2438{
2439 *out << Verbose(0) << "Begin of FragmentMoleculeByBond." << endl;
2440#ifdef ADDHYDROGEN
2441 if ((Bond->leftatom->type->Z != 1) && (Bond->rightatom->type->Z != 1)) { // if both bond partners aren't hydrogen ...
2442#endif
2443 *out << Verbose(1) << "Current Non-Hydrogen Bond: " << Bond->leftatom->Name << " and " << Bond->rightatom->Name << endl;
2444 *LeftFragment = new molecule(elemente);
2445 *RightFragment = new molecule(elemente);
2446 // initialise marker list for all atoms
2447 atom **AddedAtomListLeft = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMoleculeByBond: **AddedAtomListLeft");
2448 atom **AddedAtomListRight = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMoleculeByBond: **AddedAtomListRight");
2449 for (int i=0;i<AtomCount;i++) {
2450 AddedAtomListLeft[i] = NULL;
2451 AddedAtomListRight[i] = NULL;
2452 }
2453 bond **AddedBondListLeft = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::FragmentMoleculeByBond: **AddedBondListLeft");
2454 bond **AddedBondListRight = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::FragmentMoleculeByBond: **AddedBondListRight");
2455 for (int i=0;i<BondCount;i++) {
2456 AddedBondListLeft[i] = NULL;
2457 AddedBondListRight[i] = NULL;
2458 }
2459
2460 // tag and add all atoms that have to be included
2461 *out << Verbose(1) << "Adding BFS-wise on left hand side with Bond Order " << NoNonBonds-1 << "." << endl;
2462 AddedAtomListLeft[Bond->leftatom->nr] = (*LeftFragment)->AddCopyAtom(Bond->leftatom);
2463 BreadthFirstSearchAdd(out, *LeftFragment, AddedAtomListLeft, AddedBondListLeft, Bond->leftatom, Bond,
2464#ifdef ADDHYDROGEN
2465 NoNonBonds
2466#else
2467 BondCount
2468#endif
2469 , IsAngstroem, CutCyclic);
2470 *out << Verbose(1) << "Adding BFS-wise on right hand side with Bond Order " << NoNonBonds-1 << "." << endl;
2471 AddedAtomListRight[Bond->rightatom->nr] = (*RightFragment)->AddCopyAtom(Bond->rightatom);
2472 BreadthFirstSearchAdd(out, *RightFragment, AddedAtomListRight, AddedBondListRight, Bond->rightatom, Bond,
2473#ifdef ADDHYDROGEN
2474 NoNonBonds
2475#else
2476 BondCount
2477#endif
2478 , IsAngstroem, CutCyclic);
2479
2480 // count atoms
2481 (*LeftFragment)->CountAtoms(out);
2482 (*RightFragment)->CountAtoms(out);
2483 // free all and exit
2484 Free((void **)&AddedAtomListLeft, "molecule::FragmentMoleculeByBond: **AddedAtomListLeft");
2485 Free((void **)&AddedAtomListRight, "molecule::FragmentMoleculeByBond: **AddedAtomListRight");
2486 Free((void **)&AddedBondListLeft, "molecule::FragmentMoleculeByBond: **AddedBondListLeft");
2487 Free((void **)&AddedBondListRight, "molecule::FragmentMoleculeByBond: **AddedBondListRight");
2488#ifdef ADDHYDROGEN
2489 }
2490#endif
2491 *out << Verbose(0) << "End of FragmentMoleculeByBond." << endl;
2492};
2493
2494/** Returns the given \a **FragmentList filled with molecules around each bond including up to \a BondDegree neighbours.
2495 * \param *out output stream for debugging
2496 * \param BondOrder neighbours on each side to be ...
2497 * \param IsAngstroem whether atomic coordination is in Angstroem (true) or atomic length/bohrradous (false)
2498 * \param CutCyclic whether to add cut cyclic bond or to saturate
2499 * \sa FragmentBottomUp(), molecule::AddBondOrdertoMolecule()
2500 */
2501MoleculeListClass * molecule::GetEachBondFragmentOfOrder(ofstream *out, int BondOrder, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2502{
2503 /// Allocate memory for Bond list and go through each bond and fragment molecule up to bond order and fill the list to be returned.
2504 MoleculeListClass *FragmentList = NULL;
2505 atom **AddedAtomList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::GetBondFragmentOfOrder: **AddedAtomList");
2506 bond **AddedBondList = (bond **) Malloc(sizeof(bond *)*BondCount, "molecule::GetBondFragmentOfOrder: **AddedBondList");
2507 bond *Binder = NULL;
2508
2509 *out << Verbose(0) << "Begin of GetEachBondFragmentOfOrder." << endl;
2510#ifdef ADDHYDROGEN
2511 if (NoNonBonds != 0) {
2512 FragmentList = new MoleculeListClass(NoNonBonds, AtomCount);
2513 } else {
2514 *out << Verbose(1) << "NoNonBonds is " << NoNonBonds << ", can't allocate list." << endl;
2515#else
2516 if (BondCount != 0) {
2517 FragmentList = new MoleculeListClass(BondCount, AtomCount);
2518 } else {
2519 *out << Verbose(1) << "BondCount is " << BondCount << ", can't allocate list." << endl;
2520#endif
2521 }
2522 int No = 0;
2523 Binder = first;
2524 while (Binder->next != last) { // get each bond, NULL is returned if it is a H-H bond
2525 Binder = Binder->next;
2526#ifdef ADDHYDROGEN
2527 if ((Binder->leftatom->type->Z != 1) && (Binder->rightatom->type->Z != 1)) // if both bond partners aren't hydrogen ...
2528#endif
2529 if ((CutCyclic == SaturateBond) || (!Binder->Cyclic)) {
2530 *out << Verbose(1) << "Getting Fragment for Non-Hydrogen Bond: " << Binder->leftatom->Name << " and " << Binder->rightatom->Name << endl;
2531 FragmentList->ListOfMolecules[No] = new molecule(elemente);
2532 // initialise marker list for all atoms
2533 for (int i=0;i<AtomCount;i++)
2534 AddedAtomList[i] = NULL;
2535 for (int i=0;i<BondCount;i++)
2536 AddedBondList[i] = NULL;
2537
2538 // add root bond as first bond (this is needed later on fragmenting)
2539 *out << Verbose(1) << "Adding Root Bond " << *Binder << " and its atom." << endl;
2540 AddedAtomList[Binder->leftatom->nr] = FragmentList->ListOfMolecules[No]->AddCopyAtom(Binder->leftatom);
2541 AddedAtomList[Binder->rightatom->nr] = FragmentList->ListOfMolecules[No]->AddCopyAtom(Binder->rightatom);
2542 AddedBondList[Binder->nr] = FragmentList->ListOfMolecules[No]->AddBond(AddedAtomList[Binder->leftatom->nr], AddedAtomList[Binder->rightatom->nr], Binder->BondDegree);
2543
2544 // tag and add all atoms that have to be included
2545 *out << Verbose(1) << "Adding BFS-wise on left hand side." << endl;
2546 BreadthFirstSearchAdd(out, FragmentList->ListOfMolecules[No], AddedAtomList, AddedBondList, Binder->leftatom, NULL, BondOrder, IsAngstroem, CutCyclic);
2547 *out << Verbose(1) << "Adding BFS-wise on right hand side." << endl;
2548 BreadthFirstSearchAdd(out, FragmentList->ListOfMolecules[No], AddedAtomList, AddedBondList, Binder->rightatom, NULL, BondOrder, IsAngstroem, CutCyclic);
2549
2550 // count atoms
2551 FragmentList->ListOfMolecules[No]->CountAtoms(out);
2552 FragmentList->TEList[No] = 1.;
2553 *out << Verbose(1) << "GetBondFragmentOfOrder: " << Binder->nr << "th Fragment: " << FragmentList->ListOfMolecules[No] << "." << endl;
2554 No++;
2555 }
2556 }
2557 // free all lists
2558 Free((void **)&AddedAtomList, "molecule::GetBondFragmentOfOrder: **AddedAtomList");
2559 Free((void **)&AddedBondList, "molecule::GetBondFragmentOfOrder: **AddedBondList");
2560 // output and exit
2561 FragmentList->Output(out);
2562 *out << Verbose(0) << "End of GetEachBondFragmentOfOrder." << endl;
2563 return (FragmentList);
2564};
2565
2566/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
2567 * Gray vertices are always enqueued in an AtomStackClass FIFO queue, the rest is usual BFS with adding vertices found was
2568 * white and putting into queue.
2569 * \param *out output stream for debugging
2570 * \param *Mol Molecule class to add atoms to
2571 * \param **AddedAtomList list with added atom pointers, index is atom father's number
2572 * \param **AddedBondList list with added bond pointers, index is bond father's number
2573 * \param *Root root vertex for BFS
2574 * \param *Bond bond not to look beyond
2575 * \param BondOrder maximum distance for vertices to add
2576 * \param IsAngstroem lengths are in angstroem or bohrradii
2577 * \param CutCyclic whether to cut cyclic bonds (means saturate on need with hydrogen) or to always add
2578 */
2579void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem, enum CutCyclicBond CutCyclic)
2580{
2581 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2582 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
2583 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
2584 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
2585 atom *Walker = NULL, *OtherAtom = NULL;
2586 bond *Binder = NULL;
2587
2588 // add Root if not done yet
2589 AtomStack->ClearStack();
2590 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
2591 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
2592 AtomStack->Push(Root);
2593
2594 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2595 for (int i=0;i<AtomCount;i++) {
2596 PredecessorList[i] = NULL;
2597 ShortestPathList[i] = -1;
2598 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
2599 ColorList[i] = lightgray;
2600 else
2601 ColorList[i] = white;
2602 }
2603 ShortestPathList[Root->nr] = 0;
2604
2605 // and go on ... Queue always contains all lightgray vertices
2606 while (!AtomStack->IsEmpty()) {
2607 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
2608 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
2609 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
2610 // followed by n+1 till top of stack.
2611 Walker = AtomStack->PopFirst(); // pop oldest added
2612 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
2613 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2614 Binder = ListOfBondsPerAtom[Walker->nr][i];
2615 if (Binder != NULL) { // don't look at bond equal NULL
2616 OtherAtom = Binder->GetOtherAtom(Walker);
2617 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2618 if (ColorList[OtherAtom->nr] == white) {
2619 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
2620 ColorList[OtherAtom->nr] = lightgray;
2621 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2622 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2623 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2624 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond)) || (Binder->Cyclic && (CutCyclic == KeepBond))) ) { // Check for maximum distance
2625 *out << Verbose(3);
2626 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
2627 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
2628 *out << "Added OtherAtom " << OtherAtom->Name;
2629 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2630 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2631 AddedBondList[Binder->nr]->Type = Binder->Type;
2632 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
2633 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
2634 *out << "Not adding OtherAtom " << OtherAtom->Name;
2635 if (AddedBondList[Binder->nr] == NULL) {
2636 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2637 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2638 AddedBondList[Binder->nr]->Type = Binder->Type;
2639 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
2640 } else
2641 *out << ", not added Bond ";
2642 }
2643 *out << ", putting OtherAtom into queue." << endl;
2644 AtomStack->Push(OtherAtom);
2645 } else { // out of bond order, then replace
2646 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
2647 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
2648 if (Binder == Bond)
2649 *out << Verbose(3) << "Not Queueing, is the Root bond";
2650 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
2651 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
2652 if ((Binder->Cyclic && (CutCyclic != KeepBond)))
2653 *out << ", is part of a cyclic bond yet we don't keep them, saturating bond with Hydrogen." << endl;
2654 if (!Binder->Cyclic)
2655 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
2656 if (AddedBondList[Binder->nr] == NULL) {
2657 if ((AddedAtomList[OtherAtom->nr] != NULL) && (CutCyclic == KeepBond)) { // .. whether we add or saturate
2658 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2659 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2660 AddedBondList[Binder->nr]->Type = Binder->Type;
2661 } else {
2662#ifdef ADDHYDROGEN
2663 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2664#endif
2665 }
2666 }
2667 }
2668 } else {
2669 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2670 // This has to be a cyclic bond, check whether it's present ...
2671 if (AddedBondList[Binder->nr] == NULL) {
2672 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder) || (CutCyclic == KeepBond))) {
2673 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2674 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2675 AddedBondList[Binder->nr]->Type = Binder->Type;
2676 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
2677#ifdef ADDHYDROGEN
2678 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2679#endif
2680 }
2681 }
2682 }
2683 }
2684 }
2685 ColorList[Walker->nr] = black;
2686 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2687 }
2688 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2689 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
2690 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
2691 delete(AtomStack);
2692};
2693
2694/** Adds bond structure to this molecule from \a Father molecule.
2695 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
2696 * with end points present in this molecule, bond is created in this molecule.
2697 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
2698 * \param *out output stream for debugging
2699 * \param *Father father molecule
2700 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
2701 * \todo not checked, not fully working probably
2702 */
2703bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
2704{
2705 atom *Walker = NULL, *OtherAtom = NULL;
2706 bool status = true;
2707 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
2708
2709 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
2710
2711 // reset parent list
2712 *out << Verbose(3) << "Resetting ParentList." << endl;
2713 for (int i=0;i<Father->AtomCount;i++)
2714 ParentList[i] = NULL;
2715
2716 // fill parent list with sons
2717 *out << Verbose(3) << "Filling Parent List." << endl;
2718 Walker = start;
2719 while (Walker->next != end) {
2720 Walker = Walker->next;
2721 ParentList[Walker->father->nr] = Walker;
2722 // Outputting List for debugging
2723 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
2724 }
2725
2726 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
2727 *out << Verbose(3) << "Creating bonds." << endl;
2728 Walker = Father->start;
2729 while (Walker->next != Father->end) {
2730 Walker = Walker->next;
2731 if (ParentList[Walker->nr] != NULL) {
2732 if (ParentList[Walker->nr]->father != Walker) {
2733 status = false;
2734 } else {
2735 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
2736 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
2737 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
2738 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
2739 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
2740 }
2741 }
2742 }
2743 }
2744 }
2745
2746 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
2747 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
2748 return status;
2749};
2750
2751
2752/** Looks through a AtomStackClass and returns the likeliest removal candiate.
2753 * \param *out output stream for debugging messages
2754 * \param *&Leaf KeySet to look through
2755 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
2756 * \param index of the atom suggested for removal
2757 */
2758int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
2759{
2760 atom *Runner = NULL;
2761 int SP, Removal;
2762
2763 *out << Verbose(2) << "Looking for removal candidate." << endl;
2764 SP = -1; //0; // not -1, so that Root is never removed
2765 Removal = -1;
2766 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
2767 Runner = FindAtom((*runner));
2768 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
2769 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
2770 SP = ShortestPathList[(*runner)];
2771 Removal = (*runner);
2772 }
2773 }
2774 }
2775 return Removal;
2776};
2777
2778/** Stores a fragment from \a KeySet into \a molecule.
2779 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
2780 * molecule and adds missing hydrogen where bonds were cut.
2781 * \param *out output stream for debugging messages
2782 * \param &Leaflet pointer to KeySet structure
2783 * \param IsAngstroem whether we have Ansgtroem or bohrradius
2784 * \return pointer to constructed molecule
2785 */
2786molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
2787{
2788 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
2789 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
2790 molecule *Leaf = new molecule(elemente);
2791
2792 *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
2793
2794 Leaf->BondDistance = BondDistance;
2795 for(int i=0;i<NDIM*2;i++)
2796 Leaf->cell_size[i] = cell_size[i];
2797
2798 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
2799 for(int i=0;i<AtomCount;i++)
2800 SonList[i] = NULL;
2801
2802 // first create the minimal set of atoms from the KeySet
2803 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
2804 FatherOfRunner = FindAtom((*runner));
2805 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
2806 }
2807
2808 // create the bonds between all: Make it an induced subgraph and add hydrogen
2809 *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
2810 Runner = Leaf->start;
2811 while (Runner->next != Leaf->end) {
2812 Runner = Runner->next;
2813 FatherOfRunner = Runner->father;
2814 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
2815 // create all bonds
2816 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
2817 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
2818 *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
2819 if (SonList[OtherFather->nr] != NULL) {
2820 *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
2821 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
2822 *out << Verbose(3) << "Adding Bond: " << Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree) << "." << endl;
2823 //NumBonds[Runner->nr]++;
2824 } else {
2825 *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
2826 }
2827 } else {
2828 *out << ", who has no son in this fragment molecule." << endl;
2829#ifdef ADDHYDROGEN
2830 *out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
2831 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
2832#endif
2833 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
2834 }
2835 }
2836 } else {
2837 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
2838 }
2839#ifdef ADDHYDROGEN
2840 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
2841 Runner = Runner->next;
2842#endif
2843 }
2844 Leaf->CreateListOfBondsPerAtom(out);
2845 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
2846 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
2847 *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
2848 return Leaf;
2849};
2850
2851/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
2852 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
2853 * computer game, that winds through the connected graph representing the molecule. Color (white,
2854 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
2855 * creating only unique fragments and not additional ones with vertices simply in different sequence.
2856 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
2857 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
2858 * stepping.
2859 * \param *out output stream for debugging
2860 * \param Order number of atoms in each fragment
2861 * \param *configuration configuration for writing config files for each fragment
2862 * \return List of all unique fragments with \a Order atoms
2863 */
2864/*
2865MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
2866{
2867 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2868 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2869 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2870 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2871 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
2872 AtomStackClass *RootStack = new AtomStackClass(AtomCount);
2873 AtomStackClass *TouchedStack = new AtomStackClass((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
2874 AtomStackClass *SnakeStack = new AtomStackClass(Order+1); // equal to Order is not possible, as then the AtomStackClass cannot discern between full and empty stack!
2875 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
2876 MoleculeListClass *FragmentList = NULL;
2877 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
2878 bond *Binder = NULL;
2879 int RunningIndex = 0, FragmentCounter = 0;
2880
2881 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
2882
2883 // reset parent list
2884 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
2885 for (int i=0;i<AtomCount;i++) { // reset all atom labels
2886 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
2887 Labels[i] = -1;
2888 SonList[i] = NULL;
2889 PredecessorList[i] = NULL;
2890 ColorVertexList[i] = white;
2891 ShortestPathList[i] = -1;
2892 }
2893 for (int i=0;i<BondCount;i++)
2894 ColorEdgeList[i] = white;
2895 RootStack->ClearStack(); // clearstack and push first atom if exists
2896 TouchedStack->ClearStack();
2897 Walker = start->next;
2898 while ((Walker != end)
2899#ifdef ADDHYDROGEN
2900 && (Walker->type->Z == 1)
2901#endif
2902 ) { // search for first non-hydrogen atom
2903 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
2904 Walker = Walker->next;
2905 }
2906 if (Walker != end)
2907 RootStack->Push(Walker);
2908 else
2909 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
2910 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
2911
2912 ///// OUTER LOOP ////////////
2913 while (!RootStack->IsEmpty()) {
2914 // get new root vertex from atom stack
2915 Root = RootStack->PopFirst();
2916 ShortestPathList[Root->nr] = 0;
2917 if (Labels[Root->nr] == -1)
2918 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
2919 PredecessorList[Root->nr] = Root;
2920 TouchedStack->Push(Root);
2921 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
2922
2923 // clear snake stack
2924 SnakeStack->ClearStack();
2925 //SnakeStack->TestImplementation(out, start->next);
2926
2927 ///// INNER LOOP ////////////
2928 // Problems:
2929 // - what about cyclic bonds?
2930 Walker = Root;
2931 do {
2932 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
2933 // initial setting of the new Walker: label, color, shortest path and put on stacks
2934 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
2935 Labels[Walker->nr] = RunningIndex++;
2936 RootStack->Push(Walker);
2937 }
2938 *out << ", has label " << Labels[Walker->nr];
2939 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
2940 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
2941 // Binder ought to be set still from last neighbour search
2942 *out << ", coloring bond " << *Binder << " black";
2943 ColorEdgeList[Binder->nr] = black; // mark this bond as used
2944 }
2945 if (ShortestPathList[Walker->nr] == -1) {
2946 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
2947 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
2948 }
2949 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
2950 SnakeStack->Push(Walker);
2951 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
2952 }
2953 }
2954 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
2955
2956 // then check the stack for a newly stumbled upon fragment
2957 if (SnakeStack->ItemCount() == Order) { // is stack full?
2958 // store the fragment if it is one and get a removal candidate
2959 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
2960 // remove the candidate if one was found
2961 if (Removal != NULL) {
2962 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
2963 SnakeStack->RemoveItem(Removal);
2964 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
2965 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
2966 Walker = PredecessorList[Removal->nr];
2967 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
2968 }
2969 }
2970 } else
2971 Removal = NULL;
2972
2973 // finally, look for a white neighbour as the next Walker
2974 Binder = NULL;
2975 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
2976 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
2977 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
2978 if (ShortestPathList[Walker->nr] < Order) {
2979 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2980 Binder = ListOfBondsPerAtom[Walker->nr][i];
2981 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
2982 OtherAtom = Binder->GetOtherAtom(Walker);
2983 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
2984 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
2985 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
2986 } else { // otherwise check its colour and element
2987 if (
2988#ifdef ADDHYDROGEN
2989 (OtherAtom->type->Z != 1) &&
2990#endif
2991 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
2992 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
2993 // i find it currently rather sensible to always set the predecessor in order to find one's way back
2994 //if (PredecessorList[OtherAtom->nr] == NULL) {
2995 PredecessorList[OtherAtom->nr] = Walker;
2996 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2997 //} else {
2998 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2999 //}
3000 Walker = OtherAtom;
3001 break;
3002 } else {
3003 if (OtherAtom->type->Z == 1)
3004 *out << "Links to a hydrogen atom." << endl;
3005 else
3006 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
3007 }
3008 }
3009 }
3010 } else { // means we have stepped beyond the horizon: Return!
3011 Walker = PredecessorList[Walker->nr];
3012 OtherAtom = Walker;
3013 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
3014 }
3015 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
3016 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
3017 ColorVertexList[Walker->nr] = black;
3018 Walker = PredecessorList[Walker->nr];
3019 }
3020 }
3021 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
3022 *out << Verbose(2) << "Inner Looping is finished." << endl;
3023
3024 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
3025 *out << Verbose(2) << "Resetting lists." << endl;
3026 Walker = NULL;
3027 Binder = NULL;
3028 while (!TouchedStack->IsEmpty()) {
3029 Walker = TouchedStack->PopLast();
3030 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
3031 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
3032 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
3033 PredecessorList[Walker->nr] = NULL;
3034 ColorVertexList[Walker->nr] = white;
3035 ShortestPathList[Walker->nr] = -1;
3036 }
3037 }
3038 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
3039
3040 // copy together
3041 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
3042 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
3043 RunningIndex = 0;
3044 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
3045 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
3046 Leaflet->Leaf = NULL; // prevent molecule from being removed
3047 TempLeaf = Leaflet;
3048 Leaflet = Leaflet->previous;
3049 delete(TempLeaf);
3050 };
3051
3052 // free memory and exit
3053 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3054 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3055 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3056 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3057 delete(RootStack);
3058 delete(TouchedStack);
3059 delete(SnakeStack);
3060
3061 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3062 return FragmentList;
3063};
3064*/
3065
3066/** Structure containing all values in power set combination generation.
3067 */
3068struct UniqueFragments {
3069 config *configuration;
3070 atom *Root;
3071 Graph *Leaflet;
3072 KeySet *FragmentSet;
3073 int ANOVAOrder;
3074 int FragmentCounter;
3075 int CurrentIndex;
3076 int *Labels;
3077 int *ShortestPathList;
3078 bool **UsedList;
3079 bond **BondsPerSPList;
3080 double TEFactor;
3081 int *BondsPerSPCount;
3082};
3083
3084/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3085 * This basically involves recursion to create all power set combinations.
3086 * \param *out output stream for debugging
3087 * \param FragmentSearch UniqueFragments structure with all values needed
3088 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3089 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3090 * \param SubOrder remaining number of allowed vertices to add
3091 */
3092void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3093{
3094 atom *OtherWalker = NULL;
3095 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3096 int NumCombinations;
3097 bool bit;
3098 int bits, TouchedIndex, SubSetDimension, SP;
3099 int Removal;
3100 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3101 bond *Binder = NULL;
3102 bond **BondsList = NULL;
3103
3104 NumCombinations = 1 << SetDimension;
3105
3106 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3107 // von Endstuecken (aus den Bonds) hinzugefÃŒgt werden und fÃŒr verbleibende ANOVAOrder
3108 // rekursiv GraphCrawler in der nÀchsten Ebene aufgerufen werden
3109
3110 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3111 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3112
3113 // initialised touched list (stores added atoms on this level)
3114 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3115 for (TouchedIndex=0;TouchedIndex<=SubOrder;TouchedIndex++) // empty touched list
3116 TouchedList[TouchedIndex] = -1;
3117 TouchedIndex = 0;
3118
3119 // create every possible combination of the endpieces
3120 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3121 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3122 // count the set bit of i
3123 bits = 0;
3124 for (int j=0;j<SetDimension;j++)
3125 bits += (i & (1 << j)) >> j;
3126
3127 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3128 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3129 // --1-- add this set of the power set of bond partners to the snake stack
3130 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3131 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3132 if (bit) { // if bit is set, we add this bond partner
3133 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3134 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3135 //if ((!FragmentSearch->UsedList[OtherWalker->nr][i]) && (FragmentSearch->Labels[OtherWalker->nr] > FragmentSearch->Labels[FragmentSearch->Root->nr])) {
3136 //*out << Verbose(2+verbosity) << "Not used so far, label " << FragmentSearch->Labels[OtherWalker->nr] << " is bigger than Root's " << FragmentSearch->Labels[FragmentSearch->Root->nr] << "." << endl;
3137 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << "." << endl;
3138 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3139 FragmentSearch->FragmentSet->insert( FragmentSearch->FragmentSet->end(), OtherWalker->nr);
3140 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3141 //}
3142 } else {
3143 *out << Verbose(2+verbosity) << "Not adding." << endl;
3144 }
3145 }
3146
3147 if (bits < SubOrder) {
3148 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << (SubOrder - bits) << "." << endl;
3149 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3150 SP = RootDistance+1; // this is the next level
3151 // first count the members in the subset
3152 SubSetDimension = 0;
3153 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3154 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3155 Binder = Binder->next;
3156 for (int k=0;k<TouchedIndex;k++) {
3157 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3158 SubSetDimension++;
3159 }
3160 }
3161 // then allocate and fill the list
3162 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3163 SubSetDimension = 0;
3164 Binder = FragmentSearch->BondsPerSPList[2*SP];
3165 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3166 Binder = Binder->next;
3167 for (int k=0;k<TouchedIndex;k++) {
3168 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3169 BondsList[SubSetDimension++] = Binder;
3170 }
3171 }
3172 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3173 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3174 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3175 } else {
3176 // --2-- otherwise store the complete fragment
3177 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3178 // store fragment as a KeySet
3179 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], indices are: ";
3180 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++) {
3181 *out << (*runner)+1 << " ";
3182 }
3183 InsertFragmentIntoGraph(out, FragmentSearch);
3184 Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3185 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList,FragmentSearch->Labels, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3186 }
3187
3188 // --3-- remove all added items in this level from snake stack
3189 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3190 for(int j=0;j<TouchedIndex;j++) {
3191 Removal = TouchedList[j];
3192 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal+1 << " from snake stack." << endl;
3193 FragmentSearch->FragmentSet->erase(Removal);
3194 TouchedList[j] = -1;
3195 }
3196 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3197 } else {
3198 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3199 }
3200 }
3201 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3202 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3203};
3204
3205/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment in the context of \a this molecule.
3206 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3207 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3208 * \param *out output stream for debugging
3209 * \param Order number of vertices
3210 * \param *ListOfGraph Graph structure to insert found fragments into
3211 * \param Fragment Restricted vertex set to use in context of molecule
3212 * \param TEFactor TEFactor to store in graphlist in the end
3213 * \param *configuration configuration needed for IsAngstroem
3214 * \return number of inserted fragments
3215 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
3216 */
3217int molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, Graph *ListOfGraph, KeySet Fragment, double TEFactor, config *configuration)
3218{
3219 int SP, UniqueIndex, RootKeyNr, AtomKeyNr;
3220 int *NumberOfAtomsSPLevel = (int *) Malloc(sizeof(int)*Order, "molecule::CreateListOfUniqueFragmentsOfOrder: *SPLevelCount");
3221 atom *Walker = NULL, *OtherWalker = NULL;
3222 bond *Binder = NULL;
3223 bond **BondsList = NULL;
3224 KeyStack RootStack;
3225 KeyStack AtomStack;
3226 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3227 KeySet::iterator runner;
3228
3229 // initialise the fragments structure
3230 struct UniqueFragments FragmentSearch;
3231 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::CreateListOfUniqueFragmentsOfOrder: ***BondsPerSPList");
3232 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::CreateListOfUniqueFragmentsOfOrder: *BondsPerSPCount");
3233 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3234 FragmentSearch.Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3235 FragmentSearch.FragmentCounter = 0;
3236 FragmentSearch.FragmentSet = new KeySet;
3237 FragmentSearch.configuration = configuration;
3238 FragmentSearch.TEFactor = TEFactor;
3239 FragmentSearch.Leaflet = ListOfGraph; // set to insertion graph
3240 for (int i=0;i<AtomCount;i++) {
3241 FragmentSearch.Labels[i] = -1;
3242 FragmentSearch.ShortestPathList[i] = -1;
3243 PredecessorList[i] = NULL;
3244 }
3245 for (int i=0;i<Order;i++) {
3246 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
3247 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
3248 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
3249 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
3250 FragmentSearch.BondsPerSPCount[i] = 0;
3251 }
3252
3253 *out << endl;
3254 *out << Verbose(0) << "Begin of CreateListOfUniqueFragmentsOfOrder with order " << Order << "." << endl;
3255
3256 RootStack.clear();
3257 // find first root candidates
3258 runner = Fragment.begin();
3259 Walker = NULL;
3260 while ((Walker == NULL) && (runner != Fragment.end())) { // search for first non-hydrogen atom
3261 Walker = FindAtom((*runner));
3262 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
3263#ifdef ADDHYDROGEN
3264 if (Walker->type->Z == 1) // skip hydrogen
3265 Walker = NULL;
3266#endif
3267 runner++;
3268 }
3269 if (Walker != NULL)
3270 RootStack.push_back(Walker->nr);
3271 else
3272 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
3273
3274 UniqueIndex = 0;
3275 while (!RootStack.empty()) {
3276 // Get Root and prepare
3277 RootKeyNr = RootStack.front();
3278 RootStack.pop_front();
3279 FragmentSearch.Root = FindAtom(RootKeyNr);
3280 if (FragmentSearch.Labels[RootKeyNr] == -1)
3281 FragmentSearch.Labels[RootKeyNr] = UniqueIndex++;
3282 FragmentSearch.ShortestPathList[RootKeyNr] = 0;
3283 // prepare the atom stack counters (number of atoms with certain SP on stack)
3284 for (int i=0;i<Order;i++)
3285 NumberOfAtomsSPLevel[i] = 0;
3286 NumberOfAtomsSPLevel[0] = 1; // for root
3287 SP = -1;
3288 *out << endl;
3289 *out << Verbose(0) << "Starting BFS analysis with current Root: " << *FragmentSearch.Root << "." << endl;
3290 // push as first on atom stack and goooo ...
3291 AtomStack.clear();
3292 AtomStack.push_back(RootKeyNr);
3293 *out << Verbose(0) << "Cleared AtomStack and pushed root as first item onto it." << endl;
3294 // do a BFS search to fill the SP lists and label the found vertices
3295 while (!AtomStack.empty()) {
3296 // pop next atom
3297 AtomKeyNr = AtomStack.front();
3298 AtomStack.pop_front();
3299 if (SP != -1)
3300 NumberOfAtomsSPLevel[SP]--;
3301 if ((SP == -1) || (NumberOfAtomsSPLevel[SP] == -1)) {
3302 ////if (SP < FragmentSearch.ShortestPathList[AtomKeyNr]) { // bfs has reached new SP level, hence allocate for new list
3303 SP++;
3304 NumberOfAtomsSPLevel[SP]--; // carry over "-1" to next level
3305 ////SP = FragmentSearch.ShortestPathList[AtomKeyNr];
3306 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with 0 item(s)";
3307 if (SP > 0)
3308 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
3309 else
3310 *out << "." << endl;
3311 FragmentSearch.BondsPerSPCount[SP] = 0;
3312 } else {
3313 *out << Verbose(1) << "Still " << NumberOfAtomsSPLevel[SP]+1 << " on this SP (" << SP << ") level, currently having " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3314 }
3315 Walker = FindAtom(AtomKeyNr);
3316 *out << Verbose(0) << "Current Walker is: " << *Walker << " with label " << FragmentSearch.Labels[AtomKeyNr] << " and SP of " << SP << "." << endl;
3317 // check for new sp level
3318 // go through all its bonds
3319 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
3320 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
3321 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
3322 OtherWalker = Binder->GetOtherAtom(Walker);
3323 if ((Fragment.find(OtherWalker->nr) != Fragment.end())
3324#ifdef ADDHYDROGEN
3325 && (OtherWalker->type->Z != 1)
3326#endif
3327 ) { // skip hydrogens and restrict to fragment
3328 *out << Verbose(2) << "Current partner is " << *OtherWalker << " in bond " << *Binder << "." << endl;
3329 // set the label if not set (and push on root stack as well)
3330 if (FragmentSearch.Labels[OtherWalker->nr] == -1) {
3331 RootStack.push_back(OtherWalker->nr);
3332 FragmentSearch.Labels[OtherWalker->nr] = UniqueIndex++;
3333 *out << Verbose(3) << "Set label to " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3334 } else {
3335 *out << Verbose(3) << "Label is already " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3336 }
3337 if ((OtherWalker != PredecessorList[AtomKeyNr]) && (FragmentSearch.Labels[OtherWalker->nr] > FragmentSearch.Labels[RootKeyNr])) { // only pass through those with label bigger than Root's
3338 // set shortest path if not set or longer
3339 //if ((FragmentSearch.ShortestPathList[OtherWalker->nr] == -1) || (FragmentSearch.ShortestPathList[OtherWalker->nr] > FragmentSearch.ShortestPathList[AtomKeyNr])) {
3340 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
3341 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3342 //} else {
3343 // *out << Verbose(3) << "Shortest Path is already " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3344 //}
3345 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < Order) { // only pass through those within reach of Order
3346 // push for exploration on stack (only if the SP of OtherWalker is longer than of Walker! (otherwise it has been added already!)
3347 if (FragmentSearch.ShortestPathList[OtherWalker->nr] > SP) {
3348 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < (Order-1)) {
3349 *out << Verbose(3) << "Putting on atom stack for further exploration." << endl;
3350 PredecessorList[OtherWalker->nr] = Walker; // note down the one further up the exploration tree
3351 AtomStack.push_back(OtherWalker->nr);
3352 NumberOfAtomsSPLevel[FragmentSearch.ShortestPathList[OtherWalker->nr]]++;
3353 } else {
3354 *out << Verbose(3) << "Not putting on atom stack, is at end of reach." << endl;
3355 }
3356 // add the bond in between to the SP list
3357 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
3358 add(Binder, FragmentSearch.BondsPerSPList[2*SP+1]);
3359 FragmentSearch.BondsPerSPCount[SP]++;
3360 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3361 } else {
3362 *out << Verbose(3) << "Not putting on atom stack, nor adding bond, as " << *OtherWalker << "'s SP is shorter than Walker's." << endl;
3363 }
3364 } else {
3365 *out << Verbose(3) << "Not continuing, as " << *OtherWalker << " is out of reach of order " << Order << "." << endl;
3366 }
3367 } else {
3368 *out << Verbose(3) << "Not passing on, as label of " << *OtherWalker << " " << FragmentSearch.Labels[OtherWalker->nr] << " is smaller than that of Root " << FragmentSearch.Labels[RootKeyNr] << " or this is my predecessor." << endl;
3369 }
3370 } else {
3371 *out << Verbose(2) << "Is not in the Fragment or skipping hydrogen " << *OtherWalker << "." << endl;
3372 }
3373 }
3374 }
3375 // reset predecessor list
3376 for(int i=0;i<Order;i++) {
3377 Binder = FragmentSearch.BondsPerSPList[2*i];
3378 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3379 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3380 Binder = Binder->next;
3381 PredecessorList[Binder->rightatom->nr] = NULL; // By construction "OtherAtom" is always Bond::rightatom!
3382 }
3383 }
3384 *out << endl;
3385 *out << Verbose(0) << "Printing all found lists." << endl;
3386 // outputting all list for debugging
3387 for(int i=0;i<Order;i++) {
3388 Binder = FragmentSearch.BondsPerSPList[2*i];
3389 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3390 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3391 Binder = Binder->next;
3392 *out << Verbose(2) << *Binder << endl;
3393 }
3394 }
3395
3396 // creating fragments with the found edge sets
3397 SP = 0;
3398 for(int i=0;i<Order;i++) { // sum up all found edges
3399 Binder = FragmentSearch.BondsPerSPList[2*i];
3400 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3401 Binder = Binder->next;
3402 SP ++;
3403 }
3404 }
3405 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
3406 if (SP >= (Order-1)) {
3407 // start with root (push on fragment stack)
3408 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << "." << endl;
3409 FragmentSearch.FragmentSet->clear();
3410 FragmentSearch.FragmentSet->insert(FragmentSearch.Root->nr);
3411
3412 if (FragmentSearch.FragmentSet->size() == (unsigned int) Order) {
3413 *out << Verbose(0) << "Enough items on stack already for a fragment!" << endl;
3414 // store fragment as a KeySet
3415 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch.FragmentCounter << "], indices are: ";
3416 for(KeySet::iterator runner = FragmentSearch.FragmentSet->begin(); runner != FragmentSearch.FragmentSet->end(); runner++) {
3417 *out << (*runner)+1 << " ";
3418 }
3419 *out << endl;
3420 InsertFragmentIntoGraph(out, &FragmentSearch);
3421 //StoreFragmentFromStack(out, FragmentSearch.Root, FragmentSearch.Leaflet, FragmentSearch.FragmentStack, FragmentSearch.ShortestPathList,FragmentSearch.Labels, &FragmentSearch.FragmentCounter, FragmentSearch.configuration);
3422 } else {
3423 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
3424 // prepare the subset and call the generator
3425 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::CreateListOfUniqueFragmentsOfOrder: **BondsList");
3426 Binder = FragmentSearch.BondsPerSPList[0];
3427 for(int i=0;i<FragmentSearch.BondsPerSPCount[0];i++) {
3428 Binder = Binder->next;
3429 BondsList[i] = Binder;
3430 }
3431 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order-1);
3432 Free((void **)&BondsList, "molecule::CreateListOfUniqueFragmentsOfOrder: **BondsList");
3433 }
3434 } else {
3435 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
3436 }
3437
3438 // remove root from stack
3439 *out << Verbose(0) << "Removing root again from stack." << endl;
3440 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
3441
3442 // free'ing the bonds lists
3443 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
3444 for(int i=0;i<Order;i++) {
3445 *out << Verbose(1) << "Current SP level is " << i << ": ";
3446 Binder = FragmentSearch.BondsPerSPList[2*i];
3447 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3448 Binder = Binder->next;
3449 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
3450 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
3451 }
3452 // delete added bonds
3453 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
3454 // also start and end node
3455 *out << "cleaned." << endl;
3456 }
3457 }
3458
3459 // free allocated memory
3460 Free((void **)&NumberOfAtomsSPLevel, "molecule::CreateListOfUniqueFragmentsOfOrder: *SPLevelCount");
3461 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3462 for(int i=0;i<Order;i++) { // delete start and end of each list
3463 delete(FragmentSearch.BondsPerSPList[2*i]);
3464 delete(FragmentSearch.BondsPerSPList[2*i+1]);
3465 }
3466 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::CreateListOfUniqueFragmentsOfOrder: ***BondsPerSPList");
3467 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *BondsPerSPCount");
3468 Free((void **)&FragmentSearch.ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3469 Free((void **)&FragmentSearch.Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3470 delete(FragmentSearch.FragmentSet);
3471
3472// // gather all the leaves together
3473// *out << Verbose(0) << "Copying all fragments into MoleculeList structure." << endl;
3474// FragmentList = new Graph;
3475// UniqueIndex = 0;
3476// while ((FragmentSearch.Leaflet != NULL) && (UniqueIndex < FragmentSearch.FragmentCounter)) {
3477// FragmentList->insert();
3478// FragmentList->ListOfMolecules[UniqueIndex++] = FragmentSearch.Leaflet->Leaf;
3479// FragmentSearch.Leaflet->Leaf = NULL; // prevent molecule from being removed
3480// TempLeaf = FragmentSearch.Leaflet;
3481// FragmentSearch.Leaflet = FragmentSearch.Leaflet->previous;
3482// delete(TempLeaf);
3483// };
3484
3485 // return list
3486 *out << Verbose(0) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3487 return FragmentSearch.FragmentCounter;
3488};
3489
3490/** Corrects the nuclei position if the fragment was created over the cell borders.
3491 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
3492 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
3493 * and re-add the bond. Looping on the distance check.
3494 * \param *out ofstream for debugging messages
3495 */
3496void molecule::ScanForPeriodicCorrection(ofstream *out)
3497{
3498 bond *Binder = NULL;
3499 bond *OtherBinder = NULL;
3500 atom *Walker = NULL;
3501 atom *OtherWalker = NULL;
3502 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
3503 enum Shading *ColorList = NULL;
3504 double tmp;
3505 vector TranslationVector;
3506 //AtomStackClass *CompStack = NULL;
3507 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
3508 bool flag = true;
3509
3510 *out << Verbose(1) << "Begin of ScanForPeriodicCorrection." << endl;
3511
3512 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
3513 while (flag) {
3514 // remove bonds that are beyond bonddistance
3515 for(int i=0;i<NDIM;i++)
3516 TranslationVector.x[i] = 0.;
3517 // scan all bonds
3518 Binder = first;
3519 flag = false;
3520 while ((!flag) && (Binder->next != last)) {
3521 Binder = Binder->next;
3522 for (int i=0;i<NDIM;i++) {
3523 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
3524 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
3525 if (tmp > BondDistance) {
3526 OtherBinder = Binder->next; // note down binding partner for later re-insertion
3527 unlink(Binder); // unlink bond
3528 *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
3529 flag = true;
3530 break;
3531 }
3532 }
3533 }
3534 if (flag) {
3535 // create translation vector from their periodically modified distance
3536 for (int i=0;i<NDIM;i++) {
3537 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
3538 if (fabs(tmp) > BondDistance)
3539 TranslationVector.x[i] = (tmp < 0) ? +1. : -1.;
3540 }
3541 TranslationVector.MatrixMultiplication(matrix);
3542 //*out << "Translation vector is ";
3543 //TranslationVector.Output(out);
3544 //*out << endl;
3545 // apply to all atoms of first component via BFS
3546 for (int i=0;i<AtomCount;i++)
3547 ColorList[i] = white;
3548 AtomStack->Push(Binder->leftatom);
3549 while (!AtomStack->IsEmpty()) {
3550 Walker = AtomStack->PopFirst();
3551 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
3552 ColorList[Walker->nr] = black; // mark as explored
3553 Walker->x.AddVector(&TranslationVector); // translate
3554 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
3555 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
3556 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3557 if (ColorList[OtherWalker->nr] == white) {
3558 AtomStack->Push(OtherWalker); // push if yet unexplored
3559 }
3560 }
3561 }
3562 }
3563 // re-add bond
3564 link(Binder, OtherBinder);
3565 } else {
3566 *out << Verbose(2) << "No corrections for this fragment." << endl;
3567 }
3568 //delete(CompStack);
3569 }
3570
3571 // free allocated space from ReturnFullMatrixforSymmetric()
3572 delete(AtomStack);
3573 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
3574 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
3575 *out << Verbose(1) << "End of ScanForPeriodicCorrection." << endl;
3576};
3577
3578/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
3579 * \param *symm 6-dim array of unique symmetric matrix components
3580 * \return allocated NDIM*NDIM array with the symmetric matrix
3581 */
3582double * molecule::ReturnFullMatrixforSymmetric(double *symm)
3583{
3584 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
3585 matrix[0] = symm[0];
3586 matrix[1] = symm[1];
3587 matrix[2] = symm[3];
3588 matrix[3] = symm[1];
3589 matrix[4] = symm[2];
3590 matrix[5] = symm[4];
3591 matrix[6] = symm[3];
3592 matrix[7] = symm[4];
3593 matrix[8] = symm[5];
3594 return matrix;
3595};
3596
3597bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
3598{
3599 //cout << "my check is used." << endl;
3600 if (SubgraphA.size() < SubgraphB.size()) {
3601 return true;
3602 } else {
3603 if (SubgraphA.size() > SubgraphB.size()) {
3604 return false;
3605 } else {
3606 KeySet::iterator IteratorA = SubgraphA.begin();
3607 KeySet::iterator IteratorB = SubgraphB.begin();
3608 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
3609 if ((*IteratorA) < (*IteratorB))
3610 return true;
3611 else if ((*IteratorA) > (*IteratorB)) {
3612 return false;
3613 } // else, go on to next index
3614 IteratorA++;
3615 IteratorB++;
3616 } // end of while loop
3617 }// end of check in case of equal sizes
3618 }
3619 return false; // if we reach this point, they are equal
3620};
3621
3622//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
3623//{
3624// return KeyCompare(SubgraphA, SubgraphB);
3625//};
3626
3627/** Checking whether KeySet is not already present in Graph, if so just adds factor.
3628 * \param *out output stream for debugging
3629 * \param &set KeySet to insert
3630 * \param &graph Graph to insert into
3631 * \param *counter pointer to unique fragment count
3632 * \param factor energy factor for the fragment
3633 */
3634inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
3635{
3636 GraphTestPair testGraphInsert;
3637
3638 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
3639 if (testGraphInsert.second) {
3640 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
3641 Fragment->FragmentCounter++;
3642 } else {
3643 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3644 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor;
3645 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
3646 }
3647};
3648//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
3649//{
3650// // copy stack contents to set and call overloaded function again
3651// KeySet set;
3652// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
3653// set.insert((*runner));
3654// InsertIntoGraph(out, set, graph, counter, factor);
3655//};
3656
3657/** Inserts each KeySet in \a graph2 into \a graph1.
3658 * \param *out output stream for debugging
3659 * \param graph1 first (dest) graph
3660 * \param graph2 second (source) graph
3661 */
3662inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
3663{
3664 GraphTestPair testGraphInsert;
3665
3666 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
3667 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
3668 if (testGraphInsert.second) {
3669 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
3670 } else {
3671 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3672 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
3673 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
3674 }
3675 }
3676};
3677
3678
3679/** Creates truncated BOSSANOVA expansion up to order \a k.
3680 * \param *out output stream for debugging
3681 * \param ANOVAOrder ANOVA expansion is truncated above this order
3682 * \param *configuration configuration for writing config files for each fragment
3683 * \return pointer to MoleculeListClass with all the fragments or NULL if something went wrong.
3684 */
3685MoleculeListClass * molecule::FragmentBOSSANOVA(ofstream *out, int ANOVAOrder, config *configuration)
3686{
3687 Graph *FragmentList = NULL, ***FragmentLowerOrdersList = NULL;
3688 MoleculeListClass *FragmentMoleculeList = NULL;
3689 int Order, NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
3690 int counter = 0;
3691
3692 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
3693
3694 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
3695 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
3696 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*ANOVAOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3697 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*ANOVAOrder, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3698
3699 // Construct the complete KeySet
3700 atom *Walker = start;
3701 KeySet CompleteMolecule;
3702 while (Walker->next != end) {
3703 Walker = Walker->next;
3704 CompleteMolecule.insert(Walker->nr);
3705 }
3706
3707 for (int BondOrder=1;BondOrder<=ANOVAOrder;BondOrder++) {
3708 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
3709 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
3710 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
3711 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
3712 NumLevels = 1 << (BondOrder-1); // (int)pow(2,BondOrder-1);
3713 *out << Verbose(0) << "BondOrder is (" << BondOrder << "/" << ANOVAOrder << ") and NumLevels is " << NumLevels << "." << endl;
3714
3715 // allocate memory for all lower level orders in this 1D-array of ptrs
3716 FragmentLowerOrdersList[BondOrder-1] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3717
3718 // create top order where nothing is reduced
3719 *out << Verbose(0) << "==============================================================================================================" << endl;
3720 *out << Verbose(0) << "Creating list of unique fragments of Bond Order " << BondOrder << " itself." << endl;
3721 // Create list of Graphs of current Bond Order (i.e. F_{ij})
3722 FragmentLowerOrdersList[BondOrder-1][0] = new Graph;
3723 NumMoleculesOfOrder[BondOrder-1] = CreateListOfUniqueFragmentsOfOrder(out, BondOrder, FragmentLowerOrdersList[BondOrder-1][0], CompleteMolecule, 1., configuration);
3724 *out << Verbose(1) << "Number of resulting molecules is: " << NumMoleculesOfOrder[BondOrder-1] << "." << endl;
3725 NumMolecules = 0;
3726
3727 // create lower order fragments
3728 *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
3729 Order = BondOrder;
3730 for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
3731
3732 // step down to next order at (virtual) boundary of powers of 2 in array
3733 while (source >= (1 << (BondOrder-Order))) // (int)pow(2,BondOrder-Order))
3734 Order--;
3735 *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
3736 for (int SubOrder=Order;SubOrder>1;SubOrder--) {
3737 int dest = source + (1 << (BondOrder-SubOrder));
3738 *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
3739 *out << Verbose(0) << "Current SubOrder is: " << SubOrder-1 << " with source " << source << " to destination " << dest << "." << endl;
3740
3741 // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
3742 //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[BondOrder-1][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
3743 //NumMolecules = 0;
3744 FragmentLowerOrdersList[BondOrder-1][dest] = new Graph;
3745 for(Graph::iterator runner = (*FragmentLowerOrdersList[BondOrder-1][source]).begin();runner != (*FragmentLowerOrdersList[BondOrder-1][source]).end(); runner++) {
3746 NumMolecules += CreateListOfUniqueFragmentsOfOrder(out,SubOrder-1, FragmentLowerOrdersList[BondOrder-1][dest], (*runner).first, -(*runner).second.second, configuration);
3747 }
3748 *out << Verbose(1) << "Number of resulting molecules is: " << NumMolecules << "." << endl;
3749 }
3750 }
3751 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current BondOrder
3752 //NumMoleculesOfOrder[BondOrder-1] = NumMolecules;
3753 TotalNumMolecules += NumMoleculesOfOrder[BondOrder-1];
3754 *out << Verbose(1) << "Number of resulting molecules for Order " << BondOrder << " is: " << NumMoleculesOfOrder[BondOrder-1] << "." << endl;
3755 }
3756 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
3757 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
3758 // 5433222211111111
3759 // 43221111
3760 // 3211
3761 // 21
3762 // 1
3763 // Subsequently, we combine same orders into a single list (FragmentByOrderList) and reduce these by order
3764
3765 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
3766 FragmentList = new Graph;
3767 for (int BondOrder=1;BondOrder<=ANOVAOrder;BondOrder++) {
3768 NumLevels = 1 << (BondOrder-1);
3769 for(int i=0;i<NumLevels;i++) {
3770 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[BondOrder-1][i]), &counter);
3771 delete(FragmentLowerOrdersList[BondOrder-1][i]);
3772 }
3773 Free((void **)&FragmentLowerOrdersList[BondOrder-1], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3774 }
3775 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3776 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3777 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
3778 FragmentMoleculeList = new MoleculeListClass(TotalNumMolecules, AtomCount);
3779 int k=0;
3780 for(Graph::iterator runner = FragmentList->begin(); runner != FragmentList->end(); runner++) {
3781 KeySet test = (*runner).first;
3782 FragmentMoleculeList->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
3783 FragmentMoleculeList->TEList[k] = ((*runner).second).second;
3784 k++;
3785 }
3786
3787 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
3788 delete(FragmentList);
3789 return FragmentMoleculeList;
3790};
3791
3792/** Fragments a molecule, taking \a BondDegree neighbours into accent.
3793 * First of all, we have to split up the molecule into bonds ranging out till \a BondDegree.
3794 * These fragments serve in the following as the basis the calculate the bond energy of the bond
3795 * they originated from. Thus, they are split up in a left and a right part, each calculated for
3796 * the total energy, including the fragment as a whole and then we get:
3797 * E(fragment) - E(left) - E(right) = E(bond)
3798 * The splitting up is done via Breadth-First-Search, \sa BreadthFirstSearchAdd().
3799 * \param *out output stream for debugging
3800 * \param BondOrder up to how many neighbouring bonds a fragment contains
3801 * \param *configuration configuration for writing config files for each fragment
3802 * \param CutCyclic whether to add cut cyclic bond or to saturate
3803 * \return pointer to MoleculeListClass with all the fragments or NULL if something went wrong.
3804 */
3805MoleculeListClass * molecule::FragmentBottomUp(ofstream *out, int BondOrder, config *configuration, enum CutCyclicBond CutCyclic)
3806{
3807 int Num;
3808 MoleculeListClass *FragmentList = NULL, **FragmentsList = NULL;
3809 bond *Bond = NULL;
3810
3811 *out << Verbose(0) << "Begin of FragmentBottomUp." << endl;
3812 FragmentsList = (MoleculeListClass **) Malloc(sizeof(MoleculeListClass *)*2, "molecule::FragmentBottomUp: **FragmentsList");
3813 *out << Verbose(0) << "Getting Atomic fragments." << endl;
3814 FragmentsList[0] = GetAtomicFragments(out, AtomCount, configuration->GetIsAngstroem(), 1., CutCyclic);
3815
3816 // create the fragments including each one bond of the original molecule and up to \a BondDegree neighbours
3817 *out << Verbose(0) << "Getting " <<
3818#ifdef ADDHYDROGEN
3819 NoNonBonds
3820#else
3821 BondCount
3822#endif
3823 << " Bond fragments." << endl;
3824 FragmentList = GetEachBondFragmentOfOrder(out, BondOrder, configuration->GetIsAngstroem(), CutCyclic);
3825
3826 // check whether there are equal fragments by ReduceToUniqueOnes
3827 FragmentList->ReduceToUniqueList(out, &cell_size[0], BondDistance);
3828
3829 *out << Verbose(0) << "Begin of Separating " << FragmentList->NumberOfMolecules << " Fragments into Bond pieces." << endl;
3830 // as we have the list, we have to take each fragment split it relative to its originating
3831 // bond into left and right and store these in a new list
3832 *out << Verbose(2) << endl << "Allocating MoleculeListClass" << endl;
3833 FragmentsList[1] = new MoleculeListClass(3*FragmentList->NumberOfMolecules, AtomCount); // for each molecule the whole and its left and right part
3834 *out << Verbose(2) << "Creating TEList." << endl;
3835 // and create TE summation for these bond energy approximations (bond = whole - left - right)
3836 for(int i=0;i<FragmentList->NumberOfMolecules;i++) {
3837 // make up factors to regain total energy of whole molecule
3838 FragmentsList[1]->TEList[3*i] = FragmentList->TEList[i]; // bond energy is 1 * whole
3839 FragmentsList[1]->TEList[3*i+1] = -FragmentList->TEList[i]; // - 1. * left part
3840 FragmentsList[1]->TEList[3*i+2] = -FragmentList->TEList[i]; // - 1. * right part
3841
3842 // shift the pointer on whole molecule to new list in order to avoid that this molecule is deleted on deconstructing FragmentList
3843 FragmentsList[1]->ListOfMolecules[3*i] = FragmentList->ListOfMolecules[i];
3844 *out << Verbose(2) << "shifting whole fragment pointer for fragment " << FragmentList->ListOfMolecules[i] << " -> " << FragmentsList[1]->ListOfMolecules[3*i] << "." << endl;
3845 // create bond matrix and count bonds
3846 *out << Verbose(2) << "Updating bond list for fragment " << i << " [" << FragmentList << "]: " << FragmentList->ListOfMolecules[i] << endl;
3847 // create list of bonds per atom for this fragment (atoms were counted above)
3848 FragmentsList[1]->ListOfMolecules[3*i]->CreateListOfBondsPerAtom(out);
3849
3850 *out << Verbose(0) << "Getting left & right fragments for fragment " << i << "." << endl;
3851 // the bond around which the fragment has been setup is always the first by construction (bond partners are first added atoms)
3852 Bond = FragmentsList[1]->ListOfMolecules[3*i]->first->next; // is the bond between atom 0 and another in the middle
3853 FragmentsList[1]->ListOfMolecules[3*i]->FragmentMoleculeByBond(out, Bond, &(FragmentsList[1]->ListOfMolecules[3*i+1]), &(FragmentsList[1]->ListOfMolecules[3*i+2]), configuration->GetIsAngstroem(), CutCyclic);
3854 if ((FragmentsList[1]->ListOfMolecules[3*i+1] == NULL) || (FragmentsList[1]->ListOfMolecules[3*i+2] == NULL)) {
3855 *out << Verbose(2) << "Left and/or Right Fragment is NULL!" << endl;
3856 } else {
3857 *out << Verbose(3) << "Left Fragment is " << FragmentsList[1]->ListOfMolecules[3*i+1] << ": " << endl;
3858 FragmentsList[1]->ListOfMolecules[3*i+1]->Output(out);
3859 *out << Verbose(3) << "Right Fragment is " << FragmentsList[1]->ListOfMolecules[3*i+2] << ": " << endl;
3860 FragmentsList[1]->ListOfMolecules[3*i+2]->Output(out);
3861 *out << endl;
3862 }
3863 // remove in old list, so that memory for this molecule is not free'd on final delete of this list
3864 FragmentList->ListOfMolecules[i] = NULL;
3865 }
3866 *out << Verbose(0) << "End of Separating Fragments into Bond pieces." << endl;
3867 delete(FragmentList);
3868 FragmentList = NULL;
3869
3870 // combine atomic and bond list
3871 FragmentList = new MoleculeListClass(FragmentsList[0]->NumberOfMolecules + FragmentsList[1]->NumberOfMolecules, AtomCount);
3872 Num = 0;
3873 for(int i=0;i<2;i++) {
3874 for(int j=0;j<FragmentsList[i]->NumberOfMolecules;j++) {
3875 // transfer molecule
3876 FragmentList->ListOfMolecules[Num] = FragmentsList[i]->ListOfMolecules[j];
3877 FragmentsList[i]->ListOfMolecules[j] = NULL;
3878 // transfer TE factor
3879 FragmentList->TEList[Num] = FragmentsList[i]->TEList[j];
3880 Num++;
3881 }
3882 delete(FragmentsList[i]);
3883 FragmentsList[i] = NULL;
3884 }
3885 *out << Verbose(2) << "Memory cleanup and return with filled list." << endl;
3886 Free((void **)&FragmentsList, "molecule::FragmentBottomUp: **FragmentsList");
3887
3888 // reducing list
3889 FragmentList->ReduceToUniqueList(out, &cell_size[0], BondDistance);
3890
3891 // write configs for all fragements (are written in FragmentMolecule)
3892 // free FragmentList
3893 *out << Verbose(0) << "End of FragmentBottomUp." << endl;
3894 return FragmentList;
3895};
3896
3897
3898/** Comparision function for GSL heapsort on distances in two molecules.
3899 * \param *a
3900 * \param *b
3901 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
3902 */
3903int CompareDoubles (const void * a, const void * b)
3904{
3905 if (*(double *)a > *(double *)b)
3906 return -1;
3907 else if (*(double *)a < *(double *)b)
3908 return 1;
3909 else
3910 return 0;
3911};
3912
3913/** Determines whether two molecules actually contain the same atoms and coordination.
3914 * \param *out output stream for debugging
3915 * \param *OtherMolecule the molecule to compare this one to
3916 * \param threshold upper limit of difference when comparing the coordination.
3917 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
3918 */
3919int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
3920{
3921 int flag;
3922 double *Distances = NULL, *OtherDistances = NULL;
3923 vector CenterOfGravity, OtherCenterOfGravity;
3924 size_t *PermMap = NULL, *OtherPermMap = NULL;
3925 int *PermutationMap = NULL;
3926 atom *Walker = NULL;
3927 bool result = true; // status of comparison
3928
3929 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
3930 /// first count both their atoms and elements and update lists thereby ...
3931 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
3932 CountAtoms(out);
3933 OtherMolecule->CountAtoms(out);
3934 CountElements();
3935 OtherMolecule->CountElements();
3936
3937 /// ... and compare:
3938 /// -# AtomCount
3939 if (result) {
3940 if (AtomCount != OtherMolecule->AtomCount) {
3941 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3942 result = false;
3943 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3944 }
3945 /// -# ElementCount
3946 if (result) {
3947 if (ElementCount != OtherMolecule->ElementCount) {
3948 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3949 result = false;
3950 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3951 }
3952 /// -# ElementsInMolecule
3953 if (result) {
3954 for (flag=0;flag<MAX_ELEMENTS;flag++) {
3955 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
3956 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
3957 break;
3958 }
3959 if (flag < MAX_ELEMENTS) {
3960 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
3961 result = false;
3962 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
3963 }
3964 /// then determine and compare center of gravity for each molecule ...
3965 if (result) {
3966 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
3967 DetermineCenterOfGravity(CenterOfGravity);
3968 OtherMolecule->DetermineCenterOfGravity(OtherCenterOfGravity);
3969 *out << Verbose(5) << "Center of Gravity: ";
3970 CenterOfGravity.Output(out);
3971 *out << endl << Verbose(5) << "Other Center of Gravity: ";
3972 OtherCenterOfGravity.Output(out);
3973 *out << endl;
3974 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
3975 *out << Verbose(4) << "Centers of gravity don't match." << endl;
3976 result = false;
3977 }
3978 }
3979
3980 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
3981 if (result) {
3982 *out << Verbose(5) << "Calculating distances" << endl;
3983 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
3984 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
3985 Walker = start;
3986 while (Walker->next != end) {
3987 Walker = Walker->next;
3988 //for (i=0;i<AtomCount;i++) {
3989 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
3990 }
3991 Walker = OtherMolecule->start;
3992 while (Walker->next != OtherMolecule->end) {
3993 Walker = Walker->next;
3994 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
3995 }
3996
3997 /// ... sort each list (using heapsort (o(N log N)) from GSL)
3998 *out << Verbose(5) << "Sorting distances" << endl;
3999 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
4000 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4001 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
4002 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
4003 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4004 *out << Verbose(5) << "Combining Permutation Maps" << endl;
4005 for(int i=0;i<AtomCount;i++)
4006 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
4007
4008 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
4009 *out << Verbose(4) << "Comparing distances" << endl;
4010 flag = 0;
4011 for (int i=0;i<AtomCount;i++) {
4012 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
4013 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
4014 flag = 1;
4015 }
4016 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
4017 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
4018
4019 /// free memory
4020 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
4021 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
4022 if (flag) { // if not equal
4023 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
4024 result = false;
4025 }
4026 }
4027 /// return pointer to map if all distances were below \a threshold
4028 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
4029 if (result) {
4030 *out << Verbose(3) << "Result: Equal." << endl;
4031 return PermutationMap;
4032 } else {
4033 *out << Verbose(3) << "Result: Not equal." << endl;
4034 return NULL;
4035 }
4036};
4037
4038/** Returns an index map for two father-son-molecules.
4039 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
4040 * \param *out output stream for debugging
4041 * \param *OtherMolecule corresponding molecule with fathers
4042 * \return allocated map of size molecule::AtomCount with map
4043 * \todo make this with a good sort O(n), not O(n^2)
4044 */
4045int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
4046{
4047 atom *Walker = NULL, *OtherWalker = NULL;
4048 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
4049 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
4050 for (int i=0;i<AtomCount;i++)
4051 AtomicMap[i] = -1;
4052 if (OtherMolecule == this) { // same molecule
4053 for (int i=0;i<AtomCount;i++) // no need as -1 means already that there is trivial correspondence
4054 AtomicMap[i] = i;
4055 *out << Verbose(4) << "Map is trivial." << endl;
4056 } else {
4057 *out << Verbose(4) << "Map is ";
4058 Walker = start;
4059 while (Walker->next != end) {
4060 Walker = Walker->next;
4061 if (Walker->father == NULL) {
4062 AtomicMap[Walker->nr] = -2;
4063 } else {
4064 OtherWalker = OtherMolecule->start;
4065 while (OtherWalker->next != OtherMolecule->end) {
4066 OtherWalker = OtherWalker->next;
4067 //for (int i=0;i<AtomCount;i++) { // search atom
4068 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
4069 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
4070 if (Walker->father == OtherWalker)
4071 AtomicMap[Walker->nr] = OtherWalker->nr;
4072 }
4073 }
4074 *out << AtomicMap[Walker->nr] << "\t";
4075 }
4076 *out << endl;
4077 }
4078 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
4079 return AtomicMap;
4080};
4081
Note: See TracBrowser for help on using the repository browser.