source: molecuilder/src/molecules.cpp@ 2b79c3

Last change on this file since 2b79c3 was 2b79c3, checked in by Frederik Heber <heber@…>, 18 years ago

new function MoleculeLeafClass::TranslateIndicesToGlobalIDs() used in molecule::FragmentMolecule()

MoleculeLeafClass::TranslateIndicesToGlobalIDs() abstractizes translation of local atom::nr returned by BOSSANOVA per fragment into one list of global indices that can be used to store fragment configs and globally valid keyset file

  • Property mode set to 100644
File size: 174.0 KB
Line 
1/** \file molecules.cpp
2 *
3 * Functions for the class molecule.
4 *
5 */
6
7#include "molecules.hpp"
8
9/************************************* Other Functions *************************************/
10
11/** Determines sum of squared distances of \a X to all \a **vectors.
12 * \param *x reference vector
13 * \param *params
14 * \return sum of square distances
15 */
16double LSQ (const gsl_vector * x, void * params)
17{
18 double sum = 0.;
19 struct LSQ_params *par = (struct LSQ_params *)params;
20 vector **vectors = par->vectors;
21 int num = par->num;
22
23 for (int i=0;i<num;i++) {
24 for(int j=0;j<NDIM;j++)
25 sum += (gsl_vector_get(x,j) - (vectors[i])->x[j])*(gsl_vector_get(x,j) - (vectors[i])->x[j]);
26 }
27
28 return sum;
29};
30
31/************************************* Functions for class molecule *********************************/
32
33/** Constructor of class molecule.
34 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
35 */
36molecule::molecule(periodentafel *teil)
37{
38 // init atom chain list
39 start = new atom;
40 end = new atom;
41 start->father = NULL;
42 end->father = NULL;
43 link(start,end);
44 // init bond chain list
45 first = new bond(start, end, 1, -1);
46 last = new bond(start, end, 1, -1);
47 link(first,last);
48 // other stuff
49 last_atom = 0;
50 elemente = teil;
51 AtomCount = 0;
52 BondCount = 0;
53 NoNonBonds = 0;
54 NoNonHydrogen = 0;
55 NoCyclicBonds = 0;
56 ListOfBondsPerAtom = NULL;
57 NumberOfBondsPerAtom = NULL;
58 ElementCount = 0;
59 for(int i=0;i<MAX_ELEMENTS;i++)
60 ElementsInMolecule[i] = 0;
61 cell_size[0] = cell_size[2] = cell_size[5]= 20.;
62 cell_size[1] = cell_size[3] = cell_size[4]= 0.;
63};
64
65/** Destructor of class molecule.
66 * Initialises molecule list with correctly referenced start and end, and sets molecule::last_atom to zero.
67 */
68molecule::~molecule()
69{
70 if (ListOfBondsPerAtom != NULL)
71 for(int i=0;i<AtomCount;i++)
72 Free((void **)&ListOfBondsPerAtom[i], "molecule::~molecule: ListOfBondsPerAtom[i]");
73 Free((void **)&ListOfBondsPerAtom, "molecule::~molecule: ListOfBondsPerAtom");
74 Free((void **)&NumberOfBondsPerAtom, "molecule::~molecule: NumberOfBondsPerAtom");
75 CleanupMolecule();
76 delete(first);
77 delete(last);
78 delete(end);
79 delete(start);
80};
81
82/** Adds given atom \a *pointer from molecule list.
83 * Increases molecule::last_atom and gives last number to added atom and names it according to its element::abbrev and molecule::AtomCount
84 * \param *pointer allocated and set atom
85 * \return true - succeeded, false - atom not found in list
86 */
87bool molecule::AddAtom(atom *pointer)
88{
89 if (pointer != NULL) {
90 pointer->sort = &pointer->nr;
91 pointer->nr = last_atom++; // increase number within molecule
92 AtomCount++;
93 if (pointer->type != NULL) {
94 if (ElementsInMolecule[pointer->type->Z] == 0)
95 ElementCount++;
96 ElementsInMolecule[pointer->type->Z]++; // increase number of elements
97 if (pointer->type->Z != 1)
98 NoNonHydrogen++;
99 if (pointer->Name == NULL) {
100 Free((void **)&pointer->Name, "molecule::AddAtom: *pointer->Name");
101 pointer->Name = (char *) Malloc(sizeof(char)*6, "molecule::AddAtom: *pointer->Name");
102 sprintf(pointer->Name, "%2s%02d", pointer->type->symbol, pointer->nr+1);
103 }
104 }
105 return add(pointer, end);
106 } else
107 return false;
108};
109
110/** Adds a copy of the given atom \a *pointer from molecule list.
111 * Increases molecule::last_atom and gives last number to added atom.
112 * \param *pointer allocated and set atom
113 * \return true - succeeded, false - atom not found in list
114 */
115atom * molecule::AddCopyAtom(atom *pointer)
116{
117 if (pointer != NULL) {
118 atom *walker = new atom();
119 walker->type = pointer->type; // copy element of atom
120 walker->x.CopyVector(&pointer->x); // copy coordination
121 walker->v.CopyVector(&pointer->v); // copy velocity
122 walker->FixedIon = pointer->FixedIon;
123 walker->sort = &walker->nr;
124 walker->nr = last_atom++; // increase number within molecule
125 walker->father = pointer; //->GetTrueFather();
126 walker->Name = (char *) Malloc(sizeof(char)*strlen(pointer->Name)+1, "molecule::AddCopyAtom: *Name");
127 strcpy (walker->Name, pointer->Name);
128 add(walker, end);
129 if ((pointer->type != NULL) && (pointer->type->Z != 1))
130 NoNonHydrogen++;
131 AtomCount++;
132 return walker;
133 } else
134 return NULL;
135};
136
137/** Adds a Hydrogen atom in replacement for the given atom \a *partner in bond with a *origin.
138 * Here, we have to distinguish between single, double or triple bonds as stated by \a BondDegree, that each demand
139 * a different scheme when adding \a *replacement atom for the given one.
140 * -# Single Bond: Simply add new atom with bond distance rescaled to typical hydrogen one
141 * -# Double Bond: Here, we need the **BondList of the \a *origin atom, by scanning for the other bonds instead of
142 * *Bond, we use the through these connected atoms to determine the plane they lie in, vector::MakeNormalVector().
143 * The orthonormal vector to this plane along with the vector in *Bond direction determines the plane the two
144 * replacing hydrogens shall lie in. Now, all remains to do is take the usual hydrogen double bond angle for the
145 * element of *origin and form the sin/cos admixture of both plane vectors for the new coordinates of the two
146 * hydrogens forming this angle with *origin.
147 * -# Triple Bond: The idea is to set up a tetraoid (C1-H1-H2-H3) (however the lengths \f$b\f$ of the sides of the base
148 * triangle formed by the to be added hydrogens are not equal to the typical bond distance \f$l\f$ but have to be
149 * determined from the typical angle \f$\alpha\f$ for a hydrogen triple connected to the element of *origin):
150 * We have the height \f$d\f$ as the vector in *Bond direction (from triangle C1-H1-H2).
151 * \f[ h = l \cdot \cos{\left (\frac{\alpha}{2} \right )} \qquad b = 2l \cdot \sin{\left (\frac{\alpha}{2} \right)} \quad \rightarrow \quad d = l \cdot \sqrt{\cos^2{\left (\frac{\alpha}{2} \right)}-\frac{1}{3}\cdot\sin^2{\left (\frac{\alpha}{2}\right )}}
152 * \f]
153 * vector::GetNormalVector() creates one orthonormal vector from this *Bond vector and vector::MakeNormalVector creates
154 * the third one from the former two vectors. The latter ones form the plane of the base triangle mentioned above.
155 * The lengths for these are \f$f\f$ and \f$g\f$ (from triangle H1-H2-(center of H1-H2-H3)) with knowledge that
156 * the median lines in an isosceles triangle meet in the center point with a ratio 2:1.
157 * \f[ f = \frac{b}{\sqrt{3}} \qquad g = \frac{b}{2}
158 * \f]
159 * as the coordination of all three atoms in the coordinate system of these three vectors:
160 * \f$\pmatrix{d & f & 0}\f$, \f$\pmatrix{d & -0.5 \cdot f & g}\f$ and \f$\pmatrix{d & -0.5 \cdot f & -g}\f$.
161 *
162 * \param *out output stream for debugging
163 * \param *Bond pointer to bond between \a *origin and \a *replacement
164 * \param *TopOrigin son of \a *origin of upper level molecule (the atom added to this molecule as a copy of \a *origin)
165 * \param *origin pointer to atom which acts as the origin for scaling the added hydrogen to correct bond length
166 * \param *replacement pointer to the atom which shall be copied as a hydrogen atom in this molecule
167 * \param **BondList list of bonds \a *replacement has (necessary to determine plane for double and triple bonds)
168 * \param NumBond number of bonds in \a **BondList
169 * \param isAngstroem whether the coordination of the given atoms is in AtomicLength (false) or Angstrom(true)
170 * \return number of atoms added, if < bond::BondDegree then something went wrong
171 * \todo double and triple bonds splitting (always use the tetraeder angle!)
172 */
173bool molecule::AddHydrogenReplacementAtom(ofstream *out, bond *TopBond, atom *BottomOrigin, atom *TopOrigin, atom *TopReplacement, bond **BondList, int NumBond, bool IsAngstroem)
174{
175 double bondlength; // bond length of the bond to be replaced/cut
176 double bondangle; // bond angle of the bond to be replaced/cut
177 double BondRescale; // rescale value for the hydrogen bond length
178 bool AllWentWell = true; // flag gathering the boolean return value of molecule::AddAtom and other functions, as return value on exit
179 bond *FirstBond = NULL, *SecondBond = NULL; // Other bonds in double bond case to determine "other" plane
180 atom *FirstOtherAtom = NULL, *SecondOtherAtom = NULL, *ThirdOtherAtom = NULL; // pointer to hydrogen atoms to be added
181 int i; // loop variable
182 double b,l,d,f,g, alpha, factors[NDIM]; // hold temporary values in triple bond case for coordination determination
183 vector OrthoVector1, OrthoVector2; // temporary vectors in coordination construction
184 vector InBondVector; // vector in direction of *Bond
185 bond *Binder = NULL;
186 double *matrix;
187
188// *out << Verbose(3) << "Begin of AddHydrogenReplacementAtom." << endl;
189 // create vector in direction of bond
190 InBondVector.CopyVector(&TopReplacement->x);
191 InBondVector.SubtractVector(&TopOrigin->x);
192 bondlength = InBondVector.Norm();
193
194 // is greater than typical bond distance? Then we have to correct periodically
195 // the problem is not the H being out of the box, but InBondVector have the wrong direction
196 // due to TopReplacement or Origin being on the wrong side!
197 if (bondlength > BondDistance) {
198// *out << Verbose(4) << "InBondVector is: ";
199// InBondVector.Output(out);
200// *out << endl;
201 OrthoVector1.Zero();
202 for (int i=0;i<NDIM;i++) {
203 l = TopReplacement->x.x[i] - TopOrigin->x.x[i];
204 if (fabs(l) > BondDistance) { // is component greater than bond distance
205 OrthoVector1.x[i] = (l < 0) ? -1. : +1.;
206 } // (signs are correct, was tested!)
207 }
208 matrix = ReturnFullMatrixforSymmetric(cell_size);
209 OrthoVector1.MatrixMultiplication(matrix);
210 InBondVector.SubtractVector(&OrthoVector1); // subtract just the additional translation
211 Free((void **)&matrix, "molecule::AddHydrogenReplacementAtom: *matrix");
212 bondlength = InBondVector.Norm();
213// *out << Verbose(4) << "Corrected InBondVector is now: ";
214// InBondVector.Output(out);
215// *out << endl;
216 } // periodic correction finished
217
218 InBondVector.Normalize();
219 // get typical bond length and store as scale factor for later
220 BondRescale = TopOrigin->type->HBondDistance[TopBond->BondDegree-1];
221 if (BondRescale == -1) {
222 cerr << Verbose(3) << "WARNING: There is no typical bond distance for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
223 BondRescale = bondlength;
224 } else {
225 if (!IsAngstroem)
226 BondRescale /= (1.*AtomicLengthToAngstroem);
227 }
228
229 // discern single, double and triple bonds
230 switch(TopBond->BondDegree) {
231 case 1:
232 FirstOtherAtom = new atom(); // new atom
233 FirstOtherAtom->type = elemente->FindElement(1); // element is Hydrogen
234 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
235 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
236 if (TopReplacement->type->Z == 1) { // neither rescale nor replace if it's already hydrogen
237 FirstOtherAtom->father = TopReplacement;
238 BondRescale = bondlength;
239 } else {
240 FirstOtherAtom->father = NULL; // if we replace hydrogen, we mark it as our father, otherwise we are just an added hydrogen with no father
241 }
242 InBondVector.Scale(&BondRescale); // rescale the distance vector to Hydrogen bond length
243 FirstOtherAtom->x.CopyVector(&TopOrigin->x); // set coordination to origin ...
244 FirstOtherAtom->x.AddVector(&InBondVector); // ... and add distance vector to replacement atom
245 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
246// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
247// FirstOtherAtom->x.Output(out);
248// *out << endl;
249 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
250 Binder->Cyclic = false;
251 Binder->Type = TreeEdge;
252 break;
253 case 2:
254 // determine two other bonds (warning if there are more than two other) plus valence sanity check
255 for (i=0;i<NumBond;i++) {
256 if (BondList[i] != TopBond) {
257 if (FirstBond == NULL) {
258 FirstBond = BondList[i];
259 FirstOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
260 } else if (SecondBond == NULL) {
261 SecondBond = BondList[i];
262 SecondOtherAtom = BondList[i]->GetOtherAtom(TopOrigin);
263 } else {
264 *out << Verbose(3) << "WARNING: Detected more than four bonds for atom " << TopOrigin->Name;
265 }
266 }
267 }
268 if (SecondOtherAtom == NULL) { // then we have an atom with valence four, but only 3 bonds: one to replace and one which is TopBond (third is FirstBond)
269 SecondBond = TopBond;
270 SecondOtherAtom = TopReplacement;
271 }
272 if (FirstOtherAtom != NULL) { // then we just have this double bond and the plane does not matter at all
273// *out << Verbose(3) << "Regarding the double bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") to be constructed: Taking " << FirstOtherAtom->Name << " and " << SecondOtherAtom->Name << " along with " << TopOrigin->Name << " to determine orthogonal plane." << endl;
274
275 // determine the plane of these two with the *origin
276 AllWentWell = AllWentWell && OrthoVector1.MakeNormalVector(&TopOrigin->x, &FirstOtherAtom->x, &SecondOtherAtom->x);
277 } else {
278 OrthoVector1.GetOneNormalVector(&InBondVector);
279 }
280 //*out << Verbose(3)<< "Orthovector1: ";
281 //OrthoVector1.Output(out);
282 //*out << endl;
283 // orthogonal vector and bond vector between origin and replacement form the new plane
284 OrthoVector1.MakeNormalVector(&InBondVector);
285 OrthoVector1.Normalize();
286 //*out << Verbose(3) << "ReScaleCheck: " << OrthoVector1.Norm() << " and " << InBondVector.Norm() << "." << endl;
287
288 // create the two Hydrogens ...
289 FirstOtherAtom = new atom();
290 SecondOtherAtom = new atom();
291 FirstOtherAtom->type = elemente->FindElement(1);
292 SecondOtherAtom->type = elemente->FindElement(1);
293 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
294 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
295 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
296 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
297 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
298 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
299 bondangle = TopOrigin->type->HBondAngle[1];
300 if (bondangle == -1) {
301 *out << Verbose(3) << "WARNING: There is no typical bond angle for bond (" << TopOrigin->Name << "<->" << TopReplacement->Name << ") of degree " << TopBond->BondDegree << "!" << endl;
302 bondangle = 0;
303 }
304 bondangle *= M_PI/180./2.;
305// *out << Verbose(3) << "ReScaleCheck: InBondVector ";
306// InBondVector.Output(out);
307// *out << endl;
308// *out << Verbose(3) << "ReScaleCheck: Orthovector ";
309// OrthoVector1.Output(out);
310// *out << endl;
311// *out << Verbose(3) << "Half the bond angle is " << bondangle << ", sin and cos of it: " << sin(bondangle) << ", " << cos(bondangle) << endl;
312 FirstOtherAtom->x.Zero();
313 SecondOtherAtom->x.Zero();
314 for(i=0;i<NDIM;i++) { // rotate by half the bond angle in both directions (InBondVector is bondangle = 0 direction)
315 FirstOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (sin(bondangle));
316 SecondOtherAtom->x.x[i] = InBondVector.x[i] * cos(bondangle) + OrthoVector1.x[i] * (-sin(bondangle));
317 }
318 FirstOtherAtom->x.Scale(&BondRescale); // rescale by correct BondDistance
319 SecondOtherAtom->x.Scale(&BondRescale);
320 //*out << Verbose(3) << "ReScaleCheck: " << FirstOtherAtom->x.Norm() << " and " << SecondOtherAtom->x.Norm() << "." << endl;
321 for(i=0;i<NDIM;i++) { // and make relative to origin atom
322 FirstOtherAtom->x.x[i] += TopOrigin->x.x[i];
323 SecondOtherAtom->x.x[i] += TopOrigin->x.x[i];
324 }
325 // ... and add to molecule
326 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
327 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
328// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
329// FirstOtherAtom->x.Output(out);
330// *out << endl;
331// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
332// SecondOtherAtom->x.Output(out);
333// *out << endl;
334 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
335 Binder->Cyclic = false;
336 Binder->Type = TreeEdge;
337 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
338 Binder->Cyclic = false;
339 Binder->Type = TreeEdge;
340 break;
341 case 3:
342 // take the "usual" tetraoidal angle and add the three Hydrogen in direction of the bond (height of the tetraoid)
343 FirstOtherAtom = new atom();
344 SecondOtherAtom = new atom();
345 ThirdOtherAtom = new atom();
346 FirstOtherAtom->type = elemente->FindElement(1);
347 SecondOtherAtom->type = elemente->FindElement(1);
348 ThirdOtherAtom->type = elemente->FindElement(1);
349 FirstOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
350 FirstOtherAtom->FixedIon = TopReplacement->FixedIon;
351 SecondOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
352 SecondOtherAtom->FixedIon = TopReplacement->FixedIon;
353 ThirdOtherAtom->v.CopyVector(&TopReplacement->v); // copy velocity
354 ThirdOtherAtom->FixedIon = TopReplacement->FixedIon;
355 FirstOtherAtom->father = NULL; // we are just an added hydrogen with no father
356 SecondOtherAtom->father = NULL; // we are just an added hydrogen with no father
357 ThirdOtherAtom->father = NULL; // we are just an added hydrogen with no father
358
359 // we need to vectors orthonormal the InBondVector
360 AllWentWell = AllWentWell && OrthoVector1.GetOneNormalVector(&InBondVector);
361// *out << Verbose(3) << "Orthovector1: ";
362// OrthoVector1.Output(out);
363// *out << endl;
364 AllWentWell = AllWentWell && OrthoVector2.MakeNormalVector(&InBondVector, &OrthoVector1);
365// *out << Verbose(3) << "Orthovector2: ";
366// OrthoVector2.Output(out);
367// *out << endl;
368
369 // create correct coordination for the three atoms
370 alpha = (TopOrigin->type->HBondAngle[2])/180.*M_PI/2.; // retrieve triple bond angle from database
371 l = BondRescale; // desired bond length
372 b = 2.*l*sin(alpha); // base length of isosceles triangle
373 d = l*sqrt(cos(alpha)*cos(alpha) - sin(alpha)*sin(alpha)/3.); // length for InBondvector
374 f = b/sqrt(3.); // length for OrthVector1
375 g = b/2.; // length for OrthVector2
376// *out << Verbose(3) << "Bond length and half-angle: " << l << ", " << alpha << "\t (b,d,f,g) = " << b << ", " << d << ", " << f << ", " << g << ", " << endl;
377// *out << Verbose(3) << "The three Bond lengths: " << sqrt(d*d+f*f) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << ", " << sqrt(d*d+(-0.5*f)*(-0.5*f)+g*g) << endl;
378 factors[0] = d;
379 factors[1] = f;
380 factors[2] = 0.;
381 FirstOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
382 factors[1] = -0.5*f;
383 factors[2] = g;
384 SecondOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
385 factors[2] = -g;
386 ThirdOtherAtom->x.LinearCombinationOfVectors(&InBondVector, &OrthoVector1, &OrthoVector2, factors);
387
388 // rescale each to correct BondDistance
389// FirstOtherAtom->x.Scale(&BondRescale);
390// SecondOtherAtom->x.Scale(&BondRescale);
391// ThirdOtherAtom->x.Scale(&BondRescale);
392
393 // and relative to *origin atom
394 FirstOtherAtom->x.AddVector(&TopOrigin->x);
395 SecondOtherAtom->x.AddVector(&TopOrigin->x);
396 ThirdOtherAtom->x.AddVector(&TopOrigin->x);
397
398 // ... and add to molecule
399 AllWentWell = AllWentWell && AddAtom(FirstOtherAtom);
400 AllWentWell = AllWentWell && AddAtom(SecondOtherAtom);
401 AllWentWell = AllWentWell && AddAtom(ThirdOtherAtom);
402// *out << Verbose(4) << "Added " << *FirstOtherAtom << " at: ";
403// FirstOtherAtom->x.Output(out);
404// *out << endl;
405// *out << Verbose(4) << "Added " << *SecondOtherAtom << " at: ";
406// SecondOtherAtom->x.Output(out);
407// *out << endl;
408// *out << Verbose(4) << "Added " << *ThirdOtherAtom << " at: ";
409// ThirdOtherAtom->x.Output(out);
410// *out << endl;
411 Binder = AddBond(BottomOrigin, FirstOtherAtom, 1);
412 Binder->Cyclic = false;
413 Binder->Type = TreeEdge;
414 Binder = AddBond(BottomOrigin, SecondOtherAtom, 1);
415 Binder->Cyclic = false;
416 Binder->Type = TreeEdge;
417 Binder = AddBond(BottomOrigin, ThirdOtherAtom, 1);
418 Binder->Cyclic = false;
419 Binder->Type = TreeEdge;
420 break;
421 default:
422 cerr << "ERROR: BondDegree does not state single, double or triple bond!" << endl;
423 AllWentWell = false;
424 break;
425 }
426
427// *out << Verbose(3) << "End of AddHydrogenReplacementAtom." << endl;
428 return AllWentWell;
429};
430
431/** Adds given atom \a *pointer from molecule list.
432 * Increases molecule::last_atom and gives last number to added atom.
433 * \param filename name and path of xyz file
434 * \return true - succeeded, false - file not found
435 */
436bool molecule::AddXYZFile(string filename)
437{
438 istringstream *input = NULL;
439 int NumberOfAtoms = 0; // atom number in xyz read
440 int i, j; // loop variables
441 atom *first = NULL; // pointer to added atom
442 char shorthand[3]; // shorthand for atom name
443 ifstream xyzfile; // xyz file
444 string line; // currently parsed line
445 double x[3]; // atom coordinates
446
447 xyzfile.open(filename.c_str());
448 if (!xyzfile)
449 return false;
450
451 getline(xyzfile,line,'\n'); // Read numer of atoms in file
452 input = new istringstream(line);
453 *input >> NumberOfAtoms;
454 cout << Verbose(0) << "Parsing " << NumberOfAtoms << " atoms in file." << endl;
455 getline(xyzfile,line,'\n'); // Read comment
456 cout << Verbose(1) << "Comment: " << line << endl;
457
458 for(i=0;i<NumberOfAtoms;i++){
459 first = new atom;
460 getline(xyzfile,line,'\n');
461 istringstream *item = new istringstream(line);
462 //istringstream input(line);
463 cout << Verbose(1) << "Reading: " << line << endl;
464 *item >> shorthand;
465 *item >> x[0];
466 *item >> x[1];
467 *item >> x[2];
468 first->type = elemente->FindElement(shorthand);
469 if (first->type == NULL) {
470 cerr << "Could not parse the element at line: '" << line << "', setting to H.";
471 first->type = elemente->FindElement(1);
472 }
473 for(j=0;j<NDIM;j++)
474 first->x.x[j] = x[j];
475 AddAtom(first); // add to molecule
476 delete(item);
477 }
478 xyzfile.close();
479 delete(input);
480 return true;
481};
482
483/** Creates a copy of this molecule.
484 * \return copy of molecule
485 */
486molecule *molecule::CopyMolecule()
487{
488 molecule *copy = new molecule(elemente);
489 atom *CurrentAtom = NULL;
490 atom *LeftAtom = NULL, *RightAtom = NULL;
491 atom *Walker = NULL;
492
493 // copy all atoms
494 Walker = start;
495 while(Walker->next != end) {
496 Walker = Walker->next;
497 CurrentAtom = copy->AddCopyAtom(Walker);
498 }
499
500 // copy all bonds
501 bond *Binder = first;
502 bond *NewBond = NULL;
503 while(Binder->next != last) {
504 Binder = Binder->next;
505 // get the pendant atoms of current bond in the copy molecule
506 LeftAtom = copy->start;
507 while (LeftAtom->next != copy->end) {
508 LeftAtom = LeftAtom->next;
509 if (LeftAtom->father == Binder->leftatom)
510 break;
511 }
512 RightAtom = copy->start;
513 while (RightAtom->next != copy->end) {
514 RightAtom = RightAtom->next;
515 if (RightAtom->father == Binder->rightatom)
516 break;
517 }
518 NewBond = copy->AddBond(LeftAtom, RightAtom, Binder->BondDegree);
519 NewBond->Cyclic = Binder->Cyclic;
520 if (Binder->Cyclic)
521 copy->NoCyclicBonds++;
522 NewBond->Type = Binder->Type;
523 }
524 // correct fathers
525 Walker = copy->start;
526 while(Walker->next != copy->end) {
527 Walker = Walker->next;
528 if (Walker->father->father == Walker->father) // same atom in copy's father points to itself
529 Walker->father = Walker; // set father to itself (copy of a whole molecule)
530 else
531 Walker->father = Walker->father->father; // set father to original's father
532 }
533 // copy values
534 copy->CountAtoms((ofstream *)&cout);
535 copy->CountElements();
536 if (first->next != last) { // if adjaceny list is present
537 copy->BondDistance = BondDistance;
538 copy->CreateListOfBondsPerAtom((ofstream *)&cout);
539 }
540
541 return copy;
542};
543
544/** Adds a bond to a the molecule specified by two atoms, \a *first and \a *second.
545 * Also updates molecule::BondCount and molecule::NoNonBonds.
546 * \param *first first atom in bond
547 * \param *second atom in bond
548 * \return pointer to bond or NULL on failure
549 */
550bond * molecule::AddBond(atom *atom1, atom *atom2, int degree=1)
551{
552 bond *Binder = NULL;
553 if ((atom1 != NULL) && (FindAtom(atom1->nr) != NULL) && (atom2 != NULL) && (FindAtom(atom2->nr) != NULL)) {
554 Binder = new bond(atom1, atom2, degree, BondCount++);
555 if ((atom1->type != NULL) && (atom1->type->Z != 1) && (atom2->type != NULL) && (atom2->type->Z != 1))
556 NoNonBonds++;
557 add(Binder, last);
558 } else {
559 cerr << Verbose(1) << "ERROR: Could not add bond between " << atom1->Name << " and " << atom2->Name << " as one or both are not present in the molecule." << endl;
560 }
561 return Binder;
562};
563
564/** Remove bond from bond chain list.
565 * \todo Function not implemented yet
566 * \param *pointer bond pointer
567 * \return true - bound found and removed, false - bond not found/removed
568 */
569bool molecule::RemoveBond(bond *pointer)
570{
571 //cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
572 removewithoutcheck(pointer);
573 return true;
574};
575
576/** Remove every bond from bond chain list that atom \a *BondPartner is a constituent of.
577 * \todo Function not implemented yet
578 * \param *BondPartner atom to be removed
579 * \return true - bounds found and removed, false - bonds not found/removed
580 */
581bool molecule::RemoveBonds(atom *BondPartner)
582{
583 cerr << Verbose(1) << "molecule::RemoveBond: Function not implemented yet." << endl;
584 return false;
585};
586
587/** Sets the molecule::cell_size to the components of \a *dim (rectangular box)
588 * \param *dim vector class
589 */
590void molecule::SetBoxDimension(vector *dim)
591{
592 cell_size[0] = dim->x[0];
593 cell_size[1] = 0.;
594 cell_size[2] = dim->x[1];
595 cell_size[3] = 0.;
596 cell_size[4] = 0.;
597 cell_size[5] = dim->x[2];
598};
599
600/** Centers the edge of the atoms at (0,0,0).
601 * \param *out output stream for debugging
602 * \param *max coordinates of other edge, specifying box dimensions.
603 */
604void molecule::CenterEdge(ofstream *out, vector *max)
605{
606 vector *min = new vector;
607
608// *out << Verbose(3) << "Begin of CenterEdge." << endl;
609 atom *ptr = start->next; // start at first in list
610 if (ptr != end) { //list not empty?
611 for (int i=0;i<NDIM;i++) {
612 max->x[i] = ptr->x.x[i];
613 min->x[i] = ptr->x.x[i];
614 }
615 while (ptr->next != end) { // continue with second if present
616 ptr = ptr->next;
617 //ptr->Output(1,1,out);
618 for (int i=0;i<NDIM;i++) {
619 max->x[i] = (max->x[i] < ptr->x.x[i]) ? ptr->x.x[i] : max->x[i];
620 min->x[i] = (min->x[i] > ptr->x.x[i]) ? ptr->x.x[i] : min->x[i];
621 }
622 }
623// *out << Verbose(4) << "Maximum is ";
624// max->Output(out);
625// *out << ", Minimum is ";
626// min->Output(out);
627// *out << endl;
628
629 for (int i=0;i<NDIM;i++) {
630 min->x[i] *= -1.;
631 max->x[i] += min->x[i];
632 }
633 Translate(min);
634 }
635 delete(min);
636// *out << Verbose(3) << "End of CenterEdge." << endl;
637};
638
639/** Centers the center of the atoms at (0,0,0).
640 * \param *out output stream for debugging
641 * \param *center return vector for translation vector
642 */
643void molecule::CenterOrigin(ofstream *out, vector *center)
644{
645 int Num = 0;
646 atom *ptr = start->next; // start at first in list
647
648 for(int i=0;i<NDIM;i++) // zero center vector
649 center->x[i] = 0.;
650
651 if (ptr != end) { //list not empty?
652 while (ptr->next != end) { // continue with second if present
653 ptr = ptr->next;
654 Num++;
655 center->AddVector(&ptr->x);
656 }
657 center->Scale(-1./Num); // divide through total number (and sign for direction)
658 Translate(center);
659 }
660};
661
662/** Centers the center of gravity of the atoms at (0,0,0).
663 * \param *out output stream for debugging
664 * \param *center return vector for translation vector
665 */
666void molecule::CenterGravity(ofstream *out, vector *center)
667{
668 double Num = 0;
669 atom *ptr = start->next; // start at first in list
670 vector tmp;
671
672 for(int i=0;i<NDIM;i++) // zero center vector
673 center->x[i] = 0.;
674
675 if (ptr != end) { //list not empty?
676 while (ptr->next != end) { // continue with second if present
677 ptr = ptr->next;
678 Num += ptr->type->mass;
679 tmp.CopyVector(&ptr->x);
680 tmp.Scale(ptr->type->mass); // scale by mass
681 center->AddVector(&tmp);
682 }
683 center->Scale(-1./Num); // divide through total mass (and sign for direction)
684 Translate(center);
685 }
686};
687
688/** Scales all atoms by \a *factor.
689 * \param *factor pointer to scaling factor
690 */
691void molecule::Scale(double **factor)
692{
693 atom *ptr = start;
694
695 while (ptr->next != end) {
696 ptr = ptr->next;
697 ptr->x.Scale(factor);
698 }
699};
700
701/** Translate all atoms by given vector.
702 * \param trans[] translation vector.
703 */
704void molecule::Translate(const vector *trans)
705{
706 atom *ptr = start;
707
708 while (ptr->next != end) {
709 ptr = ptr->next;
710 ptr->x.Translate(trans);
711 }
712};
713
714/** Mirrors all atoms against a given plane.
715 * \param n[] normal vector of mirror plane.
716 */
717void molecule::Mirror(const vector *n)
718{
719 atom *ptr = start;
720
721 while (ptr->next != end) {
722 ptr = ptr->next;
723 ptr->x.Mirror(n);
724 }
725};
726
727/** Determines center of gravity (yet not considering atom masses).
728 * \param CenterOfGravity reference to return vector
729 */
730void molecule::DetermineCenterOfGravity(vector &CenterOfGravity)
731{
732 atom *Walker = start;
733 bond *Binder = NULL;
734 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
735 double tmp;
736 bool flag;
737 vector TestVector, TranslationVector;
738
739 do {
740 CenterOfGravity.Zero();
741 flag = true;
742 while (Walker->next != end) {
743 Walker = Walker->next;
744#ifdef ADDHYDROGEN
745 if (Walker->type->Z != 1) {
746#endif
747 TestVector.CopyVector(&Walker->x);
748 TestVector.InverseMatrixMultiplication(matrix);
749 TranslationVector.Zero();
750 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
751 Binder = ListOfBondsPerAtom[Walker->nr][i];
752 if (Walker->nr < Binder->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
753 for (int j=0;j<NDIM;j++) {
754 tmp = Walker->x.x[j] - Binder->GetOtherAtom(Walker)->x.x[j];
755 if ((fabs(tmp)) > BondDistance) {
756 flag = false;
757 cout << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *Binder << " has to be shifted due to " << tmp << "." << endl;
758 if (tmp > 0)
759 TranslationVector.x[j] -= 1.;
760 else
761 TranslationVector.x[j] += 1.;
762 }
763 }
764 }
765 TestVector.AddVector(&TranslationVector);
766 TestVector.MatrixMultiplication(matrix);
767 CenterOfGravity.AddVector(&TestVector);
768 cout << Verbose(1) << "Vector is: ";
769 TestVector.Output((ofstream *)&cout);
770 cout << endl;
771#ifdef ADDHYDROGEN
772 // now also change all hydrogens
773 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr]; i++) {
774 Binder = ListOfBondsPerAtom[Walker->nr][i];
775 if (Binder->GetOtherAtom(Walker)->type->Z == 1) {
776 TestVector.CopyVector(&Binder->GetOtherAtom(Walker)->x);
777 TestVector.InverseMatrixMultiplication(matrix);
778 TestVector.AddVector(&TranslationVector);
779 TestVector.MatrixMultiplication(matrix);
780 CenterOfGravity.AddVector(&TestVector);
781 cout << Verbose(1) << "Hydrogen Vector is: ";
782 TestVector.Output((ofstream *)&cout);
783 cout << endl;
784 }
785 }
786 }
787#endif
788 }
789 } while (!flag);
790 Free((void **)&matrix, "molecule::DetermineCenterOfGravity: *matrix");
791 CenterOfGravity.Scale(1./(double)AtomCount);
792};
793
794/** Align all atoms in such a manner that given vector \a *n is along z axis.
795 * \param n[] alignment vector.
796 */
797void molecule::Align(vector *n)
798{
799 atom *ptr = start;
800 double alpha, tmp;
801 vector z_axis;
802 z_axis.x[0] = 0.;
803 z_axis.x[1] = 0.;
804 z_axis.x[2] = 1.;
805
806 // rotate on z-x plane
807 cout << Verbose(0) << "Begin of Aligning all atoms." << endl;
808 alpha = atan(-n->x[0]/n->x[2]);
809 cout << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
810 while (ptr->next != end) {
811 ptr = ptr->next;
812 tmp = ptr->x.x[0];
813 ptr->x.x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
814 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
815 }
816 // rotate n vector
817 tmp = n->x[0];
818 n->x[0] = cos(alpha) * tmp + sin(alpha) * n->x[2];
819 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
820 cout << Verbose(1) << "alignment vector after first rotation: ";
821 n->Output((ofstream *)&cout);
822 cout << endl;
823
824 // rotate on z-y plane
825 ptr = start;
826 alpha = atan(-n->x[1]/n->x[2]);
827 cout << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
828 while (ptr->next != end) {
829 ptr = ptr->next;
830 tmp = ptr->x.x[1];
831 ptr->x.x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x.x[2];
832 ptr->x.x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x.x[2];
833 }
834 // rotate n vector (for consistency check)
835 tmp = n->x[1];
836 n->x[1] = cos(alpha) * tmp + sin(alpha) * n->x[2];
837 n->x[2] = -sin(alpha) * tmp + cos(alpha) * n->x[2];
838
839 cout << Verbose(1) << "alignment vector after second rotation: ";
840 n->Output((ofstream *)&cout);
841 cout << Verbose(1) << endl;
842 cout << Verbose(0) << "End of Aligning all atoms." << endl;
843};
844
845/** Removes atom from molecule list.
846 * \param *pointer atom to be removed
847 * \return true - succeeded, false - atom not found in list
848 */
849bool molecule::RemoveAtom(atom *pointer)
850{
851 if (ElementsInMolecule[pointer->type->Z] != 0) // this would indicate an error
852 ElementsInMolecule[pointer->type->Z]--; // decrease number of atom of this element
853 else
854 cerr << "ERROR: Atom " << pointer->Name << " is of element " << pointer->type->Z << " but the entry in the table of the molecule is 0!" << endl;
855 if (ElementsInMolecule[pointer->type->Z] == 0) // was last atom of this element?
856 ElementCount--;
857 return remove(pointer, start, end);
858};
859
860/** Removes every atom from molecule list.
861 * \return true - succeeded, false - atom not found in list
862 */
863bool molecule::CleanupMolecule()
864{
865 return (cleanup(start,end) && cleanup(first,last));
866};
867
868/** Finds an atom specified by its continuous number.
869 * \param Nr number of atom withim molecule
870 * \return pointer to atom or NULL
871 */
872atom * molecule::FindAtom(int Nr) const{
873 atom * walker = find(&Nr, start,end);
874 if (walker != NULL) {
875 //cout << Verbose(0) << "Found Atom Nr. " << walker->nr << endl;
876 return walker;
877 } else {
878 cout << Verbose(0) << "Atom not found in list." << endl;
879 return NULL;
880 }
881};
882
883/** Asks for atom number, and checks whether in list.
884 * \param *text question before entering
885 */
886atom * molecule::AskAtom(char *text)
887{
888 int No;
889 atom *ion = NULL;
890 do {
891 //cout << Verbose(0) << "============Atom list==========================" << endl;
892 //mol->Output((ofstream *)&cout);
893 //cout << Verbose(0) << "===============================================" << endl;
894 cout << Verbose(0) << text;
895 cin >> No;
896 ion = this->FindAtom(No);
897 } while (ion == NULL);
898 return ion;
899};
900
901/** Checks if given coordinates are within cell volume.
902 * \param *x array of coordinates
903 * \return true - is within, false - out of cell
904 */
905bool molecule::CheckBounds(const vector *x) const
906{
907 bool result = true;
908 int j =-1;
909 for (int i=0;i<3;i++) {
910 j += i+1;
911 result = result && ((x->x[i] >= 0) && (x->x[i] < cell_size[j]));
912 }
913 //return result;
914 return true; /// probably not gonna use the check no more
915};
916
917/** Calculates sum over least square distance to line hidden in \a *x.
918 * \param *x offset and direction vector
919 * \param *params pointer to lsq_params structure
920 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
921 */
922double LeastSquareDistance (const gsl_vector * x, void * params)
923{
924 double res = 0, t;
925 vector a,b,c,d;
926 struct lsq_params *par = (struct lsq_params *)params;
927 atom *ptr = par->mol->start;
928
929 // initialize vectors
930 a.x[0] = gsl_vector_get(x,0);
931 a.x[1] = gsl_vector_get(x,1);
932 a.x[2] = gsl_vector_get(x,2);
933 b.x[0] = gsl_vector_get(x,3);
934 b.x[1] = gsl_vector_get(x,4);
935 b.x[2] = gsl_vector_get(x,5);
936 // go through all atoms
937 while (ptr != par->mol->end) {
938 ptr = ptr->next;
939 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
940 c.CopyVector(&ptr->x); // copy vector to temporary one
941 c.SubtractVector(&a); // subtract offset vector
942 t = c.ScalarProduct(&b); // get direction parameter
943 d.CopyVector(&b); // and create vector
944 d.Scale(&t);
945 c.SubtractVector(&d); // ... yielding distance vector
946 res += d.ScalarProduct((const vector *)&d); // add squared distance
947 }
948 }
949 return res;
950};
951
952/** By minimizing the least square distance gains alignment vector.
953 * \bug this is not yet working properly it seems
954 */
955void molecule::GetAlignVector(struct lsq_params * par) const
956{
957 int np = 6;
958
959 const gsl_multimin_fminimizer_type *T =
960 gsl_multimin_fminimizer_nmsimplex;
961 gsl_multimin_fminimizer *s = NULL;
962 gsl_vector *ss;
963 gsl_multimin_function minex_func;
964
965 size_t iter = 0, i;
966 int status;
967 double size;
968
969 /* Initial vertex size vector */
970 ss = gsl_vector_alloc (np);
971
972 /* Set all step sizes to 1 */
973 gsl_vector_set_all (ss, 1.0);
974
975 /* Starting point */
976 par->x = gsl_vector_alloc (np);
977 par->mol = this;
978
979 gsl_vector_set (par->x, 0, 0.0); // offset
980 gsl_vector_set (par->x, 1, 0.0);
981 gsl_vector_set (par->x, 2, 0.0);
982 gsl_vector_set (par->x, 3, 0.0); // direction
983 gsl_vector_set (par->x, 4, 0.0);
984 gsl_vector_set (par->x, 5, 1.0);
985
986 /* Initialize method and iterate */
987 minex_func.f = &LeastSquareDistance;
988 minex_func.n = np;
989 minex_func.params = (void *)par;
990
991 s = gsl_multimin_fminimizer_alloc (T, np);
992 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
993
994 do
995 {
996 iter++;
997 status = gsl_multimin_fminimizer_iterate(s);
998
999 if (status)
1000 break;
1001
1002 size = gsl_multimin_fminimizer_size (s);
1003 status = gsl_multimin_test_size (size, 1e-2);
1004
1005 if (status == GSL_SUCCESS)
1006 {
1007 printf ("converged to minimum at\n");
1008 }
1009
1010 printf ("%5d ", (int)iter);
1011 for (i = 0; i < (size_t)np; i++)
1012 {
1013 printf ("%10.3e ", gsl_vector_get (s->x, i));
1014 }
1015 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
1016 }
1017 while (status == GSL_CONTINUE && iter < 100);
1018
1019 for (i=0;i<(size_t)np;i++)
1020 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
1021 //gsl_vector_free(par->x);
1022 gsl_vector_free(ss);
1023 gsl_multimin_fminimizer_free (s);
1024};
1025
1026/** Prints molecule to *out.
1027 * \param *out output stream
1028 */
1029bool molecule::Output(ofstream *out)
1030{
1031 element *runner = elemente->start;
1032 atom *walker = NULL;
1033 int ElementNo, AtomNo;
1034 CountElements();
1035
1036 if (out == NULL) {
1037 return false;
1038 } else {
1039 *out << "#Ion_TypeNr._Nr.R[0] R[1] R[2] MoveType (0 MoveIon, 1 FixedIon)" << endl;
1040 ElementNo = 0;
1041 while (runner->next != elemente->end) { // go through every element
1042 runner = runner->next;
1043 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
1044 ElementNo++;
1045 AtomNo = 0;
1046 walker = start;
1047 while (walker->next != end) { // go through every atom of this element
1048 walker = walker->next;
1049 if (walker->type == runner) { // if this atom fits to element
1050 AtomNo++;
1051 walker->Output(ElementNo, AtomNo, out);
1052 }
1053 }
1054 }
1055 }
1056 return true;
1057 }
1058};
1059
1060/** Outputs contents of molecule::ListOfBondsPerAtom.
1061 * \param *out output stream
1062 */
1063void molecule::OutputListOfBonds(ofstream *out) const
1064{
1065 *out << Verbose(2) << endl << "From Contents of ListOfBondsPerAtom, all non-hydrogen atoms:" << endl;
1066 atom *Walker = start;
1067 while (Walker->next != end) {
1068 Walker = Walker->next;
1069#ifdef ADDHYDROGEN
1070 if (Walker->type->Z != 1) { // regard only non-hydrogen
1071#endif
1072 *out << Verbose(2) << "Atom " << Walker->Name << " has Bonds: "<<endl;
1073 for(int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
1074 *out << Verbose(3) << *(ListOfBondsPerAtom)[Walker->nr][j] << endl;
1075 }
1076#ifdef ADDHYDROGEN
1077 }
1078#endif
1079 }
1080 *out << endl;
1081};
1082
1083/** Output of element before the actual coordination list.
1084 * \param *out stream pointer
1085 */
1086bool molecule::Checkout(ofstream *out) const
1087{
1088 return elemente->Checkout(out, ElementsInMolecule);
1089};
1090
1091/** Prints molecule to *out as xyz file.
1092 * \param *out output stream
1093 */
1094bool molecule::OutputXYZ(ofstream *out) const
1095{
1096 atom *walker = NULL;
1097 int No = 0;
1098 time_t now;
1099
1100 now = time((time_t *)NULL); // Get the system time and put it into 'now' as 'calender time'
1101 walker = start;
1102 while (walker->next != end) { // go through every atom and count
1103 walker = walker->next;
1104 No++;
1105 }
1106 if (out != NULL) {
1107 *out << No << "\n\tCreated by molecuilder on " << ctime(&now);
1108 walker = start;
1109 while (walker->next != end) { // go through every atom of this element
1110 walker = walker->next;
1111 walker->OutputXYZLine(out);
1112 }
1113 return true;
1114 } else
1115 return false;
1116};
1117
1118/** Brings molecule::AtomCount and atom::*Name up-to-date.
1119 * \param *out output stream for debugging
1120 */
1121void molecule::CountAtoms(ofstream *out)
1122{
1123 int i = 0;
1124 atom *Walker = start;
1125 while (Walker->next != end) {
1126 Walker = Walker->next;
1127 i++;
1128 }
1129 if ((AtomCount == 0) || (i != AtomCount)) {
1130 *out << Verbose(3) << "Mismatch in AtomCount " << AtomCount << " and recounted number " << i << ", renaming all." << endl;
1131 AtomCount = i;
1132
1133 // count NonHydrogen atoms and give each atom a unique name
1134 if (AtomCount != 0) {
1135 i=0;
1136 NoNonHydrogen = 0;
1137 Walker = start;
1138 while (Walker->next != end) {
1139 Walker = Walker->next;
1140 Walker->nr = i; // update number in molecule (for easier referencing in FragmentMolecule lateron)
1141 if (Walker->type->Z != 1) // count non-hydrogen atoms whilst at it
1142 NoNonHydrogen++;
1143 Free((void **)&Walker->Name, "molecule::CountAtoms: *walker->Name");
1144 Walker->Name = (char *) Malloc(sizeof(char)*6, "molecule::CountAtoms: *walker->Name");
1145 sprintf(Walker->Name, "%2s%02d", Walker->type->symbol, Walker->nr+1);
1146 *out << "Naming atom nr. " << Walker->nr << " " << Walker->Name << "." << endl;
1147 i++;
1148 }
1149 } else
1150 *out << Verbose(3) << "AtomCount is still " << AtomCount << ", thus counting nothing." << endl;
1151 }
1152};
1153
1154/** Brings molecule::ElementCount and molecule::ElementsInMolecule up-to-date.
1155 */
1156void molecule::CountElements()
1157{
1158 int i = 0;
1159 for(i=0;i<MAX_ELEMENTS;i++)
1160 ElementsInMolecule[i] = 0;
1161 ElementCount = 0;
1162
1163 atom *walker = start;
1164 while (walker->next != end) {
1165 walker = walker->next;
1166 ElementsInMolecule[walker->type->Z]++;
1167 i++;
1168 }
1169 for(i=0;i<MAX_ELEMENTS;i++)
1170 ElementCount += (ElementsInMolecule[i] != 0 ? 1 : 0);
1171};
1172
1173/** Counts all cyclic bonds and returns their number.
1174 * \note Hydrogen bonds can never by cyclic, thus no check for that
1175 * \param *out output stream for debugging
1176 * \return number opf cyclic bonds
1177 */
1178int molecule::CountCyclicBonds(ofstream *out)
1179{
1180 int No = 0;
1181 int MinimumRingSize;
1182 MoleculeLeafClass *Subgraphs = NULL;
1183 bond *Binder = first;
1184 if ((Binder->next != last) && (Binder->next->Type == Undetermined)) {
1185 *out << Verbose(0) << "No Depth-First-Search analysis performed so far, calling ..." << endl;
1186 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
1187 while (Subgraphs->next != NULL) {
1188 Subgraphs = Subgraphs->next;
1189 delete(Subgraphs->previous);
1190 }
1191 delete(Subgraphs);
1192 }
1193 while(Binder->next != last) {
1194 Binder = Binder->next;
1195 if (Binder->Cyclic)
1196 No++;
1197 }
1198 return No;
1199};
1200
1201/** Returns Shading as a char string.
1202 * \param color the Shading
1203 * \return string of the flag
1204 */
1205char * molecule::GetColor(enum Shading color)
1206{
1207 switch(color) {
1208 case white:
1209 return "white";
1210 break;
1211 case lightgray:
1212 return "lightgray";
1213 break;
1214 case darkgray:
1215 return "darkgray";
1216 break;
1217 case black:
1218 return "black";
1219 break;
1220 default:
1221 return "uncolored";
1222 break;
1223 };
1224};
1225
1226
1227/** Counts necessary number of valence electrons and returns number and SpinType.
1228 * \param configuration containing everything
1229 */
1230void molecule::CalculateOrbitals(class config &configuration)
1231{
1232 configuration.MaxPsiDouble = configuration.PsiMaxNoDown = configuration.PsiMaxNoUp = configuration.PsiType = 0;
1233 for(int i=0;i<MAX_ELEMENTS;i++) {
1234 if (ElementsInMolecule[i] != 0) {
1235 //cout << "CalculateOrbitals: " << elemente->FindElement(i)->name << " has a valence of " << (int)elemente->FindElement(i)->Valence << " and there are " << ElementsInMolecule[i] << " of it." << endl;
1236 configuration.MaxPsiDouble += ElementsInMolecule[i]*((int)elemente->FindElement(i)->Valence);
1237 }
1238 }
1239 configuration.PsiMaxNoDown = configuration.MaxPsiDouble/2 + (configuration.MaxPsiDouble % 2);
1240 configuration.PsiMaxNoUp = configuration.MaxPsiDouble/2;
1241 configuration.MaxPsiDouble /= 2;
1242 configuration.PsiType = (configuration.PsiMaxNoDown == configuration.PsiMaxNoUp) ? 0 : 1;
1243 if ((configuration.PsiType == 1) && (configuration.ProcPEPsi < 2)) {
1244 configuration.ProcPEGamma /= 2;
1245 configuration.ProcPEPsi *= 2;
1246 } else {
1247 configuration.ProcPEGamma *= configuration.ProcPEPsi;
1248 configuration.ProcPEPsi = 1;
1249 }
1250 configuration.InitMaxMinStopStep = configuration.MaxMinStopStep = configuration.MaxPsiDouble;
1251};
1252
1253/** Creates an adjacency list of the molecule.
1254 * Generally, we use the CSD approach to bond recognition, that is the the distance
1255 * between two atoms A and B must be within [Rcov(A)+Rcov(B)-t,Rcov(A)+Rcov(B)+t] with
1256 * a threshold t = 0.4 Angstroem.
1257 * To make it O(N log N) the function uses the linked-cell technique as follows:
1258 * The procedure is step-wise:
1259 * -# Remove every bond in list
1260 * -# Count the atoms in the molecule with CountAtoms()
1261 * -# partition cell into smaller linked cells of size \a bonddistance
1262 * -# put each atom into its corresponding cell
1263 * -# go through every cell, check the atoms therein against all possible bond partners in the 27 adjacent cells, add bond if true
1264 * -# create the list of bonds via CreateListOfBondsPerAtom()
1265 * -# correct the bond degree iteratively (single->double->triple bond)
1266 * -# finally print the bond list to \a *out if desired
1267 * \param *out out stream for printing the matrix, NULL if no output
1268 * \param bonddistance length of linked cells (i.e. maximum minimal length checked)
1269 */
1270void molecule::CreateAdjacencyList(ofstream *out, double bonddistance)
1271{
1272 atom *Walker = NULL, *OtherWalker = NULL;
1273 int No, NoBonds;
1274 int NumberCells, divisor[NDIM], n[NDIM], N[NDIM], index, Index, j;
1275 molecule **CellList;
1276 double distance, MinDistance, MaxDistance;
1277 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
1278 vector x;
1279
1280 BondDistance = bonddistance;
1281 *out << Verbose(0) << "Begin of CreateAdjacencyList." << endl;
1282 // remove every bond from the list
1283 if ((first->next != last) && (last->previous != first)) { // there are bonds present
1284 cleanup(first,last);
1285 }
1286
1287 // count atoms in molecule = dimension of matrix (also give each unique name and continuous numbering)
1288 CountAtoms(out);
1289 *out << Verbose(1) << "AtomCount " << AtomCount << "." << endl;
1290
1291 if (AtomCount != 0) {
1292 // 1. find divisor for each axis, such that a sphere with radius of at least bonddistance can be placed into each cell
1293 j=-1;
1294 for (int i=0;i<NDIM;i++) {
1295 j += i+1;
1296 divisor[i] = (int)floor(cell_size[j]/bonddistance); // take smaller value such that size of linked cell is at least bonddistance
1297 *out << Verbose(1) << "divisor[" << i << "] = " << divisor[i] << "." << endl;
1298 }
1299 // 2a. allocate memory for the cell list
1300 NumberCells = divisor[0]*divisor[1]*divisor[2];
1301 *out << Verbose(1) << "Allocating " << NumberCells << " cells." << endl;
1302 CellList = (molecule **) Malloc(sizeof(molecule *)*NumberCells, "molecule::CreateAdjacencyList - ** CellList");
1303 for (int i=0;i<NumberCells;i++)
1304 CellList[i] = NULL;
1305
1306 // 2b. put all atoms into its corresponding list
1307 Walker = start;
1308 while(Walker->next != end) {
1309 Walker = Walker->next;
1310 //*out << Verbose(1) << "Current atom is " << *Walker << " with coordinates ";
1311 //Walker->x.Output(out);
1312 //*out << "." << endl;
1313 // compute the cell by the atom's coordinates
1314 j=-1;
1315 for (int i=0;i<NDIM;i++) {
1316 j += i+1;
1317 x.CopyVector(&(Walker->x));
1318 x.KeepPeriodic(out, matrix);
1319 n[i] = (int)floor(x.x[i]/cell_size[j]*(double)divisor[i]);
1320 }
1321 index = n[2] + (n[1] + n[0] * divisor[1]) * divisor[2];
1322 *out << Verbose(1) << "Atom " << *Walker << " goes into cell number [" << n[0] << "," << n[1] << "," << n[2] << "] = " << index << "." << endl;
1323 // add copy atom to this cell
1324 if (CellList[index] == NULL) // allocate molecule if not done
1325 CellList[index] = new molecule(elemente);
1326 OtherWalker = CellList[index]->AddCopyAtom(Walker); // add a copy of walker to this atom, father will be walker for later reference
1327 //*out << Verbose(1) << "Copy Atom is " << *OtherWalker << "." << endl;
1328 }
1329 //for (int i=0;i<NumberCells;i++)
1330 //*out << Verbose(1) << "Cell number " << i << ": " << CellList[i] << "." << endl;
1331
1332 // 3a. go through every cell
1333 for (N[0]=0;N[0]<divisor[0];N[0]++)
1334 for (N[1]=0;N[1]<divisor[1];N[1]++)
1335 for (N[2]=0;N[2]<divisor[2];N[2]++) {
1336 Index = N[2] + (N[1] + N[0] * divisor[1]) * divisor[2];
1337 if (CellList[Index] != NULL) { // if there atoms in this cell
1338 //*out << Verbose(1) << "Current cell is " << Index << "." << endl;
1339 // 3b. for every atom therein
1340 Walker = CellList[Index]->start;
1341 while (Walker->next != CellList[Index]->end) { // go through every atom
1342 Walker = Walker->next;
1343 //*out << Verbose(0) << "Current Atom is " << *Walker << "." << endl;
1344 // 3c. check for possible bond between each atom in this and every one in the 27 cells
1345 for (n[0]=-1;n[0]<=1;n[0]++)
1346 for (n[1]=-1;n[1]<=1;n[1]++)
1347 for (n[2]=-1;n[2]<=1;n[2]++) {
1348 // compute the index of this comparison cell and make it periodic
1349 index = ((N[2]+n[2]+divisor[2])%divisor[2]) + (((N[1]+n[1]+divisor[1])%divisor[1]) + ((N[0]+n[0]+divisor[0])%divisor[0]) * divisor[1]) * divisor[2];
1350 //*out << Verbose(1) << "Number of comparison cell is " << index << "." << endl;
1351 if (CellList[index] != NULL) { // if there are any atoms in this cell
1352 OtherWalker = CellList[index]->start;
1353 while(OtherWalker->next != CellList[index]->end) { // go through every atom in this cell
1354 OtherWalker = OtherWalker->next;
1355 //*out << Verbose(0) << "Current comparison atom is " << *OtherWalker << "." << endl;
1356 /// \todo periodic check is missing here!
1357 //*out << Verbose(1) << "Checking distance " << OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size) << " against typical bond length of " << bonddistance*bonddistance << "." << endl;
1358 MinDistance = OtherWalker->type->CovalentRadius + Walker->type->CovalentRadius;
1359 MaxDistance = MinDistance + BONDTHRESHOLD;
1360 MinDistance -= BONDTHRESHOLD;
1361 distance = OtherWalker->x.PeriodicDistance(&(Walker->x), cell_size);
1362 if ((OtherWalker->father->nr > Walker->father->nr) && (distance <= MaxDistance*MaxDistance) && (distance >= MinDistance*MinDistance)) { // create bond if distance is smaller
1363 *out << Verbose(0) << "Adding Bond between " << *Walker << " and " << *OtherWalker << "." << endl;
1364 AddBond(Walker->father, OtherWalker->father, 1); // also increases molecule::BondCount
1365 } else {
1366 //*out << Verbose(1) << "Not Adding: Wrong label order or distance too great." << endl;
1367 }
1368 }
1369 }
1370 }
1371 }
1372 }
1373 }
1374 // 4. free the cell again
1375 for (int i=0;i<NumberCells;i++)
1376 if (CellList[i] != NULL) {
1377 delete(CellList[i]);
1378 }
1379 Free((void **)&CellList, "molecule::CreateAdjacencyList - ** CellList");
1380
1381 // create the adjacency list per atom
1382 CreateListOfBondsPerAtom(out);
1383
1384 // correct Bond degree of each bond by checking of updated(!) sum of bond degree for an atom match its valence count
1385 // bond degrres are correctled iteratively by one, so that 2-2 instead of 1-3 or 3-1 corrections are favoured: We want
1386 // a rather symmetric distribution of higher bond degrees
1387 if (BondCount != 0) {
1388 NoCyclicBonds = 0;
1389 *out << Verbose(1) << "Correcting Bond degree of each bond ... ";
1390 do {
1391 No = 0; // No acts as breakup flag (if 1 we still continue)
1392 Walker = start;
1393 while (Walker->next != end) { // go through every atom
1394 Walker = Walker->next;
1395 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through each of its bond partners
1396 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
1397 // count valence of first partner (updated!), might have changed during last bond partner
1398 NoBonds = 0;
1399 for(j=0;j<NumberOfBondsPerAtom[Walker->nr];j++)
1400 NoBonds += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
1401 //*out << Verbose(3) << "Walker: " << (int)Walker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1402 if ((int)(Walker->type->NoValenceOrbitals) > NoBonds) { // we have a mismatch, check NoBonds of other atom
1403 // count valence of second partner
1404 NoBonds = 0;
1405 for(j=0;j<NumberOfBondsPerAtom[OtherWalker->nr];j++)
1406 NoBonds += ListOfBondsPerAtom[OtherWalker->nr][j]->BondDegree;
1407 //*out << Verbose(3) << "OtherWalker: " << (int)OtherWalker->type->NoValenceOrbitals << " > " << NoBonds << "?" << endl;
1408 if ((int)(OtherWalker->type->NoValenceOrbitals) > NoBonds) // increase bond degree by one
1409 ListOfBondsPerAtom[Walker->nr][i]->BondDegree++;
1410 }
1411 }
1412 }
1413 } while (No);
1414 *out << " done." << endl;
1415 } else
1416 *out << Verbose(1) << "BondCount is " << BondCount << ", no bonds between any of the " << AtomCount << " atoms." << endl;
1417 *out << Verbose(1) << "I detected " << BondCount << " bonds in the molecule with distance " << bonddistance << "." << endl;
1418
1419// // output bonds for debugging (if bond chain list was correctly installed)
1420// *out << Verbose(1) << endl << "From contents of bond chain list:";
1421// bond *Binder = first;
1422// while(Binder->next != last) {
1423// Binder = Binder->next;
1424// *out << *Binder << "\t" << endl;
1425// }
1426// *out << endl;
1427 } else
1428 *out << Verbose(1) << "AtomCount is " << AtomCount << ", thus no bonds, no connections!." << endl;
1429 *out << Verbose(0) << "End of CreateAdjacencyList." << endl;
1430 Free((void **)&matrix, "molecule::CreateAdjacencyList: *matrix");
1431};
1432
1433/** Performs a Depth-First search on this molecule.
1434 * Marks bonds in molecule as cyclic, bridge, ... and atoms as
1435 * articulations points, ...
1436 * We use the algorithm from [Even, Graph Algorithms, p.62].
1437 * \param *out output stream for debugging
1438 * \param ReturnStack true - return pointer to atom stack of separable components, false - return NULL
1439 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found
1440 * \return list of each disconnected subgraph as an individual molecule class structure
1441 */
1442MoleculeLeafClass * molecule::DepthFirstSearchAnalysis(ofstream *out, bool ReturnStack, int &MinimumRingSize)
1443{
1444 class StackClass<atom *> *AtomStack;
1445 AtomStack = new StackClass<atom *>(AtomCount);
1446 class StackClass<bond *> *BackEdgeStack = new StackClass<bond *> (BondCount);
1447 MoleculeLeafClass *SubGraphs = new MoleculeLeafClass(NULL);
1448 MoleculeLeafClass *LeafWalker = SubGraphs;
1449 int CurrentGraphNr = 0, OldGraphNr;
1450 int ComponentNumber = 0;
1451 atom *Walker = NULL, *OtherAtom = NULL, *Root = start->next;
1452 bond *Binder = NULL;
1453 bool BackStepping = false;
1454
1455 *out << Verbose(0) << "Begin of DepthFirstSearchAnalysis" << endl;
1456
1457 ResetAllBondsToUnused();
1458 ResetAllAtomNumbers();
1459 InitComponentNumbers();
1460 BackEdgeStack->ClearStack();
1461 while (Root != end) { // if there any atoms at all
1462 // (1) mark all edges unused, empty stack, set atom->GraphNr = 0 for all
1463 AtomStack->ClearStack();
1464
1465 // put into new subgraph molecule and add this to list of subgraphs
1466 LeafWalker = new MoleculeLeafClass(LeafWalker);
1467 LeafWalker->Leaf = new molecule(elemente);
1468 LeafWalker->Leaf->AddCopyAtom(Root);
1469
1470 OldGraphNr = CurrentGraphNr;
1471 Walker = Root;
1472 do { // (10)
1473 do { // (2) set number and Lowpoint of Atom to i, increase i, push current atom
1474 if (!BackStepping) { // if we don't just return from (8)
1475 Walker->GraphNr = CurrentGraphNr;
1476 Walker->LowpointNr = CurrentGraphNr;
1477 *out << Verbose(1) << "Setting Walker[" << Walker->Name << "]'s number to " << Walker->GraphNr << " with Lowpoint " << Walker->LowpointNr << "." << endl;
1478 AtomStack->Push(Walker);
1479 CurrentGraphNr++;
1480 }
1481 do { // (3) if Walker has no unused egdes, go to (5)
1482 BackStepping = false; // reset backstepping flag for (8)
1483 if (Binder == NULL) // if we don't just return from (11), Binder is already set to next unused
1484 Binder = FindNextUnused(Walker);
1485 if (Binder == NULL)
1486 break;
1487 *out << Verbose(2) << "Current Unused Bond is " << *Binder << "." << endl;
1488 // (4) Mark Binder used, ...
1489 Binder->MarkUsed(black);
1490 OtherAtom = Binder->GetOtherAtom(Walker);
1491 *out << Verbose(2) << "(4) OtherAtom is " << OtherAtom->Name << "." << endl;
1492 if (OtherAtom->GraphNr != -1) {
1493 // (4a) ... if "other" atom has been visited (GraphNr != 0), set lowpoint to minimum of both, go to (3)
1494 Binder->Type = BackEdge;
1495 BackEdgeStack->Push(Binder);
1496 Walker->LowpointNr = ( Walker->LowpointNr < OtherAtom->GraphNr ) ? Walker->LowpointNr : OtherAtom->GraphNr;
1497 *out << Verbose(3) << "(4a) Visited: Setting Lowpoint of Walker[" << Walker->Name << "] to " << Walker->LowpointNr << "." << endl;
1498 } else {
1499 // (4b) ... otherwise set OtherAtom as Ancestor of Walker and Walker as OtherAtom, go to (2)
1500 Binder->Type = TreeEdge;
1501 OtherAtom->Ancestor = Walker;
1502 Walker = OtherAtom;
1503 *out << Verbose(3) << "(4b) Not Visited: OtherAtom[" << OtherAtom->Name << "]'s Ancestor is now " << OtherAtom->Ancestor->Name << ", Walker is OtherAtom " << OtherAtom->Name << "." << endl;
1504 break;
1505 }
1506 Binder = NULL;
1507 } while (1); // (3)
1508 if (Binder == NULL) {
1509 *out << Verbose(2) << "No more Unused Bonds." << endl;
1510 break;
1511 } else
1512 Binder = NULL;
1513 } while (1); // (2)
1514
1515 // if we came from backstepping, yet there were no more unused bonds, we end up here with no Ancestor, because Walker is Root! Then we are finished!
1516 if ((Walker == Root) && (Binder == NULL))
1517 break;
1518
1519 // (5) if Ancestor of Walker is ...
1520 *out << Verbose(1) << "(5) Number of Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "] is " << Walker->Ancestor->GraphNr << "." << endl;
1521 if (Walker->Ancestor->GraphNr != Root->GraphNr) {
1522 // (6) (Ancestor of Walker is not Root)
1523 if (Walker->LowpointNr < Walker->Ancestor->GraphNr) {
1524 // (6a) set Ancestor's Lowpoint number to minimum of of its Ancestor and itself, go to Step(8)
1525 Walker->Ancestor->LowpointNr = (Walker->Ancestor->LowpointNr < Walker->LowpointNr) ? Walker->Ancestor->LowpointNr : Walker->LowpointNr;
1526 *out << Verbose(2) << "(6) Setting Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s Lowpoint to " << Walker->Ancestor->LowpointNr << "." << endl;
1527 } else {
1528 // (7) (Ancestor of Walker is a separating vertex, remove all from stack till Walker (including), these and Ancestor form a component
1529 Walker->Ancestor->SeparationVertex = true;
1530 *out << Verbose(2) << "(7) Walker[" << Walker->Name << "]'s Ancestor[" << Walker->Ancestor->Name << "]'s is a separating vertex, creating component." << endl;
1531 SetNextComponentNumber(Walker->Ancestor, ComponentNumber);
1532 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Ancestor's Compont is " << ComponentNumber << "." << endl;
1533 SetNextComponentNumber(Walker, ComponentNumber);
1534 *out << Verbose(3) << "(7) Walker[" << Walker->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1535 do {
1536 OtherAtom = AtomStack->PopLast();
1537 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1538 SetNextComponentNumber(OtherAtom, ComponentNumber);
1539 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1540 } while (OtherAtom != Walker);
1541 ComponentNumber++;
1542 }
1543 // (8) Walker becomes its Ancestor, go to (3)
1544 *out << Verbose(2) << "(8) Walker[" << Walker->Name << "] is now its Ancestor " << Walker->Ancestor->Name << ", backstepping. " << endl;
1545 Walker = Walker->Ancestor;
1546 BackStepping = true;
1547 }
1548 if (!BackStepping) { // coming from (8) want to go to (3)
1549 // (9) remove all from stack till Walker (including), these and Root form a component
1550 AtomStack->Output(out);
1551 SetNextComponentNumber(Root, ComponentNumber);
1552 *out << Verbose(3) << "(9) Root[" << Root->Name << "]'s Component is " << ComponentNumber << "." << endl;
1553 SetNextComponentNumber(Walker, ComponentNumber);
1554 *out << Verbose(3) << "(9) Walker[" << Walker->Name << "]'s Component is " << ComponentNumber << "." << endl;
1555 do {
1556 OtherAtom = AtomStack->PopLast();
1557 LeafWalker->Leaf->AddCopyAtom(OtherAtom);
1558 SetNextComponentNumber(OtherAtom, ComponentNumber);
1559 *out << Verbose(3) << "(7) Other[" << OtherAtom->Name << "]'s Compont is " << ComponentNumber << "." << endl;
1560 } while (OtherAtom != Walker);
1561 ComponentNumber++;
1562
1563 // (11) Root is separation vertex, set Walker to Root and go to (4)
1564 Walker = Root;
1565 Binder = FindNextUnused(Walker);
1566 *out << Verbose(1) << "(10) Walker is Root[" << Root->Name << "], next Unused Bond is " << Binder << "." << endl;
1567 if (Binder != NULL) { // Root is separation vertex
1568 *out << Verbose(1) << "(11) Root is a separation vertex." << endl;
1569 Walker->SeparationVertex = true;
1570 }
1571 }
1572 } while ((BackStepping) || (Binder != NULL)); // (10) halt only if Root has no unused edges
1573
1574 // From OldGraphNr to CurrentGraphNr ranges an disconnected subgraph
1575 *out << Verbose(0) << "Disconnected subgraph ranges from " << OldGraphNr << " to " << CurrentGraphNr << "." << endl;
1576 LeafWalker->Leaf->Output(out);
1577 *out << endl;
1578
1579 // step on to next root
1580 while ((Root != end) && (Root->GraphNr != -1)) {
1581 //*out << Verbose(1) << "Current next subgraph root candidate is " << Root->Name << "." << endl;
1582 if (Root->GraphNr != -1) // if already discovered, step on
1583 Root = Root->next;
1584 }
1585 }
1586 // set cyclic bond criterium on "same LP" basis
1587 Binder = first;
1588 while(Binder->next != last) {
1589 Binder = Binder->next;
1590 if (Binder->rightatom->LowpointNr == Binder->leftatom->LowpointNr) { // cyclic ??
1591 Binder->Cyclic = true;
1592 NoCyclicBonds++;
1593 }
1594 }
1595
1596 // analysis of the cycles (print rings, get minimum cycle length)
1597 CyclicStructureAnalysis(out, BackEdgeStack, MinimumRingSize);
1598
1599 *out << Verbose(1) << "Final graph info for each atom is:" << endl;
1600 Walker = start;
1601 while (Walker->next != end) {
1602 Walker = Walker->next;
1603 *out << Verbose(2) << "Atom " << Walker->Name << " is " << ((Walker->SeparationVertex) ? "a" : "not a") << " separation vertex, components are ";
1604 OutputComponentNumber(out, Walker);
1605 *out << " with Lowpoint " << Walker->LowpointNr << " and Graph Nr. " << Walker->GraphNr << "." << endl;
1606 }
1607
1608 *out << Verbose(1) << "Final graph info for each bond is:" << endl;
1609 Binder = first;
1610 while(Binder->next != last) {
1611 Binder = Binder->next;
1612 *out << Verbose(2) << ((Binder->Type == TreeEdge) ? "TreeEdge " : "BackEdge ") << *Binder << ": <";
1613 *out << ((Binder->leftatom->SeparationVertex) ? "SP," : "") << "L" << Binder->leftatom->LowpointNr << " G" << Binder->leftatom->GraphNr << " Comp.";
1614 OutputComponentNumber(out, Binder->leftatom);
1615 *out << " === ";
1616 *out << ((Binder->rightatom->SeparationVertex) ? "SP," : "") << "L" << Binder->rightatom->LowpointNr << " G" << Binder->rightatom->GraphNr << " Comp.";
1617 OutputComponentNumber(out, Binder->rightatom);
1618 *out << ">." << endl;
1619 if (Binder->Cyclic) // cyclic ??
1620 *out << Verbose(3) << "Lowpoint at each side are equal: CYCLIC!" << endl;
1621 }
1622
1623 // free all and exit
1624 delete(AtomStack);
1625 *out << Verbose(0) << "End of DepthFirstSearchAnalysis" << endl;
1626 return SubGraphs;
1627};
1628
1629/** Analyses the cycles found and returns minimum of all cycle lengths.
1630 * \param *out output stream for debugging
1631 * \param *BackEdgeStack stack with all back edges found during DFS scan
1632 * \param MinimumRingSize contains smallest ring size in molecular structure on return or -1 if no rings were found, if set is maximum search distance
1633 * \todo BFS from the not-same-LP to find back to starting point of tributary cycle over more than one bond
1634 */
1635void molecule::CyclicStructureAnalysis(ofstream *out, class StackClass<bond *> * BackEdgeStack, int &MinimumRingSize)
1636{
1637 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CyclicStructureAnalysis: **PredecessorList");
1638 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CyclicStructureAnalysis: *ShortestPathList");
1639 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CyclicStructureAnalysis: *ColorList");
1640 class StackClass<atom *> *BFSStack = new StackClass<atom *> (AtomCount); // will hold the current ring
1641 class StackClass<atom *> *TouchedStack = new StackClass<atom *> (AtomCount); // contains all "touched" atoms
1642 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL;
1643 bond *Binder = NULL, *BackEdge = NULL;
1644 int RingSize, NumCycles;
1645
1646 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
1647 for (int i=0;i<AtomCount;i++) {
1648 PredecessorList[i] = NULL;
1649 ShortestPathList[i] = -1;
1650 ColorList[i] = white;
1651 }
1652
1653 *out << Verbose(1) << "Back edge list - ";
1654 BackEdgeStack->Output(out);
1655
1656 *out << Verbose(1) << "Analysing cycles ... " << endl;
1657 if ((MinimumRingSize <= 2) || (MinimumRingSize > AtomCount))
1658 MinimumRingSize = AtomCount;
1659 NumCycles = 0;
1660 while (!BackEdgeStack->IsEmpty()) {
1661 BackEdge = BackEdgeStack->PopFirst();
1662 // this is the target
1663 Root = BackEdge->leftatom;
1664 // this is the source point
1665 Walker = BackEdge->rightatom;
1666 ShortestPathList[Walker->nr] = 0;
1667 BFSStack->ClearStack(); // start with empty BFS stack
1668 BFSStack->Push(Walker);
1669 TouchedStack->Push(Walker);
1670 //*out << Verbose(1) << "---------------------------------------------------------------------------------------------------------" << endl;
1671 OtherAtom = NULL;
1672 while ((Walker != Root) && ((OtherAtom == NULL) || (ShortestPathList[OtherAtom->nr] < MinimumRingSize))) { // look for Root
1673 Walker = BFSStack->PopFirst();
1674 //*out << Verbose(2) << "Current Walker is " << *Walker << ", we look for SP to Root " << *Root << "." << endl;
1675 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
1676 Binder = ListOfBondsPerAtom[Walker->nr][i];
1677 if (Binder != BackEdge) { // only walk along DFS spanning tree (otherwise we always find SP of one being backedge Binder)
1678 OtherAtom = Binder->GetOtherAtom(Walker);
1679 //*out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
1680 if (ColorList[OtherAtom->nr] == white) {
1681 TouchedStack->Push(OtherAtom);
1682 ColorList[OtherAtom->nr] = lightgray;
1683 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
1684 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
1685 //*out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " lightgray, its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
1686 if (ShortestPathList[OtherAtom->nr] < MinimumRingSize) { // Check for maximum distance
1687 //*out << Verbose(3) << "Putting OtherAtom into queue." << endl;
1688 BFSStack->Push(OtherAtom);
1689 }
1690 } else {
1691 //*out << Verbose(3) << "Not Adding, has already been visited." << endl;
1692 }
1693 } else {
1694 //*out << Verbose(3) << "Not Visiting, is a back edge." << endl;
1695 }
1696 }
1697 ColorList[Walker->nr] = black;
1698 //*out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
1699 }
1700
1701 if (Walker == Root) {
1702 // now climb back the predecessor list and thus find the cycle members
1703 NumCycles++;
1704 RingSize = 1;
1705 Walker = Root;
1706 *out << Verbose(1) << "Found ring contains: ";
1707 while (Walker != BackEdge->rightatom) {
1708 *out << Walker->Name << " <-> ";
1709 Walker = PredecessorList[Walker->nr];
1710 RingSize++;
1711 }
1712 *out << Walker->Name << " with a length of " << RingSize << "." << endl << endl;
1713 if (RingSize < MinimumRingSize)
1714 MinimumRingSize = RingSize;
1715 } else {
1716 *out << Verbose(1) << "No ring with length equal to or smaller than " << MinimumRingSize << " found." << endl;
1717 }
1718
1719 // now clean the lists
1720 while (!TouchedStack->IsEmpty()){
1721 Walker = TouchedStack->PopFirst();
1722 PredecessorList[Walker->nr] = NULL;
1723 ShortestPathList[Walker->nr] = -1;
1724 ColorList[Walker->nr] = white;
1725 }
1726 }
1727
1728
1729 if (MinimumRingSize != -1)
1730 *out << Verbose(1) << "Minimum ring size is " << MinimumRingSize << ", over " << NumCycles << " cycles total." << endl;
1731 else
1732 *out << Verbose(1) << "No rings were detected in the molecular structure." << endl;
1733
1734 Free((void **)&PredecessorList, "molecule::CyclicStructureAnalysis: **PredecessorList");
1735 Free((void **)&ShortestPathList, "molecule::CyclicStructureAnalysis: **ShortestPathList");
1736 Free((void **)&ColorList, "molecule::CyclicStructureAnalysis: **ColorList");
1737 delete(BFSStack);
1738};
1739
1740/** Sets the next component number.
1741 * This is O(N) as the number of bonds per atom is bound.
1742 * \param *vertex atom whose next atom::*ComponentNr is to be set
1743 * \param nr number to use
1744 */
1745void molecule::SetNextComponentNumber(atom *vertex, int nr)
1746{
1747 int i=0;
1748 if (vertex != NULL) {
1749 for(;i<NumberOfBondsPerAtom[vertex->nr];i++) {
1750 if (vertex->ComponentNr[i] == -1) { // check if not yet used
1751 vertex->ComponentNr[i] = nr;
1752 break;
1753 }
1754 else if (vertex->ComponentNr[i] == nr) // if number is already present, don't add another time
1755 break; // breaking here will not cause error!
1756 }
1757 if (i == NumberOfBondsPerAtom[vertex->nr])
1758 cerr << "Error: All Component entries are already occupied!" << endl;
1759 } else
1760 cerr << "Error: Given vertex is NULL!" << endl;
1761};
1762
1763/** Output a list of flags, stating whether the bond was visited or not.
1764 * \param *out output stream for debugging
1765 */
1766void molecule::OutputComponentNumber(ofstream *out, atom *vertex)
1767{
1768 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1769 *out << vertex->ComponentNr[i] << " ";
1770};
1771
1772/** Allocates memory for all atom::*ComponentNr in this molecule and sets each entry to -1.
1773 */
1774void molecule::InitComponentNumbers()
1775{
1776 atom *Walker = start;
1777 while(Walker->next != end) {
1778 Walker = Walker->next;
1779 if (Walker->ComponentNr != NULL)
1780 Free((void **)&Walker->ComponentNr, "molecule::InitComponentNumbers: **Walker->ComponentNr");
1781 Walker->ComponentNr = (int *) Malloc(sizeof(int)*NumberOfBondsPerAtom[Walker->nr], "molecule::InitComponentNumbers: *Walker->ComponentNr");
1782 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
1783 Walker->ComponentNr[i] = -1;
1784 }
1785};
1786
1787/** Returns next unused bond for this atom \a *vertex or NULL of none exists.
1788 * \param *vertex atom to regard
1789 * \return bond class or NULL
1790 */
1791bond * molecule::FindNextUnused(atom *vertex)
1792{
1793 for(int i=0;i<NumberOfBondsPerAtom[vertex->nr];i++)
1794 if (ListOfBondsPerAtom[vertex->nr][i]->IsUsed() == white)
1795 return(ListOfBondsPerAtom[vertex->nr][i]);
1796 return NULL;
1797};
1798
1799/** Resets bond::Used flag of all bonds in this molecule.
1800 * \return true - success, false - -failure
1801 */
1802void molecule::ResetAllBondsToUnused()
1803{
1804 bond *Binder = first;
1805 while (Binder->next != last) {
1806 Binder = Binder->next;
1807 Binder->ResetUsed();
1808 }
1809};
1810
1811/** Resets atom::nr to -1 of all atoms in this molecule.
1812 */
1813void molecule::ResetAllAtomNumbers()
1814{
1815 atom *Walker = start;
1816 while (Walker->next != end) {
1817 Walker = Walker->next;
1818 Walker->GraphNr = -1;
1819 }
1820};
1821
1822/** Output a list of flags, stating whether the bond was visited or not.
1823 * \param *out output stream for debugging
1824 * \param *list
1825 */
1826void OutputAlreadyVisited(ofstream *out, int *list)
1827{
1828 *out << Verbose(4) << "Already Visited Bonds:\t";
1829 for(int i=1;i<=list[0];i++) *out << Verbose(0) << list[i] << " ";
1830 *out << endl;
1831};
1832
1833/** Estimates by educated guessing (using upper limit) the expected number of fragments.
1834 * The upper limit is
1835 * \f[
1836 * n = N \cdot C^k
1837 * \f]
1838 * where \f$C=2^c\f$ and c is the maximum bond degree over N number of atoms.
1839 * \param *out output stream for debugging
1840 * \param order bond order k
1841 * \return number n of fragments
1842 */
1843int molecule::GuesstimateFragmentCount(ofstream *out, int order)
1844{
1845 int c = 0;
1846 int FragmentCount;
1847 // get maximum bond degree
1848 atom *Walker = start;
1849 while (Walker->next != end) {
1850 Walker = Walker->next;
1851 c = (NumberOfBondsPerAtom[Walker->nr] > c) ? NumberOfBondsPerAtom[Walker->nr] : c;
1852 }
1853 FragmentCount = NoNonHydrogen*(1 << (c*order));
1854 *out << Verbose(1) << "Upper limit for this subgraph is " << FragmentCount << " for " << NoNonHydrogen << " non-H atoms with maximum bond degree of " << c << "." << endl;
1855 return FragmentCount;
1856};
1857
1858/** Scans a single line for number and puts them into \a KeySet.
1859 * \param *out output stream for debugging
1860 * \param *buffer buffer to scan
1861 * \param &CurrentSet filled KeySet on return
1862 * \return true - at least one valid atom id parsed, false - CurrentSet is empty
1863 */
1864bool molecule::ScanBufferIntoKeySet(ofstream *out, char *buffer, KeySet &CurrentSet)
1865{
1866 stringstream line;
1867 int AtomNr;
1868 int status = 0;
1869
1870 line.str(buffer);
1871 while (!line.eof()) {
1872 line >> AtomNr;
1873 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
1874 CurrentSet.insert(AtomNr); // insert at end, hence in same order as in file!
1875 status++;
1876 } // else it's "-1" or else and thus must not be added
1877 }
1878 *out << Verbose(1) << "The scanned KeySet is ";
1879 for(KeySet::iterator runner = CurrentSet.begin(); runner != CurrentSet.end(); runner++) {
1880 *out << (*runner) << "\t";
1881 }
1882 *out << endl;
1883 return (status != 0);
1884};
1885
1886/** Parses the KeySet file and fills \a *FragmentList from the known molecule structure.
1887 * Does two-pass scanning:
1888 * -# Scans the keyset file and initialises a temporary graph
1889 * -# Scans TEFactors file and sets the TEFactor of each key set in the temporary graph accordingly
1890 * Finally, the temporary graph is inserted into the given \a FragmentList for return.
1891 * \param *out output stream for debugging
1892 * \param *path path to file
1893 * \param *FragmentList empty, filled on return
1894 * \param IsAngstroem whether we have Ansgtroem or bohrradius
1895 * \return true - parsing successfully, false - failure on parsing (FragmentList will be NULL)
1896 */
1897bool molecule::ParseKeySetFile(ofstream *out, char *path, Graph *&FragmentList, bool IsAngstroem)
1898{
1899 bool status = true;
1900 ifstream InputFile;
1901 stringstream line;
1902 GraphTestPair testGraphInsert;
1903 int NumberOfFragments = 0;
1904 double TEFactor;
1905 char *filename = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - filename");
1906
1907 if (FragmentList == NULL) { // check list pointer
1908 FragmentList = new Graph;
1909 }
1910
1911 // 1st pass: open file and read
1912 *out << Verbose(1) << "Parsing the KeySet file ... " << endl;
1913 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, KEYSETFILE);
1914 InputFile.open(filename);
1915 if (InputFile != NULL) {
1916 // each line represents a new fragment
1917 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::ParseKeySetFile - *buffer");
1918 // 1. parse keysets and insert into temp. graph
1919 while (!InputFile.eof()) {
1920 InputFile.getline(buffer, MAXSTRINGSIZE);
1921 KeySet CurrentSet;
1922 if ((strlen(buffer) > 0) && (ScanBufferIntoKeySet(out, buffer, CurrentSet))) { // if at least one valid atom was added, write config
1923 testGraphInsert = FragmentList->insert(GraphPair (CurrentSet,pair<int,double>(NumberOfFragments++,1))); // store fragment number and current factor
1924 if (!testGraphInsert.second) {
1925 cerr << "KeySet file must be corrupt as there are two equal key sets therein!" << endl;
1926 }
1927 //FragmentList->ListOfMolecules[NumberOfFragments++] = StoreFragmentFromKeySet(out, CurrentSet, IsAngstroem);
1928 }
1929 }
1930 // 2. Free and done
1931 InputFile.close();
1932 InputFile.clear();
1933 Free((void **)&buffer, "molecule::ParseKeySetFile - *buffer");
1934 *out << Verbose(1) << "done." << endl;
1935 } else {
1936 *out << Verbose(1) << "File " << filename << " not found." << endl;
1937 status = false;
1938 }
1939
1940 // 2nd pass: open TEFactors file and read
1941 *out << Verbose(1) << "Parsing the TEFactors file ... " << endl;
1942 sprintf(filename, "%s/%s%s", path, FRAGMENTPREFIX, TEFACTORSFILE);
1943 InputFile.open(filename);
1944 if (InputFile != NULL) {
1945 // 3. add found TEFactors to each keyset
1946 NumberOfFragments = 0;
1947 for(Graph::iterator runner = FragmentList->begin();runner != FragmentList->end(); runner++) {
1948 if (!InputFile.eof()) {
1949 InputFile >> TEFactor;
1950 (*runner).second.second = TEFactor;
1951 *out << Verbose(2) << "Setting " << ++NumberOfFragments << " fragment's TEFactor to " << (*runner).second.second << "." << endl;
1952 } else {
1953 status = false;
1954 break;
1955 }
1956 }
1957 // 4. Free and done
1958 InputFile.close();
1959 *out << Verbose(1) << "done." << endl;
1960 } else {
1961 *out << Verbose(1) << "File " << filename << " not found." << endl;
1962 status = false;
1963 }
1964
1965 // free memory
1966 Free((void **)&filename, "molecule::ParseKeySetFile - filename");
1967
1968 return status;
1969};
1970
1971/** Stores keysets and TEFactors to file.
1972 * \param *out output stream for debugging
1973 * \param KeySetList Graph with Keysets and factors
1974 * \param *path path to file
1975 * \return true - file written successfully, false - writing failed
1976 */
1977bool molecule::StoreKeySetFile(ofstream *out, Graph &KeySetList, char *path)
1978{
1979 ofstream output;
1980 bool status = true;
1981 string line;
1982 string::iterator ende;
1983
1984 // open KeySet file
1985 line = path;
1986 line.append("/");
1987 line += FRAGMENTPREFIX;
1988 ende = line.end();
1989 line += KEYSETFILE;
1990 output.open(line.c_str(), ios::out);
1991 *out << Verbose(1) << "Saving key sets of the total graph ... ";
1992 if(output != NULL) {
1993 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++) {
1994 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
1995 if (sprinter != (*runner).first.begin())
1996 output << "\t";
1997 output << *sprinter;
1998 }
1999 output << endl;
2000 }
2001 *out << "done." << endl;
2002 } else {
2003 cerr << "Unable to open " << line << " for writing keysets!" << endl;
2004 status = false;
2005 }
2006 output.close();
2007 output.clear();
2008
2009 // open TEFactors file
2010 line.erase(ende, line.end());
2011 line += TEFACTORSFILE;
2012 output.open(line.c_str(), ios::out);
2013 *out << Verbose(1) << "Saving TEFactors of the total graph ... ";
2014 if(output != NULL) {
2015 for(Graph::iterator runner = KeySetList.begin(); runner != KeySetList.end(); runner++)
2016 output << (*runner).second.second << endl;
2017 *out << Verbose(1) << "done." << endl;
2018 } else {
2019 *out << Verbose(1) << "failed to open file" << line << "." << endl;
2020 status = false;
2021 }
2022 output.close();
2023
2024 return status;
2025};
2026
2027/** Storing the bond structure of a molecule to file.
2028 * Simply stores Atom::nr and then the Atom::nr of all bond partners per line.
2029 * \param *out output stream for debugging
2030 * \param *path path to file
2031 * \return true - file written successfully, false - writing failed
2032 */
2033bool molecule::StoreAdjacencyToFile(ofstream *out, char *path)
2034{
2035 ofstream AdjacencyFile;
2036 atom *Walker = NULL;
2037 stringstream line;
2038 bool status = true;
2039
2040 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2041 AdjacencyFile.open(line.str().c_str(), ios::out);
2042 *out << Verbose(1) << "Saving adjacency list ... ";
2043 if (AdjacencyFile != NULL) {
2044 Walker = start;
2045 while(Walker->next != end) {
2046 Walker = Walker->next;
2047 AdjacencyFile << Walker->nr << "\t";
2048 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2049 AdjacencyFile << ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker)->nr << "\t";
2050 AdjacencyFile << endl;
2051 }
2052 AdjacencyFile.close();
2053 *out << Verbose(1) << "done." << endl;
2054 } else {
2055 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2056 status = false;
2057 }
2058
2059 return status;
2060};
2061
2062/** Checks contents of adjacency file against bond structure in structure molecule.
2063 * \param *out output stream for debugging
2064 * \param *path path to file
2065 * \param **ListOfAtoms allocated (molecule::AtomCount) and filled lookup table for ids (Atom::nr) to *Atom
2066 * \return true - structure is equal, false - not equivalence
2067 */
2068bool molecule::CheckAdjacencyFileAgainstMolecule(ofstream *out, char *path, atom **ListOfAtoms)
2069{
2070 ifstream File;
2071 stringstream line;
2072 bool status = true;
2073 char *buffer = (char *) Malloc(sizeof(char)*MAXSTRINGSIZE, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2074
2075 line << path << "/" << FRAGMENTPREFIX << ADJACENCYFILE;
2076 File.open(line.str().c_str(), ios::out);
2077 *out << Verbose(1) << "Looking at bond structure stored in adjacency file and comparing to present one ... ";
2078 if (File != NULL) {
2079 // allocate storage structure
2080 int NonMatchNumber = 0; // will number of atoms with differing bond structure
2081 int *CurrentBonds = (int *) Malloc(sizeof(int)*8, "molecule::CheckAdjacencyFileAgainstMolecule - CurrentBonds"); // contains parsed bonds of current atom
2082 int CurrentBondsOfAtom;
2083
2084 // Parse the file line by line and count the bonds
2085 while (!File.eof()) {
2086 File.getline(buffer, MAXSTRINGSIZE);
2087 stringstream line;
2088 line.str(buffer);
2089 int AtomNr = -1;
2090 line >> AtomNr;
2091 CurrentBondsOfAtom = -1; // we count one too far due to line end
2092 // parse into structure
2093 if ((AtomNr >= 0) && (AtomNr < AtomCount)) {
2094 while (!line.eof())
2095 line >> CurrentBonds[ ++CurrentBondsOfAtom ];
2096 // compare against present bonds
2097 //cout << Verbose(2) << "Walker is " << *Walker << ", bond partners: ";
2098 if (CurrentBondsOfAtom == NumberOfBondsPerAtom[AtomNr]) {
2099 for(int i=0;i<NumberOfBondsPerAtom[AtomNr];i++) {
2100 int id = ListOfBondsPerAtom[AtomNr][i]->GetOtherAtom(ListOfAtoms[AtomNr])->nr;
2101 int j = 0;
2102 for (;(j<CurrentBondsOfAtom) && (CurrentBonds[j++] != id);); // check against all parsed bonds
2103 if (CurrentBonds[j-1] != id) { // no match ? Then mark in ListOfAtoms
2104 ListOfAtoms[AtomNr] = NULL;
2105 NonMatchNumber++;
2106 status = false;
2107 //out << "[" << id << "]\t";
2108 } else {
2109 //out << id << "\t";
2110 }
2111 }
2112 //out << endl;
2113 } else {
2114 *out << "Number of bonds for Atom " << *ListOfAtoms[AtomNr] << " does not match, parsed " << CurrentBondsOfAtom << " against " << NumberOfBondsPerAtom[AtomNr] << "." << endl;
2115 status = false;
2116 }
2117 }
2118 }
2119 File.close();
2120 File.clear();
2121 if (status) { // if equal we parse the KeySetFile
2122 *out << Verbose(1) << "done: Equal." << endl;
2123 status = true;
2124 } else
2125 *out << Verbose(1) << "done: Not equal by " << NonMatchNumber << " atoms." << endl;
2126 Free((void **)&CurrentBonds, "molecule::CheckAdjacencyFileAgainstMolecule - **CurrentBonds");
2127 } else {
2128 *out << Verbose(1) << "Adjacency file not found." << endl;
2129 status = false;
2130 }
2131 *out << endl;
2132 Free((void **)&buffer, "molecule::CheckAdjacencyFileAgainstMolecule: *buffer");
2133
2134 return status;
2135};
2136
2137/** Checks whether the OrderAtSite is still bewloe \a Order at some site.
2138 * \param *out output stream for debugging
2139 * \param &FragmentationToDo return boolean
2140 * \param Order desired Order
2141 */
2142void molecule::CheckOrderAtSite(ofstream *out, bool &FragmentationToDo, int Order)
2143{
2144 atom *Walker = NULL;
2145
2146 if (FragmentationToDo) { // check whether OrderAtSite is above Order everywhere
2147 FragmentationToDo = false;
2148 Walker = start;
2149 while (Walker->next != end) {
2150 Walker = Walker->next;
2151#ifdef ADDHYDROGEN
2152 if (Walker->type->Z != 1) // skip hydrogen
2153#endif
2154 if (Walker->AdaptiveOrder < Order)
2155 FragmentationToDo = true;
2156 }
2157 if (!FragmentationToDo)
2158 *out << Verbose(1) << "Order at every site is already equal or above desired order " << Order << "." << endl;
2159 } else
2160 *out << Verbose(1) << "Parsing order at site file failed" << endl;
2161};
2162
2163/** Performs a many-body bond order analysis for a given bond order.
2164 * -# parses adjacency, keysets and orderatsite files
2165 * -# performs DFS to find connected subgraphs (to leave this in was a design decision: might be useful later)
2166 * -# RootStack is created for every subgraph (here, later we implement the "update 10 sites with highest energ
2167y contribution", and that's why this consciously not done in the following loop)
2168 * -# in a loop over all subgraphs
2169 * -# calls FragmentBOSSANOVA with this RootStack and within the subgraph molecule structure
2170 * -# creates molecule (fragment)s from the returned keysets (StoreFragmentFromKeySet)
2171 * -# combines the generated molecule lists from all subgraphs
2172 * -# saves to disk: fragment configs, adjacency, orderatsite, keyset files
2173 * Note that as we split "this" molecule up into a list of subgraphs, i.e. a MoleculeListClass, we have two sets
2174 * of vertex indices: Global always means the index in "this" molecule, whereas local refers to the molecule or
2175 * subgraph in the MoleculeListClass.
2176 * \param *out output stream for debugging
2177 * \param Order up to how many neighbouring bonds a fragment contains in BondOrderScheme::BottumUp scheme
2178 * \param *configuration configuration for writing config files for each fragment
2179 */
2180void molecule::FragmentMolecule(ofstream *out, int Order, config *configuration)
2181{
2182 MoleculeListClass *BondFragments = NULL;
2183 atom *Walker = NULL;
2184 int *SortIndex = NULL;
2185 element *runner = NULL;
2186 int AtomNo;
2187 int MinimumRingSize;
2188 int FragmentCounter;
2189 MoleculeLeafClass *MolecularWalker = NULL;
2190 MoleculeLeafClass *Subgraphs = NULL; // list of subgraphs from DFS analysis
2191 fstream File;
2192 bool FragmentationToDo = true;
2193 Graph **FragmentList = NULL;
2194 Graph *ParsedFragmentList = NULL;
2195 Graph TotalGraph; // graph with all keysets however local numbers
2196 int TotalNumberOfKeySets = 0;
2197 atom **ListOfAtoms = NULL;
2198 atom ***ListOfLocalAtoms = NULL;
2199
2200 *out << endl;
2201#ifdef ADDHYDROGEN
2202 *out << Verbose(0) << "I will treat hydrogen special and saturate dangling bonds with it." << endl;
2203#else
2204 *out << Verbose(0) << "Hydrogen is treated just like the rest of the lot." << endl;
2205#endif
2206
2207 // ++++++++++++++++++++++++++++ INITIAL STUFF: Bond structure analysis, ... ++++++++++++++++++++++++++++++++++++++++++
2208
2209 // ===== 1. Check whether bond structure is same as stored in files ====
2210
2211 // fill the adjacency list
2212 CreateListOfBondsPerAtom(out);
2213
2214 // create lookup table for Atom::nr
2215 FragmentationToDo = FragmentationToDo && CreateFatherLookupTable(out, start, end, ListOfAtoms, AtomCount);
2216
2217 // === compare it with adjacency file ===
2218 FragmentationToDo = FragmentationToDo && CheckAdjacencyFileAgainstMolecule(out, configuration->configpath, ListOfAtoms);
2219 Free((void **)&ListOfAtoms, "molecule::FragmentMolecule - **ListOfAtoms");
2220
2221 // ===== 2. perform a DFS analysis to gather info on cyclic structure and a list of disconnected subgraphs =====
2222 Subgraphs = DepthFirstSearchAnalysis(out, false, MinimumRingSize);
2223 // fill the bond structure of the individually stored subgraphs
2224 Subgraphs->next->FillBondStructureFromReference(out, this, (FragmentCounter = 0), ListOfLocalAtoms, false); // we want to keep the created ListOfLocalAtoms
2225
2226 // ===== 3. if structure still valid, parse key set file and others =====
2227 FragmentationToDo = FragmentationToDo && ParseKeySetFile(out, configuration->configpath, ParsedFragmentList, configuration->GetIsAngstroem());
2228
2229 // ===== 4. check globally whether there's something to do actually (first adaptivity check)
2230 FragmentationToDo = FragmentationToDo && ParseOrderAtSiteFromFile(out, configuration->configpath);
2231 CheckOrderAtSite(out, FragmentationToDo, Order);
2232
2233 // =================================== Begin of FRAGMENTATION ===============================
2234 // check cyclic lengths
2235 if ((MinimumRingSize != -1) && (Order >= MinimumRingSize)) {
2236 *out << Verbose(0) << "Bond order " << Order << " greater than or equal to Minimum Ring size of " << MinimumRingSize << " found is not allowed." << endl;
2237 } else {
2238 // ===== 6a. fill RootStack for each subgraph (second adaptivity check) =====
2239 // NOTE: (keep this extern of following while loop, as lateron we may here look for which site to add to which subgraph)
2240 // fill the root stack
2241 KeyStack *RootStack = new KeyStack[Subgraphs->next->Count()];
2242 Subgraphs->next->FillRootStackForSubgraphs(out, RootStack, Order, (FragmentCounter = 0));
2243
2244 // ===== 6b. assign each keyset to its respective subgraph =====
2245 Subgraphs->next->AssignKeySetsToFragment(out, this, ParsedFragmentList, ListOfLocalAtoms, FragmentList, (FragmentCounter = 0), false);
2246
2247 // ===== 7. fill the bond fragment list =====
2248 FragmentCounter = 0;
2249 MolecularWalker = Subgraphs;
2250 while (MolecularWalker->next != NULL) {
2251 MolecularWalker = MolecularWalker->next;
2252 *out << Verbose(1) << "Fragmenting subgraph " << MolecularWalker << "." << endl;
2253 // output ListOfBondsPerAtom for debugging
2254 MolecularWalker->Leaf->OutputListOfBonds(out);
2255 if (MolecularWalker->Leaf->first->next != MolecularWalker->Leaf->last) {
2256
2257 // call BOSSANOVA method
2258 *out << Verbose(0) << endl << " ========== BOND ENERGY of subgraph " << FragmentCounter << " ========================= " << endl;
2259 MolecularWalker->Leaf->FragmentBOSSANOVA(out, FragmentList[FragmentCounter], RootStack[FragmentCounter]);
2260 } else {
2261 cerr << "Subgraph " << MolecularWalker << " has no atoms!" << endl;
2262 }
2263 FragmentCounter++; // next fragment list
2264 }
2265 }
2266
2267 // free the index lookup list
2268 for (int i=0;i<FragmentCounter;i++)
2269 Free((void **)&ListOfLocalAtoms[i], "molecule::FragmentMolecule - *ListOfLocalAtoms[]");
2270 Free((void **)&ListOfLocalAtoms, "molecule::FragmentMolecule - **ListOfLocalAtoms");
2271
2272 // ==================================== End of FRAGMENTATION ============================================
2273
2274 // ===== 8a. translate list into global numbers (i.e. ones that are valid in "this" molecule, not in MolecularWalker->Leaf)
2275 Subgraphs->next->TranslateIndicesToGlobalIDs(out, FragmentList, (FragmentCounter = 0), TotalNumberOfKeySets, TotalGraph);
2276
2277 // free subgraph memory again
2278 delete(ParsedFragmentList);
2279 FragmentCounter = 0;
2280 if (Subgraphs != NULL) {
2281 while (Subgraphs->next != NULL) {
2282 Subgraphs = Subgraphs->next;
2283 delete(FragmentList[FragmentCounter++]);
2284 delete(Subgraphs->previous);
2285 }
2286 delete(Subgraphs);
2287 }
2288 Free((void **)&FragmentList, "molecule::FragmentMolecule - **FragmentList");
2289
2290 // ===== 8b. gather keyset lists (graphs) from all subgraphs and transform into MoleculeListClass =====
2291 // allocate memory for the pointer array and transmorph graphs into full molecular fragments
2292 BondFragments = new MoleculeListClass(TotalGraph.size(), AtomCount);
2293 int k=0;
2294 for(Graph::iterator runner = TotalGraph.begin(); runner != TotalGraph.end(); runner++) {
2295 KeySet test = (*runner).first;
2296 *out << "Fragment No." << (*runner).second.first << " with TEFactor " << (*runner).second.second << "." << endl;
2297 BondFragments->ListOfMolecules[k] = StoreFragmentFromKeySet(out, test, configuration);
2298 k++;
2299 }
2300 *out << k << "/" << BondFragments->NumberOfMolecules << " fragments generated from the keysets." << endl;
2301
2302 // ===== 9. Save fragments' configuration and keyset files et al to disk ===
2303 if (BondFragments->NumberOfMolecules != 0) {
2304 // create a SortIndex to map from BFS labels to the sequence in which the atoms are given in the config file
2305 SortIndex = (int *) Malloc(sizeof(int)*AtomCount, "molecule::FragmentMolecule: *SortIndex");
2306 for(int i=0;i<AtomCount;i++)
2307 SortIndex[i] = -1;
2308 runner = elemente->start;
2309 AtomNo = 0;
2310 while (runner->next != elemente->end) { // go through every element
2311 runner = runner->next;
2312 if (ElementsInMolecule[runner->Z]) { // if this element got atoms
2313 Walker = start;
2314 while (Walker->next != end) { // go through every atom of this element
2315 Walker = Walker->next;
2316 if (Walker->type->Z == runner->Z) // if this atom fits to element
2317 SortIndex[Walker->nr] = AtomNo++;
2318 }
2319 }
2320 }
2321 *out << Verbose(1) << "Writing " << BondFragments->NumberOfMolecules << " possible bond fragmentation configs" << endl;
2322 if (BondFragments->OutputConfigForListOfFragments(out, configuration, SortIndex))
2323 *out << Verbose(1) << "All configs written." << endl;
2324 else
2325 *out << Verbose(1) << "Some config writing failed." << endl;
2326
2327 // store force index reference file
2328 BondFragments->StoreForcesFile(out, configuration->configpath, SortIndex);
2329
2330 // store keysets file
2331 StoreKeySetFile(out, TotalGraph, configuration->configpath);
2332
2333 // store Adjacency file
2334 StoreAdjacencyToFile(out, configuration->configpath);
2335
2336 // store adaptive orders into file
2337 StoreOrderAtSiteFile(out, configuration->configpath);
2338
2339 // restore orbital and Stop values
2340 CalculateOrbitals(*configuration);
2341
2342 // free memory for bond part
2343 *out << Verbose(1) << "Freeing bond memory" << endl;
2344 delete(FragmentList); // remove bond molecule from memory
2345 FragmentList = NULL;
2346 Free((void **)&SortIndex, "molecule::FragmentMolecule: *SortIndex");
2347 } else
2348 *out << Verbose(1) << "FragmentList is zero on return, splitting failed." << endl;
2349
2350 *out << Verbose(0) << "End of bond fragmentation." << endl;
2351};
2352
2353/** Stores pairs (Atom::nr, Atom::AdaptiveOrder) into file.
2354 * Atoms not present in the file get "-1".
2355 * \param *out output stream for debugging
2356 * \param *path path to file ORDERATSITEFILE
2357 * \return true - file writable, false - not writable
2358 */
2359bool molecule::StoreOrderAtSiteFile(ofstream *out, char *path)
2360{
2361 stringstream line;
2362 ofstream file;
2363
2364 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2365 file.open(line.str().c_str());
2366 *out << Verbose(1) << "Writing OrderAtSite " << ORDERATSITEFILE << " ... " << endl;
2367 if (file != NULL) {
2368 atom *Walker = start;
2369 while (Walker->next != end) {
2370 Walker = Walker->next;
2371 file << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << endl;
2372 *out << Verbose(2) << "Storing: " << Walker->nr << "\t" << (int)Walker->AdaptiveOrder << "." << endl;
2373 }
2374 file.close();
2375 *out << Verbose(1) << "done." << endl;
2376 return true;
2377 } else {
2378 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2379 return false;
2380 }
2381};
2382
2383/** Parses pairs(Atom::nr, Atom::AdaptiveOrder) from file and stores in molecule's Atom's.
2384 * Atoms not present in the file get "0".
2385 * \param *out output stream for debugging
2386 * \param *path path to file ORDERATSITEFILEe
2387 * \return true - file found and scanned, false - file not found
2388 * \sa ParseKeySetFile() and CheckAdjacencyFileAgainstMolecule() as this is meant to be used in conjunction with the two
2389 */
2390bool molecule::ParseOrderAtSiteFromFile(ofstream *out, char *path)
2391{
2392 unsigned char *OrderArray = (unsigned char *) Malloc(sizeof(unsigned char)*AtomCount, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2393 bool status;
2394 int AtomNr;
2395 stringstream line;
2396 ifstream file;
2397 int Order;
2398
2399 *out << Verbose(1) << "Begin of ParseOrderAtSiteFromFile" << endl;
2400 for(int i=0;i<AtomCount;i++)
2401 OrderArray[i] = 0;
2402 line << path << "/" << FRAGMENTPREFIX << ORDERATSITEFILE;
2403 file.open(line.str().c_str());
2404 if (file != NULL) {
2405 for (int i=0;i<AtomCount;i++) // initialise with 0
2406 OrderArray[i] = 0;
2407 while (!file.eof()) { // parse from file
2408 file >> AtomNr;
2409 file >> Order;
2410 OrderArray[AtomNr] = (unsigned char) Order;
2411 //*out << Verbose(2) << "AtomNr " << AtomNr << " with order " << (int)OrderArray[AtomNr] << "." << endl;
2412 }
2413 atom *Walker = start;
2414 while (Walker->next != end) { // fill into atom classes
2415 Walker = Walker->next;
2416 Walker->AdaptiveOrder = OrderArray[Walker->nr];
2417 *out << Verbose(2) << *Walker << " gets order " << (int)Walker->AdaptiveOrder << "." << endl;
2418 }
2419 file.close();
2420 *out << Verbose(1) << "done." << endl;
2421 status = true;
2422 } else {
2423 *out << Verbose(1) << "failed to open file " << line.str() << "." << endl;
2424 status = false;
2425 }
2426 Free((void **)&OrderArray, "molecule::ParseOrderAtSiteFromFile - *OrderArray");
2427
2428 *out << Verbose(1) << "End of ParseOrderAtSiteFromFile" << endl;
2429 return status;
2430};
2431
2432/** Creates an 2d array of pointer with an entry for each atom and each bond it has.
2433 * Updates molecule::ListOfBondsPerAtom, molecule::NumberOfBondsPerAtom by parsing through
2434 * bond chain list, using molecule::AtomCount and molecule::BondCount.
2435 * Allocates memory, fills the array and exits
2436 * \param *out output stream for debugging
2437 */
2438void molecule::CreateListOfBondsPerAtom(ofstream *out)
2439{
2440 bond *Binder = NULL;
2441 atom *Walker = NULL;
2442 int TotalDegree;
2443 *out << Verbose(1) << "Begin of Creating ListOfBondsPerAtom: AtomCount = " << AtomCount << "\tBondCount = " << BondCount << "\tNoNonBonds = " << NoNonBonds << "." << endl;
2444
2445 // re-allocate memory
2446 *out << Verbose(2) << "(Re-)Allocating memory." << endl;
2447 if (ListOfBondsPerAtom != NULL) {
2448 for(int i=0;i<AtomCount;i++)
2449 Free((void **)&ListOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom[i]");
2450 Free((void **)&ListOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: ListOfBondsPerAtom");
2451 }
2452 if (NumberOfBondsPerAtom != NULL)
2453 Free((void **)&NumberOfBondsPerAtom, "molecule::CreateListOfBondsPerAtom: NumberOfBondsPerAtom");
2454 ListOfBondsPerAtom = (bond ***) Malloc(sizeof(bond **)*AtomCount, "molecule::CreateListOfBondsPerAtom: ***ListOfBondsPerAtom");
2455 NumberOfBondsPerAtom = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfBondsPerAtom: *NumberOfBondsPerAtom");
2456
2457 // reset bond counts per atom
2458 for(int i=0;i<AtomCount;i++)
2459 NumberOfBondsPerAtom[i] = 0;
2460 // count bonds per atom
2461 Binder = first;
2462 while (Binder->next != last) {
2463 Binder = Binder->next;
2464 NumberOfBondsPerAtom[Binder->leftatom->nr]++;
2465 NumberOfBondsPerAtom[Binder->rightatom->nr]++;
2466 }
2467 // allocate list of bonds per atom
2468 for(int i=0;i<AtomCount;i++)
2469 ListOfBondsPerAtom[i] = (bond **) Malloc(sizeof(bond *)*NumberOfBondsPerAtom[i], "molecule::CreateListOfBondsPerAtom: **ListOfBondsPerAtom[]");
2470 // clear the list again, now each NumberOfBondsPerAtom marks current free field
2471 for(int i=0;i<AtomCount;i++)
2472 NumberOfBondsPerAtom[i] = 0;
2473 // fill the list
2474 Binder = first;
2475 while (Binder->next != last) {
2476 Binder = Binder->next;
2477 ListOfBondsPerAtom[Binder->leftatom->nr][NumberOfBondsPerAtom[Binder->leftatom->nr]++] = Binder;
2478 ListOfBondsPerAtom[Binder->rightatom->nr][NumberOfBondsPerAtom[Binder->rightatom->nr]++] = Binder;
2479 }
2480
2481 // output list for debugging
2482 *out << Verbose(3) << "ListOfBondsPerAtom for each atom:" << endl;
2483 Walker = start;
2484 while (Walker->next != end) {
2485 Walker = Walker->next;
2486 *out << Verbose(4) << "Atom " << Walker->Name << " with " << NumberOfBondsPerAtom[Walker->nr] << " bonds: ";
2487 TotalDegree = 0;
2488 for (int j=0;j<NumberOfBondsPerAtom[Walker->nr];j++) {
2489 *out << *ListOfBondsPerAtom[Walker->nr][j] << "\t";
2490 TotalDegree += ListOfBondsPerAtom[Walker->nr][j]->BondDegree;
2491 }
2492 *out << " -- TotalDegree: " << TotalDegree << endl;
2493 }
2494 *out << Verbose(1) << "End of Creating ListOfBondsPerAtom." << endl << endl;
2495};
2496
2497/** Adds atoms up to \a BondCount distance from \a *Root and notes them down in \a **AddedAtomList.
2498 * Gray vertices are always enqueued in an StackClass<atom *> FIFO queue, the rest is usual BFS with adding vertices found was
2499 * white and putting into queue.
2500 * \param *out output stream for debugging
2501 * \param *Mol Molecule class to add atoms to
2502 * \param **AddedAtomList list with added atom pointers, index is atom father's number
2503 * \param **AddedBondList list with added bond pointers, index is bond father's number
2504 * \param *Root root vertex for BFS
2505 * \param *Bond bond not to look beyond
2506 * \param BondOrder maximum distance for vertices to add
2507 * \param IsAngstroem lengths are in angstroem or bohrradii
2508 */
2509void molecule::BreadthFirstSearchAdd(ofstream *out, molecule *Mol, atom **&AddedAtomList, bond **&AddedBondList, atom *Root, bond *Bond, int BondOrder, bool IsAngstroem)
2510{
2511 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2512 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::BreadthFirstSearchAdd: *ShortestPathList");
2513 enum Shading *ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::BreadthFirstSearchAdd: *ColorList");
2514 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
2515 atom *Walker = NULL, *OtherAtom = NULL;
2516 bond *Binder = NULL;
2517
2518 // add Root if not done yet
2519 AtomStack->ClearStack();
2520 if (AddedAtomList[Root->nr] == NULL) // add Root if not yet present
2521 AddedAtomList[Root->nr] = Mol->AddCopyAtom(Root);
2522 AtomStack->Push(Root);
2523
2524 // initialise each vertex as white with no predecessor, empty queue, color Root lightgray
2525 for (int i=0;i<AtomCount;i++) {
2526 PredecessorList[i] = NULL;
2527 ShortestPathList[i] = -1;
2528 if (AddedAtomList[i] != NULL) // mark already present atoms (i.e. Root and maybe others) as visited
2529 ColorList[i] = lightgray;
2530 else
2531 ColorList[i] = white;
2532 }
2533 ShortestPathList[Root->nr] = 0;
2534
2535 // and go on ... Queue always contains all lightgray vertices
2536 while (!AtomStack->IsEmpty()) {
2537 // we have to pop the oldest atom from stack. This keeps the atoms on the stack always of the same ShortestPath distance.
2538 // e.g. if current atom is 2, push to end of stack are of length 3, but first all of length 2 would be popped. They again
2539 // append length of 3 (their neighbours). Thus on stack we have always atoms of a certain length n at bottom of stack and
2540 // followed by n+1 till top of stack.
2541 Walker = AtomStack->PopFirst(); // pop oldest added
2542 *out << Verbose(1) << "Current Walker is: " << Walker->Name << ", and has " << NumberOfBondsPerAtom[Walker->nr] << " bonds." << endl;
2543 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2544 Binder = ListOfBondsPerAtom[Walker->nr][i];
2545 if (Binder != NULL) { // don't look at bond equal NULL
2546 OtherAtom = Binder->GetOtherAtom(Walker);
2547 *out << Verbose(2) << "Current OtherAtom is: " << OtherAtom->Name << " for bond " << *Binder << "." << endl;
2548 if (ColorList[OtherAtom->nr] == white) {
2549 if (Binder != Bond) // let other atom white if it's via Root bond. In case it's cyclic it has to be reached again (yet Root is from OtherAtom already black, thus no problem)
2550 ColorList[OtherAtom->nr] = lightgray;
2551 PredecessorList[OtherAtom->nr] = Walker; // Walker is the predecessor
2552 ShortestPathList[OtherAtom->nr] = ShortestPathList[Walker->nr]+1;
2553 *out << Verbose(2) << "Coloring OtherAtom " << OtherAtom->Name << " " << ((ColorList[OtherAtom->nr] == white) ? "white" : "lightgray") << ", its predecessor is " << Walker->Name << " and its Shortest Path is " << ShortestPathList[OtherAtom->nr] << " egde(s) long." << endl;
2554 if ((((ShortestPathList[OtherAtom->nr] < BondOrder) && (Binder != Bond))) ) { // Check for maximum distance
2555 *out << Verbose(3);
2556 if (AddedAtomList[OtherAtom->nr] == NULL) { // add if it's not been so far
2557 AddedAtomList[OtherAtom->nr] = Mol->AddCopyAtom(OtherAtom);
2558 *out << "Added OtherAtom " << OtherAtom->Name;
2559 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2560 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2561 AddedBondList[Binder->nr]->Type = Binder->Type;
2562 *out << " and bond " << *(AddedBondList[Binder->nr]) << ", ";
2563 } else { // this code should actually never come into play (all white atoms are not yet present in BondMolecule, that's why they are white in the first place)
2564 *out << "Not adding OtherAtom " << OtherAtom->Name;
2565 if (AddedBondList[Binder->nr] == NULL) {
2566 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2567 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2568 AddedBondList[Binder->nr]->Type = Binder->Type;
2569 *out << ", added Bond " << *(AddedBondList[Binder->nr]);
2570 } else
2571 *out << ", not added Bond ";
2572 }
2573 *out << ", putting OtherAtom into queue." << endl;
2574 AtomStack->Push(OtherAtom);
2575 } else { // out of bond order, then replace
2576 if ((AddedAtomList[OtherAtom->nr] == NULL) && (Binder->Cyclic))
2577 ColorList[OtherAtom->nr] = white; // unmark if it has not been queued/added, to make it available via its other bonds (cyclic)
2578 if (Binder == Bond)
2579 *out << Verbose(3) << "Not Queueing, is the Root bond";
2580 else if (ShortestPathList[OtherAtom->nr] >= BondOrder)
2581 *out << Verbose(3) << "Not Queueing, is out of Bond Count of " << BondOrder;
2582 if (!Binder->Cyclic)
2583 *out << ", is not part of a cyclic bond, saturating bond with Hydrogen." << endl;
2584 if (AddedBondList[Binder->nr] == NULL) {
2585 if ((AddedAtomList[OtherAtom->nr] != NULL)) { // .. whether we add or saturate
2586 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2587 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2588 AddedBondList[Binder->nr]->Type = Binder->Type;
2589 } else {
2590#ifdef ADDHYDROGEN
2591 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2592#endif
2593 }
2594 }
2595 }
2596 } else {
2597 *out << Verbose(3) << "Not Adding, has already been visited." << endl;
2598 // This has to be a cyclic bond, check whether it's present ...
2599 if (AddedBondList[Binder->nr] == NULL) {
2600 if ((Binder != Bond) && (Binder->Cyclic) && (((ShortestPathList[Walker->nr]+1) < BondOrder))) {
2601 AddedBondList[Binder->nr] = Mol->AddBond(AddedAtomList[Walker->nr], AddedAtomList[OtherAtom->nr], Binder->BondDegree);
2602 AddedBondList[Binder->nr]->Cyclic = Binder->Cyclic;
2603 AddedBondList[Binder->nr]->Type = Binder->Type;
2604 } else { // if it's root bond it has to broken (otherwise we would not create the fragments)
2605#ifdef ADDHYDROGEN
2606 Mol->AddHydrogenReplacementAtom(out, Binder, AddedAtomList[Walker->nr], Walker, OtherAtom, ListOfBondsPerAtom[Walker->nr], NumberOfBondsPerAtom[Walker->nr], IsAngstroem);
2607#endif
2608 }
2609 }
2610 }
2611 }
2612 }
2613 ColorList[Walker->nr] = black;
2614 *out << Verbose(1) << "Coloring Walker " << Walker->Name << " black." << endl;
2615 }
2616 Free((void **)&PredecessorList, "molecule::BreadthFirstSearchAdd: **PredecessorList");
2617 Free((void **)&ShortestPathList, "molecule::BreadthFirstSearchAdd: **ShortestPathList");
2618 Free((void **)&ColorList, "molecule::BreadthFirstSearchAdd: **ColorList");
2619 delete(AtomStack);
2620};
2621
2622/** Adds bond structure to this molecule from \a Father molecule.
2623 * This basically causes this molecule to become an induced subgraph of the \a Father, i.e. for every bond in Father
2624 * with end points present in this molecule, bond is created in this molecule.
2625 * Special care was taken to ensure that this is of complexity O(N), where N is the \a Father's molecule::AtomCount.
2626 * \param *out output stream for debugging
2627 * \param *Father father molecule
2628 * \return true - is induced subgraph, false - there are atoms with fathers not in \a Father
2629 * \todo not checked, not fully working probably
2630 */
2631bool molecule::BuildInducedSubgraph(ofstream *out, const molecule *Father)
2632{
2633 atom *Walker = NULL, *OtherAtom = NULL;
2634 bool status = true;
2635 atom **ParentList = (atom **) Malloc(sizeof(atom *)*Father->AtomCount, "molecule::BuildInducedSubgraph: **ParentList");
2636
2637 *out << Verbose(2) << "Begin of BuildInducedSubgraph." << endl;
2638
2639 // reset parent list
2640 *out << Verbose(3) << "Resetting ParentList." << endl;
2641 for (int i=0;i<Father->AtomCount;i++)
2642 ParentList[i] = NULL;
2643
2644 // fill parent list with sons
2645 *out << Verbose(3) << "Filling Parent List." << endl;
2646 Walker = start;
2647 while (Walker->next != end) {
2648 Walker = Walker->next;
2649 ParentList[Walker->father->nr] = Walker;
2650 // Outputting List for debugging
2651 *out << Verbose(4) << "Son["<< Walker->father->nr <<"] of " << Walker->father << " is " << ParentList[Walker->father->nr] << "." << endl;
2652 }
2653
2654 // check each entry of parent list and if ok (one-to-and-onto matching) create bonds
2655 *out << Verbose(3) << "Creating bonds." << endl;
2656 Walker = Father->start;
2657 while (Walker->next != Father->end) {
2658 Walker = Walker->next;
2659 if (ParentList[Walker->nr] != NULL) {
2660 if (ParentList[Walker->nr]->father != Walker) {
2661 status = false;
2662 } else {
2663 for (int i=0;i<Father->NumberOfBondsPerAtom[Walker->nr];i++) {
2664 OtherAtom = Father->ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
2665 if (ParentList[OtherAtom->nr] != NULL) { // if otheratom is also a father of an atom on this molecule, create the bond
2666 *out << Verbose(4) << "Endpoints of Bond " << Father->ListOfBondsPerAtom[Walker->nr][i] << " are both present: " << ParentList[Walker->nr]->Name << " and " << ParentList[OtherAtom->nr]->Name << "." << endl;
2667 AddBond(ParentList[Walker->nr], ParentList[OtherAtom->nr], Father->ListOfBondsPerAtom[Walker->nr][i]->BondDegree);
2668 }
2669 }
2670 }
2671 }
2672 }
2673
2674 Free((void **)&ParentList, "molecule::BuildInducedSubgraph: **ParentList");
2675 *out << Verbose(2) << "End of BuildInducedSubgraph." << endl;
2676 return status;
2677};
2678
2679
2680/** Looks through a StackClass<atom *> and returns the likeliest removal candiate.
2681 * \param *out output stream for debugging messages
2682 * \param *&Leaf KeySet to look through
2683 * \param *&ShortestPathList list of the shortest path to decide which atom to suggest as removal candidate in the end
2684 * \param index of the atom suggested for removal
2685 */
2686int molecule::LookForRemovalCandidate(ofstream *&out, KeySet *&Leaf, int *&ShortestPathList)
2687{
2688 atom *Runner = NULL;
2689 int SP, Removal;
2690
2691 *out << Verbose(2) << "Looking for removal candidate." << endl;
2692 SP = -1; //0; // not -1, so that Root is never removed
2693 Removal = -1;
2694 for (KeySet::iterator runner = Leaf->begin(); runner != Leaf->end(); runner++) {
2695 Runner = FindAtom((*runner));
2696 if (Runner->type->Z != 1) { // skip all those added hydrogens when re-filling snake stack
2697 if (ShortestPathList[(*runner)] > SP) { // remove the oldest one with longest shortest path
2698 SP = ShortestPathList[(*runner)];
2699 Removal = (*runner);
2700 }
2701 }
2702 }
2703 return Removal;
2704};
2705
2706/** Stores a fragment from \a KeySet into \a molecule.
2707 * First creates the minimal set of atoms from the KeySet, then creates the bond structure from the complete
2708 * molecule and adds missing hydrogen where bonds were cut.
2709 * \param *out output stream for debugging messages
2710 * \param &Leaflet pointer to KeySet structure
2711 * \param IsAngstroem whether we have Ansgtroem or bohrradius
2712 * \return pointer to constructed molecule
2713 */
2714molecule * molecule::StoreFragmentFromKeySet(ofstream *out, KeySet &Leaflet, bool IsAngstroem)
2715{
2716 atom *Runner = NULL, *FatherOfRunner = NULL, *OtherFather = NULL;
2717 atom **SonList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::StoreFragmentFromStack: **SonList");
2718 molecule *Leaf = new molecule(elemente);
2719
2720// *out << Verbose(1) << "Begin of StoreFragmentFromKeyset." << endl;
2721
2722 Leaf->BondDistance = BondDistance;
2723 for(int i=0;i<NDIM*2;i++)
2724 Leaf->cell_size[i] = cell_size[i];
2725
2726 // initialise SonList (indicates when we need to replace a bond with hydrogen instead)
2727 for(int i=0;i<AtomCount;i++)
2728 SonList[i] = NULL;
2729
2730 // first create the minimal set of atoms from the KeySet
2731 for(KeySet::iterator runner = Leaflet.begin(); runner != Leaflet.end(); runner++) {
2732 FatherOfRunner = FindAtom((*runner)); // find the id
2733 SonList[FatherOfRunner->nr] = Leaf->AddCopyAtom(FatherOfRunner);
2734 }
2735
2736 // create the bonds between all: Make it an induced subgraph and add hydrogen
2737// *out << Verbose(2) << "Creating bonds from father graph (i.e. induced subgraph creation)." << endl;
2738 Runner = Leaf->start;
2739 while (Runner->next != Leaf->end) {
2740 Runner = Runner->next;
2741 FatherOfRunner = Runner->father;
2742 if (SonList[FatherOfRunner->nr] != NULL) { // check if this, our father, is present in list
2743 // create all bonds
2744 for (int i=0;i<NumberOfBondsPerAtom[FatherOfRunner->nr];i++) { // go through every bond of father
2745 OtherFather = ListOfBondsPerAtom[FatherOfRunner->nr][i]->GetOtherAtom(FatherOfRunner);
2746// *out << Verbose(2) << "Father " << *FatherOfRunner << " of son " << *SonList[FatherOfRunner->nr] << " is bound to " << *OtherFather;
2747 if (SonList[OtherFather->nr] != NULL) {
2748// *out << ", whose son is " << *SonList[OtherFather->nr] << "." << endl;
2749 if (OtherFather->nr > FatherOfRunner->nr) { // add bond (nr check is for adding only one of both variants: ab, ba)
2750// *out << Verbose(3) << "Adding Bond: " << Leaf->AddBond(Runner, SonList[OtherFather->nr], ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree) << "." << endl;
2751 //NumBonds[Runner->nr]++;
2752 } else {
2753// *out << Verbose(3) << "Not adding bond, labels in wrong order." << endl;
2754 }
2755 } else {
2756// *out << ", who has no son in this fragment molecule." << endl;
2757#ifdef ADDHYDROGEN
2758// *out << Verbose(3) << "Adding Hydrogen to " << Runner->Name << " and a bond in between." << endl;
2759 Leaf->AddHydrogenReplacementAtom(out, ListOfBondsPerAtom[FatherOfRunner->nr][i], Runner, FatherOfRunner, OtherFather, ListOfBondsPerAtom[FatherOfRunner->nr],NumberOfBondsPerAtom[FatherOfRunner->nr], IsAngstroem);
2760#endif
2761 //NumBonds[Runner->nr] += ListOfBondsPerAtom[FatherOfRunner->nr][i]->BondDegree;
2762 }
2763 }
2764 } else {
2765 *out << Verbose(0) << "ERROR: Son " << Runner->Name << " has father " << FatherOfRunner->Name << " but its entry in SonList is " << SonList[FatherOfRunner->nr] << "!" << endl;
2766 }
2767#ifdef ADDHYDROGEN
2768 while ((Runner->next != Leaf->end) && (Runner->next->type->Z == 1)) // skip added hydrogen
2769 Runner = Runner->next;
2770#endif
2771 }
2772 Leaf->CreateListOfBondsPerAtom(out);
2773 //Leaflet->Leaf->ScanForPeriodicCorrection(out);
2774 Free((void **)&SonList, "molecule::StoreFragmentFromStack: **SonList");
2775// *out << Verbose(1) << "End of StoreFragmentFromKeyset." << endl;
2776 return Leaf;
2777};
2778
2779/** Creates \a MoleculeListClass of all unique fragments of the \a molecule containing \a Order atoms or vertices.
2780 * The picture to have in mind is that of a DFS "snake" of a certain length \a Order, i.e. as in the infamous
2781 * computer game, that winds through the connected graph representing the molecule. Color (white,
2782 * lightgray, darkgray, black) indicates whether a vertex has been discovered so far or not. Labels will help in
2783 * creating only unique fragments and not additional ones with vertices simply in different sequence.
2784 * The Predecessor is always the one that came before in discovering, needed on backstepping. And
2785 * finally, the ShortestPath is needed for removing vertices from the snake stack during the back-
2786 * stepping.
2787 * \param *out output stream for debugging
2788 * \param Order number of atoms in each fragment
2789 * \param *configuration configuration for writing config files for each fragment
2790 * \return List of all unique fragments with \a Order atoms
2791 */
2792/*
2793MoleculeListClass * molecule::CreateListOfUniqueFragmentsOfOrder(ofstream *out, int Order, config *configuration)
2794{
2795 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2796 int *ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2797 int *Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2798 enum Shading *ColorVertexList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2799 enum Shading *ColorEdgeList = (enum Shading *) Malloc(sizeof(enum Shading)*BondCount, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorBondList");
2800 StackClass<atom *> *RootStack = new StackClass<atom *>(AtomCount);
2801 StackClass<atom *> *TouchedStack = new StackClass<atom *>((int)pow(4,Order)+2); // number of atoms reached from one with maximal 4 bonds plus Root itself
2802 StackClass<atom *> *SnakeStack = new StackClass<atom *>(Order+1); // equal to Order is not possible, as then the StackClass<atom *> cannot discern between full and empty stack!
2803 MoleculeLeafClass *Leaflet = NULL, *TempLeaf = NULL;
2804 MoleculeListClass *FragmentList = NULL;
2805 atom *Walker = NULL, *OtherAtom = NULL, *Root = NULL, *Removal = NULL;
2806 bond *Binder = NULL;
2807 int RunningIndex = 0, FragmentCounter = 0;
2808
2809 *out << Verbose(1) << "Begin of CreateListOfUniqueFragmentsOfOrder." << endl;
2810
2811 // reset parent list
2812 *out << Verbose(3) << "Resetting labels, parent, predecessor, color and shortest path lists." << endl;
2813 for (int i=0;i<AtomCount;i++) { // reset all atom labels
2814 // initialise each vertex as white with no predecessor, empty queue, color lightgray, not labelled, no sons
2815 Labels[i] = -1;
2816 SonList[i] = NULL;
2817 PredecessorList[i] = NULL;
2818 ColorVertexList[i] = white;
2819 ShortestPathList[i] = -1;
2820 }
2821 for (int i=0;i<BondCount;i++)
2822 ColorEdgeList[i] = white;
2823 RootStack->ClearStack(); // clearstack and push first atom if exists
2824 TouchedStack->ClearStack();
2825 Walker = start->next;
2826 while ((Walker != end)
2827#ifdef ADDHYDROGEN
2828 && (Walker->type->Z == 1)
2829#endif
2830 ) { // search for first non-hydrogen atom
2831 *out << Verbose(4) << "Current Root candidate is " << Walker->Name << "." << endl;
2832 Walker = Walker->next;
2833 }
2834 if (Walker != end)
2835 RootStack->Push(Walker);
2836 else
2837 *out << Verbose(0) << "ERROR: Could not find an appropriate Root atom!" << endl;
2838 *out << Verbose(3) << "Root " << Walker->Name << " is on AtomStack, beginning loop through all vertices ..." << endl;
2839
2840 ///// OUTER LOOP ////////////
2841 while (!RootStack->IsEmpty()) {
2842 // get new root vertex from atom stack
2843 Root = RootStack->PopFirst();
2844 ShortestPathList[Root->nr] = 0;
2845 if (Labels[Root->nr] == -1)
2846 Labels[Root->nr] = RunningIndex++; // prevent it from getting again on AtomStack
2847 PredecessorList[Root->nr] = Root;
2848 TouchedStack->Push(Root);
2849 *out << Verbose(0) << "Root for this loop is: " << Root->Name << ".\n";
2850
2851 // clear snake stack
2852 SnakeStack->ClearStack();
2853 //SnakeStack->TestImplementation(out, start->next);
2854
2855 ///// INNER LOOP ////////////
2856 // Problems:
2857 // - what about cyclic bonds?
2858 Walker = Root;
2859 do {
2860 *out << Verbose(1) << "Current Walker is: " << Walker->Name;
2861 // initial setting of the new Walker: label, color, shortest path and put on stacks
2862 if (Labels[Walker->nr] == -1) { // give atom a unique, monotonely increasing number
2863 Labels[Walker->nr] = RunningIndex++;
2864 RootStack->Push(Walker);
2865 }
2866 *out << ", has label " << Labels[Walker->nr];
2867 if ((ColorVertexList[Walker->nr] == white) || ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white))) { // color it if newly discovered and push on stacks (and if within reach!)
2868 if ((Binder != NULL) && (ColorEdgeList[Binder->nr] == white)) {
2869 // Binder ought to be set still from last neighbour search
2870 *out << ", coloring bond " << *Binder << " black";
2871 ColorEdgeList[Binder->nr] = black; // mark this bond as used
2872 }
2873 if (ShortestPathList[Walker->nr] == -1) {
2874 ShortestPathList[Walker->nr] = ShortestPathList[PredecessorList[Walker->nr]->nr]+1;
2875 TouchedStack->Push(Walker); // mark every atom for lists cleanup later, whose shortest path has been changed
2876 }
2877 if ((ShortestPathList[Walker->nr] < Order) && (ColorVertexList[Walker->nr] != darkgray)) { // if not already on snake stack
2878 SnakeStack->Push(Walker);
2879 ColorVertexList[Walker->nr] = darkgray; // mark as dark gray of on snake stack
2880 }
2881 }
2882 *out << ", SP of " << ShortestPathList[Walker->nr] << " and its color is " << GetColor(ColorVertexList[Walker->nr]) << "." << endl;
2883
2884 // then check the stack for a newly stumbled upon fragment
2885 if (SnakeStack->ItemCount() == Order) { // is stack full?
2886 // store the fragment if it is one and get a removal candidate
2887 Removal = StoreFragmentFromStack(out, Root, Walker, Leaflet, SnakeStack, ShortestPathList, SonList, Labels, &FragmentCounter, configuration);
2888 // remove the candidate if one was found
2889 if (Removal != NULL) {
2890 *out << Verbose(2) << "Removing item " << Removal->Name << " with SP of " << ShortestPathList[Removal->nr] << " from snake stack." << endl;
2891 SnakeStack->RemoveItem(Removal);
2892 ColorVertexList[Removal->nr] = lightgray; // return back to not on snake stack but explored marking
2893 if (Walker == Removal) { // if the current atom is to be removed, we also have to take a step back
2894 Walker = PredecessorList[Removal->nr];
2895 *out << Verbose(2) << "Stepping back to " << Walker->Name << "." << endl;
2896 }
2897 }
2898 } else
2899 Removal = NULL;
2900
2901 // finally, look for a white neighbour as the next Walker
2902 Binder = NULL;
2903 if ((Removal == NULL) || (Walker != PredecessorList[Removal->nr])) { // don't look, if a new walker has been set above
2904 *out << Verbose(2) << "Snake has currently " << SnakeStack->ItemCount() << " item(s)." << endl;
2905 OtherAtom = NULL; // this is actually not needed, every atom has at least one neighbour
2906 if (ShortestPathList[Walker->nr] < Order) {
2907 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) {
2908 Binder = ListOfBondsPerAtom[Walker->nr][i];
2909 *out << Verbose(2) << "Current bond is " << *Binder << ": ";
2910 OtherAtom = Binder->GetOtherAtom(Walker);
2911 if ((Labels[OtherAtom->nr] != -1) && (Labels[OtherAtom->nr] < Labels[Root->nr])) { // we don't step up to labels bigger than us
2912 *out << "Label " << Labels[OtherAtom->nr] << " is smaller than Root's " << Labels[Root->nr] << "." << endl;
2913 //ColorVertexList[OtherAtom->nr] = lightgray; // mark as explored
2914 } else { // otherwise check its colour and element
2915 if (
2916#ifdef ADDHYDROGEN
2917 (OtherAtom->type->Z != 1) &&
2918#endif
2919 (ColorEdgeList[Binder->nr] == white)) { // skip hydrogen, look for unexplored vertices
2920 *out << "Moving along " << GetColor(ColorEdgeList[Binder->nr]) << " bond " << Binder << " to " << ((ColorVertexList[OtherAtom->nr] == white) ? "unexplored" : "explored") << " item: " << OtherAtom->Name << "." << endl;
2921 // i find it currently rather sensible to always set the predecessor in order to find one's way back
2922 //if (PredecessorList[OtherAtom->nr] == NULL) {
2923 PredecessorList[OtherAtom->nr] = Walker;
2924 *out << Verbose(3) << "Setting Predecessor of " << OtherAtom->Name << " to " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2925 //} else {
2926 // *out << Verbose(3) << "Predecessor of " << OtherAtom->Name << " is " << PredecessorList[OtherAtom->nr]->Name << "." << endl;
2927 //}
2928 Walker = OtherAtom;
2929 break;
2930 } else {
2931 if (OtherAtom->type->Z == 1)
2932 *out << "Links to a hydrogen atom." << endl;
2933 else
2934 *out << "Bond has not white but " << GetColor(ColorEdgeList[Binder->nr]) << " color." << endl;
2935 }
2936 }
2937 }
2938 } else { // means we have stepped beyond the horizon: Return!
2939 Walker = PredecessorList[Walker->nr];
2940 OtherAtom = Walker;
2941 *out << Verbose(3) << "We have gone too far, stepping back to " << Walker->Name << "." << endl;
2942 }
2943 if (Walker != OtherAtom) { // if no white neighbours anymore, color it black
2944 *out << Verbose(2) << "Coloring " << Walker->Name << " black." << endl;
2945 ColorVertexList[Walker->nr] = black;
2946 Walker = PredecessorList[Walker->nr];
2947 }
2948 }
2949 } while ((Walker != Root) || (ColorVertexList[Root->nr] != black));
2950 *out << Verbose(2) << "Inner Looping is finished." << endl;
2951
2952 // if we reset all AtomCount atoms, we have again technically O(N^2) ...
2953 *out << Verbose(2) << "Resetting lists." << endl;
2954 Walker = NULL;
2955 Binder = NULL;
2956 while (!TouchedStack->IsEmpty()) {
2957 Walker = TouchedStack->PopLast();
2958 *out << Verbose(3) << "Re-initialising entries of " << *Walker << "." << endl;
2959 for(int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++)
2960 ColorEdgeList[ListOfBondsPerAtom[Walker->nr][i]->nr] = white;
2961 PredecessorList[Walker->nr] = NULL;
2962 ColorVertexList[Walker->nr] = white;
2963 ShortestPathList[Walker->nr] = -1;
2964 }
2965 }
2966 *out << Verbose(1) << "Outer Looping over all vertices is done." << endl;
2967
2968 // copy together
2969 *out << Verbose(1) << "Copying all fragments into MoleculeList structure." << endl;
2970 FragmentList = new MoleculeListClass(FragmentCounter, AtomCount);
2971 RunningIndex = 0;
2972 while ((Leaflet != NULL) && (RunningIndex < FragmentCounter)) {
2973 FragmentList->ListOfMolecules[RunningIndex++] = Leaflet->Leaf;
2974 Leaflet->Leaf = NULL; // prevent molecule from being removed
2975 TempLeaf = Leaflet;
2976 Leaflet = Leaflet->previous;
2977 delete(TempLeaf);
2978 };
2979
2980 // free memory and exit
2981 Free((void **)&PredecessorList, "molecule::CreateListOfUniqueFragmentsOfOrder: **PredecessorList");
2982 Free((void **)&ShortestPathList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ShortestPathList");
2983 Free((void **)&Labels, "molecule::CreateListOfUniqueFragmentsOfOrder: *Labels");
2984 Free((void **)&ColorVertexList, "molecule::CreateListOfUniqueFragmentsOfOrder: *ColorList");
2985 delete(RootStack);
2986 delete(TouchedStack);
2987 delete(SnakeStack);
2988
2989 *out << Verbose(1) << "End of CreateListOfUniqueFragmentsOfOrder." << endl;
2990 return FragmentList;
2991};
2992*/
2993
2994/** Structure containing all values in power set combination generation.
2995 */
2996struct UniqueFragments {
2997 config *configuration;
2998 atom *Root;
2999 Graph *Leaflet;
3000 KeySet *FragmentSet;
3001 int ANOVAOrder;
3002 int FragmentCounter;
3003 int CurrentIndex;
3004 int *Labels;
3005 double TEFactor;
3006 int *ShortestPathList;
3007 bool **UsedList;
3008 bond **BondsPerSPList;
3009 int *BondsPerSPCount;
3010};
3011
3012/** From a given set of Bond sorted by Shortest Path distance, create all possible fragments of size \a SetDimension.
3013 * -# loops over every possible combination (2^dimension of edge set)
3014 * -# inserts current set, if there's still space left
3015 * -# yes: calls SPFragmentGenerator with structure, created new edge list and size respective to root dist
3016ance+1
3017 * -# no: stores fragment into keyset list by calling InsertFragmentIntoGraph
3018 * -# removes all items added into the snake stack (in UniqueFragments structure) added during level (root
3019distance) and current set
3020 * \param *out output stream for debugging
3021 * \param FragmentSearch UniqueFragments structure with all values needed
3022 * \param RootDistance current shortest path level, whose set of edges is represented by **BondsSet
3023 * \param SetDimension Number of possible bonds on this level (i.e. size of the array BondsSet[])
3024 * \param SubOrder remaining number of allowed vertices to add
3025 */
3026void molecule::SPFragmentGenerator(ofstream *out, struct UniqueFragments *FragmentSearch, int RootDistance, bond **BondsSet, int SetDimension, int SubOrder)
3027{
3028 atom *OtherWalker = NULL;
3029 int verbosity = 0; //FragmentSearch->ANOVAOrder-SubOrder;
3030 int NumCombinations;
3031 bool bit;
3032 int bits, TouchedIndex, SubSetDimension, SP;
3033 int Removal;
3034 int *TouchedList = (int *) Malloc(sizeof(int)*(SubOrder+1), "molecule::SPFragmentGenerator: *TouchedList");
3035 bond *Binder = NULL;
3036 bond **BondsList = NULL;
3037
3038 NumCombinations = 1 << SetDimension;
3039
3040 // Hier muessen von 1 bis NumberOfBondsPerAtom[Walker->nr] alle Kombinationen
3041 // von Endstuecken (aus den Bonds) hinzugefÃŒgt werden und fÃŒr verbleibende ANOVAOrder
3042 // rekursiv GraphCrawler in der nÀchsten Ebene aufgerufen werden
3043
3044 *out << Verbose(1+verbosity) << "Begin of SPFragmentGenerator." << endl;
3045 *out << Verbose(1+verbosity) << "We are " << RootDistance << " away from Root, which is " << *FragmentSearch->Root << ", SubOrder is " << SubOrder << ", SetDimension is " << SetDimension << " and this means " << NumCombinations-1 << " combination(s)." << endl;
3046
3047 // initialised touched list (stores added atoms on this level)
3048 *out << Verbose(1+verbosity) << "Clearing touched list." << endl;
3049 for (TouchedIndex=0;TouchedIndex<=SubOrder;TouchedIndex++) // empty touched list
3050 TouchedList[TouchedIndex] = -1;
3051 TouchedIndex = 0;
3052
3053 // create every possible combination of the endpieces
3054 *out << Verbose(1+verbosity) << "Going through all combinations of the power set." << endl;
3055 for (int i=1;i<NumCombinations;i++) { // sweep through all power set combinations (skip empty set!)
3056 // count the set bit of i
3057 bits = 0;
3058 for (int j=0;j<SetDimension;j++)
3059 bits += (i & (1 << j)) >> j;
3060
3061 *out << Verbose(1+verbosity) << "Current set is " << Binary(i | (1 << SetDimension)) << ", number of bits is " << bits << "." << endl;
3062 if (bits <= SubOrder) { // if not greater than additional atoms allowed on stack, continue
3063 // --1-- add this set of the power set of bond partners to the snake stack
3064 for (int j=0;j<SetDimension;j++) { // pull out every bit by shifting
3065 bit = ((i & (1 << j)) != 0); // mask the bit for the j-th bond
3066 if (bit) { // if bit is set, we add this bond partner
3067 OtherWalker = BondsSet[j]->rightatom; // rightatom is always the one more distant, i.e. the one to add
3068 //*out << Verbose(1+verbosity) << "Current Bond is " << ListOfBondsPerAtom[Walker->nr][i] << ", checking on " << *OtherWalker << "." << endl;
3069 //if ((!FragmentSearch->UsedList[OtherWalker->nr][i]) && (FragmentSearch->Labels[OtherWalker->nr] > FragmentSearch->Labels[FragmentSearch->Root->nr])) {
3070 //*out << Verbose(2+verbosity) << "Not used so far, label " << FragmentSearch->Labels[OtherWalker->nr] << " is bigger than Root's " << FragmentSearch->Labels[FragmentSearch->Root->nr] << "." << endl;
3071 *out << Verbose(2+verbosity) << "Adding " << *OtherWalker << " with nr " << OtherWalker->nr << "." << endl;
3072 TouchedList[TouchedIndex++] = OtherWalker->nr; // note as added
3073 FragmentSearch->FragmentSet->insert(OtherWalker->nr);
3074 //FragmentSearch->UsedList[OtherWalker->nr][i] = true;
3075 //}
3076 } else {
3077 *out << Verbose(2+verbosity) << "Not adding." << endl;
3078 }
3079 }
3080
3081 if (bits < SubOrder) {
3082 *out << Verbose(1+verbosity) << "There's still some space left on stack: " << (SubOrder - bits) << "." << endl;
3083 // --2-- look at all added end pieces of this combination, construct bond subsets and sweep through a power set of these by recursion
3084 SP = RootDistance+1; // this is the next level
3085 // first count the members in the subset
3086 SubSetDimension = 0;
3087 Binder = FragmentSearch->BondsPerSPList[2*SP]; // start node for this level
3088 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) { // compare to end node of this level
3089 Binder = Binder->next;
3090 for (int k=0;k<TouchedIndex;k++) {
3091 if (Binder->Contains(TouchedList[k])) // if we added this very endpiece
3092 SubSetDimension++;
3093 }
3094 }
3095 // then allocate and fill the list
3096 BondsList = (bond **) Malloc(sizeof(bond *)*SubSetDimension, "molecule::SPFragmentGenerator: **BondsList");
3097 SubSetDimension = 0;
3098 Binder = FragmentSearch->BondsPerSPList[2*SP];
3099 while (Binder->next != FragmentSearch->BondsPerSPList[2*SP+1]) {
3100 Binder = Binder->next;
3101 for (int k=0;k<TouchedIndex;k++) {
3102 if (Binder->leftatom->nr == TouchedList[k]) // leftatom is always the close one
3103 BondsList[SubSetDimension++] = Binder;
3104 }
3105 }
3106 *out << Verbose(2+verbosity) << "Calling subset generator " << SP << " away from root " << *FragmentSearch->Root << " with sub set dimension " << SubSetDimension << "." << endl;
3107 SPFragmentGenerator(out, FragmentSearch, SP, BondsList, SubSetDimension, SubOrder-bits);
3108 Free((void **)&BondsList, "molecule::SPFragmentGenerator: **BondsList");
3109 } else {
3110 // --2-- otherwise store the complete fragment
3111 *out << Verbose(1+verbosity) << "Enough items on stack for a fragment!" << endl;
3112 // store fragment as a KeySet
3113 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch->FragmentCounter << "], local nr.s are: ";
3114 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3115 *out << (*runner) << " ";
3116 InsertFragmentIntoGraph(out, FragmentSearch);
3117 //Removal = LookForRemovalCandidate(out, FragmentSearch->FragmentSet, FragmentSearch->ShortestPathList);
3118 //Removal = StoreFragmentFromStack(out, FragmentSearch->Root, FragmentSearch->Leaflet, FragmentSearch->FragmentStack, FragmentSearch->ShortestPathList,FragmentSearch->Labels, &FragmentSearch->FragmentCounter, FragmentSearch->configuration);
3119 }
3120
3121 // --3-- remove all added items in this level from snake stack
3122 *out << Verbose(1+verbosity) << "Removing all items that were added on this SP level " << RootDistance << "." << endl;
3123 for(int j=0;j<TouchedIndex;j++) {
3124 Removal = TouchedList[j];
3125 *out << Verbose(2+verbosity) << "Removing item nr. " << Removal << " from snake stack." << endl;
3126 FragmentSearch->FragmentSet->erase(Removal);
3127 TouchedList[j] = -1;
3128 }
3129 *out << Verbose(2) << "Remaining local nr.s on snake stack are: ";
3130 for(KeySet::iterator runner = FragmentSearch->FragmentSet->begin(); runner != FragmentSearch->FragmentSet->end(); runner++)
3131 *out << (*runner) << " ";
3132 *out << endl;
3133 TouchedIndex = 0; // set Index to 0 for list of atoms added on this level
3134 } else {
3135 *out << Verbose(2+verbosity) << "More atoms to add for this set (" << bits << ") than space left on stack " << SubOrder << ", skipping this set." << endl;
3136 }
3137 }
3138 Free((void **)&TouchedList, "molecule::SPFragmentGenerator: *TouchedList");
3139 *out << Verbose(1+verbosity) << "End of SPFragmentGenerator, " << RootDistance << " away from Root " << *FragmentSearch->Root << " and SubOrder is " << SubOrder << "." << endl;
3140};
3141
3142/** Creates a list of all unique fragments of certain vertex size from a given graph \a Fragment for a given root vertex in the context of \a this molecule.
3143 * -# initialises UniqueFragments structure
3144 * -# fills edge list via BFS
3145 * -# creates the fragment by calling recursive function SPFragmentGenerator with UniqueFragments structure, 0 as
3146 root distance, the edge set, its dimension and the current suborder
3147 * -# Free'ing structure
3148 * Note that we may use the fact that the atoms are SP-ordered on the atomstack. I.e. when popping always the last, we first get all
3149 * with SP of 2, then those with SP of 3, then those with SP of 4 and so on.
3150 * \param *out output stream for debugging
3151 * \param Order bond order (limits BFS exploration and "number of digits" in power set generation
3152 * \param FragmentSearch UniqueFragments structure containing TEFactor, root atom and so on
3153 * \param RestrictedKeySet Restricted vertex set to use in context of molecule
3154 * \return number of inserted fragments
3155 * \note ShortestPathList in FragmentSearch structure is probably due to NumberOfAtomsSPLevel and SP not needed anymore
3156 */
3157int molecule::PowerSetGenerator(ofstream *out, int Order, struct UniqueFragments &FragmentSearch, KeySet RestrictedKeySet)
3158{
3159 int SP, UniqueIndex, AtomKeyNr;
3160 int *NumberOfAtomsSPLevel = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *SPLevelCount");
3161 atom *Walker = NULL, *OtherWalker = NULL;
3162 bond *Binder = NULL;
3163 bond **BondsList = NULL;
3164 KeyStack AtomStack;
3165 atom **PredecessorList = (atom **) Malloc(sizeof(atom *)*AtomCount, "molecule::PowerSetGenerator: **PredecessorList");
3166 KeySet::iterator runner;
3167 int RootKeyNr = FragmentSearch.Root->nr;
3168 int Counter = FragmentSearch.FragmentCounter;
3169
3170 for (int i=0;i<AtomCount;i++) {
3171 PredecessorList[i] = NULL;
3172 }
3173
3174 *out << endl;
3175 *out << Verbose(0) << "Begin of PowerSetGenerator with order " << Order << " at Root " << *FragmentSearch.Root << "." << endl;
3176
3177 UniqueIndex = 0;
3178 if (FragmentSearch.Labels[RootKeyNr] == -1)
3179 FragmentSearch.Labels[RootKeyNr] = UniqueIndex++;
3180 FragmentSearch.ShortestPathList[RootKeyNr] = 0;
3181 // prepare the atom stack counters (number of atoms with certain SP on stack)
3182 for (int i=0;i<Order;i++)
3183 NumberOfAtomsSPLevel[i] = 0;
3184 NumberOfAtomsSPLevel[0] = 1; // for root
3185 SP = -1;
3186 *out << endl;
3187 *out << Verbose(0) << "Starting BFS analysis ..." << endl;
3188 // push as first on atom stack and goooo ...
3189 AtomStack.clear();
3190 AtomStack.push_back(RootKeyNr);
3191 *out << Verbose(0) << "Cleared AtomStack and pushed root as first item onto it." << endl;
3192 // do a BFS search to fill the SP lists and label the found vertices
3193 while (!AtomStack.empty()) {
3194 // pop next atom
3195 AtomKeyNr = AtomStack.front();
3196 AtomStack.pop_front();
3197 if (SP != -1)
3198 NumberOfAtomsSPLevel[SP]--;
3199 if ((SP == -1) || (NumberOfAtomsSPLevel[SP] == -1)) {
3200 SP++;
3201 NumberOfAtomsSPLevel[SP]--; // carry over "-1" to next level
3202 *out << Verbose(1) << "New SP level reached: " << SP << ", creating new SP list with 0 item(s)";
3203 if (SP > 0)
3204 *out << ", old level closed with " << FragmentSearch.BondsPerSPCount[SP-1] << " item(s)." << endl;
3205 else
3206 *out << "." << endl;
3207 FragmentSearch.BondsPerSPCount[SP] = 0;
3208 } else {
3209 *out << Verbose(1) << "Still " << NumberOfAtomsSPLevel[SP]+1 << " on this SP (" << SP << ") level, currently having " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3210 }
3211 Walker = FindAtom(AtomKeyNr);
3212 *out << Verbose(0) << "Current Walker is: " << *Walker << " with nr " << Walker->nr << " and label " << FragmentSearch.Labels[AtomKeyNr] << " and SP of " << SP << "." << endl;
3213 // check for new sp level
3214 // go through all its bonds
3215 *out << Verbose(1) << "Going through all bonds of Walker." << endl;
3216 for (int i=0;i<NumberOfBondsPerAtom[AtomKeyNr];i++) {
3217 Binder = ListOfBondsPerAtom[AtomKeyNr][i];
3218 OtherWalker = Binder->GetOtherAtom(Walker);
3219 if ((RestrictedKeySet.find(OtherWalker->nr) != RestrictedKeySet.end())
3220#ifdef ADDHYDROGEN
3221 && (OtherWalker->type->Z != 1)
3222#endif
3223 ) { // skip hydrogens and restrict to fragment
3224 *out << Verbose(2) << "Current partner is " << *OtherWalker << " with nr " << OtherWalker->nr << " in bond " << *Binder << "." << endl;
3225 // set the label if not set (and push on root stack as well)
3226 if (FragmentSearch.Labels[OtherWalker->nr] == -1) {
3227 FragmentSearch.Labels[OtherWalker->nr] = UniqueIndex++;
3228 *out << Verbose(3) << "Set label to " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3229 } else {
3230 *out << Verbose(3) << "Label is already " << FragmentSearch.Labels[OtherWalker->nr] << "." << endl;
3231 }
3232 if ((OtherWalker != PredecessorList[AtomKeyNr]) && (OtherWalker->nr > RootKeyNr)) { // only pass through those with label bigger than Root's
3233 FragmentSearch.ShortestPathList[OtherWalker->nr] = SP+1;
3234 *out << Verbose(3) << "Set Shortest Path to " << FragmentSearch.ShortestPathList[OtherWalker->nr] << "." << endl;
3235 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < Order) { // only pass through those within reach of Order
3236 // push for exploration on stack (only if the SP of OtherWalker is longer than of Walker! (otherwise it has been added already!)
3237 if (FragmentSearch.ShortestPathList[OtherWalker->nr] > SP) {
3238 if (FragmentSearch.ShortestPathList[OtherWalker->nr] < (Order-1)) {
3239 *out << Verbose(3) << "Putting on atom stack for further exploration." << endl;
3240 PredecessorList[OtherWalker->nr] = Walker; // note down the one further up the exploration tree
3241 AtomStack.push_back(OtherWalker->nr);
3242 NumberOfAtomsSPLevel[FragmentSearch.ShortestPathList[OtherWalker->nr]]++;
3243 } else {
3244 *out << Verbose(3) << "Not putting on atom stack, is at end of reach." << endl;
3245 }
3246 // add the bond in between to the SP list
3247 Binder = new bond(Walker, OtherWalker); // create a new bond in such a manner, that bond::rightatom is always the one more distant
3248 add(Binder, FragmentSearch.BondsPerSPList[2*SP+1]);
3249 FragmentSearch.BondsPerSPCount[SP]++;
3250 *out << Verbose(3) << "Added its bond to SP list, having now " << FragmentSearch.BondsPerSPCount[SP] << " item(s)." << endl;
3251 } else *out << Verbose(3) << "Not putting on atom stack, nor adding bond, as " << *OtherWalker << "'s SP is shorter than Walker's." << endl;
3252 } else *out << Verbose(3) << "Not continuing, as " << *OtherWalker << " is out of reach of order " << Order << "." << endl;
3253 } else *out << Verbose(3) << "Not passing on, as index of " << *OtherWalker << " " << OtherWalker->nr << " is smaller than that of Root " << RootKeyNr << " or this is my predecessor." << endl;
3254 } else *out << Verbose(2) << "Is not in the restricted keyset or skipping hydrogen " << *OtherWalker << "." << endl;
3255 }
3256 }
3257 // reset predecessor list
3258 for(int i=0;i<Order;i++) {
3259 Binder = FragmentSearch.BondsPerSPList[2*i];
3260 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3261 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3262 Binder = Binder->next;
3263 PredecessorList[Binder->rightatom->nr] = NULL; // By construction "OtherAtom" is always Bond::rightatom!
3264 }
3265 }
3266 *out << endl;
3267
3268 // outputting all list for debugging
3269 *out << Verbose(0) << "Printing all found lists." << endl;
3270 for(int i=0;i<Order;i++) {
3271 Binder = FragmentSearch.BondsPerSPList[2*i];
3272 *out << Verbose(1) << "Current SP level is " << i << "." << endl;
3273 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3274 Binder = Binder->next;
3275 *out << Verbose(2) << *Binder << endl;
3276 }
3277 }
3278
3279 // creating fragments with the found edge sets
3280 SP = 0;
3281 for(int i=0;i<Order;i++) { // sum up all found edges
3282 Binder = FragmentSearch.BondsPerSPList[2*i];
3283 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3284 Binder = Binder->next;
3285 SP ++;
3286 }
3287 }
3288 *out << Verbose(0) << "Total number of edges is " << SP << "." << endl;
3289 if (SP >= (Order-1)) {
3290 // start with root (push on fragment stack)
3291 *out << Verbose(0) << "Starting fragment generation with " << *FragmentSearch.Root << ", local nr is " << FragmentSearch.Root->nr << "." << endl;
3292 FragmentSearch.FragmentSet->clear();
3293 FragmentSearch.FragmentSet->insert(FragmentSearch.Root->nr);
3294
3295 if (FragmentSearch.FragmentSet->size() == (unsigned int) Order) {
3296 *out << Verbose(0) << "Enough items on stack already for a fragment!" << endl;
3297 // store fragment as a KeySet
3298 *out << Verbose(2) << "Found a new fragment[" << FragmentSearch.FragmentCounter << "], local nr.s are: ";
3299 for(KeySet::iterator runner = FragmentSearch.FragmentSet->begin(); runner != FragmentSearch.FragmentSet->end(); runner++) {
3300 *out << (*runner) << " ";
3301 }
3302 *out << endl;
3303 InsertFragmentIntoGraph(out, &FragmentSearch);
3304 } else {
3305 *out << Verbose(0) << "Preparing subset for this root and calling generator." << endl;
3306 // prepare the subset and call the generator
3307 BondsList = (bond **) Malloc(sizeof(bond *)*FragmentSearch.BondsPerSPCount[0], "molecule::PowerSetGenerator: **BondsList");
3308 Binder = FragmentSearch.BondsPerSPList[0];
3309 for(int i=0;i<FragmentSearch.BondsPerSPCount[0];i++) {
3310 Binder = Binder->next;
3311 BondsList[i] = Binder;
3312 }
3313 SPFragmentGenerator(out, &FragmentSearch, 0, BondsList, FragmentSearch.BondsPerSPCount[0], Order-1);
3314 Free((void **)&BondsList, "molecule::PowerSetGenerator: **BondsList");
3315 }
3316 } else {
3317 *out << Verbose(0) << "Not enough total number of edges to build " << Order << "-body fragments." << endl;
3318 }
3319
3320 // as FragmentSearch structure is used only once, we don't have to clean it anymore
3321 // remove root from stack
3322 *out << Verbose(0) << "Removing root again from stack." << endl;
3323 FragmentSearch.FragmentSet->erase(FragmentSearch.Root->nr);
3324
3325 // free'ing the bonds lists
3326 *out << Verbose(0) << "Free'ing all found lists. and resetting index lists" << endl;
3327 for(int i=0;i<Order;i++) {
3328 *out << Verbose(1) << "Current SP level is " << i << ": ";
3329 Binder = FragmentSearch.BondsPerSPList[2*i];
3330 while (Binder->next != FragmentSearch.BondsPerSPList[2*i+1]) {
3331 Binder = Binder->next;
3332 // *out << "Removing atom " << Binder->leftatom->nr << " and " << Binder->rightatom->nr << "." << endl; // make sure numbers are local
3333 FragmentSearch.ShortestPathList[Binder->leftatom->nr] = -1;
3334 FragmentSearch.ShortestPathList[Binder->rightatom->nr] = -1;
3335 }
3336 // delete added bonds
3337 cleanup(FragmentSearch.BondsPerSPList[2*i], FragmentSearch.BondsPerSPList[2*i+1]);
3338 // also start and end node
3339 *out << "cleaned." << endl;
3340 }
3341
3342 // free allocated memory
3343 Free((void **)&NumberOfAtomsSPLevel, "molecule::PowerSetGenerator: *SPLevelCount");
3344 Free((void **)&PredecessorList, "molecule::PowerSetGenerator: **PredecessorList");
3345
3346 // return list
3347 *out << Verbose(0) << "End of PowerSetGenerator." << endl;
3348 return (FragmentSearch.FragmentCounter - Counter);
3349};
3350
3351/** Corrects the nuclei position if the fragment was created over the cell borders.
3352 * Scans all bonds, checks the distance, if greater than typical, we have a candidate for the correction.
3353 * We remove the bond whereafter the graph probably separates. Then, we translate the one component periodically
3354 * and re-add the bond. Looping on the distance check.
3355 * \param *out ofstream for debugging messages
3356 */
3357void molecule::ScanForPeriodicCorrection(ofstream *out)
3358{
3359 bond *Binder = NULL;
3360 bond *OtherBinder = NULL;
3361 atom *Walker = NULL;
3362 atom *OtherWalker = NULL;
3363 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
3364 enum Shading *ColorList = NULL;
3365 double tmp;
3366 vector TranslationVector;
3367 //class StackClass<atom *> *CompStack = NULL;
3368 class StackClass<atom *> *AtomStack = new StackClass<atom *>(AtomCount);
3369 bool flag = true;
3370
3371// *out << Verbose(1) << "Begin of ScanForPeriodicCorrection." << endl;
3372
3373 ColorList = (enum Shading *) Malloc(sizeof(enum Shading)*AtomCount, "molecule::ScanForPeriodicCorrection: *ColorList");
3374 while (flag) {
3375 // remove bonds that are beyond bonddistance
3376 for(int i=0;i<NDIM;i++)
3377 TranslationVector.x[i] = 0.;
3378 // scan all bonds
3379 Binder = first;
3380 flag = false;
3381 while ((!flag) && (Binder->next != last)) {
3382 Binder = Binder->next;
3383 for (int i=0;i<NDIM;i++) {
3384 tmp = fabs(Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i]);
3385 //*out << Verbose(3) << "Checking " << i << "th distance of " << *Binder->leftatom << " to " << *Binder->rightatom << ": " << tmp << "." << endl;
3386 if (tmp > BondDistance) {
3387 OtherBinder = Binder->next; // note down binding partner for later re-insertion
3388 unlink(Binder); // unlink bond
3389// *out << Verbose(2) << "Correcting at bond " << *Binder << "." << endl;
3390 flag = true;
3391 break;
3392 }
3393 }
3394 }
3395 if (flag) {
3396 // create translation vector from their periodically modified distance
3397 for (int i=0;i<NDIM;i++) {
3398 tmp = Binder->leftatom->x.x[i] - Binder->rightatom->x.x[i];
3399 if (fabs(tmp) > BondDistance)
3400 TranslationVector.x[i] = (tmp < 0) ? +1. : -1.;
3401 }
3402 TranslationVector.MatrixMultiplication(matrix);
3403 //*out << "Translation vector is ";
3404 //TranslationVector.Output(out);
3405 //*out << endl;
3406 // apply to all atoms of first component via BFS
3407 for (int i=0;i<AtomCount;i++)
3408 ColorList[i] = white;
3409 AtomStack->Push(Binder->leftatom);
3410 while (!AtomStack->IsEmpty()) {
3411 Walker = AtomStack->PopFirst();
3412 //*out << Verbose (3) << "Current Walker is: " << *Walker << "." << endl;
3413 ColorList[Walker->nr] = black; // mark as explored
3414 Walker->x.AddVector(&TranslationVector); // translate
3415 for (int i=0;i<NumberOfBondsPerAtom[Walker->nr];i++) { // go through all binding partners
3416 if (ListOfBondsPerAtom[Walker->nr][i] != Binder) {
3417 OtherWalker = ListOfBondsPerAtom[Walker->nr][i]->GetOtherAtom(Walker);
3418 if (ColorList[OtherWalker->nr] == white) {
3419 AtomStack->Push(OtherWalker); // push if yet unexplored
3420 }
3421 }
3422 }
3423 }
3424 // re-add bond
3425 link(Binder, OtherBinder);
3426 } else {
3427// *out << Verbose(2) << "No corrections for this fragment." << endl;
3428 }
3429 //delete(CompStack);
3430 }
3431
3432 // free allocated space from ReturnFullMatrixforSymmetric()
3433 delete(AtomStack);
3434 Free((void **)&ColorList, "molecule::ScanForPeriodicCorrection: *ColorList");
3435 Free((void **)&matrix, "molecule::ScanForPeriodicCorrection: *matrix");
3436// *out << Verbose(1) << "End of ScanForPeriodicCorrection." << endl;
3437};
3438
3439/** Blows the 6-dimensional \a cell_size array up to a full NDIM by NDIM matrix.
3440 * \param *symm 6-dim array of unique symmetric matrix components
3441 * \return allocated NDIM*NDIM array with the symmetric matrix
3442 */
3443double * molecule::ReturnFullMatrixforSymmetric(double *symm)
3444{
3445 double *matrix = (double *) Malloc(sizeof(double)*NDIM*NDIM, "molecule::ReturnFullMatrixforSymmetric: *matrix");
3446 matrix[0] = symm[0];
3447 matrix[1] = symm[1];
3448 matrix[2] = symm[3];
3449 matrix[3] = symm[1];
3450 matrix[4] = symm[2];
3451 matrix[5] = symm[4];
3452 matrix[6] = symm[3];
3453 matrix[7] = symm[4];
3454 matrix[8] = symm[5];
3455 return matrix;
3456};
3457
3458bool KeyCompare::operator() (const KeySet SubgraphA, const KeySet SubgraphB) const
3459{
3460 //cout << "my check is used." << endl;
3461 if (SubgraphA.size() < SubgraphB.size()) {
3462 return true;
3463 } else {
3464 if (SubgraphA.size() > SubgraphB.size()) {
3465 return false;
3466 } else {
3467 KeySet::iterator IteratorA = SubgraphA.begin();
3468 KeySet::iterator IteratorB = SubgraphB.begin();
3469 while ((IteratorA != SubgraphA.end()) && (IteratorB != SubgraphB.end())) {
3470 if ((*IteratorA) < (*IteratorB))
3471 return true;
3472 else if ((*IteratorA) > (*IteratorB)) {
3473 return false;
3474 } // else, go on to next index
3475 IteratorA++;
3476 IteratorB++;
3477 } // end of while loop
3478 }// end of check in case of equal sizes
3479 }
3480 return false; // if we reach this point, they are equal
3481};
3482
3483//bool operator < (KeySet SubgraphA, KeySet SubgraphB)
3484//{
3485// return KeyCompare(SubgraphA, SubgraphB);
3486//};
3487
3488/** Checking whether KeySet is not already present in Graph, if so just adds factor.
3489 * \param *out output stream for debugging
3490 * \param &set KeySet to insert
3491 * \param &graph Graph to insert into
3492 * \param *counter pointer to unique fragment count
3493 * \param factor energy factor for the fragment
3494 */
3495inline void InsertFragmentIntoGraph(ofstream *out, struct UniqueFragments *Fragment)
3496{
3497 GraphTestPair testGraphInsert;
3498
3499 testGraphInsert = Fragment->Leaflet->insert(GraphPair (*Fragment->FragmentSet,pair<int,double>(Fragment->FragmentCounter,Fragment->TEFactor))); // store fragment number and current factor
3500 if (testGraphInsert.second) {
3501 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " successfully inserted." << endl;
3502 Fragment->FragmentCounter++;
3503 } else {
3504 *out << Verbose(2) << "KeySet " << Fragment->FragmentCounter << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3505 ((*(testGraphInsert.first)).second).second += Fragment->TEFactor; // increase the "created" counter
3506 *out << Verbose(2) << "New factor is " << ((*(testGraphInsert.first)).second).second << "." << endl;
3507 }
3508};
3509//void inline InsertIntoGraph(ofstream *out, KeyStack &stack, Graph &graph, int *counter, double factor)
3510//{
3511// // copy stack contents to set and call overloaded function again
3512// KeySet set;
3513// for(KeyStack::iterator runner = stack.begin(); runner != stack.begin(); runner++)
3514// set.insert((*runner));
3515// InsertIntoGraph(out, set, graph, counter, factor);
3516//};
3517
3518/** Inserts each KeySet in \a graph2 into \a graph1.
3519 * \param *out output stream for debugging
3520 * \param graph1 first (dest) graph
3521 * \param graph2 second (source) graph
3522 * \param *counter keyset counter that gets increased
3523 */
3524inline void InsertGraphIntoGraph(ofstream *out, Graph &graph1, Graph &graph2, int *counter)
3525{
3526 GraphTestPair testGraphInsert;
3527
3528 for(Graph::iterator runner = graph2.begin(); runner != graph2.end(); runner++) {
3529 testGraphInsert = graph1.insert(GraphPair ((*runner).first,pair<int,double>((*counter)++,((*runner).second).second))); // store fragment number and current factor
3530 if (testGraphInsert.second) {
3531 *out << Verbose(2) << "KeySet " << (*counter)-1 << " successfully inserted." << endl;
3532 } else {
3533 *out << Verbose(2) << "KeySet " << (*counter)-1 << " failed to insert, present fragment is " << ((*(testGraphInsert.first)).second).first << endl;
3534 ((*(testGraphInsert.first)).second).second += (*runner).second.second;
3535 *out << Verbose(2) << "New factor is " << (*(testGraphInsert.first)).second.second << "." << endl;
3536 }
3537 }
3538};
3539
3540
3541/** Performs BOSSANOVA decomposition at selected sites, increasing the cutoff by one at these sites.
3542 * -# constructs a complete keyset of the molecule
3543 * -# In a loop over all possible roots from the given rootstack
3544 * -# increases order of root site
3545 * -# calls PowerSetGenerator with this order, the complete keyset and the rootkeynr
3546 * -# for all consecutive lower levels PowerSetGenerator is called with the suborder, the higher order keyset
3547as the restricted one and each site in the set as the root)
3548 * -# these are merged into a fragment list of keysets
3549 * -# All fragment lists (for all orders, i.e. from all destination fields) are merged into one list for return
3550 * Important only is that we create all fragments, it is not important if we create them more than once
3551 * as these copies are filtered out via use of the hash table (KeySet).
3552 * \param *out output stream for debugging
3553 * \param Fragment&*List list of already present keystacks (adaptive scheme) or empty list
3554 * \param &RootStack stack with all root candidates (unequal to each atom in complete molecule if adaptive scheme is applied)
3555 * \return pointer to Graph list
3556 */
3557void molecule::FragmentBOSSANOVA(ofstream *out, Graph *&FragmentList, KeyStack &RootStack)
3558{
3559 Graph ***FragmentLowerOrdersList = NULL;
3560 int Order, NumLevels, NumMolecules, TotalNumMolecules = 0, *NumMoleculesOfOrder = NULL;
3561 int counter = 0;
3562 int UpgradeCount = RootStack.size();
3563 KeyStack FragmentRootStack;
3564 int RootKeyNr, RootNr;
3565 struct UniqueFragments FragmentSearch;
3566
3567 *out << Verbose(0) << "Begin of FragmentBOSSANOVA." << endl;
3568
3569 // FragmentLowerOrdersList is a 2D-array of pointer to MoleculeListClass objects, one dimension represents the ANOVA expansion of a single order (i.e. 5)
3570 // with all needed lower orders that are subtracted, the other dimension is the BondOrder (i.e. from 1 to 5)
3571 NumMoleculesOfOrder = (int *) Malloc(sizeof(int)*UpgradeCount, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3572 FragmentLowerOrdersList = (Graph ***) Malloc(sizeof(Graph **)*UpgradeCount, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3573
3574 // initialise the fragments structure
3575 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
3576 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
3577 FragmentSearch.ShortestPathList = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *ShortestPathList");
3578 FragmentSearch.Labels = (int *) Malloc(sizeof(int)*AtomCount, "molecule::PowerSetGenerator: *Labels");
3579 FragmentSearch.FragmentCounter = 0;
3580 FragmentSearch.FragmentSet = new KeySet;
3581 FragmentSearch.Root = FindAtom(RootKeyNr);
3582 for (int i=0;i<AtomCount;i++) {
3583 FragmentSearch.Labels[i] = -1;
3584 FragmentSearch.ShortestPathList[i] = -1;
3585 }
3586
3587 // Construct the complete KeySet which we need for topmost level only (but for all Roots)
3588 atom *Walker = start;
3589 KeySet CompleteMolecule;
3590 while (Walker->next != end) {
3591 Walker = Walker->next;
3592 CompleteMolecule.insert(Walker->GetTrueFather()->nr);
3593 }
3594
3595 // this can easily be seen: if Order is 5, then the number of levels for each lower order is the total sum of the number of levels above, as
3596 // each has to be split up. E.g. for the second level we have one from 5th, one from 4th, two from 3th (which in turn is one from 5th, one from 4th),
3597 // hence we have overall four 2th order levels for splitting. This also allows for putting all into a single array (FragmentLowerOrdersList[])
3598 // with the order along the cells as this: 5433222211111111 for BondOrder 5 needing 16=pow(2,5-1) cells (only we use bit-shifting which is faster)
3599 RootNr = 0; // counts through the roots in RootStack
3600 while (RootNr < UpgradeCount) {
3601 RootKeyNr = RootStack.front();
3602 RootStack.pop_front();
3603 // increase adaptive order by one
3604 Walker = FindAtom(RootKeyNr);
3605 Walker->GetTrueFather()->AdaptiveOrder++;
3606 Order = Walker->AdaptiveOrder = Walker->GetTrueFather()->AdaptiveOrder;
3607
3608 // initialise Order-dependent entries of UniqueFragments structure
3609 FragmentSearch.BondsPerSPList = (bond **) Malloc(sizeof(bond *)*Order*2, "molecule::PowerSetGenerator: ***BondsPerSPList");
3610 FragmentSearch.BondsPerSPCount = (int *) Malloc(sizeof(int)*Order, "molecule::PowerSetGenerator: *BondsPerSPCount");
3611 for (int i=0;i<Order;i++) {
3612 FragmentSearch.BondsPerSPList[2*i] = new bond(); // start node
3613 FragmentSearch.BondsPerSPList[2*i+1] = new bond(); // end node
3614 FragmentSearch.BondsPerSPList[2*i]->next = FragmentSearch.BondsPerSPList[2*i+1]; // intertwine these two
3615 FragmentSearch.BondsPerSPList[2*i+1]->previous = FragmentSearch.BondsPerSPList[2*i];
3616 FragmentSearch.BondsPerSPCount[i] = 0;
3617 }
3618
3619 // allocate memory for all lower level orders in this 1D-array of ptrs
3620 NumLevels = 1 << (Order-1); // (int)pow(2,Order);
3621 FragmentLowerOrdersList[RootNr] = (Graph **) Malloc(sizeof(Graph *)*NumLevels, "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3622
3623 // create top order where nothing is reduced
3624 *out << Verbose(0) << "==============================================================================================================" << endl;
3625 *out << Verbose(0) << "Creating KeySets of Bond Order " << Order << " for " << *Walker << ", NumLevels is " << NumLevels << ", " << (RootStack.size()-RootNr-1) << " Roots remaining." << endl;
3626
3627 // Create list of Graphs of current Bond Order (i.e. F_{ij})
3628 FragmentLowerOrdersList[RootNr][0] = new Graph;
3629 FragmentSearch.TEFactor = 1.;
3630 FragmentSearch.Leaflet = FragmentLowerOrdersList[RootNr][0]; // set to insertion graph
3631 FragmentSearch.Root = Walker;
3632 NumMoleculesOfOrder[RootNr] = PowerSetGenerator(out, Walker->AdaptiveOrder, FragmentSearch, CompleteMolecule);
3633 *out << Verbose(1) << "Number of resulting KeySets is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
3634 NumMolecules = 0;
3635
3636 if ((NumLevels >> 1) > 0) {
3637 // create lower order fragments
3638 *out << Verbose(0) << "Creating list of unique fragments of lower Bond Order terms to be subtracted." << endl;
3639 Order = Walker->AdaptiveOrder;
3640 for (int source=0;source<(NumLevels >> 1);source++) { // 1-terms don't need any more splitting, that's why only half is gone through (shift again)
3641 // step down to next order at (virtual) boundary of powers of 2 in array
3642 while (source >= (1 << (Walker->AdaptiveOrder-Order))) // (int)pow(2,Walker->AdaptiveOrder-Order))
3643 Order--;
3644 *out << Verbose(0) << "Current Order is: " << Order << "." << endl;
3645 for (int SubOrder=Order-1;SubOrder>0;SubOrder--) {
3646 int dest = source + (1 << (Walker->AdaptiveOrder-(SubOrder+1)));
3647 *out << Verbose(0) << "--------------------------------------------------------------------------------------------------------------" << endl;
3648 *out << Verbose(0) << "Current SubOrder is: " << SubOrder << " with source " << source << " to destination " << dest << "." << endl;
3649
3650 // every molecule is split into a list of again (Order - 1) molecules, while counting all molecules
3651 //*out << Verbose(1) << "Splitting the " << (*FragmentLowerOrdersList[RootNr][source]).size() << " molecules of the " << source << "th cell in the array." << endl;
3652 //NumMolecules = 0;
3653 FragmentLowerOrdersList[RootNr][dest] = new Graph;
3654 for(Graph::iterator runner = (*FragmentLowerOrdersList[RootNr][source]).begin();runner != (*FragmentLowerOrdersList[RootNr][source]).end(); runner++) {
3655 for (KeySet::iterator sprinter = (*runner).first.begin();sprinter != (*runner).first.end(); sprinter++) {
3656 Graph TempFragmentList;
3657 FragmentSearch.TEFactor = -(*runner).second.second;
3658 FragmentSearch.Leaflet = &TempFragmentList; // set to insertion graph
3659 FragmentSearch.Root = FindAtom(*sprinter);
3660 NumMoleculesOfOrder[RootNr] += PowerSetGenerator(out, SubOrder, FragmentSearch, (*runner).first);
3661 // insert new keysets FragmentList into FragmentLowerOrdersList[Walker->AdaptiveOrder-1][dest]
3662 *out << Verbose(1) << "Merging resulting key sets with those present in destination " << dest << "." << endl;
3663 InsertGraphIntoGraph(out, *FragmentLowerOrdersList[RootNr][dest], TempFragmentList, &NumMolecules);
3664 }
3665 }
3666 *out << Verbose(1) << "Number of resulting molecules for SubOrder " << SubOrder << " is: " << NumMolecules << "." << endl;
3667 }
3668 }
3669 }
3670 // now, we have completely filled each cell of FragmentLowerOrdersList[] for the current Walker->AdaptiveOrder
3671 //NumMoleculesOfOrder[Walker->AdaptiveOrder-1] = NumMolecules;
3672 TotalNumMolecules += NumMoleculesOfOrder[RootNr];
3673 *out << Verbose(1) << "Number of resulting molecules for Order " << (int)Walker->GetTrueFather()->AdaptiveOrder << " is: " << NumMoleculesOfOrder[RootNr] << "." << endl;
3674 RootStack.push_back(RootKeyNr); // put back on stack
3675 RootNr++;
3676
3677 // free Order-dependent entries of UniqueFragments structure for next loop cycle
3678 Free((void **)&FragmentSearch.BondsPerSPCount, "molecule::PowerSetGenerator: *BondsPerSPCount");
3679 for (int i=0;i<Order;i++) {
3680 delete(FragmentSearch.BondsPerSPList[2*i]);
3681 delete(FragmentSearch.BondsPerSPList[2*i+1]);
3682 }
3683 Free((void **)&FragmentSearch.BondsPerSPList, "molecule::PowerSetGenerator: ***BondsPerSPList");
3684 }
3685 *out << Verbose(0) << "==============================================================================================================" << endl;
3686 *out << Verbose(1) << "Total number of resulting molecules is: " << TotalNumMolecules << "." << endl;
3687 *out << Verbose(0) << "==============================================================================================================" << endl;
3688
3689 // cleanup FragmentSearch structure
3690 Free((void **)&FragmentSearch.ShortestPathList, "molecule::PowerSetGenerator: *ShortestPathList");
3691 Free((void **)&FragmentSearch.Labels, "molecule::PowerSetGenerator: *Labels");
3692 delete(FragmentSearch.FragmentSet);
3693
3694 // now, FragmentLowerOrdersList is complete, it looks - for BondOrder 5 - as this (number is the ANOVA Order of the terms therein)
3695 // 5433222211111111
3696 // 43221111
3697 // 3211
3698 // 21
3699 // 1
3700
3701 // Subsequently, we combine all into a single list (FragmentList)
3702
3703 *out << Verbose(0) << "Combining the lists of all orders per order and finally into a single one." << endl;
3704 if (FragmentList == NULL) {
3705 FragmentList = new Graph;
3706 counter = 0;
3707 } else {
3708 counter = FragmentList->size();
3709 }
3710 RootNr = 0;
3711 while (!RootStack.empty()) {
3712 RootKeyNr = RootStack.front();
3713 RootStack.pop_front();
3714 Walker = FindAtom(RootKeyNr);
3715 NumLevels = 1 << (Walker->AdaptiveOrder - 1);
3716 for(int i=0;i<NumLevels;i++) {
3717 InsertGraphIntoGraph(out, *FragmentList, (*FragmentLowerOrdersList[RootNr][i]), &counter);
3718 delete(FragmentLowerOrdersList[RootNr][i]);
3719 }
3720 Free((void **)&FragmentLowerOrdersList[RootNr], "molecule::FragmentBOSSANOVA: **FragmentLowerOrdersList[]");
3721 RootNr++;
3722 }
3723 Free((void **)&FragmentLowerOrdersList, "molecule::FragmentBOSSANOVA: ***FragmentLowerOrdersList");
3724 Free((void **)&NumMoleculesOfOrder, "molecule::FragmentBOSSANOVA: *NumMoleculesOfOrder");
3725
3726 *out << Verbose(0) << "End of FragmentBOSSANOVA." << endl;
3727};
3728
3729/** Comparison function for GSL heapsort on distances in two molecules.
3730 * \param *a
3731 * \param *b
3732 * \return <0, \a *a less than \a *b, ==0 if equal, >0 \a *a greater than \a *b
3733 */
3734int CompareDoubles (const void * a, const void * b)
3735{
3736 if (*(double *)a > *(double *)b)
3737 return -1;
3738 else if (*(double *)a < *(double *)b)
3739 return 1;
3740 else
3741 return 0;
3742};
3743
3744/** Determines whether two molecules actually contain the same atoms and coordination.
3745 * \param *out output stream for debugging
3746 * \param *OtherMolecule the molecule to compare this one to
3747 * \param threshold upper limit of difference when comparing the coordination.
3748 * \return NULL - not equal, otherwise an allocated (molecule::AtomCount) permutation map of the atom numbers (which corresponds to which)
3749 */
3750int * molecule::IsEqualToWithinThreshold(ofstream *out, molecule *OtherMolecule, double threshold)
3751{
3752 int flag;
3753 double *Distances = NULL, *OtherDistances = NULL;
3754 vector CenterOfGravity, OtherCenterOfGravity;
3755 size_t *PermMap = NULL, *OtherPermMap = NULL;
3756 int *PermutationMap = NULL;
3757 atom *Walker = NULL;
3758 bool result = true; // status of comparison
3759
3760 *out << Verbose(3) << "Begin of IsEqualToWithinThreshold." << endl;
3761 /// first count both their atoms and elements and update lists thereby ...
3762 //*out << Verbose(0) << "Counting atoms, updating list" << endl;
3763 CountAtoms(out);
3764 OtherMolecule->CountAtoms(out);
3765 CountElements();
3766 OtherMolecule->CountElements();
3767
3768 /// ... and compare:
3769 /// -# AtomCount
3770 if (result) {
3771 if (AtomCount != OtherMolecule->AtomCount) {
3772 *out << Verbose(4) << "AtomCounts don't match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3773 result = false;
3774 } else *out << Verbose(4) << "AtomCounts match: " << AtomCount << " == " << OtherMolecule->AtomCount << endl;
3775 }
3776 /// -# ElementCount
3777 if (result) {
3778 if (ElementCount != OtherMolecule->ElementCount) {
3779 *out << Verbose(4) << "ElementCount don't match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3780 result = false;
3781 } else *out << Verbose(4) << "ElementCount match: " << ElementCount << " == " << OtherMolecule->ElementCount << endl;
3782 }
3783 /// -# ElementsInMolecule
3784 if (result) {
3785 for (flag=0;flag<MAX_ELEMENTS;flag++) {
3786 //*out << Verbose(5) << "Element " << flag << ": " << ElementsInMolecule[flag] << " <-> " << OtherMolecule->ElementsInMolecule[flag] << "." << endl;
3787 if (ElementsInMolecule[flag] != OtherMolecule->ElementsInMolecule[flag])
3788 break;
3789 }
3790 if (flag < MAX_ELEMENTS) {
3791 *out << Verbose(4) << "ElementsInMolecule don't match." << endl;
3792 result = false;
3793 } else *out << Verbose(4) << "ElementsInMolecule match." << endl;
3794 }
3795 /// then determine and compare center of gravity for each molecule ...
3796 if (result) {
3797 *out << Verbose(5) << "Calculating Centers of Gravity" << endl;
3798 DetermineCenterOfGravity(CenterOfGravity);
3799 OtherMolecule->DetermineCenterOfGravity(OtherCenterOfGravity);
3800 *out << Verbose(5) << "Center of Gravity: ";
3801 CenterOfGravity.Output(out);
3802 *out << endl << Verbose(5) << "Other Center of Gravity: ";
3803 OtherCenterOfGravity.Output(out);
3804 *out << endl;
3805 if (CenterOfGravity.Distance(&OtherCenterOfGravity) > threshold) {
3806 *out << Verbose(4) << "Centers of gravity don't match." << endl;
3807 result = false;
3808 }
3809 }
3810
3811 /// ... then make a list with the euclidian distance to this center for each atom of both molecules
3812 if (result) {
3813 *out << Verbose(5) << "Calculating distances" << endl;
3814 Distances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: Distances");
3815 OtherDistances = (double *) Malloc(sizeof(double)*AtomCount, "molecule::IsEqualToWithinThreshold: OtherDistances");
3816 Walker = start;
3817 while (Walker->next != end) {
3818 Walker = Walker->next;
3819 //for (i=0;i<AtomCount;i++) {
3820 Distances[Walker->nr] = CenterOfGravity.Distance(&Walker->x);
3821 }
3822 Walker = OtherMolecule->start;
3823 while (Walker->next != OtherMolecule->end) {
3824 Walker = Walker->next;
3825 OtherDistances[Walker->nr] = OtherCenterOfGravity.Distance(&Walker->x);
3826 }
3827
3828 /// ... sort each list (using heapsort (o(N log N)) from GSL)
3829 *out << Verbose(5) << "Sorting distances" << endl;
3830 PermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermMap");
3831 OtherPermMap = (size_t *) Malloc(sizeof(size_t)*AtomCount, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3832 gsl_heapsort_index (PermMap, Distances, AtomCount, sizeof(double), CompareDoubles);
3833 gsl_heapsort_index (OtherPermMap, OtherDistances, AtomCount, sizeof(double), CompareDoubles);
3834 PermutationMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3835 *out << Verbose(5) << "Combining Permutation Maps" << endl;
3836 for(int i=0;i<AtomCount;i++)
3837 PermutationMap[PermMap[i]] = (int) OtherPermMap[i];
3838
3839 /// ... and compare them step by step, whether the difference is individiually(!) below \a threshold for all
3840 *out << Verbose(4) << "Comparing distances" << endl;
3841 flag = 0;
3842 for (int i=0;i<AtomCount;i++) {
3843 *out << Verbose(5) << "Distances: |" << Distances[PermMap[i]] << " - " << OtherDistances[OtherPermMap[i]] << "| = " << fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) << " ?<? " << threshold << endl;
3844 if (fabs(Distances[PermMap[i]] - OtherDistances[OtherPermMap[i]]) > threshold)
3845 flag = 1;
3846 }
3847 Free((void **)&PermMap, "molecule::IsEqualToWithinThreshold: *PermMap");
3848 Free((void **)&OtherPermMap, "molecule::IsEqualToWithinThreshold: *OtherPermMap");
3849
3850 /// free memory
3851 Free((void **)&Distances, "molecule::IsEqualToWithinThreshold: Distances");
3852 Free((void **)&OtherDistances, "molecule::IsEqualToWithinThreshold: OtherDistances");
3853 if (flag) { // if not equal
3854 Free((void **)&PermutationMap, "molecule::IsEqualToWithinThreshold: *PermutationMap");
3855 result = false;
3856 }
3857 }
3858 /// return pointer to map if all distances were below \a threshold
3859 *out << Verbose(3) << "End of IsEqualToWithinThreshold." << endl;
3860 if (result) {
3861 *out << Verbose(3) << "Result: Equal." << endl;
3862 return PermutationMap;
3863 } else {
3864 *out << Verbose(3) << "Result: Not equal." << endl;
3865 return NULL;
3866 }
3867};
3868
3869/** Returns an index map for two father-son-molecules.
3870 * The map tells which atom in this molecule corresponds to which one in the other molecul with their fathers.
3871 * \param *out output stream for debugging
3872 * \param *OtherMolecule corresponding molecule with fathers
3873 * \return allocated map of size molecule::AtomCount with map
3874 * \todo make this with a good sort O(n), not O(n^2)
3875 */
3876int * molecule::GetFatherSonAtomicMap(ofstream *out, molecule *OtherMolecule)
3877{
3878 atom *Walker = NULL, *OtherWalker = NULL;
3879 *out << Verbose(3) << "Begin of GetFatherAtomicMap." << endl;
3880 int *AtomicMap = (int *) Malloc(sizeof(int)*AtomCount, "molecule::GetAtomicMap: *AtomicMap"); //Calloc
3881 for (int i=0;i<AtomCount;i++)
3882 AtomicMap[i] = -1;
3883 if (OtherMolecule == this) { // same molecule
3884 for (int i=0;i<AtomCount;i++) // no need as -1 means already that there is trivial correspondence
3885 AtomicMap[i] = i;
3886 *out << Verbose(4) << "Map is trivial." << endl;
3887 } else {
3888 *out << Verbose(4) << "Map is ";
3889 Walker = start;
3890 while (Walker->next != end) {
3891 Walker = Walker->next;
3892 if (Walker->father == NULL) {
3893 AtomicMap[Walker->nr] = -2;
3894 } else {
3895 OtherWalker = OtherMolecule->start;
3896 while (OtherWalker->next != OtherMolecule->end) {
3897 OtherWalker = OtherWalker->next;
3898 //for (int i=0;i<AtomCount;i++) { // search atom
3899 //for (int j=0;j<OtherMolecule->AtomCount;j++) {
3900 //*out << Verbose(4) << "Comparing father " << Walker->father << " with the other one " << OtherWalker->father << "." << endl;
3901 if (Walker->father == OtherWalker)
3902 AtomicMap[Walker->nr] = OtherWalker->nr;
3903 }
3904 }
3905 *out << AtomicMap[Walker->nr] << "\t";
3906 }
3907 *out << endl;
3908 }
3909 *out << Verbose(3) << "End of GetFatherAtomicMap." << endl;
3910 return AtomicMap;
3911};
3912
Note: See TracBrowser for help on using the repository browser.