source: molecuilder/src/molecule_geometry.cpp@ 71910a

Last change on this file since 71910a was 71910a, checked in by Tillmann Crueger <crueger@…>, 16 years ago

Made data internal data-structure of vector class private

  • Replaced occurences of access to internals with operator
  • moved Vector-class into LinAlg-Module
  • Reworked Vector to allow clean modularization
  • Added Plane class to describe arbitrary planes in 3d space
  • Property mode set to 100644
File size: 17.3 KB
RevLine 
[f92d00]1/*
2 * molecule_geometry.cpp
3 *
4 * Created on: Oct 5, 2009
5 * Author: heber
6 */
7
[17b3a5c]8#include "atom.hpp"
9#include "bond.hpp"
[f92d00]10#include "config.hpp"
[17b3a5c]11#include "element.hpp"
12#include "helpers.hpp"
13#include "leastsquaremin.hpp"
[543ce4]14#include "log.hpp"
[f92d00]15#include "memoryallocator.hpp"
16#include "molecule.hpp"
17
18/************************************* Functions for class molecule *********************************/
19
20
21/** Centers the molecule in the box whose lengths are defined by vector \a *BoxLengths.
22 * \param *out output stream for debugging
23 */
[543ce4]24bool molecule::CenterInBox()
[f92d00]25{
26 bool status = true;
[543ce4]27 const Vector *Center = DetermineCenterOfAll();
[f92d00]28 double *M = ReturnFullMatrixforSymmetric(cell_size);
[20895b]29 double *Minv = InverseMatrix(M);
[f92d00]30
31 // go through all atoms
32 ActOnAllVectors( &Vector::SubtractVector, Center);
33 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
34
[4ef101]35 Free(&M);
36 Free(&Minv);
[f92d00]37 delete(Center);
38 return status;
39};
40
41
42/** Bounds the molecule in the box whose lengths are defined by vector \a *BoxLengths.
43 * \param *out output stream for debugging
44 */
[543ce4]45bool molecule::BoundInBox()
[f92d00]46{
47 bool status = true;
48 double *M = ReturnFullMatrixforSymmetric(cell_size);
[20895b]49 double *Minv = InverseMatrix(M);
[f92d00]50
51 // go through all atoms
52 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
53
[4ef101]54 Free(&M);
55 Free(&Minv);
[f92d00]56 return status;
57};
58
59/** Centers the edge of the atoms at (0,0,0).
60 * \param *out output stream for debugging
61 * \param *max coordinates of other edge, specifying box dimensions.
62 */
[543ce4]63void molecule::CenterEdge(Vector *max)
[f92d00]64{
65 Vector *min = new Vector;
66
[543ce4]67// Log() << Verbose(3) << "Begin of CenterEdge." << endl;
[f92d00]68 atom *ptr = start->next; // start at first in list
69 if (ptr != end) { //list not empty?
70 for (int i=NDIM;i--;) {
[71910a]71 max->at(i) = ptr->x[i];
72 min->at(i) = ptr->x[i];
[f92d00]73 }
74 while (ptr->next != end) { // continue with second if present
75 ptr = ptr->next;
76 //ptr->Output(1,1,out);
77 for (int i=NDIM;i--;) {
[71910a]78 max->at(i) = (max->at(i) < ptr->x[i]) ? ptr->x[i] : max->at(i);
79 min->at(i) = (min->at(i) > ptr->x[i]) ? ptr->x[i] : min->at(i);
[f92d00]80 }
81 }
[543ce4]82// Log() << Verbose(4) << "Maximum is ";
[f92d00]83// max->Output(out);
[543ce4]84// Log() << Verbose(0) << ", Minimum is ";
[f92d00]85// min->Output(out);
[543ce4]86// Log() << Verbose(0) << endl;
[f92d00]87 min->Scale(-1.);
88 max->AddVector(min);
89 Translate(min);
90 Center.Zero();
91 }
92 delete(min);
[543ce4]93// Log() << Verbose(3) << "End of CenterEdge." << endl;
[f92d00]94};
95
96/** Centers the center of the atoms at (0,0,0).
97 * \param *out output stream for debugging
98 * \param *center return vector for translation vector
99 */
[543ce4]100void molecule::CenterOrigin()
[f92d00]101{
102 int Num = 0;
[f78203]103 atom *ptr = start; // start at first in list
[f92d00]104
105 Center.Zero();
106
[f78203]107 if (ptr->next != end) { //list not empty?
[f92d00]108 while (ptr->next != end) { // continue with second if present
109 ptr = ptr->next;
110 Num++;
111 Center.AddVector(&ptr->x);
112 }
113 Center.Scale(-1./Num); // divide through total number (and sign for direction)
114 Translate(&Center);
115 Center.Zero();
116 }
117};
118
119/** Returns vector pointing to center of all atoms.
120 * \return pointer to center of all vector
121 */
[543ce4]122Vector * molecule::DetermineCenterOfAll() const
[f92d00]123{
124 atom *ptr = start->next; // start at first in list
125 Vector *a = new Vector();
126 Vector tmp;
127 double Num = 0;
128
129 a->Zero();
130
131 if (ptr != end) { //list not empty?
132 while (ptr->next != end) { // continue with second if present
133 ptr = ptr->next;
134 Num += 1.;
135 tmp.CopyVector(&ptr->x);
136 a->AddVector(&tmp);
137 }
138 a->Scale(1./Num); // divide through total mass (and sign for direction)
139 }
140 return a;
141};
142
143/** Returns vector pointing to center of gravity.
144 * \param *out output stream for debugging
145 * \return pointer to center of gravity vector
146 */
[543ce4]147Vector * molecule::DetermineCenterOfGravity()
[f92d00]148{
149 atom *ptr = start->next; // start at first in list
150 Vector *a = new Vector();
151 Vector tmp;
152 double Num = 0;
153
154 a->Zero();
155
156 if (ptr != end) { //list not empty?
157 while (ptr->next != end) { // continue with second if present
158 ptr = ptr->next;
159 Num += ptr->type->mass;
160 tmp.CopyVector(&ptr->x);
161 tmp.Scale(ptr->type->mass); // scale by mass
162 a->AddVector(&tmp);
163 }
164 a->Scale(-1./Num); // divide through total mass (and sign for direction)
165 }
[543ce4]166// Log() << Verbose(1) << "Resulting center of gravity: ";
[f92d00]167// a->Output(out);
[543ce4]168// Log() << Verbose(0) << endl;
[f92d00]169 return a;
170};
171
172/** Centers the center of gravity of the atoms at (0,0,0).
173 * \param *out output stream for debugging
174 * \param *center return vector for translation vector
175 */
[543ce4]176void molecule::CenterPeriodic()
[f92d00]177{
178 DeterminePeriodicCenter(Center);
179};
180
181
182/** Centers the center of gravity of the atoms at (0,0,0).
183 * \param *out output stream for debugging
184 * \param *center return vector for translation vector
185 */
[543ce4]186void molecule::CenterAtVector(Vector *newcenter)
[f92d00]187{
188 Center.CopyVector(newcenter);
189};
190
191
192/** Scales all atoms by \a *factor.
193 * \param *factor pointer to scaling factor
194 */
[a9b2a0a]195void molecule::Scale(const double ** const factor)
[f92d00]196{
197 atom *ptr = start;
198
199 while (ptr->next != end) {
200 ptr = ptr->next;
201 for (int j=0;j<MDSteps;j++)
[567b7f]202 ptr->Trajectory.R.at(j).Scale(factor);
[f92d00]203 ptr->x.Scale(factor);
204 }
205};
206
207/** Translate all atoms by given vector.
208 * \param trans[] translation vector.
209 */
210void molecule::Translate(const Vector *trans)
211{
212 atom *ptr = start;
213
214 while (ptr->next != end) {
215 ptr = ptr->next;
216 for (int j=0;j<MDSteps;j++)
[567b7f]217 ptr->Trajectory.R.at(j).Translate(trans);
[f92d00]218 ptr->x.Translate(trans);
219 }
220};
221
222/** Translate the molecule periodically in the box.
223 * \param trans[] translation vector.
224 * TODO treatment of trajetories missing
225 */
226void molecule::TranslatePeriodically(const Vector *trans)
227{
228 double *M = ReturnFullMatrixforSymmetric(cell_size);
[20895b]229 double *Minv = InverseMatrix(M);
[f92d00]230
231 // go through all atoms
232 ActOnAllVectors( &Vector::SubtractVector, trans);
233 ActOnAllVectors( &Vector::WrapPeriodically, (const double *)M, (const double *)Minv);
234
[4ef101]235 Free(&M);
236 Free(&Minv);
[f92d00]237};
238
239
240/** Mirrors all atoms against a given plane.
241 * \param n[] normal vector of mirror plane.
242 */
243void molecule::Mirror(const Vector *n)
244{
245 ActOnAllVectors( &Vector::Mirror, n );
246};
247
248/** Determines center of molecule (yet not considering atom masses).
249 * \param center reference to return vector
250 */
251void molecule::DeterminePeriodicCenter(Vector &center)
252{
253 atom *Walker = start;
254 double *matrix = ReturnFullMatrixforSymmetric(cell_size);
[4ef101]255 double *inversematrix = InverseMatrix(cell_size);
[f92d00]256 double tmp;
257 bool flag;
258 Vector Testvector, Translationvector;
259
260 do {
261 Center.Zero();
262 flag = true;
263 while (Walker->next != end) {
264 Walker = Walker->next;
265#ifdef ADDHYDROGEN
266 if (Walker->type->Z != 1) {
267#endif
268 Testvector.CopyVector(&Walker->x);
[4ef101]269 Testvector.MatrixMultiplication(inversematrix);
[f92d00]270 Translationvector.Zero();
[872b51]271 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
272 if (Walker->nr < (*Runner)->GetOtherAtom(Walker)->nr) // otherwise we shift one to, the other fro and gain nothing
[f92d00]273 for (int j=0;j<NDIM;j++) {
[71910a]274 tmp = Walker->x[j] - (*Runner)->GetOtherAtom(Walker)->x[j];
[f92d00]275 if ((fabs(tmp)) > BondDistance) {
276 flag = false;
[543ce4]277 Log() << Verbose(0) << "Hit: atom " << Walker->Name << " in bond " << *(*Runner) << " has to be shifted due to " << tmp << "." << endl;
[f92d00]278 if (tmp > 0)
[71910a]279 Translationvector[j] -= 1.;
[f92d00]280 else
[71910a]281 Translationvector[j] += 1.;
[f92d00]282 }
283 }
284 }
285 Testvector.AddVector(&Translationvector);
286 Testvector.MatrixMultiplication(matrix);
287 Center.AddVector(&Testvector);
[71910a]288 Log() << Verbose(1) << "vector is: " << Testvector << endl;
[f92d00]289#ifdef ADDHYDROGEN
290 // now also change all hydrogens
[872b51]291 for (BondList::const_iterator Runner = Walker->ListOfBonds.begin(); Runner != Walker->ListOfBonds.end(); (++Runner)) {
292 if ((*Runner)->GetOtherAtom(Walker)->type->Z == 1) {
293 Testvector.CopyVector(&(*Runner)->GetOtherAtom(Walker)->x);
[4ef101]294 Testvector.MatrixMultiplication(inversematrix);
[f92d00]295 Testvector.AddVector(&Translationvector);
296 Testvector.MatrixMultiplication(matrix);
297 Center.AddVector(&Testvector);
[71910a]298 Log() << Verbose(1) << "Hydrogen vector is: " << Testvector << endl;
[f92d00]299 }
300 }
301 }
302#endif
303 }
304 } while (!flag);
305 Free(&matrix);
[4ef101]306 Free(&inversematrix);
307
[f92d00]308 Center.Scale(1./(double)AtomCount);
309};
310
311/** Transforms/Rotates the given molecule into its principal axis system.
312 * \param *out output stream for debugging
313 * \param DoRotate whether to rotate (true) or only to determine the PAS.
314 * TODO treatment of trajetories missing
315 */
[543ce4]316void molecule::PrincipalAxisSystem(bool DoRotate)
[f92d00]317{
318 atom *ptr = start; // start at first in list
319 double InertiaTensor[NDIM*NDIM];
[543ce4]320 Vector *CenterOfGravity = DetermineCenterOfGravity();
[f92d00]321
[543ce4]322 CenterPeriodic();
[f92d00]323
324 // reset inertia tensor
325 for(int i=0;i<NDIM*NDIM;i++)
326 InertiaTensor[i] = 0.;
327
328 // sum up inertia tensor
329 while (ptr->next != end) {
330 ptr = ptr->next;
331 Vector x;
332 x.CopyVector(&ptr->x);
333 //x.SubtractVector(CenterOfGravity);
[71910a]334 InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]);
335 InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]);
336 InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]);
337 InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]);
338 InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]);
339 InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]);
340 InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]);
341 InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]);
342 InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]);
[f92d00]343 }
344 // print InertiaTensor for debugging
[543ce4]345 Log() << Verbose(0) << "The inertia tensor is:" << endl;
[f92d00]346 for(int i=0;i<NDIM;i++) {
347 for(int j=0;j<NDIM;j++)
[543ce4]348 Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ";
349 Log() << Verbose(0) << endl;
[f92d00]350 }
[543ce4]351 Log() << Verbose(0) << endl;
[f92d00]352
353 // diagonalize to determine principal axis system
354 gsl_eigen_symmv_workspace *T = gsl_eigen_symmv_alloc(NDIM);
355 gsl_matrix_view m = gsl_matrix_view_array(InertiaTensor, NDIM, NDIM);
356 gsl_vector *eval = gsl_vector_alloc(NDIM);
357 gsl_matrix *evec = gsl_matrix_alloc(NDIM, NDIM);
358 gsl_eigen_symmv(&m.matrix, eval, evec, T);
359 gsl_eigen_symmv_free(T);
360 gsl_eigen_symmv_sort(eval, evec, GSL_EIGEN_SORT_ABS_DESC);
361
362 for(int i=0;i<NDIM;i++) {
[543ce4]363 Log() << Verbose(1) << "eigenvalue = " << gsl_vector_get(eval, i);
364 Log() << Verbose(0) << ", eigenvector = (" << evec->data[i * evec->tda + 0] << "," << evec->data[i * evec->tda + 1] << "," << evec->data[i * evec->tda + 2] << ")" << endl;
[f92d00]365 }
366
367 // check whether we rotate or not
368 if (DoRotate) {
[543ce4]369 Log() << Verbose(1) << "Transforming molecule into PAS ... ";
[f92d00]370 // the eigenvectors specify the transformation matrix
371 ActOnAllVectors( &Vector::MatrixMultiplication, (const double *) evec->data );
[543ce4]372 Log() << Verbose(0) << "done." << endl;
[f92d00]373
374 // summing anew for debugging (resulting matrix has to be diagonal!)
375 // reset inertia tensor
376 for(int i=0;i<NDIM*NDIM;i++)
377 InertiaTensor[i] = 0.;
378
379 // sum up inertia tensor
380 ptr = start;
381 while (ptr->next != end) {
382 ptr = ptr->next;
383 Vector x;
384 x.CopyVector(&ptr->x);
385 //x.SubtractVector(CenterOfGravity);
[71910a]386 InertiaTensor[0] += ptr->type->mass*(x[1]*x[1] + x[2]*x[2]);
387 InertiaTensor[1] += ptr->type->mass*(-x[0]*x[1]);
388 InertiaTensor[2] += ptr->type->mass*(-x[0]*x[2]);
389 InertiaTensor[3] += ptr->type->mass*(-x[1]*x[0]);
390 InertiaTensor[4] += ptr->type->mass*(x[0]*x[0] + x[2]*x[2]);
391 InertiaTensor[5] += ptr->type->mass*(-x[1]*x[2]);
392 InertiaTensor[6] += ptr->type->mass*(-x[2]*x[0]);
393 InertiaTensor[7] += ptr->type->mass*(-x[2]*x[1]);
394 InertiaTensor[8] += ptr->type->mass*(x[0]*x[0] + x[1]*x[1]);
[f92d00]395 }
396 // print InertiaTensor for debugging
[543ce4]397 Log() << Verbose(0) << "The inertia tensor is:" << endl;
[f92d00]398 for(int i=0;i<NDIM;i++) {
399 for(int j=0;j<NDIM;j++)
[543ce4]400 Log() << Verbose(0) << InertiaTensor[i*NDIM+j] << " ";
401 Log() << Verbose(0) << endl;
[f92d00]402 }
[543ce4]403 Log() << Verbose(0) << endl;
[f92d00]404 }
405
406 // free everything
407 delete(CenterOfGravity);
408 gsl_vector_free(eval);
409 gsl_matrix_free(evec);
410};
411
412
413/** Align all atoms in such a manner that given vector \a *n is along z axis.
414 * \param n[] alignment vector.
415 */
416void molecule::Align(Vector *n)
417{
418 atom *ptr = start;
419 double alpha, tmp;
420 Vector z_axis;
[71910a]421 z_axis[0] = 0.;
422 z_axis[1] = 0.;
423 z_axis[2] = 1.;
[f92d00]424
425 // rotate on z-x plane
[543ce4]426 Log() << Verbose(0) << "Begin of Aligning all atoms." << endl;
[71910a]427 alpha = atan(-n->at(0)/n->at(2));
[543ce4]428 Log() << Verbose(1) << "Z-X-angle: " << alpha << " ... ";
[f92d00]429 while (ptr->next != end) {
430 ptr = ptr->next;
[71910a]431 tmp = ptr->x[0];
432 ptr->x[0] = cos(alpha) * tmp + sin(alpha) * ptr->x[2];
433 ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2];
[f92d00]434 for (int j=0;j<MDSteps;j++) {
[71910a]435 tmp = ptr->Trajectory.R.at(j)[0];
436 ptr->Trajectory.R.at(j)[0] = cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2];
437 ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2];
[f92d00]438 }
439 }
440 // rotate n vector
[71910a]441 tmp = n->at(0);
442 n->at(0) = cos(alpha) * tmp + sin(alpha) * n->at(2);
443 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
444 Log() << Verbose(1) << "alignment vector after first rotation: " << n << endl;
[f92d00]445
446 // rotate on z-y plane
447 ptr = start;
[71910a]448 alpha = atan(-n->at(1)/n->at(2));
[543ce4]449 Log() << Verbose(1) << "Z-Y-angle: " << alpha << " ... ";
[f92d00]450 while (ptr->next != end) {
451 ptr = ptr->next;
[71910a]452 tmp = ptr->x[1];
453 ptr->x[1] = cos(alpha) * tmp + sin(alpha) * ptr->x[2];
454 ptr->x[2] = -sin(alpha) * tmp + cos(alpha) * ptr->x[2];
[f92d00]455 for (int j=0;j<MDSteps;j++) {
[71910a]456 tmp = ptr->Trajectory.R.at(j)[1];
457 ptr->Trajectory.R.at(j)[1] = cos(alpha) * tmp + sin(alpha) * ptr->Trajectory.R.at(j)[2];
458 ptr->Trajectory.R.at(j)[2] = -sin(alpha) * tmp + cos(alpha) * ptr->Trajectory.R.at(j)[2];
[f92d00]459 }
460 }
461 // rotate n vector (for consistency check)
[71910a]462 tmp = n->at(1);
463 n->at(1) = cos(alpha) * tmp + sin(alpha) * n->at(2);
464 n->at(2) = -sin(alpha) * tmp + cos(alpha) * n->at(2);
[f92d00]465
[71910a]466 Log() << Verbose(1) << "alignment vector after second rotation: " << n << endl;
[543ce4]467 Log() << Verbose(0) << "End of Aligning all atoms." << endl;
[f92d00]468};
469
470
471/** Calculates sum over least square distance to line hidden in \a *x.
472 * \param *x offset and direction vector
473 * \param *params pointer to lsq_params structure
474 * \return \f$ sum_i^N | y_i - (a + t_i b)|^2\f$
475 */
476double LeastSquareDistance (const gsl_vector * x, void * params)
477{
478 double res = 0, t;
479 Vector a,b,c,d;
480 struct lsq_params *par = (struct lsq_params *)params;
481 atom *ptr = par->mol->start;
482
483 // initialize vectors
[71910a]484 a[0] = gsl_vector_get(x,0);
485 a[1] = gsl_vector_get(x,1);
486 a[2] = gsl_vector_get(x,2);
487 b[0] = gsl_vector_get(x,3);
488 b[1] = gsl_vector_get(x,4);
489 b[2] = gsl_vector_get(x,5);
[f92d00]490 // go through all atoms
491 while (ptr != par->mol->end) {
492 ptr = ptr->next;
493 if (ptr->type == ((struct lsq_params *)params)->type) { // for specific type
494 c.CopyVector(&ptr->x); // copy vector to temporary one
495 c.SubtractVector(&a); // subtract offset vector
496 t = c.ScalarProduct(&b); // get direction parameter
497 d.CopyVector(&b); // and create vector
498 d.Scale(&t);
499 c.SubtractVector(&d); // ... yielding distance vector
500 res += d.ScalarProduct((const Vector *)&d); // add squared distance
501 }
502 }
503 return res;
504};
505
506/** By minimizing the least square distance gains alignment vector.
507 * \bug this is not yet working properly it seems
508 */
509void molecule::GetAlignvector(struct lsq_params * par) const
510{
511 int np = 6;
512
513 const gsl_multimin_fminimizer_type *T =
514 gsl_multimin_fminimizer_nmsimplex;
515 gsl_multimin_fminimizer *s = NULL;
516 gsl_vector *ss;
517 gsl_multimin_function minex_func;
518
519 size_t iter = 0, i;
520 int status;
521 double size;
522
523 /* Initial vertex size vector */
524 ss = gsl_vector_alloc (np);
525
526 /* Set all step sizes to 1 */
527 gsl_vector_set_all (ss, 1.0);
528
529 /* Starting point */
530 par->x = gsl_vector_alloc (np);
531 par->mol = this;
532
533 gsl_vector_set (par->x, 0, 0.0); // offset
534 gsl_vector_set (par->x, 1, 0.0);
535 gsl_vector_set (par->x, 2, 0.0);
536 gsl_vector_set (par->x, 3, 0.0); // direction
537 gsl_vector_set (par->x, 4, 0.0);
538 gsl_vector_set (par->x, 5, 1.0);
539
540 /* Initialize method and iterate */
541 minex_func.f = &LeastSquareDistance;
542 minex_func.n = np;
543 minex_func.params = (void *)par;
544
545 s = gsl_multimin_fminimizer_alloc (T, np);
546 gsl_multimin_fminimizer_set (s, &minex_func, par->x, ss);
547
548 do
549 {
550 iter++;
551 status = gsl_multimin_fminimizer_iterate(s);
552
553 if (status)
554 break;
555
556 size = gsl_multimin_fminimizer_size (s);
557 status = gsl_multimin_test_size (size, 1e-2);
558
559 if (status == GSL_SUCCESS)
560 {
561 printf ("converged to minimum at\n");
562 }
563
564 printf ("%5d ", (int)iter);
565 for (i = 0; i < (size_t)np; i++)
566 {
567 printf ("%10.3e ", gsl_vector_get (s->x, i));
568 }
569 printf ("f() = %7.3f size = %.3f\n", s->fval, size);
570 }
571 while (status == GSL_CONTINUE && iter < 100);
572
573 for (i=0;i<(size_t)np;i++)
574 gsl_vector_set(par->x, i, gsl_vector_get(s->x, i));
575 //gsl_vector_free(par->x);
576 gsl_vector_free(ss);
577 gsl_multimin_fminimizer_free (s);
578};
Note: See TracBrowser for help on using the repository browser.