source: molecuilder/src/molecules.cpp@ 0e8321

Last change on this file since 0e8321 was 0e8321, checked in by Frederik Heber <heber@…>, 17 years ago

KeySetFile is stored without an additional last tab on each line

  • Property mode set to 100644
File size: 179.6 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=0;i<num;i++) {
24 for(int j=0;j<NDIM;j++)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 last_atom = 0;
50 elemente = teil;
51 AtomCount = 0;
52 BondCount = 0;
53 NoNonBonds = 0;
54 NoNonHydrogen = 0;
55 NoCyclicBonds = 0;
56 ListOfBondsPerAtom = NULL;
57 NumberOfBondsPerAtom = NULL;
58 ElementCount = 0;
59 for(int i=0;i<MAX_ELEMENTS;i++)
60 ElementsInMolecule[i] = 0;
61 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
62 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
63};
64
65/** Destructor of class molecule.
66 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
67 */
68molecule::~molecule()
69{
70 if (ListOfBondsPerAtom != NULL)
71 for(int i=0;i<AtomCount;i++)
72 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
73 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
74 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
75 CleanupMolecule();
76 delete(first);
77 delete(last);
78 delete(end);
79 delete(start);
80};
81
82/** Adds given atom \a *pointer from molecule list.
83 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
84 * \param *pointer allocated and set atom
85 * \return true - succeeded, false - atom not found in list
86 */
87bool molecule::AddAtom(atom *pointer)
88{
89 if (pointer != NULL) {
90 pointer->sort = &pointer->nr;
91 pointer->nr = last_atom++; // increase number within molecule
92 AtomCount++;
93 if (pointer->type != NULL) {
94 if (ElementsInMolecule[pointer->type->Z] == 0)
95 ElementCount++;
96 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
97 if (pointer->type->Z != 1)
98 NoNonHydrogen++;
99 if (pointer->Name == NULL) {
100 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
101 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
102 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
103 }
104 }
105 return add(pointer, end);
106 } else
107 return false;
108};
109
110/** Adds a copy of the given atom \a *pointer from molecule list.
111 * Increases molecule::last_atom and gives last number to added atom.
112 * \param *pointer allocated and set atom
113 * \return true - succeeded, false - atom not found in list
114 */
115atom * molecule::AddCopyAtom(atom *pointer)
116{
117 if (pointer != NULL) {
118 atom *walker = new atom();
119 walker->type = pointer->type; // copy element of atom
120 walker->x.CopyVector(&pointer->x); // copy coordination
121 walker->v.CopyVector(&pointer->v); // copy velocity
122 walker->FixedIon = pointer->FixedIon;
123 walker->sort = &walker->nr;
124 walker->nr = last_atom++; // increase number within molecule
125 walker->father = pointer; //->GetTrueFather();
126 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
127 strcpy (walker->Name, pointer->Name);
128 add(walker, end);
129 if ((pointer->type != NULL) && (pointer->type->Z != 1))
130 NoNonHydrogen++;
131 AtomCount++;
132 return walker;
133 } else
134 return NULL;
135};
136
137/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
138 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
139 * a different scheme when adding \a *replacement atom for the given one.
140 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
141 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
142 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalVector().
143 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
144 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
145 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
146 * hydrogens forming this angle with *origin.
147 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
148 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
149 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
150 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
151 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
152 * \f]
153 * vector::GetNormalVector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalVector creates
154 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
155 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
156 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
157 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
158 * \f]
159 * as the coordination of all three atoms in the coordinate system of these three vectors:
160 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
161 *
162 * \param *out output stream for debugging
163 * \param *Bond pointer to bond between \a *origin and \a *replacement
164 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
165 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
166 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
167 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
168 * \param NumBond number of bonds in \a **BondList
169 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
170 * \return number of atoms added, if < bond::BondDegree then something went wrong
171 * \todo double and triple bonds splitting (always use the tetraeder angle!)
172 */
173bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
174{
175 double bondlength; // bond length of the bond to be replaced/cut
176 double bondangle; // bond angle of the bond to be replaced/cut
177 double BondRescale; // rescale value for the hydrogen bond length
178 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
179 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
180 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
181 int i; // loop variable
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 vector OrthoVector1, OrthoVector2; // temporary vectors in coordination construction
184 vector InBondVector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188// *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondVector.CopyVector(&TopReplacement->x);
191 InBondVector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondVector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondVector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198// *out << Verbose(4) << "InBondVector is: ";
199// InBondVector.Output(out);
200// *out << endl;
201 OrthoVector1.Zero();
202 for (int i=0;i<NDIM;i++) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 OrthoVector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 OrthoVector1.MatrixMultiplication(matrix);
210 InBondVector.SubtractVector(&OrthoVector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondVector.Norm();
213// *out << Verbose(4) << "Corrected InBondVector is now: ";
214// InBondVector.Output(out);
215// *out << endl;
216 } // periodic correction finished
217
218 InBondVector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondVector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondVector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247// FirstOtherAtom->x.Output(out);
248// *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273// *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && OrthoVector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 OrthoVector1.GetOneNormalVector(&InBondVector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //OrthoVector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 OrthoVector1.MakeNormalVector(&InBondVector);
285 OrthoVector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << OrthoVector1.Norm() << " and " << InBondVector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondVector ";
306// InBondVector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// OrthoVector1.Output(out);
310// *out << endl;
311// *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(i=0;i<NDIM;i++) { // rotate by half the bond angle in both directions (InBondVector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(i=0;i<NDIM;i++) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329// FirstOtherAtom->x.Output(out);
330// *out << endl;
331// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332// SecondOtherAtom->x.Output(out);
333// *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondVector
360 AllWentWell = AllWentWell && OrthoVector1.GetOneNormalVector(&InBondVector);
361// *out << Verbose(3) << "Orthovector1: ";
362// OrthoVector1.Output(out);
363// *out << endl;
364 AllWentWell = AllWentWell && OrthoVector2.MakeNormalVector(&InBondVector, &OrthoVector1);
365// *out << Verbose(3) << "Orthovector2: ";
366// OrthoVector2.Output(out);
367// *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for OrthVector1
375 g = b/2.; // length for OrthVector2
376// *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377// *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403// FirstOtherAtom->x.Output(out);
404// *out << endl;
405// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406// SecondOtherAtom->x.Output(out);
407// *out << endl;
408// *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409// ThirdOtherAtom->x.Output(out);
410// *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427// *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *first = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 for(i=0;i<NumberOfAtoms;i++){
459 first = new atom;
460 getline(xyzfile,line,'\n');
461 istringstream *item = new istringstream(line);
462 //istringstream input(line);
463 cout << Verbose(1) << "Reading: " << line << endl;
464 *item >> shorthand;
465 *item >> x[0];
466 *item >> x[1];
467 *item >> x[2];
468 first->type = elemente->FindElement(shorthand);
469 if (first->type == NULL) {
470 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
471 first->type = elemente->FindElement(1);
472 }
473 for(j=0;j<NDIM;j++)
474 first->x.x[j] = x[j];
475 AddAtom(first); // add to molecule
476 delete(item);
477 }
478 xyzfile.close();
479 delete(input);
480 return true;
481};
482
483/** Creates a copy of this molecule.
484 * \return copy of molecule
485 */
486molecule *molecule::CopyMolecule()
487{
488 molecule *copy = new molecule(elemente);
489 atom *CurrentAtom = NULL;
490 atom *LeftAtom = NULL, *RightAtom = NULL;
491 atom *Walker = NULL;
492
493 // copy all atoms
494 Walker = start;
495 while(Walker->next != end) {
496 Walker = Walker->next;
497 CurrentAtom = copy->AddCopyAtom(Walker);
498 }
499
500 // copy all bonds
501 bond *Binder = first;
502 bond *NewBond = NULL;
503 while(Binder->next != last) {
504 Binder = Binder->next;
505 // get the pendant atoms of current bond in the copy molecule
506 LeftAtom = copy->start;
507 while (LeftAtom->next != copy->end) {
508 LeftAtom = LeftAtom->next;
509 if (LeftAtom->father == Binder->leftatom)
510 break;
511 }
512 RightAtom = copy->start;
513 while (RightAtom->next != copy->end) {
514 RightAtom = RightAtom->next;
515 if (RightAtom->father == Binder->rightatom)
516 break;
517 }
518 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
519 NewBond->Cyclic = Binder->Cyclic;
520 if (Binder->Cyclic)
521 copy->NoCyclicBonds++;
522 NewBond->Type = Binder->Type;
523 }
524 // correct fathers
525 Walker = copy->start;
526 while(Walker->next != copy->end) {
527 Walker = Walker->next;
528 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
529 Walker->father = Walker; // set father to itself (copy of a whole molecule)
530 else
531 Walker->father = Walker->father->father; // set father to original's father
532 }
533 // copy values
534 copy->CountAtoms((ofstream *)&cout);
535 copy->CountElements();
536 if (first->next != last) { // if adjaceny list is present
537 copy->BondDistance = BondDistance;
538 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
539 }
540
541 return copy;
542};
543
544/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
545 * Also updates molecule::BondCount and molecule::NoNonBonds.
546 * \param *first first atom in bond
547 * \param *second atom in bond
548 * \return pointer to bond or NULL on failure
549 */
550bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
551{
552 bond *Binder = NULL;
553 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
554 Binder = new bond(atom1, atom2, degree, BondCount++);
555 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
556 NoNonBonds++;
557 add(Binder, last);
558 } else {
559 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
560 }
561 return Binder;
562};
563
564/** Remove bond from bond chain list.
565 * \todo Function not implemented yet
566 * \param *pointer bond pointer
567 * \return true - bound found and removed, false - bond not found/removed
568 */
569bool molecule::RemoveBond(bond *pointer)
570{
571 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
572 removewithoutcheck(pointer);
573 return true;
574};
575
576/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
577 * \todo Function not implemented yet
578 * \param *BondPartner atom to be removed
579 * \return true - bounds found and removed, false - bonds not found/removed
580 */
581bool molecule::RemoveBonds(atom *BondPartner)
582{
583 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
584 return false;
585};
586
587/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
588 * \param *dim vector class
589 */
590void molecule::SetBoxDimension(vector *dim)
591{
592 cell_size[0] = dim->x[0];
593 cell_size[1] = 0.;
594 cell_size[2] = dim->x[1];
595 cell_size[3] = 0.;
596 cell_size[4] = 0.;
597 cell_size[5] = dim->x[2];
598};
599
600/** Centers the edge of the atoms at (0,0,0).
601 * \param *out output stream for debugging
602 * \param *max coordinates of other edge, specifying box dimensions.
603 */
604void molecule::CenterEdge(ofstream *out, vector *max)
605{
606 vector *min = new vector;
607
608// *out << Verbose(3) << "Begin of CenterEdge." << endl;
609 atom *ptr = start->next; // start at first in list
610 if (ptr != end) { //list not empty?
611 for (int i=0;i<NDIM;i++) {
612 max->x[i] = ptr->x.x[i];
613 min->x[i] = ptr->x.x[i];
614 }
615 while (ptr->next != end) { // continue with second if present
616 ptr = ptr->next;
617 //ptr->Output(1,1,out);
618 for (int i=0;i<NDIM;i++) {
619 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
620 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
621 }
622 }
623// *out << Verbose(4) << "Maximum is ";
624// max->Output(out);
625// *out << ", Minimum is ";
626// min->Output(out);
627// *out << endl;
628
629 for (int i=0;i<NDIM;i++) {
630 min->x[i] *= -1.;
631 max->x[i] += min->x[i];
632 }
633 Translate(min);
634 }
635 delete(min);
636// *out << Verbose(3) << "End of CenterEdge." << endl;
637};
638
639/** Centers the center of the atoms at (0,0,0).
640 * \param *out output stream for debugging
641 * \param *center return vector for translation vector
642 */
643void molecule::CenterOrigin(ofstream *out, vector *center)
644{
645 int Num = 0;
646 atom *ptr = start->next; // start at first in list
647
648 for(int i=0;i<NDIM;i++) // zero center vector
649 center->x[i] = 0.;
650
651 if (ptr != end) { //list not empty?
652 while (ptr->next != end) { // continue with second if present
653 ptr = ptr->next;
654 Num++;
655 center->AddVector(&ptr->x);
656 }
657 center->Scale(-1./Num); // divide through total number (and sign for direction)
658 Translate(center);
659 }
660};
661
662/** Centers the center of gravity of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *center return vector for translation vector
665 */
666void molecule::CenterGravity(ofstream *out, vector *center)
667{
668 double Num = 0;
669 atom *ptr = start->next; // start at first in list
670 vector tmp;
671
672 for(int i=0;i<NDIM;i++) // zero center vector
673 center->x[i] = 0.;
674
675 if (ptr != end) { //list not empty?
676 while (ptr->next != end) { // continue with second if present
677 ptr = ptr->next;
678 Num += ptr->type->mass;
679 tmp.CopyVector(&ptr->x);
680 tmp.Scale(ptr->type->mass); // scale by mass
681 center->AddVector(&tmp);
682 }
683 center->Scale(-1./Num); // divide through total mass (and sign for direction)
684 Translate(center);
685 }
686};
687
688/** Scales all atoms by \a *factor.
689 * \param *factor pointer to scaling factor
690 */
691void molecule::Scale(double **factor)
692{
693 atom *ptr = start;
694
695 while (ptr->next != end) {
696 ptr = ptr->next;
697 ptr->x.Scale(factor);
698 }
699};
700
701/** Translate all atoms by given vector.
702 * \param trans[] translation vector.
703 */
704void molecule::Translate(const vector *trans)
705{
706 atom *ptr = start;
707
708 while (ptr->next != end) {
709 ptr = ptr->next;
710 ptr->x.Translate(trans);
711 }
712};
713
714/** Mirrors all atoms against a given plane.
715 * \param n[] normal vector of mirror plane.
716 */
717void molecule::Mirror(const vector *n)
718{
719 atom *ptr = start;
720
721 while (ptr->next != end) {
722 ptr = ptr->next;
723 ptr->x.Mirror(n);
724 }
725};
726
727/** Determines center of gravity (yet not considering atom masses).
728 * \param CenterOfGravity reference to return vector
729 */
730void molecule::DetermineCenterOfGravity(vector &CenterOfGravity)
731{
732 atom *Walker = start;
733 bond *Binder = NULL;
734 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
735 double tmp;
736 bool flag;
737 vector TestVector, TranslationVector;
738
739 do {
740 CenterOfGravity.Zero();
741 flag = true;
742 while (Walker->next != end) {
743 Walker = Walker->next;
744#ifdef ADDHYDROGEN
745 if (Walker->type->Z != 1) {
746#endif
747 TestVector.CopyVector(&Walker->x);
748 TestVector.InverseMatrixMultiplication(matrix);
749 TranslationVector.Zero();
750 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
751 Binder = ListOfBondsPerAtom[Walker->nr][i];
752 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
753 for (int j=0;j<NDIM;j++) {
754 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
755 if ((fabs(tmp)) > BondDistance) {
756 flag = false;
757 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
758 if (tmp > 0)
759 TranslationVector.x[j] -= 1.;
760 else
761 TranslationVector.x[j] += 1.;
762 }
763 }
764 }
765 TestVector.AddVector(&TranslationVector);
766 TestVector.MatrixMultiplication(matrix);
767 CenterOfGravity.AddVector(&TestVector);
768 cout << Verbose(1) << "Vector is: ";
769 TestVector.Output((ofstream *)&cout);
770 cout << endl;
771#ifdef ADDHYDROGEN
772 // now also change all hydrogens
773 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
774 Binder = ListOfBondsPerAtom[Walker->nr][i];
775 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
776 TestVector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
777 TestVector.InverseMatrixMultiplication(matrix);
778 TestVector.AddVector(&TranslationVector);
779 TestVector.MatrixMultiplication(matrix);
780 CenterOfGravity.AddVector(&TestVector);
781 cout << Verbose(1) << "Hydrogen Vector is: ";
782 TestVector.Output((ofstream *)&cout);
783 cout << endl;
784 }
785 }
786 }
787#endif
788 }
789 } while (!flag);
790 Free((void **)&matrix, "molecule::DetermineCenterOfGravity: *matrix");
791 CenterOfGravity.Scale(1./(double)AtomCount);
792};
793
794/** Align all atoms in such a manner that given vector \a *n is along z axis.
795 * \param n[] alignment vector.
796 */
797void molecule::Align(vector *n)
798{
799 atom *ptr = start;
800 double alpha, tmp;
801 vector z_axis;
802 z_axis.x[0] = 0.;
803 z_axis.x[1] = 0.;
804 z_axis.x[2] = 1.;
805
806 // rotate on z-x plane
807 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
808 alpha = atan(-n->x[0]/n->x[2]);
809 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
810 while (ptr->next != end) {
811 ptr = ptr->next;
812 tmp = ptr->x.x[0];
813 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
814 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
815 }
816 // rotate n vector
817 tmp = n->x[0];
818 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
819 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
820 cout << Verbose(1) << "alignment vector after first rotation: ";
821 n->Output((ofstream *)&cout);
822 cout << endl;
823
824 // rotate on z-y plane
825 ptr = start;
826 alpha = atan(-n->x[1]/n->x[2]);
827 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 tmp = ptr->x.x[1];
831 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
832 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
833 }
834 // rotate n vector (for consistency check)
835 tmp = n->x[1];
836 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
837 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
838
839 cout << Verbose(1) << "alignment vector after second rotation: ";
840 n->Output((ofstream *)&cout);
841 cout << Verbose(1) << endl;
842 cout << Verbose(0) << "End of Aligning all atoms." << endl;
843};
844
845/** Removes atom from molecule list.
846 * \param *pointer atom to be removed
847 * \return true - succeeded, false - atom not found in list
848 */
849bool molecule::RemoveAtom(atom *pointer)
850{
851 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
852 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
853 else
854 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
855 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
856 ElementCount--;
857 return remove(pointer, start, end);
858};
859
860/** Removes every atom from molecule list.
861 * \return true - succeeded, false - atom not found in list
862 */
863bool molecule::CleanupMolecule()
864{
865 return (cleanup(start,end) && cleanup(first,last));
866};
867
868/** Finds an atom specified by its continuous number.
869 * \param Nr number of atom withim molecule
870 * \return pointer to atom or NULL
871 */
872atom * molecule::FindAtom(int Nr) const{
873 atom * walker = find(&Nr, start,end);
874 if (walker != NULL) {
875 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
876 return walker;
877 } else {
878 cout << Verbose(0) << "Atom not found in list." << endl;
879 return NULL;
880 }
881};
882
883/** Asks for atom number, and checks whether in list.
884 * \param *text question before entering
885 */
886atom * molecule::AskAtom(char *text)
887{
888 int No;
889 atom *ion = NULL;
890 do {
891 //cout << Verbose(0) << "============Atom list==========================" << endl;
892 //mol->Output((ofstream *)&cout);
893 //cout << Verbose(0) << "===============================================" << endl;
894 cout << Verbose(0) << text;
895 cin >> No;
896 ion = this->FindAtom(No);
897 } while (ion == NULL);
898 return ion;
899};
900
901/** Checks if given coordinates are within cell volume.
902 * \param *x array of coordinates
903 * \return true - is within, false - out of cell
904 */
905bool molecule::CheckBounds(const vector *x) const
906{
907 bool result = true;
908 int j =-1;
909 for (int i=0;i<3;i++) {
910 j += i+1;
911 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
912 }
913 //return result;
914 return true; /// probably not gonna use the check no more
915};
916
917/** Calculates sum over least square distance to line hidden in \a *x.
918 * \param *x offset and direction vector
919 * \param *params pointer to lsq_params structure
920 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
921 */
922double LeastSquareDistance (const gsl_vector * x, void * params)
923{
924 double res = 0, t;
925 vector a,b,c,d;
926 struct lsq_params *par = (struct lsq_params *)params;
927 atom *ptr = par->mol->start;
928
929 // initialize vectors
930 a.x[0] = gsl_vector_get(x,0);
931 a.x[1] = gsl_vector_get(x,1);
932 a.x[2] = gsl_vector_get(x,2);
933 b.x[0] = gsl_vector_get(x,3);
934 b.x[1] = gsl_vector_get(x,4);
935 b.x[2] = gsl_vector_get(x,5);
936 // go through all atoms
937 while (ptr != par->mol->end) {
938 ptr = ptr->next;
939 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
940 c.CopyVector(&ptr->x); // copy vector to temporary one
941 c.SubtractVector(&a); // subtract offset vector
942 t = c.ScalarProduct(&b); // get direction parameter
943 d.CopyVector(&b); // and create vector
944 d.Scale(&t);
945 c.SubtractVector(&d); // ... yielding distance vector
946 res += d.ScalarProduct((const vector *)&d); // add squared distance
947 }
948 }
949 return res;
950};
951
952/** By minimizing the least square distance gains alignment vector.
953 * \bug this is not yet working properly it seems
954 */
955void molecule::GetAlignVector(struct lsq_params * par) const
956{
957 int np = 6;
958
959 const gsl_multimin_fminimizer_type *T =
960 gsl_multimin_fminimizer_nmsimplex;
961 gsl_multimin_fminimizer *s = NULL;
962 gsl_vector *ss;
963 gsl_multimin_function minex_func;
964
965 size_t iter = 0, i;
966 int status;
967 double size;
968
969 /* Initial vertex size vector */
970 ss = gsl_vector_alloc (np);
971
972 /* Set all step sizes to 1 */
973 gsl_vector_set_all (ss, 1.0);
974
975 /* Starting point */
976 par->x = gsl_vector_alloc (np);
977 par->mol = this;
978
979 gsl_vector_set (par->x, 0, 0.0); // offset
980 gsl_vector_set (par->x, 1, 0.0);
981 gsl_vector_set (par->x, 2, 0.0);
982 gsl_vector_set (par->x, 3, 0.0); // direction
983 gsl_vector_set (par->x, 4, 0.0);
984 gsl_vector_set (par->x, 5, 1.0);
985
986 /* Initialize method and iterate */
987 minex_func.f = &LeastSquareDistance;
988 minex_func.n = np;
989 minex_func.params = (void *)par;
990
991 s = gsl_multimin_fminimizer_alloc (T, np);
992 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
993
994 do
995 {
996 iter++;
997 status = gsl_multimin_fminimizer_iterate(s);
998
999 if (status)
1000 break;
1001
1002 size = gsl_multimin_fminimizer_size (s);
1003 status = gsl_multimin_test_size (size, 1e-2);
1004
1005 if (status == GSL_SUCCESS)
1006 {
1007 printf ("converged to minimum at\n");
1008 }
1009
1010 printf ("%5d ", (int)iter);
1011 for (i = 0; i < (size_t)np; i++)
1012 {
1013 printf ("%10.3e ", gsl_vector_get (s->x, i));
1014 }
1015 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1016 }
1017 while (status == GSL_CONTINUE && iter < 100);
1018
1019 for (i=0;i<(size_t)np;i++)
1020 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1021 //gsl_vector_free(par->x);
1022 gsl_vector_free(ss);
1023 gsl_multimin_fminimizer_free (s);
1024};
1025
1026/** Prints molecule to *out.
1027 * \param *out output stream
1028 */
1029bool molecule::Output(ofstream *out)
1030{
1031 element *runner = elemente->start;
1032 atom *walker = NULL;
1033 int ElementNo, AtomNo;
1034 CountElements();
1035
1036 if (out == NULL) {
1037 return false;
1038 } else {
1039 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1040 ElementNo = 0;
1041 while (runner->next != elemente->end) { // go through every element
1042 runner = runner->next;
1043 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1044 ElementNo++;
1045 AtomNo = 0;
1046 walker = start;
1047 while (walker->next != end) { // go through every atom of this element
1048 walker = walker->next;
1049 if (walker->type == runner) { // if this atom fits to element
1050 AtomNo++;
1051 walker->Output(ElementNo, AtomNo, out);
1052 }
1053 }
1054 }
1055 }
1056 return true;
1057 }
1058};
1059
1060/** Output of element before the actual coordination list.
1061 * \param *out stream pointer
1062 */
1063bool molecule::Checkout(ofstream *out) const
1064{
1065 return elemente->Checkout(out, ElementsInMolecule);
1066};
1067
1068/** Prints molecule to *out as xyz file.
1069 * \param *out output stream
1070 */
1071bool molecule::OutputXYZ(ofstream *out) const
1072{
1073 atom *walker = NULL;
1074 int No = 0;
1075 time_t now;
1076
1077 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1078 walker = start;
1079 while (walker->next != end) { // go through every atom and count
1080 walker = walker->next;
1081 No++;
1082 }
1083 if (out != NULL) {
1084 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1085 walker = start;
1086 while (walker->next != end) { // go through every atom of this element
1087 walker = walker->next;
1088 walker->OutputXYZLine(out);
1089 }
1090 return true;
1091 } else
1092 return false;
1093};
1094
1095/** Brings molecule::AtomCount and atom::*Name up-to-date.
1096 * \param *out output stream for debugging
1097 */
1098void molecule::CountAtoms(ofstream *out)
1099{
1100 int i = 0;
1101 atom *Walker = start;
1102 while (Walker->next != end) {
1103 Walker = Walker->next;
1104 i++;
1105 }
1106 if ((AtomCount == 0) || (i != AtomCount)) {
1107 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1108 AtomCount = i;
1109
1110 // count NonHydrogen atoms and give each atom a unique name
1111 if (AtomCount != 0) {
1112 i=0;
1113 NoNonHydrogen = 0;
1114 Walker = start;
1115 while (Walker->next != end) {
1116 Walker = Walker->next;
1117 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1118 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1119 NoNonHydrogen++;
1120 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1121 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1122 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1123 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1124 i++;
1125 }
1126 } else
1127 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1128 }
1129};
1130
1131/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1132 */
1133void molecule::CountElements()
1134{
1135 int i = 0;
1136 for(i=0;i<MAX_ELEMENTS;i++)
1137 ElementsInMolecule[i] = 0;
1138 ElementCount = 0;
1139
1140 atom *walker = start;
1141 while (walker->next != end) {
1142 walker = walker->next;
1143 ElementsInMolecule[walker->type->Z]++;
1144 i++;
1145 }
1146 for(i=0;i<MAX_ELEMENTS;i++)
1147 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1148};
1149
1150/** Counts all cyclic bonds and returns their number.
1151 * \note Hydrogen bonds can never by cyclic, thus no check for that
1152 * \param *out output stream for debugging
1153 * \return number opf cyclic bonds
1154 */
1155int molecule::CountCyclicBonds(ofstream *out)
1156{
1157 int No = 0;
1158 int MinimumRingSize;
1159 MoleculeLeafClass *Subgraphs = NULL;
1160 bond *Binder = first;
1161 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1162 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1163 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
1164 while (Subgraphs->next != NULL) {
1165 Subgraphs = Subgraphs->next;
1166 delete(Subgraphs->previous);
1167 }
1168 delete(Subgraphs);
1169 }
1170 while(Binder->next != last) {
1171 Binder = Binder->next;
1172 if (Binder->Cyclic)
1173 No++;
1174 }
1175 return No;
1176};
1177
1178/** Returns Shading as a char string.
1179 * \param color the Shading
1180 * \return string of the flag
1181 */
1182char * molecule::GetColor(enum Shading color)
1183{
1184 switch(color) {
1185 case white:
1186 return "white";
1187 break;
1188 case lightgray:
1189 return "lightgray";
1190 break;
1191 case darkgray:
1192 return "darkgray";
1193 break;
1194 case black:
1195 return "black";
1196 break;
1197 default:
1198 return "uncolored";
1199 break;
1200 };
1201};
1202
1203
1204/** Counts necessary number of valence electrons and returns number and SpinType.
1205 * \param configuration containing everything
1206 */
1207void molecule::CalculateOrbitals(class config &configuration)
1208{
1209 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1210 for(int i=0;i<MAX_ELEMENTS;i++) {
1211 if (ElementsInMolecule[i] != 0) {
1212 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1213 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1214 }
1215 }
1216 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1217 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1218 configuration.MaxPsiDouble /= 2;
1219 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1220 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1221 configuration.ProcPEGamma /= 2;
1222 configuration.ProcPEPsi *= 2;
1223 } else {
1224 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1225 configuration.ProcPEPsi = 1;
1226 }
1227 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1228};
1229
1230/** Creates an adjacency list of the molecule.
1231 * Generally, we use the CSD approach to bond recognition, that is the the distance
1232 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1233 * a threshold t = 0.4 Angstroem.
1234 * To make it O(N log N) the function uses the linked-cell technique as follows:
1235 * The procedure is step-wise:
1236 * -# Remove every bond in list
1237 * -# Count the atoms in the molecule with CountAtoms()
1238 * -# partition cell into smaller linked cells of size \a bonddistance
1239 * -# put each atom into its corresponding cell
1240 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1241 * -# create the list of bonds via CreateListOfBondsPerAtom()
1242 * -# correct the bond degree iteratively (single->double->triple bond)
1243 * -# finally print the bond list to \a *out if desired
1244 * \param *out out stream for printing the matrix, NULL if no output
1245 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1246 */
1247void molecule::CreateAdjacencyList(ofstream *out, double bonddistance)
1248{
1249 atom *Walker = NULL, *OtherWalker = NULL;
1250 int No, NoBonds;
1251 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1252 molecule **CellList;
1253 double distance, MinDistance, MaxDistance;
1254 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1255 vector x;
1256
1257 BondDistance = bonddistance;
1258 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1259 // remove every bond from the list
1260 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1261 cleanup(first,last);
1262 }
1263
1264 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1265 CountAtoms(out);
1266 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1267
1268 if (AtomCount != 0) {
1269 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1270 j=-1;
1271 for (int i=0;i<NDIM;i++) {
1272 j += i+1;
1273 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1274 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1275 }
1276 // 2a. allocate memory for the cell list
1277 NumberCells = divisor[0]*divisor[1]*divisor[2];
1278 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1279 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1280 for (int i=0;i<NumberCells;i++)
1281 CellList[i] = NULL;
1282
1283 // 2b. put all atoms into its corresponding list
1284 Walker = start;
1285 while(Walker->next != end) {
1286 Walker = Walker->next;
1287 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1288 //Walker->x.Output(out);
1289 //*out << "." << endl;
1290 // compute the cell by the atom's coordinates
1291 j=-1;
1292 for (int i=0;i<NDIM;i++) {
1293 j += i+1;
1294 x.CopyVector(&(Walker->x));
1295 x.KeepPeriodic(out, matrix);
1296 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1297 }
1298 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1299 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1300 // add copy atom to this cell
1301 if (CellList[index] == NULL) // allocate molecule if not done
1302 CellList[index] = new molecule(elemente);
1303 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1304 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1305 }
1306 //for (int i=0;i<NumberCells;i++)
1307 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1308
1309 // 3a. go through every cell
1310 for (N[0]=0;N[0]<divisor[0];N[0]++)
1311 for (N[1]=0;N[1]<divisor[1];N[1]++)
1312 for (N[2]=0;N[2]<divisor[2];N[2]++) {
1313 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1314 if (CellList[Index] != NULL) { // if there atoms in this cell
1315 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1316 // 3b. for every atom therein
1317 Walker = CellList[Index]->start;
1318 while (Walker->next != CellList[Index]->end) { // go through every atom
1319 Walker = Walker->next;
1320 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1321 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1322 for (n[0]=-1;n[0]<=1;n[0]++)
1323 for (n[1]=-1;n[1]<=1;n[1]++)
1324 for (n[2]=-1;n[2]<=1;n[2]++) {
1325 // compute the index of this comparison cell and make it periodic
1326 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1327 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1328 if (CellList[index] != NULL) { // if there are any atoms in this cell
1329 OtherWalker = CellList[index]->start;
1330 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1331 OtherWalker = OtherWalker->next;
1332 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1333 /// \todo periodic check is missing here!
1334 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1335 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1336 MaxDistance = MinDistance + BONDTHRESHOLD;
1337 MinDistance -= BONDTHRESHOLD;
1338 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1339 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1340 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1341 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1342 } else {
1343 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1344 }
1345 }
1346 }
1347 }
1348 }
1349 }
1350 }
1351 // 4. free the cell again
1352 for (int i=0;i<NumberCells;i++)
1353 if (CellList[i] != NULL) {
1354 delete(CellList[i]);
1355 }
1356 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1357
1358 // create the adjacency list per atom
1359 CreateListOfBondsPerAtom(out);
1360
1361 // correct Bond degree of each bond by checking of updated(!) sum of bond degree for an atom match its valence count
1362 // bond degrres are correctled iteratively by one, so that 2-2 instead of 1-3 or 3-1 corrections are favoured: We want
1363 // a rather symmetric distribution of higher bond degrees
1364 if (BondCount != 0) {
1365 NoCyclicBonds = 0;
1366 *out << Verbose(1) << "Correcting Bond degree of each bond ... ";
1367 do {
1368 No = 0; // No acts as breakup flag (if 1 we still continue)
1369 Walker = start;
1370 while (Walker->next != end) { // go through every atom
1371 Walker = Walker->next;
1372 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1373 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1374 // count valence of first partner (updated!), might have changed during last bond partner
1375 NoBonds = 0;
1376 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1377 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1378 //*out << Verbose(3) << "Walker: " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1379 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check NoBonds of other atom
1380 // count valence of second partner
1381 NoBonds = 0;
1382 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1383 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1384 //*out << Verbose(3) << "OtherWalker: " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1385 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) // increase bond degree by one
1386 ListOfBondsPerAtom[Walker->nr][i]->BondDegree++;
1387 }
1388 }
1389 }
1390 } while (No);
1391 *out << " done." << endl;
1392 } else
1393 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1394 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
1395
1396// // output bonds for debugging (if bond chain list was correctly installed)
1397// *out << Verbose(1) << endl << "From contents of bond chain list:";
1398// bond *Binder = first;
1399// while(Binder->next != last) {
1400// Binder = Binder->next;
1401// *out << *Binder << "\t" << endl;
1402// }
1403// *out << endl;
1404 } else
1405 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1406 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1407 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1408};
1409
1410/** Performs a Depth-First search on this molecule.
1411 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1412 * articulations points, ...
1413 * We use the algorithm from [Even, Graph Algorithms, p.62].
1414 * \param *out output stream for debugging
1415 * \param ReturnStack true - return pointer to atom stack of separable components, false - return NULL
1416 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1417 * \return list of each disconnected subgraph as an individual molecule class structure
1418 */
1419MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, bool ReturnStack, int &MinimumRingSize)
1420{
1421 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1422 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1423 MoleculeLeafClass *LeafWalker = SubGraphs;
1424 int CurrentGraphNr = 0, OldGraphNr;
1425 int CyclicBonds;
1426 int ComponentNumber = 0;
1427 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1428 bond *Binder = NULL;
1429 bool BackStepping = false;
1430
1431 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1432
1433 ResetAllBondsToUnused();
1434 ResetAllAtomNumbers();
1435 InitComponentNumbers();
1436 while (Root != end) { // if there any atoms at all
1437 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1438 AtomStack->ClearStack();
1439
1440 // put into new subgraph molecule and add this to list of subgraphs
1441 LeafWalker = new MoleculeLeafClass(LeafWalker);
1442 LeafWalker->Leaf = new molecule(elemente);
1443 LeafWalker->Leaf->AddCopyAtom(Root);
1444
1445 OldGraphNr = CurrentGraphNr;
1446 Walker = Root;
1447 do { // (10)
1448 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1449 if (!BackStepping) { // if we don't just return from (8)
1450 Walker->GraphNr = CurrentGraphNr;
1451 Walker->LowpointNr = CurrentGraphNr;
1452 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1453 AtomStack->Push(Walker);
1454 CurrentGraphNr++;
1455 }
1456 do { // (3) if Walker has no unused egdes, go to (5)
1457 BackStepping = false; // reset backstepping flag for (8)
1458 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1459 Binder = FindNextUnused(Walker);
1460 if (Binder == NULL)
1461 break;
1462 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1463 // (4) Mark Binder used, ...
1464 Binder->MarkUsed(black);
1465 OtherAtom = Binder->GetOtherAtom(Walker);
1466 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1467 if (OtherAtom->GraphNr != -1) {
1468 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1469 Binder->Type = BackEdge;
1470 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1471 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1472 } else {
1473 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1474 Binder->Type = TreeEdge;
1475 OtherAtom->Ancestor = Walker;
1476 Walker = OtherAtom;
1477 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1478 break;
1479 }
1480 Binder = NULL;
1481 } while (1); // (3)
1482 if (Binder == NULL) {
1483 *out << Verbose(2) << "No more Unused Bonds." << endl;
1484 break;
1485 } else
1486 Binder = NULL;
1487 } while (1); // (2)
1488
1489 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1490 if ((Walker == Root) && (Binder == NULL))
1491 break;
1492
1493 // (5) if Ancestor of Walker is ...
1494 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1495 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1496 // (6) (Ancestor of Walker is not Root)
1497 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1498 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1499 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1500 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1501 } else {
1502 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1503 Walker->Ancestor->SeparationVertex = true;
1504 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1505 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1506 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1507 SetNextComponentNumber(Walker, ComponentNumber);
1508 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1509 do {
1510 OtherAtom = AtomStack->PopLast();
1511 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1512 SetNextComponentNumber(OtherAtom, ComponentNumber);
1513 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1514 } while (OtherAtom != Walker);
1515 ComponentNumber++;
1516 }
1517 // (8) Walker becomes its Ancestor, go to (3)
1518 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1519 Walker = Walker->Ancestor;
1520 BackStepping = true;
1521 }
1522 if (!BackStepping) { // coming from (8) want to go to (3)
1523 // (9) remove all from stack till Walker (including), these and Root form a component
1524 AtomStack->Output(out);
1525 SetNextComponentNumber(Root, ComponentNumber);
1526 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1527 SetNextComponentNumber(Walker, ComponentNumber);
1528 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1529 do {
1530 OtherAtom = AtomStack->PopLast();
1531 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1532 SetNextComponentNumber(OtherAtom, ComponentNumber);
1533 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1534 } while (OtherAtom != Walker);
1535 ComponentNumber++;
1536
1537 // (11) Root is separation vertex, set Walker to Root and go to (4)
1538 Walker = Root;
1539 Binder = FindNextUnused(Walker);
1540 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
1541 if (Binder != NULL) { // Root is separation vertex
1542 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
1543 Walker->SeparationVertex = true;
1544 }
1545 }
1546 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
1547
1548 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
1549 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
1550 LeafWalker->Leaf->Output(out);
1551 *out << endl;
1552
1553 // step on to next root
1554 while ((Root != end) && (Root->GraphNr != -1)) {
1555 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
1556 if (Root->GraphNr != -1) // if already discovered, step on
1557 Root = Root->next;
1558 }
1559 }
1560 // set cyclic bond criterium on "same LP" basis
1561 Binder = first;
1562 while(Binder->next != last) {
1563 Binder = Binder->next;
1564 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
1565 Binder->Cyclic = true;
1566 NoCyclicBonds++;
1567 }
1568 }
1569
1570 // correct cyclic bonds that are not included in "same LP" argument
1571 Binder = first;
1572 while (Binder->next != last) {
1573 Binder = Binder->next;
1574 Walker = Binder->leftatom;
1575 OtherAtom = Binder->rightatom;
1576 // now check whether both have a cyclic bond in their list
1577 CyclicBonds = 0; // counts cyclic bonds;
1578 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1579 if ((CyclicBonds == 0) && (ListOfBondsPerAtom[Walker->nr][i]->Cyclic))
1580 CyclicBonds = 1;
1581 for(int i=0;i<NumberOfBondsPerAtom[OtherAtom->nr];i++)
1582 if ((CyclicBonds == 1) && (ListOfBondsPerAtom[OtherAtom->nr][i]->Cyclic))
1583 CyclicBonds = 2;
1584 Binder->Cyclic = (Binder->Cyclic) || (CyclicBonds == 2); // set the Cyclic criterium either or ...
1585 }
1586
1587 // further analysis of the found cycles (print rings, get minimum cycle length)
1588 CyclicStructureAnalysis(out, MinimumRingSize);
1589 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
1590 Walker = start;
1591 while (Walker->next != end) {
1592 Walker = Walker->next;
1593 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
1594 OutputComponentNumber(out, Walker);
1595 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
1596 }
1597
1598 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
1599 Binder = first;
1600 while(Binder->next != last) {
1601 Binder = Binder->next;
1602 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
1603 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
1604 OutputComponentNumber(out, Binder->leftatom);
1605 *out << " === ";
1606 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
1607 OutputComponentNumber(out, Binder->rightatom);
1608 *out << ">." << endl;
1609 if (Binder->Cyclic) // cyclic ??
1610 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
1611 }
1612
1613 // free all and exit
1614 delete(AtomStack);
1615 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
1616 return SubGraphs;
1617};
1618
1619/** Analyses the cycles found and returns minimum of all cycle lengths.
1620 * \param *out output stream for debugging
1621 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1622 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
1623 */
1624void molecule::CyclicStructureAnalysis(ofstream *out, int &MinimumRingSize)
1625{
1626 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
1627 int LP;
1628 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Runner = NULL;
1629 bond *Binder = NULL;
1630 int RingSize, NumCycles;
1631
1632 // go through every atom
1633 AtomStack->ClearStack();
1634 int *NoCyclicBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1635 Walker = start;
1636 while (Walker->next != end) {
1637 Walker = Walker->next;
1638 NoCyclicBondsPerAtom[Walker->nr] = 0;
1639 // check whether it's connected to cyclic bonds and count per atom
1640 // 0 means not part of a cycle, 2 means in a cycle, 3 or more means interconnection site of cycles
1641 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
1642 Binder = ListOfBondsPerAtom[Walker->nr][i];
1643 NoCyclicBondsPerAtom[Walker->nr] += (int) Binder->Cyclic;
1644 if (NoCyclicBondsPerAtom[Walker->nr] == 3) //push all intersections
1645 AtomStack->Push(Walker);
1646 }
1647 }
1648 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1649 for(int i=0;i<AtomCount;i++) {
1650 *out << NoCyclicBondsPerAtom[i] << " ";
1651 }
1652 *out << endl;
1653 *out << Verbose(1) << "Analysing cycles ... " << endl;
1654 MinimumRingSize = -1;
1655 NumCycles = 0;
1656 while (!AtomStack->IsEmpty()) {
1657 Walker = AtomStack->PopFirst();
1658 if (NoCyclicBondsPerAtom[Walker->nr] > 1) {
1659 NoCyclicBondsPerAtom[Walker->nr]--; // remove one for being intersection
1660 RingSize = 0;
1661 *out << Verbose(2) << "Current intersection is " << *Walker << ", expect to find " << NoCyclicBondsPerAtom[Walker->nr] << " cycles." << endl;
1662 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1663 Binder = ListOfBondsPerAtom[Walker->nr][i];
1664 OtherAtom = Binder->GetOtherAtom(Walker);
1665 // note down the LowPoint number of this cycle
1666 if (NoCyclicBondsPerAtom[OtherAtom->nr] > 1) {
1667 LP = OtherAtom->LowpointNr;
1668 NoCyclicBondsPerAtom[Walker->nr]--; // walker is start of cycle
1669 if (LP != Walker->LowpointNr)
1670 *out << Verbose(2) << "Tributary cycle: ... <-> " << Walker->Name;
1671 else
1672 *out << Verbose(2) << "Main cycle: ... <-> " << Walker->Name;
1673 Root = Walker; // root acts as predecessor marker so that we don't step back accidentally
1674 RingSize = 1;
1675 do {
1676 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++) { // search among its bonds for next in cycle (same lowpoint nr)
1677 Runner = ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom);
1678 if (((Runner->LowpointNr == LP) || (Runner->LowpointNr == Walker->LowpointNr)) && (Runner != Root)) {
1679 // first check is to stay in the cycle
1680 // middle check is allow for getting back into main cycle briefly from tributary cycle (just one step, then while further down stops)
1681 // last check is not step back
1682 *out << " <-> " << OtherAtom->Name;
1683 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1684 Root = OtherAtom;
1685 OtherAtom = Runner;
1686 NoCyclicBondsPerAtom[Root->nr]--;
1687 RingSize++;
1688 break;
1689 }
1690 }
1691 } while ((OtherAtom->LowpointNr == LP) && (Walker != OtherAtom) && (Root->LowpointNr == OtherAtom->LowpointNr));
1692 // now check if the LP is different from Walker's, as then there is one more bond to follow
1693 if (LP != Walker->LowpointNr) {
1694 // find last bond to home base
1695 for(int j=0;j<NumberOfBondsPerAtom[OtherAtom->nr];j++)
1696 if (ListOfBondsPerAtom[OtherAtom->nr][j]->GetOtherAtom(OtherAtom) == Root) {
1697 *out << " <-> " << OtherAtom->Name;
1698 RingSize++;
1699 NoCyclicBondsPerAtom[OtherAtom->nr]--;
1700 }
1701 } else {
1702 // we have made the complete cycle
1703 }
1704 *out << " <-> ... with cycle length of " << RingSize << "." << endl;
1705 NumCycles++;
1706 if ((RingSize < MinimumRingSize) || (MinimumRingSize == -1))
1707 MinimumRingSize = RingSize;
1708 }
1709 }
1710 }
1711 }
1712
1713 // print NoCyclicBondsPerAtom to visually check of all are zero
1714 *out << Verbose(1) << "NoCyclicBondsPerAtom: ";
1715 for(int i=0;i<AtomCount;i++) {
1716 if (NoCyclicBondsPerAtom[i] > 0)
1717 cerr << "There was an error in molecule::CyclicStructureAnalysis!" << endl;
1718 *out << NoCyclicBondsPerAtom[i] << " ";
1719 }
1720 *out << endl;
1721
1722 if (MinimumRingSize != -1)
1723 *out << Verbose(1) << "Minimum ring size is " << MinimumRingSize << ", over " << NumCycles << " cycles total." << endl;
1724 else
1725 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
1726
1727 Free((void **)&NoCyclicBondsPerAtom, "molecule::CyclicStructureAnalysis: *NoCyclicBondsPerAtom");
1728 delete(AtomStack);
1729};
1730
1731/** Sets the next component number.
1732 * This is O(N) as the number of bonds per atom is bound.
1733 * \param *vertex atom whose next atom::*ComponentNr is to be set
1734 * \param nr number to use
1735 */
1736void molecule::SetNextComponentNumber(atom *vertex, int nr)
1737{
1738 int i=0;
1739 if (vertex != NULL) {
1740 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
1741 if (vertex->ComponentNr[i] == -1) { // check if not yet used
1742 vertex->ComponentNr[i] = nr;
1743 break;
1744 }
1745 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
1746 break; // breaking here will not cause error!
1747 }
1748 if (i == NumberOfBondsPerAtom[vertex->nr])
1749 cerr << "Error: All Component entries are already occupied!" << endl;
1750 } else
1751 cerr << "Error: Given vertex is NULL!" << endl;
1752};
1753
1754/** Output a list of flags, stating whether the bond was visited or not.
1755 * \param *out output stream for debugging
1756 */
1757void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
1758{
1759 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1760 *out << vertex->ComponentNr[i] << " ";
1761};
1762
1763/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
1764 */
1765void molecule::InitComponentNumbers()
1766{
1767 atom *Walker = start;
1768 while(Walker->next != end) {
1769 Walker = Walker->next;
1770 if (Walker->ComponentNr != NULL)
1771 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
1772 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
1773 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1774 Walker->ComponentNr[i] = -1;
1775 }
1776};
1777
1778/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
1779 * \param *vertex atom to regard
1780 * \return bond class or NULL
1781 */
1782bond * molecule::FindNextUnused(atom *vertex)
1783{
1784 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1785 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
1786 return(ListOfBondsPerAtom[vertex->nr][i]);
1787 return NULL;
1788};
1789
1790/** Resets bond::Used flag of all bonds in this molecule.
1791 * \return true - success, false - -failure
1792 */
1793void molecule::ResetAllBondsToUnused()
1794{
1795 bond *Binder = first;
1796 while (Binder->next != last) {
1797 Binder = Binder->next;
1798 Binder->ResetUsed();
1799 }
1800};
1801
1802/** Resets atom::nr to -1 of all atoms in this molecule.
1803 */
1804void molecule::ResetAllAtomNumbers()
1805{
1806 atom *Walker = start;
1807 while (Walker->next != end) {
1808 Walker = Walker->next;
1809 Walker->GraphNr = -1;
1810 }
1811};
1812
1813/** Output a list of flags, stating whether the bond was visited or not.
1814 * \param *out output stream for debugging
1815 * \param *list
1816 */
1817void OutputAlreadyVisited(ofstream *out, int *list)
1818{
1819 *out << Verbose(4) << "Already Visited Bonds:\t";
1820 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
1821 *out << endl;
1822};
1823
1824/** Estimates by educated guessing (using upper limit) the expected number of fragments.
1825 * The upper limit is
1826 * \f[
1827 * n = N \cdot C^k
1828 * \f]
1829 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
1830 * \param *out output stream for debugging
1831 * \param order bond order k
1832 * \return number n of fragments
1833 */
1834int molecule::GuesstimateFragmentCount(ofstream *out, int order)
1835{
1836 int c = 0;
1837 int FragmentCount;
1838 // get maximum bond degree
1839 atom *Walker = start;
1840 while (Walker->next != end) {
1841 Walker = Walker->next;
1842 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
1843 }
1844 FragmentCount = NoNonHydrogen*(1 << (c*order));
1845 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
1846 return FragmentCount;
1847};
1848
1849/** Scans a single line for number and puts them into \a KeySet.
1850 * \param *out output stream for debugging
1851 * \param *buffer buffer to scan
1852 * \param &CurrentSet filled KeySet on return
1853 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
1854 */
1855bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
1856{
1857 stringstream line;
1858 int AtomNr;
1859 int status = 0;
1860
1861 line.str(buffer);
1862 while (!line.eof()) {
1863 line >> AtomNr;
1864 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1865 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
1866 status++;
1867 } // else it's "-1" or else and thus must not be added
1868 }
1869 *out << Verbose(1) << "The scanned KeySet is ";
1870 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
1871 *out << (*runner) << "\t";
1872 }
1873 *out << endl;
1874 return (status != 0);
1875};
1876
1877/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
1878 * Does two-pass scanning:
1879 * -# Scans the keyset file and initialises a temporary graph
1880 * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
1881 * Finally, the temporary graph is inserted into the given \a FragmentList for return.
1882 * \param *out output stream for debugging
1883 * \param *path path to file
1884 * \param *FragmentList empty, filled on return
1885 * \param IsAngstroem whether we have Ansgtroem or bohrradius
1886 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
1887 */
1888bool molecule::ParseKeySetFile(ofstream *out, char *path, Graph *&FragmentList, bool IsAngstroem)
1889{
1890 bool status = true;
1891 ifstream InputFile;
1892 stringstream line;
1893 GraphTestPair testGraphInsert;
1894 int NumberOfFragments = 0;
1895 double TEFactor;
1896 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");
1897
1898 if (FragmentList == NULL) { // check list pointer
1899 FragmentList = new Graph;
1900 }
1901
1902 // 1st pass: open file and read
1903 *out << Verbose(1) << "Parsing the KeySet file ... " << endl;
1904 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
1905 InputFile.open(filename);
1906 if (InputFile != NULL) {
1907 // each line represents a new fragment
1908 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");
1909 // 1. parse keysets and insert into temp. graph
1910 while (!InputFile.eof()) {
1911 InputFile.getline(buffer, MAXSTRINGSIZE);
1912 KeySet CurrentSet;
1913 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) { // if at least one valid atom was added, write config
1914 testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor
1915 if (!testGraphInsert.second) {
1916 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl;
1917 }
1918 //FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
1919 }
1920 }
1921 // 2. Free and done
1922 InputFile.close();
1923 InputFile.clear();
1924 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
1925 *out << Verbose(1) << "done." << endl;
1926 } else {
1927 *out << Verbose(1) << "File " << filename << " not found." << endl;
1928 status = false;
1929 }
1930
1931 // 2nd pass: open TEFactors file and read
1932 *out << Verbose(1) << "Parsing the TEFactors file ... " << endl;
1933 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);
1934 InputFile.open(filename);
1935 if (InputFile != NULL) {
1936 // 3. add found TEFactors to each keyset
1937 NumberOfFragments = 0;
1938 for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {
1939 if (!InputFile.eof()) {
1940 InputFile >> TEFactor;
1941 (*runner).second.second = TEFactor;
1942 *out << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl;
1943 } else {
1944 status = false;
1945 break;
1946 }
1947 }
1948 // 4. Free and done
1949 InputFile.close();
1950 *out << Verbose(1) << "done." << endl;
1951 } else {
1952 *out << Verbose(1) << "File " << filename << " not found." << endl;
1953 status = false;
1954 }
1955
1956 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
1957
1958 return status;
1959};
1960
1961/** Stores keysets and TEFactors to file.
1962 * \param *out output stream for debugging
1963 * \param KeySetList Graph with Keysets and factors
1964 * \param *path path to file
1965 * \return true - file written successfully, false - writing failed
1966 */
1967bool molecule::StoreKeySetFile(ofstream *out, Graph &KeySetList, char *path)
1968{
1969 ofstream output;
1970 bool status = true;
1971 string line;
1972 string::iterator ende;
1973
1974 // open KeySet file
1975 line = path;
1976 line.append("/");
1977 line += FRAGMENTPREFIX;
1978 ende = line.end();
1979 line += KEYSETFILE;
1980 output.open(line.c_str(), ios::out);
1981 *out << Verbose(1) << "Saving key sets of the total graph ... ";
1982 if(output != NULL) {
1983 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {
1984 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
1985 if (sprinter != (*runner).first.begin())
1986 output << "\t";
1987 output << *sprinter;
1988 }
1989 output << endl;
1990 }
1991 *out << "done." << endl;
1992 } else {
1993 cerr << "Unable to open " << line << " for writing keysets!" << endl;
1994 status = false;
1995 }
1996 output.close();
1997 output.clear();
1998
1999 // open TEFactors file
2000 line.erase(ende, line.end());
2001 line += TEFACTORSFILE;
2002 output.open(line.c_str(), ios::out);
2003 *out << Verbose(1) << "Saving TEFactors of the total graph ... ";
2004 if(output != NULL) {
2005 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)
2006 output << (*runner).second.second << endl;
2007 *out << Verbose(1) << "done." << endl;
2008 } else {
2009 *out << Verbose(1) << "failed to open file" << line << "." << endl;
2010 status = false;
2011 }
2012 output.close();
2013
2014 return status;
2015};
2016
2017/** Storing the bond structure of a molecule to file.
2018 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
2019 * \param *out output stream for debugging
2020 * \param *path path to file
2021 * \return true - file written successfully, false - writing failed
2022 */
2023bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
2024{
2025 ofstream AdjacencyFile;
2026 atom *Walker = NULL;
2027 stringstream line;
2028 bool status = true;
2029
2030 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2031 AdjacencyFile.open(line.str().c_str(), ios::out);
2032 *out << Verbose(1) << "Saving adjacency list ... ";
2033 if (AdjacencyFile != NULL) {
2034 Walker = start;
2035 while(Walker->next != end) {
2036 Walker = Walker->next;
2037 AdjacencyFile << Walker->nr << "\t";
2038 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2039 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
2040 AdjacencyFile << endl;
2041 }
2042 AdjacencyFile.close();
2043 *out << Verbose(1) << "done." << endl;
2044 } else {
2045 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2046 status = false;
2047 }
2048
2049 return status;
2050};
2051
2052/** Checks contents of adjacency file against bond structure in structure molecule.
2053 * \param *out output stream for debugging
2054 * \param *path path to file
2055 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
2056 * \return true - structure is equal, false - not equivalence
2057 */
2058bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
2059{
2060 ifstream File;
2061 stringstream line;
2062 bool status = true;
2063 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2064
2065 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2066 File.open(line.str().c_str(), ios::out);
2067 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... " << endl;
2068 if (File != NULL) {
2069 // allocate storage structure
2070 int NonMatchNumber = 0; // will number of atoms with differing bond structure
2071 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
2072 int CurrentBondsOfAtom;
2073
2074 // Parse the file line by line and count the bonds
2075 while (!File.eof()) {
2076 File.getline(buffer, MAXSTRINGSIZE);
2077 stringstream line;
2078 line.str(buffer);
2079 int AtomNr = -1;
2080 line >> AtomNr;
2081 CurrentBondsOfAtom = -1; // we count one too far due to line end
2082 // parse into structure
2083 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2084 while (!line.eof())
2085 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2086 // compare against present bonds
2087 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2088 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2089 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2090 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2091 int j = 0;
2092 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2093 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2094 ListOfAtoms[AtomNr] = NULL;
2095 NonMatchNumber++;
2096 status = false;
2097 //out << "[" << id << "]\t";
2098 } else {
2099 //out << id << "\t";
2100 }
2101 }
2102 //out << endl;
2103 } else {
2104 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2105 status = false;
2106 }
2107 }
2108 }
2109 File.close();
2110 File.clear();
2111 if (status) { // if equal we parse the KeySetFile
2112 *out << Verbose(1) << "done: Equal." << endl;
2113 status = true;
2114 } else
2115 *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
2116 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2117 } else {
2118 *out << Verbose(1) << "Adjacency file not found." << endl;
2119 status = false;
2120 }
2121 Free((void **)&buffer, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2122
2123 return status;
2124};
2125
2126/** Performs a many-body bond order analysis for a given bond order.
2127 * -# parses adjacency, keysets and orderatsite files
2128 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)
2129 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ
2130y contribution", and that's why this consciously not done in the following loop)
2131 * -# in a loop over all subgraphs
2132 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure
2133 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)
2134 * -# combines the generated molecule lists from all subgraphs
2135 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files
2136 * Note that as we split "this" molecule up into a list of subgraphs, i.e. a MoleculeListClass, we have two sets
2137 * of vertex indices: Global always means the index in "this" molecule, whereas local refers to the molecule or
2138 * subgraph in the MoleculeListClass.
2139 * \param *out output stream for debugging
2140 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2141 * \param *configuration configuration for writing config files for each fragment
2142 */
2143void molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)
2144{
2145 MoleculeListClass *BondFragments = NULL;
2146 atom *Walker = NULL;
2147 atom *OtherWalker = NULL;
2148 bond *Binder = NULL;
2149 int *SortIndex = NULL;
2150 element *runner = NULL;
2151 int AtomNo;
2152 int MinimumRingSize;
2153 int FragmentCounter;
2154 MoleculeLeafClass *MolecularWalker = NULL;
2155 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2156 fstream File;
2157 bool FragmentationToDo = true;
2158 Graph **FragmentList = NULL;
2159 Graph *TempFragmentList = NULL;
2160 Graph TotalGraph; // graph with all keysets however local numbers
2161 KeySet *TempSet = NULL;
2162 int TotalNumberOfKeySets = 0;
2163 int KeySetCounter = 0;
2164 atom ***ListOfLocalAtoms = NULL;
2165
2166 *out << endl;
2167#ifdef ADDHYDROGEN
2168 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2169#else
2170 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2171#endif
2172
2173 // ===== 1. Check whether bond structure is same as stored in files ====
2174
2175 // fill the adjacency list
2176 CreateListOfBondsPerAtom(out);
2177
2178 // create lookup table for Atom::nr
2179 atom **ListOfAtoms = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMolecule - **ListOfAtoms");
2180 Walker = start;
2181 while (Walker->next != end) { // create a lookup table (Atom::nr -> atom) used as a marker table lateron
2182 Walker = Walker->next;
2183 if ((Walker->nr >= 0) && (Walker->nr < AtomCount)) {
2184 ListOfAtoms[Walker->nr] = Walker;
2185 } else
2186 break;
2187 }
2188 if (Walker->next != end) { // everything went alright
2189 *out << " range of nuclear ids exceeded [0, AtomCount)." << endl;
2190 FragmentationToDo = false;
2191 }
2192 // === compare it with adjacency file ===
2193 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);
2194 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2195
2196 // ===== 2. perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs =====
2197 Subgraphs = DepthFirstSearchAnalysis((ofstream *)&*out, false, MinimumRingSize);
2198
2199 // fill index lookup list for each subgraph from global nr to local pointer
2200 ListOfLocalAtoms = (atom ***) Malloc(sizeof(atom **)*FragmentCounter, "molecule::FragmentMolecule - **ListOfLocalAtoms");
2201 for (int i=0;i<FragmentCounter;i++) {
2202 ListOfLocalAtoms[i] = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::FragmentMolecule - *ListOfLocalAtoms[]");
2203 for(int j=0;j<AtomCount;j++)
2204 ListOfLocalAtoms[i][j] = NULL;
2205 }
2206 FragmentCounter = 0;
2207 MolecularWalker = Subgraphs;
2208 while (MolecularWalker->next != NULL) {
2209 MolecularWalker = MolecularWalker->next;
2210 Walker = MolecularWalker->Leaf->start;
2211 while (Walker->next != MolecularWalker->Leaf->end) {
2212 Walker = Walker->next;
2213#ifdef ADDHYDROGEN
2214 if (Walker->type->Z != 1) // skip hydrogen
2215#endif
2216 ListOfLocalAtoms[FragmentCounter][Walker->GetTrueFather()->nr] = Walker; // set present global id index to the local pointer
2217 }
2218 FragmentCounter++;
2219 }
2220
2221 // fill the bond structure of the individually stored subgraphs
2222 FragmentCounter = 0;
2223 MolecularWalker = Subgraphs;
2224 while (MolecularWalker->next != NULL) {
2225 MolecularWalker = MolecularWalker->next;
2226 *out << Verbose(1) << "Creating adjacency list for subgraph " << MolecularWalker << "." << endl;
2227 Walker = MolecularWalker->Leaf->start;
2228 while (Walker->next != MolecularWalker->Leaf->end) {
2229 Walker = Walker->next;
2230 AtomNo = Walker->father->nr; // global id of the current walker
2231 for(int i=0;i<NumberOfBondsPerAtom[AtomNo];i++) { // go through father's bonds and copy them all
2232 Binder = ListOfBondsPerAtom[AtomNo][i];
2233 OtherWalker = ListOfLocalAtoms[FragmentCounter][Binder->GetOtherAtom(Walker->father)->nr]; // local copy of current bond partner of walker
2234 if ((OtherWalker != NULL) && (OtherWalker->nr > Walker->nr))
2235 MolecularWalker->Leaf->AddBond(Walker, OtherWalker, Binder->BondDegree);
2236 }
2237 }
2238 //MolecularWalker->Leaf->CreateAdjacencyList(out, BondDistance);
2239 MolecularWalker->Leaf->CreateListOfBondsPerAtom(out);
2240 FragmentCounter++;
2241 }
2242
2243 // ===== 3. if structure still valid, parse key set file and others =====
2244 if (FragmentationToDo) {
2245 // parse key sets into new graph
2246 TempFragmentList = new Graph;
2247 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, TempFragmentList, configuration->GetIsAngstroem());
2248 } else
2249 *out << Verbose(1) << "Creation of lookup table Atom::nr <-> Atom failed!" << endl;
2250 if (FragmentationToDo) // parse the adaptive order per atom/site/vertex
2251 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);
2252 else
2253 *out << Verbose(1) << "Parsing keyset file failed" << endl;
2254
2255 // ===== 4. check globally whether there's something to do actually (first adaptivity check)
2256 if (FragmentationToDo) { // check whether OrderAtSite is above Order everywhere
2257 FragmentationToDo = false;
2258 Walker = start;
2259 while (Walker->next != end) {
2260 Walker = Walker->next;
2261#ifdef ADDHYDROGEN
2262 if (Walker->type->Z != 1) // skip hydrogen
2263#endif
2264 if (Walker->AdaptiveOrder < Order)
2265 FragmentationToDo = true;
2266 }
2267 } else
2268 *out << Verbose(1) << "Parsing order at site file failed" << endl;
2269
2270 if (!FragmentationToDo)
2271 *out << Verbose(0) << "Order at every site is already equal or above desired order " << Order << "." << endl;
2272
2273 // =================================== Begin of FRAGMENTATION ===============================
2274 // check cyclic lengths
2275 if ((MinimumRingSize != -1) && (Order >= MinimumRingSize)) {
2276 *out << Verbose(0) << "Bond order " << Order << " greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
2277 } else {
2278 FragmentCounter = 0;
2279 MolecularWalker = Subgraphs;
2280 // count subgraphs and allocate fragments
2281 while (MolecularWalker->next != NULL) {
2282 MolecularWalker = MolecularWalker->next;
2283 FragmentCounter++;
2284 }
2285 FragmentList = (Graph **) Malloc(sizeof(Graph *)*FragmentCounter, "molecule::FragmentMolecule - **BondFragments");
2286
2287 // ===== 6a. fill RootStack for each subgraph (second adaptivity check) =====
2288 // NOTE: (keep this extern of following while loop, as lateron we may here look for which site to add to which subgraph)
2289 // fill the root stack
2290 KeyStack RootStack[FragmentCounter];
2291
2292 if (Order == -1) { // means we want to increase order adaptively
2293 cerr << "Adaptive chosing of sites not yet implemented!" << endl;
2294 } else { // means we just want to increase it at every site by one
2295 FragmentCounter = 0;
2296 MolecularWalker = Subgraphs;
2297 // count subgraphs and allocate fragments
2298 while (MolecularWalker->next != NULL) {
2299 MolecularWalker = MolecularWalker->next;
2300 // find first root candidates
2301 RootStack[FragmentCounter].clear();
2302 Walker = MolecularWalker->Leaf->start;
2303 while (Walker->next != MolecularWalker->Leaf->end) { // go through all (non-hydrogen) atoms
2304 Walker = Walker->next;
2305 #ifdef ADDHYDROGEN
2306 if (Walker->type->Z != 1) // skip hydrogen
2307 #endif
2308 if (Walker->GetTrueFather()->AdaptiveOrder < Order) // only if Order is still greater
2309 RootStack[FragmentCounter].push_front(Walker->nr);
2310 }
2311 FragmentCounter++;
2312 }
2313 }
2314
2315 // ===== 6b. assign each keyset to its respective subgraph =====
2316 if ((TempFragmentList != NULL) && (TempFragmentList->size() != 0)) { // if there are some scanned keysets at all
2317 // spread the keysets
2318 FragmentCounter = 0;
2319 MolecularWalker = Subgraphs;
2320 while (MolecularWalker->next != NULL) {
2321 MolecularWalker = MolecularWalker->next;
2322 // assign scanned keysets
2323 FragmentList[FragmentCounter] = new Graph;
2324 TempSet = new KeySet;
2325 KeySetCounter = 0;
2326 for(Graph::iterator runner = TempFragmentList->begin();runner != TempFragmentList->end(); runner++) { // key sets contain global numbers!
2327 if ( ListOfLocalAtoms[FragmentCounter][FindAtom(*((*runner).first.begin()))->nr]->nr != -1) {// as we may assume that that bond structure is unchanged, we only test the first key in each set
2328 // translate keyset to local numbers
2329 for(KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
2330 TempSet->insert(ListOfLocalAtoms[FragmentCounter][FindAtom(*sprinter)->nr]->nr);
2331 // insert into FragmentList
2332 FragmentList[FragmentCounter]->insert(GraphPair (*TempSet, pair<int,double>(KeySetCounter++, (*runner).second.second)));
2333 }
2334 TempSet->clear();
2335 }
2336 delete(TempSet);
2337 if (KeySetCounter == 0)
2338 delete(FragmentList[FragmentCounter]);
2339 else
2340 *out << Verbose(1) << KeySetCounter << " atoms were put into subgraph " << FragmentCounter << "." << endl;
2341 FragmentCounter++;
2342 }
2343 } else // otherwise make sure all lists are initialised to NULL
2344 for(int i=0;i<FragmentCounter;i++)
2345 FragmentList[i] = NULL;
2346
2347
2348 // ===== 7. fill the bond fragment list =====
2349 FragmentCounter = 0;
2350 TotalNumberOfKeySets = 0;
2351 MolecularWalker = Subgraphs;
2352 while (MolecularWalker->next != NULL) {
2353 MolecularWalker = MolecularWalker->next;
2354 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2355 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2356 // output ListOfBondsPerAtom for debugging
2357 *out << Verbose(0) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
2358 Walker = MolecularWalker->Leaf->start;
2359 while (Walker->next != MolecularWalker->Leaf->end) {
2360 Walker = Walker->next;
2361#ifdef ADDHYDROGEN
2362 if (Walker->type->Z != 1) { // regard only non-hydrogen
2363#endif
2364 *out << Verbose(0) << "Atom " << Walker->Name << " has Bonds: "<<endl;
2365 for(int j=0;j<MolecularWalker->Leaf->NumberOfBondsPerAtom[Walker->nr];j++) {
2366 *out << Verbose(1) << *(MolecularWalker->Leaf->ListOfBondsPerAtom)[Walker->nr][j] << endl;
2367 }
2368#ifdef ADDHYDROGEN
2369 }
2370#endif
2371 }
2372 *out << endl;
2373
2374 *out << Verbose(0) << endl << " ========== BOND ENERGY of subgraph " << FragmentCounter << " ========================= " << endl;
2375 *out << Verbose(0) << "Begin of bond fragmentation." << endl;
2376
2377 // call BOSSANOVA method
2378 MolecularWalker->Leaf->FragmentBOSSANOVA(out, FragmentList[FragmentCounter], RootStack[FragmentCounter]);
2379
2380 // translate list into global numbers (i.e. valid in "this" molecule, not in MolecularWalker->Leaf)
2381 KeySet *TempSet = new KeySet;
2382 for(Graph::iterator runner = FragmentList[FragmentCounter]->begin(); runner != FragmentList[FragmentCounter]->end(); runner++) {
2383 for(KeySet::iterator sprinter = (*runner).first.begin(); sprinter != (*runner).first.end(); sprinter++)
2384 TempSet->insert((MolecularWalker->Leaf->FindAtom(*sprinter))->GetTrueFather()->nr);
2385 TotalGraph.insert(GraphPair(*TempSet, pair<int,double>(TotalNumberOfKeySets++, (*runner).second.second)));
2386 TempSet->clear();
2387 }
2388 delete(TempSet);
2389 delete(FragmentList[FragmentCounter]);
2390 } else {
2391 cerr << "Subgraph " << MolecularWalker << " has no atoms!" << endl;
2392 }
2393 FragmentCounter++; // next fragment list
2394 }
2395 }
2396 Free((void **)&FragmentList, "molecule::FragmentMolecule - **FragmentList");
2397
2398 // ===== 8. gather keyset lists (graphs) from all subgraphs and transform into MoleculeListClass =====
2399 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
2400 BondFragments = new MoleculeListClass(TotalGraph.size(), AtomCount);
2401 int k=0;
2402 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) {
2403 KeySet test = (*runner).first;
2404 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl;
2405 BondFragments->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
2406 k++;
2407 }
2408 *out << k << "/" << BondFragments->NumberOfMolecules << " fragments generated from the keysets." << endl;
2409
2410 // ==================================== End of FRAGMENTATION ================================
2411
2412 // ===== 10. Save fragments' configuration and keyset files et al to disk ===
2413 if (BondFragments->NumberOfMolecules != 0) {
2414 // create a SortIndex to map from BFS labels to the sequence in which the atoms are given in the config file
2415 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2416 for(int i=0;i<AtomCount;i++)
2417 SortIndex[i] = -1;
2418 runner = elemente->start;
2419 AtomNo = 0;
2420 while (runner->next != elemente->end) { // go through every element
2421 runner = runner->next;
2422 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2423 Walker = start;
2424 while (Walker->next != end) { // go through every atom of this element
2425 Walker = Walker->next;
2426 if (Walker->type->Z == runner->Z) // if this atom fits to element
2427 SortIndex[Walker->nr] = AtomNo++;
2428 }
2429 }
2430 }
2431 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl;
2432 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))
2433 *out << Verbose(1) << "All configs written." << endl;
2434 else
2435 *out << Verbose(1) << "Some config writing failed." << endl;
2436
2437 // store force index reference file
2438 BondFragments->StoreForcesFile(out, configuration->configpath, SortIndex);
2439
2440 // store keysets file
2441 StoreKeySetFile(out, TotalGraph, configuration->configpath);
2442
2443 // store Adjacency file
2444 StoreAdjacencyToFile(out, configuration->configpath);
2445
2446 // store adaptive orders into file
2447 StoreOrderAtSiteFile(out, configuration->configpath);
2448
2449 // restore orbital and Stop values
2450 CalculateOrbitals(*configuration);
2451
2452 // free memory for bond part
2453 *out << Verbose(1) << "Freeing bond memory" << endl;
2454 delete(FragmentList); // remove bond molecule from memory
2455 FragmentList = NULL;
2456 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
2457 } else
2458 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
2459
2460 // free the index lookup list
2461 for (int i=0;i<FragmentCounter;i++)
2462 Free((void **)&ListOfLocalAtoms[i], "molecule::FragmentMolecule - *ListOfLocalAtoms[]");
2463 Free((void **)&ListOfLocalAtoms, "molecule::FragmentMolecule - **ListOfLocalAtoms");
2464 // free subgraph memory again
2465 delete(TempFragmentList);
2466 if (Subgraphs != NULL) {
2467 while (Subgraphs->next != NULL) {
2468 Subgraphs = Subgraphs->next;
2469 delete(Subgraphs->previous);
2470 }
2471 delete(Subgraphs);
2472 }
2473
2474 *out << Verbose(0) << "End of bond fragmentation." << endl;
2475};
2476
2477/** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.
2478 * Atoms not present in the file get "-1".
2479 * \param *out output stream for debugging
2480 * \param *path path to file ORDERATSITEFILE
2481 * \return true - file writable, false - not writable
2482 */
2483bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)
2484{
2485 stringstream line;
2486 ofstream file;
2487
2488 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2489 file.open(line.str().c_str());
2490 *out << Verbose(1) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;
2491 if (file != NULL) {
2492 atom *Walker = start;
2493 while (Walker->next != end) {
2494 Walker = Walker->next;
2495 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << endl;
2496 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "." << endl;
2497 }
2498 file.close();
2499 *out << Verbose(1) << "done." << endl;
2500 return true;
2501 } else {
2502 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2503 return false;
2504 }
2505};
2506
2507/** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.
2508 * Atoms not present in the file get "0".
2509 * \param *out output stream for debugging
2510 * \param *path path to file ORDERATSITEFILEe
2511 * \return true - file found and scanned, false - file not found
2512 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two
2513 */
2514bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)
2515{
2516 unsigned char *OrderArray = (unsigned char *) Malloc(sizeof(unsigned char)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2517 bool status;
2518 int AtomNr;
2519 stringstream line;
2520 ifstream file;
2521 int Order;
2522
2523 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;
2524 for(int i=0;i<AtomCount;i++)
2525 OrderArray[i] = 0;
2526 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2527 file.open(line.str().c_str());
2528 if (file != NULL) {
2529 for (int i=0;i<AtomCount;i++) // initialise with 0
2530 OrderArray[i] = 0;
2531 while (!file.eof()) { // parse from file
2532 file >> AtomNr;
2533 file >> Order;
2534 OrderArray[AtomNr] = (unsigned char) Order;
2535 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << "." << endl;
2536 }
2537 atom *Walker = start;
2538 while (Walker->next != end) { // fill into atom classes
2539 Walker = Walker->next;
2540 Walker->AdaptiveOrder = OrderArray[Walker->nr];
2541 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << "." << endl;
2542 }
2543 file.close();
2544 *out << Verbose(1) << "done." << endl;
2545 status = true;
2546 } else {
2547 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2548 status = false;
2549 }
2550 Free((void **)&OrderArray, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2551
2552 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;
2553 return status;
2554};
2555
2556/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
2557 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
2558 * bond chain list, using molecule::AtomCount and molecule::BondCount.
2559 * Allocates memory, fills the array and exits
2560 * \param *out output stream for debugging
2561 */
2562void molecule::CreateListOfBondsPerAtom(ofstream *out)
2563{
2564 bond *Binder = NULL;
2565 atom *Walker = NULL;
2566 int TotalDegree;
2567 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
2568
2569 // re-allocate memory
2570 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
2571 if (ListOfBondsPerAtom != NULL) {
2572 for(int i=0;i<AtomCount;i++)
2573 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
2574 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
2575 }
2576 if (NumberOfBondsPerAtom != NULL)
2577 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
2578 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
2579 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
2580
2581 // reset bond counts per atom
2582 for(int i=0;i<AtomCount;i++)
2583 NumberOfBondsPerAtom[i] = 0;
2584 // count bonds per atom
2585 Binder = first;
2586 while (Binder->next != last) {
2587 Binder = Binder->next;
2588 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
2589 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
2590 }
2591 // allocate list of bonds per atom
2592 for(int i=0;i<AtomCount;i++)
2593 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
2594 // clear the list again, now each NumberOfBondsPerAtom marks current free field
2595 for(int i=0;i<AtomCount;i++)
2596 NumberOfBondsPerAtom[i] = 0;
2597 // fill the list
2598 Binder = first;
2599 while (Binder->next != last) {
2600 Binder = Binder->next;
2601 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
2602 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
2603 }
2604
2605 // output list for debugging
2606 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
2607 Walker = start;
2608 while (Walker->next != end) {
2609 Walker = Walker->next;
2610 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
2611 TotalDegree = 0;
2612 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
2613 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
2614 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2615 }
2616 *out << " -- TotalDegree: " << TotalDegree << endl;
2617 }
2618 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
2619};
2620
2621/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
2622 * Gray vertices are always enqueued in an AtomStackClass FIFO queue, the rest is usual BFS with adding vertices found was
2623 * white and putting into queue.
2624 * \param *out output stream for debugging
2625 * \param *Mol Molecule class to add atoms to
2626 * \param **AddedAtomList list with added atom pointers, index is atom father's number
2627 * \param **AddedBondList list with added bond pointers, index is bond father's number
2628 * \param *Root root vertex for BFS
2629 * \param *Bond bond not to look beyond
2630 * \param BondOrder maximum distance for vertices to add
2631 * \param IsAngstroem lengths are in angstroem or bohrradii
2632 */
2633void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
2634{
2635 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2636 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
2637 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
2638 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
2639 atom *Walker = NULL, *OtherAtom = NULL;
2640 bond *Binder = NULL;
2641
2642 // add Root if not done yet
2643 AtomStack->ClearStack();
2644 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
2645 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
2646 AtomStack->Push(Root);
2647
2648 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2649 for (int i=0;i<AtomCount;i++) {
2650 PredecessorList[i] = NULL;
2651 ShortestPathList[i] = -1;
2652 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
2653 ColorList[i] = lightgray;
2654 else
2655 ColorList[i] = white;
2656 }
2657 ShortestPathList[Root->nr] = 0;
2658
2659 // and go on ... Queue always contains all lightgray vertices
2660 while (!AtomStack->IsEmpty()) {
2661 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
2662 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
2663 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
2664 // followed by n+1 till top of stack.
2665 Walker = AtomStack->PopFirst(); // pop oldest added
2666 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
2667 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2668 Binder = ListOfBondsPerAtom[Walker->nr][i];
2669 if (Binder != NULL) { // don't look at bond equal NULL
2670 OtherAtom = Binder->GetOtherAtom(Walker);
2671 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2672 if (ColorList[OtherAtom->nr] == white) {
2673 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
2674 ColorList[OtherAtom->nr] = lightgray;
2675 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2676 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2677 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2678 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
2679 *out << Verbose(3);
2680 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
2681 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
2682 *out << "Added OtherAtom " << OtherAtom->Name;
2683 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2684 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2685 AddedBondList[Binder->nr]->Type = Binder->Type;
2686 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
2687 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
2688 *out << "Not adding OtherAtom " << OtherAtom->Name;
2689 if (AddedBondList[Binder->nr] == NULL) {
2690 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2691 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2692 AddedBondList[Binder->nr]->Type = Binder->Type;
2693 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
2694 } else
2695 *out << ", not added Bond ";
2696 }
2697 *out << ", putting OtherAtom into queue." << endl;
2698 AtomStack->Push(OtherAtom);
2699 } else { // out of bond order, then replace
2700 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
2701 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
2702 if (Binder == Bond)
2703 *out << Verbose(3) << "Not Queueing, is the Root bond";
2704 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
2705 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
2706 if (!Binder->Cyclic)
2707 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
2708 if (AddedBondList[Binder->nr] == NULL) {
2709 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
2710 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2711 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2712 AddedBondList[Binder->nr]->Type = Binder->Type;
2713 } else {
2714#ifdef ADDHYDROGEN
2715 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2716#endif
2717 }
2718 }
2719 }
2720 } else {
2721 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2722 // This has to be a cyclic bond, check whether it's present ...
2723 if (AddedBondList[Binder->nr] == NULL) {
2724 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
2725 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2726 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2727 AddedBondList[Binder->nr]->Type = Binder->Type;
2728 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
2729#ifdef ADDHYDROGEN
2730 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2731#endif
2732 }
2733 }
2734 }
2735 }
2736 }
2737 ColorList[Walker->nr] = black;
2738 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2739 }
2740 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2741 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
2742 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
2743 delete(AtomStack);
2744};
2745
2746/** Adds bond structure to this molecule from \a Father molecule.
2747 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
2748 * with end points present in this molecule, bond is created in this molecule.
2749 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
2750 * \param *out output stream for debugging
2751 * \param *Father father molecule
2752 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
2753 * \todo not checked, not fully working probably
2754 */
2755bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
2756{
2757 atom *Walker = NULL, *OtherAtom = NULL;
2758 bool status = true;
2759 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
2760
2761 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
2762
2763 // reset parent list
2764 *out << Verbose(3) << "Resetting ParentList." << endl;
2765 for (int i=0;i<Father->AtomCount;i++)
2766 ParentList[i] = NULL;
2767
2768 // fill parent list with sons
2769 *out << Verbose(3) << "Filling Parent List." << endl;
2770 Walker = start;
2771 while (Walker->next != end) {
2772 Walker = Walker->next;
2773 ParentList[Walker->father->nr] = Walker;
2774 // Outputting List for debugging
2775 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
2776 }
2777
2778 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
2779 *out << Verbose(3) << "Creating bonds." << endl;
2780 Walker = Father->start;
2781 while (Walker->next != Father->end) {
2782 Walker = Walker->next;
2783 if (ParentList[Walker->nr] != NULL) {
2784 if (ParentList[Walker->nr]->father != Walker) {
2785 status = false;
2786 } else {
2787 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
2788 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
2789 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
2790 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
2791 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
2792 }
2793 }
2794 }
2795 }
2796 }
2797
2798 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
2799 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
2800 return status;
2801};
2802
2803
2804/** Looks through a AtomStackClass and returns the likeliest removal candiate.
2805 * \param *out output stream for debugging messages
2806 * \param *&Leaf KeySet to look through
2807 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
2808 * \param index of the atom suggested for removal
2809 */
2810int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
2811{
2812 atom *Runner = NULL;
2813 int SP, Removal;
2814
2815 *out << Verbose(2) << "Looking for removal candidate." << endl;
2816 SP = -1; //0; // not -1, so that Root is never removed
2817 Removal = -1;
2818 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
2819 Runner = FindAtom((*runner));
2820 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
2821 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
2822 SP = ShortestPathList[(*runner)];
2823 Removal = (*runner);
2824 }
2825 }
2826 }
2827 return Removal;
2828};
2829
2830/** Stores a fragment from \a KeySet into \a molecule.
2831 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
2832 * molecule and adds missing hydrogen where bonds were cut.
2833 * \param *out output stream for debugging messages
2834 * \param &Leaflet pointer to KeySet structure
2835 * \param IsAngstroem whether we have Ansgtroem or bohrradius
2836 * \return pointer to constructed molecule
2837 */
2838molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
2839{
2840 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
2841 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
2842 molecule *Leaf = new molecule(elemente);
2843
2844// *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
2845
2846 Leaf->BondDistance = BondDistance;
2847 for(int i=0;i<NDIM*2;i++)
2848 Leaf->cell_size[i] = cell_size[i];
2849
2850 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
2851 for(int i=0;i<AtomCount;i++)
2852 SonList[i] = NULL;
2853
2854 // first create the minimal set of atoms from the KeySet
2855 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
2856 FatherOfRunner = FindAtom((*runner)); // find the id
2857 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
2858 }
2859
2860 // create the bonds between all: Make it an induced subgraph and add hydrogen
2861// *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
2862 Runner = Leaf->start;
2863 while (Runner->next != Leaf->end) {
2864 Runner = Runner->next;
2865 FatherOfRunner = Runner->father;
2866 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
2867 // create all bonds
2868 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
2869 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
2870// *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
2871 if (SonList[OtherFather->nr] != NULL) {
2872// *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
2873 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
2874// *out << Verbose(3) << "Adding Bond: " << Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree) << "." << endl;
2875 //NumBonds[Runner->nr]++;
2876 } else {
2877// *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
2878 }
2879 } else {
2880// *out << ", who has no son in this fragment molecule." << endl;
2881#ifdef ADDHYDROGEN
2882// *out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
2883 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
2884#endif
2885 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
2886 }
2887 }
2888 } else {
2889 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
2890 }
2891#ifdef ADDHYDROGEN
2892 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
2893 Runner = Runner->next;
2894#endif
2895 }
2896 Leaf->CreateListOfBondsPerAtom(out);
2897 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
2898 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
2899// *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
2900 return Leaf;
2901};
2902
2903/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
2904 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
2905 * computer game, that winds through the connected graph representing the molecule. Color (white,
2906 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
2907 * creating only unique fragments and not additional ones with vertices simply in different sequence.
2908 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
2909 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
2910 * stepping.
2911 * \param *out output stream for debugging
2912 * \param Order number of atoms in each fragment
2913 * \param *configuration configuration for writing config files for each fragment
2914 * \return List of all unique fragments with \a Order atoms
2915 */
2916/*
2917MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
2918{
2919 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2920 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2921 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2922 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2923 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
2924 AtomStackClass *RootStack = new AtomStackClass(AtomCount);
2925 AtomStackClass *TouchedStack = new AtomStackClass((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
2926 AtomStackClass *SnakeStack = new AtomStackClass(Order+1); // equal to Order is not possible, as then the AtomStackClass cannot discern between full and empty stack!
2927 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
2928 MoleculeListClass *FragmentList = NULL;
2929 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
2930 bond *Binder = NULL;
2931 int RunningIndex = 0, FragmentCounter = 0;
2932
2933 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
2934
2935 // reset parent list
2936 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
2937 for (int i=0;i<AtomCount;i++) { // reset all atom labels
2938 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
2939 Labels[i] = -1;
2940 SonList[i] = NULL;
2941 PredecessorList[i] = NULL;
2942 ColorVertexList[i] = white;
2943 ShortestPathList[i] = -1;
2944 }
2945 for (int i=0;i<BondCount;i++)
2946 ColorEdgeList[i] = white;
2947 RootStack->ClearStack(); // clearstack and push first atom if exists
2948 TouchedStack->ClearStack();
2949 Walker = start->next;
2950 while ((Walker != end)
2951#ifdef ADDHYDROGEN
2952 && (Walker->type->Z == 1)
2953#endif
2954 ) { // search for first non-hydrogen atom
2955 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
2956 Walker = Walker->next;
2957 }
2958 if (Walker != end)
2959 RootStack->Push(Walker);
2960 else
2961 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
2962 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
2963
2964 ///// OUTER LOOP ////////////
2965 while (!RootStack->IsEmpty()) {
2966 // get new root vertex from atom stack
2967 Root = RootStack->PopFirst();
2968 ShortestPathList[Root->nr] = 0;
2969 if (Labels[Root->nr] == -1)
2970 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
2971 PredecessorList[Root->nr] = Root;
2972 TouchedStack->Push(Root);
2973 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
2974
2975 // clear snake stack
2976 SnakeStack->ClearStack();
2977 //SnakeStack->TestImplementation(out, start->next);
2978
2979 ///// INNER LOOP ////////////
2980 // Problems:
2981 // - what about cyclic bonds?
2982 Walker = Root;
2983 do {
2984 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
2985 // initial setting of the new Walker: label, color, shortest path and put on stacks
2986 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
2987 Labels[Walker->nr] = RunningIndex++;
2988 RootStack->Push(Walker);
2989 }
2990 *out << ", has label " << Labels[Walker->nr];
2991 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
2992 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
2993 // Binder ought to be set still from last neighbour search
2994 *out << ", coloring bond " << *Binder << " black";
2995 ColorEdgeList[Binder->nr] = black; // mark this bond as used
2996 }
2997 if (ShortestPathList[Walker->nr] == -1) {
2998 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
2999 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
3000 }
3001 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
3002 SnakeStack->Push(Walker);
3003 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
3004 }
3005 }
3006 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
3007
3008 // then check the stack for a newly stumbled upon fragment
3009 if (SnakeStack->ItemCount() == Order) { // is stack full?
3010 // store the fragment if it is one and get a removal candidate
3011 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
3012 // remove the candidate if one was found
3013 if (Removal != NULL) {
3014 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
3015 SnakeStack->RemoveItem(Removal);
3016 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
3017 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
3018 Walker = PredecessorList[Removal->nr];
3019 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
3020 }
3021 }
3022 } else
3023 Removal = NULL;
3024
3025 // finally, look for a white neighbour as the next Walker
3026 Binder = NULL;
3027 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
3028 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
3029 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
3030 if (ShortestPathList[Walker->nr] < Order) {
3031 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
3032 Binder = ListOfBondsPerAtom[Walker->nr][i];
3033 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
3034 OtherAtom = Binder->GetOtherAtom(Walker);
3035 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
3036 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
3037 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
3038 } else { // otherwise check its colour and element
3039 if (
3040#ifdef ADDHYDROGEN
3041 (OtherAtom->type->Z != 1) &&
3042#endif
3043 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
3044 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
3045 // i find it currently rather sensible to always set the predecessor in order to find one's way back
3046 //if (PredecessorList[OtherAtom->nr] == NULL) {
3047 PredecessorList[OtherAtom->nr] = Walker;
3048 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3049 //} else {
3050 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
3051 //}
3052 Walker = OtherAtom;
3053 break;
3054 } else {
3055 if (OtherAtom->type->Z == 1)
3056 *out << "Links to a hydrogen atom." << endl;
3057 else
3058 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
3059 }
3060 }
3061 }
3062 } else { // means we have stepped beyond the horizon: Return!
3063 Walker = PredecessorList[Walker->nr];
3064 OtherAtom = Walker;
3065 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
3066 }
3067 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
3068 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
3069 ColorVertexList[Walker->nr] = black;
3070 Walker = PredecessorList[Walker->nr];
3071 }
3072 }
3073 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
3074 *out << Verbose(2) << "Inner Looping is finished." << endl;
3075
3076 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
3077 *out << Verbose(2) << "Resetting lists." << endl;
3078 Walker = NULL;
3079 Binder = NULL;
3080 while (!TouchedStack->IsEmpty()) {
3081 Walker = TouchedStack->PopLast();
3082 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
3083 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
3084 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
3085 PredecessorList[Walker->nr] = NULL;
3086 ColorVertexList[Walker->nr] = white;
3087 ShortestPathList[Walker->nr] = -1;
3088 }
3089 }
3090 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
3091
3092 // copy together
3093 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
3094 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
3095 RunningIndex = 0;
3096 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
3097 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
3098 Leaflet->Leaf = NULL; // prevent molecule from being removed
3099 TempLeaf = Leaflet;
3100 Leaflet = Leaflet->previous;
3101 delete(TempLeaf);
3102 };
3103
3104 // free memory and exit
3105 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
3106 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
3107 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
3108 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
3109 delete(RootStack);
3110 delete(TouchedStack);
3111 delete(SnakeStack);
3112
3113 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
3114 return FragmentList;
3115};
3116*/
3117
3118/** Structure containing all values in power set combination generation.
3119 */
3120struct UniqueFragments {
3121 config *configuration;
3122 atom *Root;
3123 Graph *Leaflet;
3124 KeySet *FragmentSet;
3125 int ANOVAOrder;
3126 int FragmentCounter;
3127 int CurrentIndex;
3128 int *Labels;
3129 double TEFactor;
3130 int *ShortestPathList;
3131 bool **UsedList;
3132 bond **BondsPerSPList;
3133 int *BondsPerSPCount;
3134};
3135
3136/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3137 * -# loops over every possible combination (2^dimension of edge set)
3138 * -# inserts current set, if there's still space left
3139 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist
3140ance+1
3141 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph
3142 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root
3143distance) and current set
3144 * \param *out output stream for debugging
3145 * \param FragmentSearch UniqueFragments structure with all values needed
3146 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3147 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3148 * \param SubOrder remaining number of allowed vertices to add
3149 */
3150void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3151{
3152 atom *OtherWalker = NULL;
3153 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3154 int NumCombinations;
3155 bool bit;
3156 int bits, TouchedIndex, SubSetDimension, SP;
3157 int Removal;
3158 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3159 bond *Binder = NULL;
3160 bond **BondsList = NULL;
3161
3162 NumCombinations = 1 << SetDimension;
3163
3164 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3165 // von Endstuecken (aus den Bonds) hinzugefÃŒgt werden und fÃŒr verbleibende ANOVAOrder
3166 // rekursiv GraphCrawler in der nÀchsten Ebene aufgerufen werden
3167
3168 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3169 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3170
3171 // initialised touched list (stores added atoms on this level)
3172 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3173 for (TouchedIndex=0;TouchedIndex<=SubOrder;TouchedIndex++) // empty touched list
3174 TouchedList[TouchedIndex] = -1;
3175 TouchedIndex = 0;
3176
3177 // create every possible combination of the endpieces
3178 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3179 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3180 // count the set bit of i
3181 bits = 0;
3182 for (int j=0;j<SetDimension;j++)
3183 bits += (i & (1 << j)) >> j;
3184
3185 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3186 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3187 // --1-- add this set of the power set of bond partners to the snake stack
3188 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3189 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3190 if (bit) { // if bit is set, we add this bond partner
3191 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3192 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3193 //if ((!FragmentSearch->UsedList[OtherWalker->nr][i]) && (FragmentSearch->Labels[OtherWalker->nr] > FragmentSearch->Labels[FragmentSearch->Root->nr])) {
3194 //*out << Verbose(2+verbosity) << "Not used so far, label " << FragmentSearch->Labels[OtherWalker->nr] << " is bigger than Root's " << FragmentSearch->Labels[FragmentSearch->Root->nr] << "." << endl;
3195 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;
3196 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3197 FragmentSearch->FragmentSet->insert(OtherWalker->nr);
3198 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3199 //}
3200 } else {
3201 *out << Verbose(2+verbosity) << "Not adding." << endl;
3202 }
3203 }
3204
3205 if (bits < SubOrder) {
3206 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << (SubOrder - bits) << "." << endl;
3207 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3208 SP = RootDistance+1; // this is the next level
3209 // first count the members in the subset
3210 SubSetDimension = 0;
3211 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3212 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3213 Binder = Binder->next;
3214 for (int k=0;k<TouchedIndex;k++) {
3215 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3216 SubSetDimension++;
3217 }
3218 }
3219 // then allocate and fill the list
3220 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3221 SubSetDimension = 0;
3222 Binder = FragmentSearch->BondsPerSPList[2*SP];
3223 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3224 Binder = Binder->next;
3225 for (int k=0;k<TouchedIndex;k++) {
3226 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3227 BondsList[SubSetDimension++] = Binder;
3228 }
3229 }
3230 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3231 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3232 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3233 } else {
3234 // --2-- otherwise store the complete fragment
3235 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3236 // store fragment as a KeySet
3237 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";
3238 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3239 *out << (*runner) << " ";
3240 InsertFragmentIntoGraph(out, FragmentSearch);
3241 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3242 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList,FragmentSearch->Labels, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3243 }
3244
3245 // --3-- remove all added items in this level from snake stack
3246 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3247 for(int j=0;j<TouchedIndex;j++) {
3248 Removal = TouchedList[j];
3249 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;
3250 FragmentSearch->FragmentSet->erase(Removal);
3251 TouchedList[j] = -1;
3252 }
3253 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";
3254 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3255 *out << (*runner) << " ";
3256 *out << endl;
3257 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3258 } else {
3259 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3260 }
3261 }
3262 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3263 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3264};
3265
3266/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.
3267 * -# initialises UniqueFragments structure
3268 * -# fills edge list via BFS
3269 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as
3270 root distance, the edge set, its dimension and the current suborder
3271 * -# Free'ing structure
3272 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3273 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3274 * \param *out output stream for debugging
3275 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation
3276 * \param FragmentSearch UniqueFragments structure containing TEFactor, root atom and so on
3277 * \param RestrictedKeySet Restricted vertex set to use in context of molecule
3278 * \return number of inserted fragments
3279 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
3280 */
3281int molecule::PowerSetGenerator(ofstream *out, int Order, struct UniqueFragments &FragmentSearch, KeySet RestrictedKeySet)
3282{
3283 int SP, UniqueIndex, AtomKeyNr;
3284 int *NumberOfAtomsSPLevel = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *SPLevelCount");
3285 atom *Walker = NULL, *OtherWalker = NULL;
3286 bond *Binder = NULL;
3287 bond **BondsList = NULL;
3288 KeyStack AtomStack;
3289 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::PowerSetGenerator: **PredecessorList");
3290 KeySet::iterator runner;
3291 int RootKeyNr = FragmentSearch.Root->nr;
3292 int Counter = FragmentSearch.FragmentCounter;
3293
3294 for (int i=0;i<AtomCount;i++) {
3295 PredecessorList[i] = NULL;
3296 }
3297
3298 *out << endl;
3299 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;
3300
3301 UniqueIndex = 0;
3302 if (FragmentSearch.Labels[RootKeyNr] == -1)
3303 FragmentSearch.Labels[RootKeyNr] = UniqueIndex++;
3304 FragmentSearch.ShortestPathList[RootKeyNr] = 0;
3305 // prepare the atom stack counters (number of atoms with certain SP on stack)
3306 for (int i=0;i<Order;i++)
3307 NumberOfAtomsSPLevel[i] = 0;
3308 NumberOfAtomsSPLevel[0] = 1; // for root
3309 SP = -1;
3310 *out << endl;
3311 *out << Verbose(0) << "Starting BFS analysis ..." << endl;
3312 // push as first on atom stack and goooo ...
3313 AtomStack.clear();
3314 AtomStack.push_back(RootKeyNr);
3315 *out << Verbose(0) << "Cleared AtomStack and pushed root as first item onto it." << endl;
3316 // do a BFS search to fill the SP lists and label the found vertices
3317 while (!AtomStack.empty()) {
3318 // pop next atom
3319 AtomKeyNr = AtomStack.front();
3320 AtomStack.pop_front();
3321 if (SP != -1)
3322 NumberOfAtomsSPLevel[SP]--;
3323 if ((SP == -1) || (NumberOfAtomsSPLevel[SP] == -1)) {
3324 SP++;
3325 NumberOfAtomsSPLevel[SP]--; // carry over "-1" to next level
3326 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with 0 item(s)";
3327 if (SP > 0)
3328 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
3329 else
3330 *out << "." << endl;
3331 FragmentSearch.BondsPerSPCount[SP] = 0;
3332 } else {
3333 *out << Verbose(1) << "Still " << NumberOfAtomsSPLevel[SP]+1 << " on this SP (" << SP << ") level, currently having " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3334 }
3335 Walker = FindAtom(AtomKeyNr);
3336 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and label " << FragmentSearch.Labels[AtomKeyNr] << " and SP of " << SP << "." << endl;
3337 // check for new sp level
3338 // go through all its bonds
3339 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
3340 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
3341 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
3342 OtherWalker = Binder->GetOtherAtom(Walker);
3343 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())
3344#ifdef ADDHYDROGEN
3345 && (OtherWalker->type->Z != 1)
3346#endif
3347 ) { // skip hydrogens and restrict to fragment
3348 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;
3349 // set the label if not set (and push on root stack as well)
3350 if (FragmentSearch.Labels[OtherWalker->nr] == -1) {
3351 FragmentSearch.Labels[OtherWalker->nr] = UniqueIndex++;
3352 *out << Verbose(3) << "Set label to " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3353 } else {
3354 *out << Verbose(3) << "Label is already " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3355 }
3356 if ((OtherWalker != PredecessorList[AtomKeyNr]) && (OtherWalker->nr > RootKeyNr)) { // only pass through those with label bigger than Root's
3357 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
3358 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3359 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < Order) { // only pass through those within reach of Order
3360 // push for exploration on stack (only if the SP of OtherWalker is longer than of Walker! (otherwise it has been added already!)
3361 if (FragmentSearch.ShortestPathList[OtherWalker->nr] > SP) {
3362 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < (Order-1)) {
3363 *out << Verbose(3) << "Putting on atom stack for further exploration." << endl;
3364 PredecessorList[OtherWalker->nr] = Walker; // note down the one further up the exploration tree
3365 AtomStack.push_back(OtherWalker->nr);
3366 NumberOfAtomsSPLevel[FragmentSearch.ShortestPathList[OtherWalker->nr]]++;
3367 } else {
3368 *out << Verbose(3) << "Not putting on atom stack, is at end of reach." << endl;
3369 }
3370 // add the bond in between to the SP list
3371 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
3372 add(Binder, FragmentSearch.BondsPerSPList[2*SP+1]);
3373 FragmentSearch.BondsPerSPCount[SP]++;
3374 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3375 } else *out << Verbose(3) << "Not putting on atom stack, nor adding bond, as " << *OtherWalker << "'s SP is shorter than Walker's." << endl;
3376 } else *out << Verbose(3) << "Not continuing, as " << *OtherWalker << " is out of reach of order " << Order << "." << endl;
3377 } else *out << Verbose(3) << "Not passing on, as index of " << *OtherWalker << " " << OtherWalker->nr << " is smaller than that of Root " << RootKeyNr << " or this is my predecessor." << endl;
3378 } else *out << Verbose(2) << "Is not in the restricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;
3379 }
3380 }
3381 // reset predecessor list
3382 for(int i=0;i<Order;i++) {
3383 Binder = FragmentSearch.BondsPerSPList[2*i];
3384 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3385 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3386 Binder = Binder->next;
3387 PredecessorList[Binder->rightatom->nr] = NULL; // By construction "OtherAtom" is always Bond::rightatom!
3388 }
3389 }
3390 *out << endl;
3391
3392 // outputting all list for debugging
3393 *out << Verbose(0) << "Printing all found lists." << endl;
3394 for(int i=0;i<Order;i++) {
3395 Binder = FragmentSearch.BondsPerSPList[2*i];
3396 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3397 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3398 Binder = Binder->next;
3399 *out << Verbose(2) << *Binder << endl;
3400 }
3401 }
3402
3403 // creating fragments with the found edge sets
3404 SP = 0;
3405 for(int i=0;i<Order;i++) { // sum up all found edges
3406 Binder = FragmentSearch.BondsPerSPList[2*i];
3407 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3408 Binder = Binder->next;
3409 SP ++;
3410 }
3411 }
3412 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
3413 if (SP >= (Order-1)) {
3414 // start with root (push on fragment stack)
3415 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;
3416 FragmentSearch.FragmentSet->clear();
3417 FragmentSearch.FragmentSet->insert(FragmentSearch.Root->nr);
3418
3419 if (FragmentSearch.FragmentSet->size() == (unsigned int) Order) {
3420 *out << Verbose(0) << "Enough items on stack already for a fragment!" << endl;
3421 // store fragment as a KeySet
3422 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch.FragmentCounter << "], local nr.s are: ";
3423 for(KeySet::iterator runner = FragmentSearch.FragmentSet->begin(); runner != FragmentSearch.FragmentSet->end(); runner++) {
3424 *out << (*runner) << " ";
3425 }
3426 *out << endl;
3427 InsertFragmentIntoGraph(out, &FragmentSearch);
3428 } else {
3429 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
3430 // prepare the subset and call the generator
3431 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");
3432 Binder = FragmentSearch.BondsPerSPList[0];
3433 for(int i=0;i<FragmentSearch.BondsPerSPCount[0];i++) {
3434 Binder = Binder->next;
3435 BondsList[i] = Binder;
3436 }
3437 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order-1);
3438 Free((void **)&BondsList, "molecule::PowerSetGenerator: **BondsList");
3439 }
3440 } else {
3441 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
3442 }
3443
3444 // as FragmentSearch structure is used only once, we don't have to clean it anymore
3445 // remove root from stack
3446 *out << Verbose(0) << "Removing root again from stack." << endl;
3447 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
3448
3449 // free'ing the bonds lists
3450 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
3451 for(int i=0;i<Order;i++) {
3452 *out << Verbose(1) << "Current SP level is " << i << ": ";
3453 Binder = FragmentSearch.BondsPerSPList[2*i];
3454 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3455 Binder = Binder->next;
3456 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local
3457 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
3458 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
3459 }
3460 // delete added bonds
3461 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
3462 // also start and end node
3463 *out << "cleaned." << endl;
3464 }
3465
3466 // free allocated memory
3467 Free((void **)&NumberOfAtomsSPLevel, "molecule::PowerSetGenerator: *SPLevelCount");
3468 Free((void **)&PredecessorList, "molecule::PowerSetGenerator: **PredecessorList");
3469
3470 // return list
3471 *out << Verbose(0) << "End of PowerSetGenerator." << endl;
3472 return (FragmentSearch.FragmentCounter - Counter);
3473};
3474
3475/** Corrects the nuclei position if the fragment was created over the cell borders.
3476 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
3477 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
3478 * and re-add the bond. Looping on the distance check.
3479 * \param *out ofstream for debugging messages
3480 */
3481void molecule::ScanForPeriodicCorrection(ofstream *out)
3482{
3483 bond *Binder = NULL;
3484 bond *OtherBinder = NULL;
3485 atom *Walker = NULL;
3486 atom *OtherWalker = NULL;
3487 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
3488 enum Shading *ColorList = NULL;
3489 double tmp;
3490 vector TranslationVector;
3491 //AtomStackClass *CompStack = NULL;
3492 AtomStackClass *AtomStack = new AtomStackClass(AtomCount);
3493 bool flag = true;
3494
3495// *out << Verbose(1) << "Begin of ScanForPeriodicCorrection." << endl;
3496
3497 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
3498 while (flag) {
3499 // remove bonds that are beyond bonddistance
3500 for(int i=0;i<NDIM;i++)
3501 TranslationVector.x[i] = 0.;
3502 // scan all bonds
3503 Binder = first;
3504 flag = false;
3505 while ((!flag) && (Binder->next != last)) {
3506 Binder = Binder->next;
3507 for (int i=0;i<NDIM;i++) {
3508 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
3509 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
3510 if (tmp > BondDistance) {
3511 OtherBinder = Binder->next; // note down binding partner for later re-insertion
3512 unlink(Binder); // unlink bond
3513// *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
3514 flag = true;
3515 break;
3516 }
3517 }
3518 }
3519 if (flag) {
3520 // create translation vector from their periodically modified distance
3521 for (int i=0;i<NDIM;i++) {
3522 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
3523 if (fabs(tmp) > BondDistance)
3524 TranslationVector.x[i] = (tmp < 0) ? +1. : -1.;
3525 }
3526 TranslationVector.MatrixMultiplication(matrix);
3527 //*out << "Translation vector is ";
3528 //TranslationVector.Output(out);
3529 //*out << endl;
3530 // apply to all atoms of first component via BFS
3531 for (int i=0;i<AtomCount;i++)
3532 ColorList[i] = white;
3533 AtomStack->Push(Binder->leftatom);
3534 while (!AtomStack->IsEmpty()) {
3535 Walker = AtomStack->PopFirst();
3536 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
3537 ColorList[Walker->nr] = black; // mark as explored
3538 Walker->x.AddVector(&TranslationVector); // translate
3539 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
3540 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
3541 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3542 if (ColorList[OtherWalker->nr] == white) {
3543 AtomStack->Push(OtherWalker); // push if yet unexplored
3544 }
3545 }
3546 }
3547 }
3548 // re-add bond
3549 link(Binder, OtherBinder);
3550 } else {
3551// *out << Verbose(2) << "No corrections for this fragment." << endl;
3552 }
3553 //delete(CompStack);
3554 }
3555
3556 // free allocated space from ReturnFullMatrixforSymmetric()
3557 delete(AtomStack);
3558 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
3559 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
3560// *out << Verbose(1) << "End of ScanForPeriodicCorrection." << endl;
3561};
3562
3563/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
3564 * \param *symm 6-dim array of unique symmetric matrix components
3565 * \return allocated NDIM*NDIM array with the symmetric matrix
3566 */
3567double * molecule::ReturnFullMatrixforSymmetric(double *symm)
3568{
3569 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
3570 matrix[0] = symm[0];
3571 matrix[1] = symm[1];
3572 matrix[2] = symm[3];
3573 matrix[3] = symm[1];
3574 matrix[4] = symm[2];
3575 matrix[5] = symm[4];
3576 matrix[6] = symm[3];
3577 matrix[7] = symm[4];
3578 matrix[8] = symm[5];
3579 return matrix;
3580};
3581
3582bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
3583{
3584 //cout << "my check is used." << endl;
3585 if (SubgraphA.size() < SubgraphB.size()) {
3586 return true;
3587 } else {
3588 if (SubgraphA.size() > SubgraphB.size()) {
3589 return false;
3590 } else {
3591 KeySet::iterator IteratorA = SubgraphA.begin();
3592 KeySet::iterator IteratorB = SubgraphB.begin();
3593 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
3594 if ((*IteratorA) < (*IteratorB))
3595 return true;
3596 else if ((*IteratorA) > (*IteratorB)) {
3597 return false;
3598 } // else, go on to next index
3599 IteratorA++;
3600 IteratorB++;
3601 } // end of while loop
3602 }// end of check in case of equal sizes
3603 }
3604 return false; // if we reach this point, they are equal
3605};
3606
3607//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
3608//{
3609// return KeyCompare(SubgraphA, SubgraphB);
3610//};
3611
3612/** Checking whether KeySet is not already present in Graph, if so just adds factor.
3613 * \param *out output stream for debugging
3614 * \param &set KeySet to insert
3615 * \param &graph Graph to insert into
3616 * \param *counter pointer to unique fragment count
3617 * \param factor energy factor for the fragment
3618 */
3619inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
3620{
3621 GraphTestPair testGraphInsert;
3622
3623 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
3624 if (testGraphInsert.second) {
3625 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
3626 Fragment->FragmentCounter++;
3627 } else {
3628 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3629 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor; // increase the "created" counter
3630 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
3631 }
3632};
3633//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
3634//{
3635// // copy stack contents to set and call overloaded function again
3636// KeySet set;
3637// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
3638// set.insert((*runner));
3639// InsertIntoGraph(out, set, graph, counter, factor);
3640//};
3641
3642/** Inserts each KeySet in \a graph2 into \a graph1.
3643 * \param *out output stream for debugging
3644 * \param graph1 first (dest) graph
3645 * \param graph2 second (source) graph
3646 * \param *counter keyset counter that gets increased
3647 */
3648inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
3649{
3650 GraphTestPair testGraphInsert;
3651
3652 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
3653 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
3654 if (testGraphInsert.second) {
3655 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
3656 } else {
3657 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3658 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
3659 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
3660 }
3661 }
3662};
3663
3664
3665/** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.
3666 * -# constructs a complete keyset of the molecule
3667 * -# In a loop over all possible roots from the given rootstack
3668 * -# increases order of root site
3669 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr
3670 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset
3671as the restricted one and each site in the set as the root)
3672 * -# these are merged into a fragment list of keysets
3673 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return
3674 * Important only is that we create all fragments, it is not important if we create them more than once
3675 * as these copies are filtered out via use of the hash table (KeySet).
3676 * \param *out output stream for debugging
3677 * \param Fragment&*List list of already present keystacks (adaptive scheme) or empty list
3678 * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
3679 * \return pointer to Graph list
3680 */
3681void molecule::FragmentBOSSANOVA(ofstream *out, Graph *&FragmentList, KeyStack &RootStack)
3682{
3683 Graph ***FragmentLowerOrdersList = NULL;
3684 int Order, NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
3685 int counter = 0;
3686 int UpgradeCount = RootStack.size();
3687 KeyStack FragmentRootStack;
3688 int RootKeyNr, RootNr;
3689 struct UniqueFragments FragmentSearch;
3690
3691 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
3692
3693 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
3694 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
3695 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3696 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3697
3698 // initialise the fragments structure
3699 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
3700 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
3701 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");
3702 FragmentSearch.Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *Labels");
3703 FragmentSearch.FragmentCounter = 0;
3704 FragmentSearch.FragmentSet = new KeySet;
3705 FragmentSearch.Root = FindAtom(RootKeyNr);
3706 for (int i=0;i<AtomCount;i++) {
3707 FragmentSearch.Labels[i] = -1;
3708 FragmentSearch.ShortestPathList[i] = -1;
3709 }
3710
3711 // Construct the complete KeySet which we need for topmost level only (but for all Roots)
3712 atom *Walker = start;
3713 KeySet CompleteMolecule;
3714 while (Walker->next != end) {
3715 Walker = Walker->next;
3716 CompleteMolecule.insert(Walker->GetTrueFather()->nr);
3717 }
3718
3719 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
3720 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
3721 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
3722 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
3723 RootNr = 0; // counts through the roots in RootStack
3724 while (RootNr < UpgradeCount) {
3725 RootKeyNr = RootStack.front();
3726 RootStack.pop_front();
3727 // increase adaptive order by one
3728 Walker = FindAtom(RootKeyNr);
3729 Walker->GetTrueFather()->AdaptiveOrder++;
3730 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;
3731
3732 // initialise Order-dependent entries of UniqueFragments structure
3733 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
3734 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
3735 for (int i=0;i<Order;i++) {
3736 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
3737 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
3738 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
3739 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
3740 FragmentSearch.BondsPerSPCount[i] = 0;
3741 }
3742
3743 // allocate memory for all lower level orders in this 1D-array of ptrs
3744 NumLevels = 1 << (Order-1); // (int)pow(2,Order);
3745 FragmentLowerOrdersList[RootNr] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3746
3747 // create top order where nothing is reduced
3748 *out << Verbose(0) << "==============================================================================================================" << endl;
3749 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", NumLevels is " << NumLevels << ", " << (RootStack.size()-RootNr-1) << " Roots remaining." << endl;
3750
3751 // Create list of Graphs of current Bond Order (i.e. F_{ij})
3752 FragmentLowerOrdersList[RootNr][0] = new Graph;
3753 FragmentSearch.TEFactor = 1.;
3754 FragmentSearch.Leaflet = FragmentLowerOrdersList[RootNr][0]; // set to insertion graph
3755 FragmentSearch.Root = Walker;
3756 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentSearch, CompleteMolecule);
3757 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
3758 NumMolecules = 0;
3759
3760 if ((NumLevels >> 1) > 0) {
3761 // create lower order fragments
3762 *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
3763 Order = Walker->AdaptiveOrder;
3764 for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
3765 // step down to next order at (virtual) boundary of powers of 2 in array
3766 while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))
3767 Order--;
3768 *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
3769 for (int SubOrder=Order-1;SubOrder>0;SubOrder--) {
3770 int dest = source + (1 << (Walker->AdaptiveOrder-(SubOrder+1)));
3771 *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
3772 *out << Verbose(0) << "Current SubOrder is: " << SubOrder << " with source " << source << " to destination " << dest << "." << endl;
3773
3774 // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
3775 //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
3776 //NumMolecules = 0;
3777 FragmentLowerOrdersList[RootNr][dest] = new Graph;
3778 for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {
3779 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
3780 Graph TempFragmentList;
3781 FragmentSearch.TEFactor = -(*runner).second.second;
3782 FragmentSearch.Leaflet = &TempFragmentList; // set to insertion graph
3783 FragmentSearch.Root = FindAtom(*sprinter);
3784 NumMoleculesOfOrder[RootNr] += PowerSetGenerator(out, SubOrder, FragmentSearch, (*runner).first);
3785 // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]
3786 *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;
3787 InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], TempFragmentList, &NumMolecules);
3788 }
3789 }
3790 *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;
3791 }
3792 }
3793 }
3794 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder
3795 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;
3796 TotalNumMolecules += NumMoleculesOfOrder[RootNr];
3797 *out << Verbose(1) << "Number of resulting molecules for Order " << (int)Walker->GetTrueFather()->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
3798 RootStack.push_back(RootKeyNr); // put back on stack
3799 RootNr++;
3800
3801 // free Order-dependent entries of UniqueFragments structure for next loop cycle
3802 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::PowerSetGenerator: *BondsPerSPCount");
3803 for (int i=0;i<Order;i++) {
3804 delete(FragmentSearch.BondsPerSPList[2*i]);
3805 delete(FragmentSearch.BondsPerSPList[2*i+1]);
3806 }
3807 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::PowerSetGenerator: ***BondsPerSPList");
3808 }
3809 *out << Verbose(0) << "==============================================================================================================" << endl;
3810 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
3811 *out << Verbose(0) << "==============================================================================================================" << endl;
3812
3813 // cleanup FragmentSearch structure
3814 Free((void **)&FragmentSearch.ShortestPathList, "molecule::PowerSetGenerator: *ShortestPathList");
3815 Free((void **)&FragmentSearch.Labels, "molecule::PowerSetGenerator: *Labels");
3816 delete(FragmentSearch.FragmentSet);
3817
3818 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
3819 // 5433222211111111
3820 // 43221111
3821 // 3211
3822 // 21
3823 // 1
3824
3825 // Subsequently, we combine all into a single list (FragmentList)
3826
3827 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
3828 if (FragmentList == NULL) {
3829 FragmentList = new Graph;
3830 counter = 0;
3831 } else {
3832 counter = FragmentList->size();
3833 }
3834 RootNr = 0;
3835 while (!RootStack.empty()) {
3836 RootKeyNr = RootStack.front();
3837 RootStack.pop_front();
3838 Walker = FindAtom(RootKeyNr);
3839 NumLevels = 1 << (Walker->AdaptiveOrder - 1);
3840 for(int i=0;i<NumLevels;i++) {
3841 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
3842 delete(FragmentLowerOrdersList[RootNr][i]);
3843 }
3844 Free((void **)&FragmentLowerOrdersList[RootNr], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3845 RootNr++;
3846 }
3847 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3848 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3849
3850 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
3851};
3852
3853/** Comparison function for GSL heapsort on distances in two molecules.
3854 * \param *a
3855 * \param *b
3856 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
3857 */
3858int CompareDoubles (const void * a, const void * b)
3859{
3860 if (*(double *)a > *(double *)b)
3861 return -1;
3862 else if (*(double *)a < *(double *)b)
3863 return 1;
3864 else
3865 return 0;
3866};
3867
3868/** Determines whether two molecules actually contain the same atoms and coordination.
3869 * \param *out output stream for debugging
3870 * \param *OtherMolecule the molecule to compare this one to
3871 * \param threshold upper limit of difference when comparing the coordination.
3872 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
3873 */
3874int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
3875{
3876 int flag;
3877 double *Distances = NULL, *OtherDistances = NULL;
3878 vector CenterOfGravity, OtherCenterOfGravity;
3879 size_t *PermMap = NULL, *OtherPermMap = NULL;
3880 int *PermutationMap = NULL;
3881 atom *Walker = NULL;
3882 bool result = true; // status of comparison
3883
3884 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
3885 /// first count both their atoms and elements and update lists thereby ...
3886 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
3887 CountAtoms(out);
3888 OtherMolecule->CountAtoms(out);
3889 CountElements();
3890 OtherMolecule->CountElements();
3891
3892 /// ... and compare:
3893 /// -# AtomCount
3894 if (result) {
3895 if (AtomCount != OtherMolecule->AtomCount) {
3896 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3897 result = false;
3898 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3899 }
3900 /// -# ElementCount
3901 if (result) {
3902 if (ElementCount != OtherMolecule->ElementCount) {
3903 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3904 result = false;
3905 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3906 }
3907 /// -# ElementsInMolecule
3908 if (result) {
3909 for (flag=0;flag<MAX_ELEMENTS;flag++) {
3910 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
3911 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
3912 break;
3913 }
3914 if (flag < MAX_ELEMENTS) {
3915 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
3916 result = false;
3917 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
3918 }
3919 /// then determine and compare center of gravity for each molecule ...
3920 if (result) {
3921 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
3922 DetermineCenterOfGravity(CenterOfGravity);
3923 OtherMolecule->DetermineCenterOfGravity(OtherCenterOfGravity);
3924 *out << Verbose(5) << "Center of Gravity: ";
3925 CenterOfGravity.Output(out);
3926 *out << endl << Verbose(5) << "Other Center of Gravity: ";
3927 OtherCenterOfGravity.Output(out);
3928 *out << endl;
3929 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
3930 *out << Verbose(4) << "Centers of gravity don't match." << endl;
3931 result = false;
3932 }
3933 }
3934
3935 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
3936 if (result) {
3937 *out << Verbose(5) << "Calculating distances" << endl;
3938 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
3939 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
3940 Walker = start;
3941 while (Walker->next != end) {
3942 Walker = Walker->next;
3943 //for (i=0;i<AtomCount;i++) {
3944 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
3945 }
3946 Walker = OtherMolecule->start;
3947 while (Walker->next != OtherMolecule->end) {
3948 Walker = Walker->next;
3949 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
3950 }
3951
3952 /// ... sort each list (using heapsort (o(N log N)) from GSL)
3953 *out << Verbose(5) << "Sorting distances" << endl;
3954 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
3955 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3956 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
3957 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
3958 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3959 *out << Verbose(5) << "Combining Permutation Maps" << endl;
3960 for(int i=0;i<AtomCount;i++)
3961 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
3962
3963 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
3964 *out << Verbose(4) << "Comparing distances" << endl;
3965 flag = 0;
3966 for (int i=0;i<AtomCount;i++) {
3967 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
3968 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
3969 flag = 1;
3970 }
3971 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
3972 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3973
3974 /// free memory
3975 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
3976 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
3977 if (flag) { // if not equal
3978 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3979 result = false;
3980 }
3981 }
3982 /// return pointer to map if all distances were below \a threshold
3983 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
3984 if (result) {
3985 *out << Verbose(3) << "Result: Equal." << endl;
3986 return PermutationMap;
3987 } else {
3988 *out << Verbose(3) << "Result: Not equal." << endl;
3989 return NULL;
3990 }
3991};
3992
3993/** Returns an index map for two father-son-molecules.
3994 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
3995 * \param *out output stream for debugging
3996 * \param *OtherMolecule corresponding molecule with fathers
3997 * \return allocated map of size molecule::AtomCount with map
3998 * \todo make this with a good sort O(n), not O(n^2)
3999 */
4000int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
4001{
4002 atom *Walker = NULL, *OtherWalker = NULL;
4003 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
4004 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
4005 for (int i=0;i<AtomCount;i++)
4006 AtomicMap[i] = -1;
4007 if (OtherMolecule == this) { // same molecule
4008 for (int i=0;i<AtomCount;i++) // no need as -1 means already that there is trivial correspondence
4009 AtomicMap[i] = i;
4010 *out << Verbose(4) << "Map is trivial." << endl;
4011 } else {
4012 *out << Verbose(4) << "Map is ";
4013 Walker = start;
4014 while (Walker->next != end) {
4015 Walker = Walker->next;
4016 if (Walker->father == NULL) {
4017 AtomicMap[Walker->nr] = -2;
4018 } else {
4019 OtherWalker = OtherMolecule->start;
4020 while (OtherWalker->next != OtherMolecule->end) {
4021 OtherWalker = OtherWalker->next;
4022 //for (int i=0;i<AtomCount;i++) { // search atom
4023 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
4024 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
4025 if (Walker->father == OtherWalker)
4026 AtomicMap[Walker->nr] = OtherWalker->nr;
4027 }
4028 }
4029 *out << AtomicMap[Walker->nr] << "\t";
4030 }
4031 *out << endl;
4032 }
4033 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
4034 return AtomicMap;
4035};
4036
Note: See TracBrowser for help on using the repository browser.