| 1 | /** \file vector.cpp
|
|---|
| 2 | *
|
|---|
| 3 | * Function implementations for the class vector.
|
|---|
| 4 | *
|
|---|
| 5 | */
|
|---|
| 6 |
|
|---|
| 7 |
|
|---|
| 8 | #include "defs.hpp"
|
|---|
| 9 | #include "gslmatrix.hpp"
|
|---|
| 10 | #include "leastsquaremin.hpp"
|
|---|
| 11 | #include "memoryallocator.hpp"
|
|---|
| 12 | #include "SingleVector.hpp"
|
|---|
| 13 | #include "Helpers/fast_functions.hpp"
|
|---|
| 14 | #include "Helpers/Assert.hpp"
|
|---|
| 15 | #include "Plane.hpp"
|
|---|
| 16 | #include "Exceptions/LinearDependenceException.hpp"
|
|---|
| 17 |
|
|---|
| 18 | #include <gsl/gsl_linalg.h>
|
|---|
| 19 | #include <gsl/gsl_matrix.h>
|
|---|
| 20 | #include <gsl/gsl_permutation.h>
|
|---|
| 21 | #include <gsl/gsl_vector.h>
|
|---|
| 22 |
|
|---|
| 23 | /************************************ Functions for class vector ************************************/
|
|---|
| 24 |
|
|---|
| 25 | /** Constructor of class vector.
|
|---|
| 26 | */
|
|---|
| 27 | SingleVector::SingleVector()
|
|---|
| 28 | {
|
|---|
| 29 | x[0] = x[1] = x[2] = 0.;
|
|---|
| 30 | };
|
|---|
| 31 |
|
|---|
| 32 | /** Constructor of class vector.
|
|---|
| 33 | */
|
|---|
| 34 | SingleVector::SingleVector(const double x1, const double x2, const double x3)
|
|---|
| 35 | {
|
|---|
| 36 | x[0] = x1;
|
|---|
| 37 | x[1] = x2;
|
|---|
| 38 | x[2] = x3;
|
|---|
| 39 | };
|
|---|
| 40 |
|
|---|
| 41 | /**
|
|---|
| 42 | * Copy constructor
|
|---|
| 43 | */
|
|---|
| 44 | SingleVector::SingleVector(const Vector& src)
|
|---|
| 45 | {
|
|---|
| 46 | x[0] = src[0];
|
|---|
| 47 | x[1] = src[1];
|
|---|
| 48 | x[2] = src[2];
|
|---|
| 49 | }
|
|---|
| 50 |
|
|---|
| 51 | /**
|
|---|
| 52 | * Assignment operator
|
|---|
| 53 | */
|
|---|
| 54 | Vector& SingleVector::operator=(const Vector& src){
|
|---|
| 55 | // check for self assignment
|
|---|
| 56 | if(&src!=this){
|
|---|
| 57 | x[0] = src[0];
|
|---|
| 58 | x[1] = src[1];
|
|---|
| 59 | x[2] = src[2];
|
|---|
| 60 | }
|
|---|
| 61 | return *this;
|
|---|
| 62 | }
|
|---|
| 63 |
|
|---|
| 64 | /** Desctructor of class vector.
|
|---|
| 65 | */
|
|---|
| 66 | SingleVector::~SingleVector() {};
|
|---|
| 67 |
|
|---|
| 68 | /** Calculates square of distance between this and another vector.
|
|---|
| 69 | * \param *y array to second vector
|
|---|
| 70 | * \return \f$| x - y |^2\f$
|
|---|
| 71 | */
|
|---|
| 72 | double SingleVector::DistanceSquared(const Vector &y) const
|
|---|
| 73 | {
|
|---|
| 74 | double res = 0.;
|
|---|
| 75 | for (int i=NDIM;i--;)
|
|---|
| 76 | res += (x[i]-y[i])*(x[i]-y[i]);
|
|---|
| 77 | return (res);
|
|---|
| 78 | };
|
|---|
| 79 |
|
|---|
| 80 | /** Calculates distance between this and another vector.
|
|---|
| 81 | * \param *y array to second vector
|
|---|
| 82 | * \return \f$| x - y |\f$
|
|---|
| 83 | */
|
|---|
| 84 | double SingleVector::Distance(const Vector &y) const
|
|---|
| 85 | {
|
|---|
| 86 | double res = 0.;
|
|---|
| 87 | for (int i=NDIM;i--;)
|
|---|
| 88 | res += (x[i]-y[i])*(x[i]-y[i]);
|
|---|
| 89 | return (sqrt(res));
|
|---|
| 90 | };
|
|---|
| 91 |
|
|---|
| 92 | /** Calculates distance between this and another vector in a periodic cell.
|
|---|
| 93 | * \param *y array to second vector
|
|---|
| 94 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
|---|
| 95 | * \return \f$| x - y |\f$
|
|---|
| 96 | */
|
|---|
| 97 | double SingleVector::PeriodicDistance(const Vector &y, const double * const cell_size) const
|
|---|
| 98 | {
|
|---|
| 99 | double res = Distance(y), tmp, matrix[NDIM*NDIM];
|
|---|
| 100 | Vector Shiftedy, TranslationVector;
|
|---|
| 101 | int N[NDIM];
|
|---|
| 102 | matrix[0] = cell_size[0];
|
|---|
| 103 | matrix[1] = cell_size[1];
|
|---|
| 104 | matrix[2] = cell_size[3];
|
|---|
| 105 | matrix[3] = cell_size[1];
|
|---|
| 106 | matrix[4] = cell_size[2];
|
|---|
| 107 | matrix[5] = cell_size[4];
|
|---|
| 108 | matrix[6] = cell_size[3];
|
|---|
| 109 | matrix[7] = cell_size[4];
|
|---|
| 110 | matrix[8] = cell_size[5];
|
|---|
| 111 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
|---|
| 112 | for (N[0]=-1;N[0]<=1;N[0]++)
|
|---|
| 113 | for (N[1]=-1;N[1]<=1;N[1]++)
|
|---|
| 114 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
|---|
| 115 | // create the translation vector
|
|---|
| 116 | TranslationVector.Zero();
|
|---|
| 117 | for (int i=NDIM;i--;)
|
|---|
| 118 | TranslationVector[i] = (double)N[i];
|
|---|
| 119 | TranslationVector.MatrixMultiplication(matrix);
|
|---|
| 120 | // add onto the original vector to compare with
|
|---|
| 121 | Shiftedy = y + TranslationVector;
|
|---|
| 122 | // get distance and compare with minimum so far
|
|---|
| 123 | tmp = Distance(Shiftedy);
|
|---|
| 124 | if (tmp < res) res = tmp;
|
|---|
| 125 | }
|
|---|
| 126 | return (res);
|
|---|
| 127 | };
|
|---|
| 128 |
|
|---|
| 129 | /** Calculates distance between this and another vector in a periodic cell.
|
|---|
| 130 | * \param *y array to second vector
|
|---|
| 131 | * \param *cell_size 6-dimensional array with (xx, xy, yy, xz, yz, zz) entries specifying the periodic cell
|
|---|
| 132 | * \return \f$| x - y |^2\f$
|
|---|
| 133 | */
|
|---|
| 134 | double SingleVector::PeriodicDistanceSquared(const Vector &y, const double * const cell_size) const
|
|---|
| 135 | {
|
|---|
| 136 | double res = DistanceSquared(y), tmp, matrix[NDIM*NDIM];
|
|---|
| 137 | Vector Shiftedy, TranslationVector;
|
|---|
| 138 | int N[NDIM];
|
|---|
| 139 | matrix[0] = cell_size[0];
|
|---|
| 140 | matrix[1] = cell_size[1];
|
|---|
| 141 | matrix[2] = cell_size[3];
|
|---|
| 142 | matrix[3] = cell_size[1];
|
|---|
| 143 | matrix[4] = cell_size[2];
|
|---|
| 144 | matrix[5] = cell_size[4];
|
|---|
| 145 | matrix[6] = cell_size[3];
|
|---|
| 146 | matrix[7] = cell_size[4];
|
|---|
| 147 | matrix[8] = cell_size[5];
|
|---|
| 148 | // in order to check the periodic distance, translate one of the vectors into each of the 27 neighbouring cells
|
|---|
| 149 | for (N[0]=-1;N[0]<=1;N[0]++)
|
|---|
| 150 | for (N[1]=-1;N[1]<=1;N[1]++)
|
|---|
| 151 | for (N[2]=-1;N[2]<=1;N[2]++) {
|
|---|
| 152 | // create the translation vector
|
|---|
| 153 | TranslationVector.Zero();
|
|---|
| 154 | for (int i=NDIM;i--;)
|
|---|
| 155 | TranslationVector[i] = (double)N[i];
|
|---|
| 156 | TranslationVector.MatrixMultiplication(matrix);
|
|---|
| 157 | // add onto the original vector to compare with
|
|---|
| 158 | Shiftedy = y + TranslationVector;
|
|---|
| 159 | // get distance and compare with minimum so far
|
|---|
| 160 | tmp = DistanceSquared(Shiftedy);
|
|---|
| 161 | if (tmp < res) res = tmp;
|
|---|
| 162 | }
|
|---|
| 163 | return (res);
|
|---|
| 164 | };
|
|---|
| 165 |
|
|---|
| 166 | /** Keeps the vector in a periodic cell, defined by the symmetric \a *matrix.
|
|---|
| 167 | * \param *out ofstream for debugging messages
|
|---|
| 168 | * Tries to translate a vector into each adjacent neighbouring cell.
|
|---|
| 169 | */
|
|---|
| 170 | void SingleVector::KeepPeriodic(const double * const matrix)
|
|---|
| 171 | {
|
|---|
| 172 | // int N[NDIM];
|
|---|
| 173 | // bool flag = false;
|
|---|
| 174 | //vector Shifted, TranslationVector;
|
|---|
| 175 | Vector TestVector;
|
|---|
| 176 | // Log() << Verbose(1) << "Begin of KeepPeriodic." << endl;
|
|---|
| 177 | // Log() << Verbose(2) << "Vector is: ";
|
|---|
| 178 | // Output(out);
|
|---|
| 179 | // Log() << Verbose(0) << endl;
|
|---|
| 180 | TestVector = *this;
|
|---|
| 181 | TestVector.InverseMatrixMultiplication(matrix);
|
|---|
| 182 | for(int i=NDIM;i--;) { // correct periodically
|
|---|
| 183 | if (TestVector[i] < 0) { // get every coefficient into the interval [0,1)
|
|---|
| 184 | TestVector[i] += ceil(TestVector[i]);
|
|---|
| 185 | } else {
|
|---|
| 186 | TestVector[i] -= floor(TestVector[i]);
|
|---|
| 187 | }
|
|---|
| 188 | }
|
|---|
| 189 | TestVector.MatrixMultiplication(matrix);
|
|---|
| 190 | CopyVector(TestVector);
|
|---|
| 191 | // Log() << Verbose(2) << "New corrected vector is: ";
|
|---|
| 192 | // Output(out);
|
|---|
| 193 | // Log() << Verbose(0) << endl;
|
|---|
| 194 | // Log() << Verbose(1) << "End of KeepPeriodic." << endl;
|
|---|
| 195 | };
|
|---|
| 196 |
|
|---|
| 197 | /** Calculates scalar product between this and another vector.
|
|---|
| 198 | * \param *y array to second vector
|
|---|
| 199 | * \return \f$\langle x, y \rangle\f$
|
|---|
| 200 | */
|
|---|
| 201 | double SingleVector::ScalarProduct(const Vector &y) const
|
|---|
| 202 | {
|
|---|
| 203 | double res = 0.;
|
|---|
| 204 | for (int i=NDIM;i--;)
|
|---|
| 205 | res += x[i]*y[i];
|
|---|
| 206 | return (res);
|
|---|
| 207 | };
|
|---|
| 208 |
|
|---|
| 209 |
|
|---|
| 210 | /** Calculates VectorProduct between this and another vector.
|
|---|
| 211 | * -# returns the Product in place of vector from which it was initiated
|
|---|
| 212 | * -# ATTENTION: Only three dim.
|
|---|
| 213 | * \param *y array to vector with which to calculate crossproduct
|
|---|
| 214 | * \return \f$ x \times y \f&
|
|---|
| 215 | */
|
|---|
| 216 | void SingleVector::VectorProduct(const Vector &y)
|
|---|
| 217 | {
|
|---|
| 218 | Vector tmp;
|
|---|
| 219 | tmp[0] = x[1]* (y[2]) - x[2]* (y[1]);
|
|---|
| 220 | tmp[1] = x[2]* (y[0]) - x[0]* (y[2]);
|
|---|
| 221 | tmp[2] = x[0]* (y[1]) - x[1]* (y[0]);
|
|---|
| 222 | (*this) = tmp;
|
|---|
| 223 | };
|
|---|
| 224 |
|
|---|
| 225 |
|
|---|
| 226 | /** projects this vector onto plane defined by \a *y.
|
|---|
| 227 | * \param *y normal vector of plane
|
|---|
| 228 | * \return \f$\langle x, y \rangle\f$
|
|---|
| 229 | */
|
|---|
| 230 | void SingleVector::ProjectOntoPlane(const Vector &y)
|
|---|
| 231 | {
|
|---|
| 232 | Vector tmp;
|
|---|
| 233 | tmp = y;
|
|---|
| 234 | tmp.Normalize();
|
|---|
| 235 | tmp.Scale(ScalarProduct(tmp));
|
|---|
| 236 | *this -= tmp;
|
|---|
| 237 | };
|
|---|
| 238 |
|
|---|
| 239 | /** Calculates the minimum distance of this vector to the plane.
|
|---|
| 240 | * \param *out output stream for debugging
|
|---|
| 241 | * \param *PlaneNormal normal of plane
|
|---|
| 242 | * \param *PlaneOffset offset of plane
|
|---|
| 243 | * \return distance to plane
|
|---|
| 244 | */
|
|---|
| 245 | double SingleVector::DistanceToPlane(const Vector &PlaneNormal, const Vector &PlaneOffset) const
|
|---|
| 246 | {
|
|---|
| 247 | Vector temp;
|
|---|
| 248 |
|
|---|
| 249 | // first create part that is orthonormal to PlaneNormal with withdraw
|
|---|
| 250 | temp = (*this )- PlaneOffset;
|
|---|
| 251 | temp.MakeNormalTo(PlaneNormal);
|
|---|
| 252 | temp.Scale(-1.);
|
|---|
| 253 | // then add connecting vector from plane to point
|
|---|
| 254 | temp += (*this)-PlaneOffset;
|
|---|
| 255 | double sign = temp.ScalarProduct(PlaneNormal);
|
|---|
| 256 | if (fabs(sign) > MYEPSILON)
|
|---|
| 257 | sign /= fabs(sign);
|
|---|
| 258 | else
|
|---|
| 259 | sign = 0.;
|
|---|
| 260 |
|
|---|
| 261 | return (temp.Norm()*sign);
|
|---|
| 262 | };
|
|---|
| 263 |
|
|---|
| 264 | /** Calculates the projection of a vector onto another \a *y.
|
|---|
| 265 | * \param *y array to second vector
|
|---|
| 266 | */
|
|---|
| 267 | void SingleVector::ProjectIt(const Vector &y)
|
|---|
| 268 | {
|
|---|
| 269 | Vector helper = y;
|
|---|
| 270 | helper.Scale(-(ScalarProduct(y)));
|
|---|
| 271 | AddVector(helper);
|
|---|
| 272 | };
|
|---|
| 273 |
|
|---|
| 274 | /** Calculates the projection of a vector onto another \a *y.
|
|---|
| 275 | * \param *y array to second vector
|
|---|
| 276 | * \return Vector
|
|---|
| 277 | */
|
|---|
| 278 | Vector SingleVector::Projection(const Vector &y) const
|
|---|
| 279 | {
|
|---|
| 280 | Vector helper = y;
|
|---|
| 281 | helper.Scale((ScalarProduct(y)/y.NormSquared()));
|
|---|
| 282 |
|
|---|
| 283 | return helper;
|
|---|
| 284 | };
|
|---|
| 285 |
|
|---|
| 286 | /** Calculates norm of this vector.
|
|---|
| 287 | * \return \f$|x|\f$
|
|---|
| 288 | */
|
|---|
| 289 | double SingleVector::Norm() const
|
|---|
| 290 | {
|
|---|
| 291 | double res = 0.;
|
|---|
| 292 | for (int i=NDIM;i--;)
|
|---|
| 293 | res += this->x[i]*this->x[i];
|
|---|
| 294 | return (sqrt(res));
|
|---|
| 295 | };
|
|---|
| 296 |
|
|---|
| 297 | /** Calculates squared norm of this vector.
|
|---|
| 298 | * \return \f$|x|^2\f$
|
|---|
| 299 | */
|
|---|
| 300 | double SingleVector::NormSquared() const
|
|---|
| 301 | {
|
|---|
| 302 | return (ScalarProduct(*this));
|
|---|
| 303 | };
|
|---|
| 304 |
|
|---|
| 305 | /** Normalizes this vector.
|
|---|
| 306 | */
|
|---|
| 307 | void SingleVector::Normalize()
|
|---|
| 308 | {
|
|---|
| 309 | double res = 0.;
|
|---|
| 310 | for (int i=NDIM;i--;)
|
|---|
| 311 | res += this->x[i]*this->x[i];
|
|---|
| 312 | if (fabs(res) > MYEPSILON)
|
|---|
| 313 | res = 1./sqrt(res);
|
|---|
| 314 | Scale(&res);
|
|---|
| 315 | };
|
|---|
| 316 |
|
|---|
| 317 | /** Zeros all components of this vector.
|
|---|
| 318 | */
|
|---|
| 319 | void SingleVector::Zero()
|
|---|
| 320 | {
|
|---|
| 321 | for (int i=NDIM;i--;)
|
|---|
| 322 | this->x[i] = 0.;
|
|---|
| 323 | };
|
|---|
| 324 |
|
|---|
| 325 | /** Zeros all components of this vector.
|
|---|
| 326 | */
|
|---|
| 327 | void SingleVector::One(const double one)
|
|---|
| 328 | {
|
|---|
| 329 | for (int i=NDIM;i--;)
|
|---|
| 330 | this->x[i] = one;
|
|---|
| 331 | };
|
|---|
| 332 |
|
|---|
| 333 | /** Initialises all components of this vector.
|
|---|
| 334 | */
|
|---|
| 335 | void SingleVector::Init(const double x1, const double x2, const double x3)
|
|---|
| 336 | {
|
|---|
| 337 | x[0] = x1;
|
|---|
| 338 | x[1] = x2;
|
|---|
| 339 | x[2] = x3;
|
|---|
| 340 | };
|
|---|
| 341 |
|
|---|
| 342 | /** Checks whether vector has all components zero.
|
|---|
| 343 | * @return true - vector is zero, false - vector is not
|
|---|
| 344 | */
|
|---|
| 345 | bool SingleVector::IsZero() const
|
|---|
| 346 | {
|
|---|
| 347 | return (fabs(x[0])+fabs(x[1])+fabs(x[2]) < MYEPSILON);
|
|---|
| 348 | };
|
|---|
| 349 |
|
|---|
| 350 | /** Checks whether vector has length of 1.
|
|---|
| 351 | * @return true - vector is normalized, false - vector is not
|
|---|
| 352 | */
|
|---|
| 353 | bool SingleVector::IsOne() const
|
|---|
| 354 | {
|
|---|
| 355 | return (fabs(Norm() - 1.) < MYEPSILON);
|
|---|
| 356 | };
|
|---|
| 357 |
|
|---|
| 358 | /** Checks whether vector is normal to \a *normal.
|
|---|
| 359 | * @return true - vector is normalized, false - vector is not
|
|---|
| 360 | */
|
|---|
| 361 | bool SingleVector::IsNormalTo(const Vector &normal) const
|
|---|
| 362 | {
|
|---|
| 363 | if (ScalarProduct(normal) < MYEPSILON)
|
|---|
| 364 | return true;
|
|---|
| 365 | else
|
|---|
| 366 | return false;
|
|---|
| 367 | };
|
|---|
| 368 |
|
|---|
| 369 | /** Checks whether vector is normal to \a *normal.
|
|---|
| 370 | * @return true - vector is normalized, false - vector is not
|
|---|
| 371 | */
|
|---|
| 372 | bool SingleVector::IsEqualTo(const Vector &a) const
|
|---|
| 373 | {
|
|---|
| 374 | bool status = true;
|
|---|
| 375 | for (int i=0;i<NDIM;i++) {
|
|---|
| 376 | if (fabs(x[i] - a[i]) > MYEPSILON)
|
|---|
| 377 | status = false;
|
|---|
| 378 | }
|
|---|
| 379 | return status;
|
|---|
| 380 | };
|
|---|
| 381 |
|
|---|
| 382 | /** Calculates the angle between this and another vector.
|
|---|
| 383 | * \param *y array to second vector
|
|---|
| 384 | * \return \f$\acos\bigl(frac{\langle x, y \rangle}{|x||y|}\bigr)\f$
|
|---|
| 385 | */
|
|---|
| 386 | double SingleVector::Angle(const Vector &y) const
|
|---|
| 387 | {
|
|---|
| 388 | double norm1 = Norm(), norm2 = y.Norm();
|
|---|
| 389 | double angle = -1;
|
|---|
| 390 | if ((fabs(norm1) > MYEPSILON) && (fabs(norm2) > MYEPSILON))
|
|---|
| 391 | angle = this->ScalarProduct(y)/norm1/norm2;
|
|---|
| 392 | // -1-MYEPSILON occured due to numerical imprecision, catch ...
|
|---|
| 393 | //Log() << Verbose(2) << "INFO: acos(-1) = " << acos(-1) << ", acos(-1+MYEPSILON) = " << acos(-1+MYEPSILON) << ", acos(-1-MYEPSILON) = " << acos(-1-MYEPSILON) << "." << endl;
|
|---|
| 394 | if (angle < -1)
|
|---|
| 395 | angle = -1;
|
|---|
| 396 | if (angle > 1)
|
|---|
| 397 | angle = 1;
|
|---|
| 398 | return acos(angle);
|
|---|
| 399 | };
|
|---|
| 400 |
|
|---|
| 401 |
|
|---|
| 402 | double& SingleVector::operator[](size_t i){
|
|---|
| 403 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
|---|
| 404 | return x[i];
|
|---|
| 405 | }
|
|---|
| 406 |
|
|---|
| 407 | const double& SingleVector::operator[](size_t i) const{
|
|---|
| 408 | ASSERT(i<=NDIM && i>=0,"Vector Index out of Range");
|
|---|
| 409 | return x[i];
|
|---|
| 410 | }
|
|---|
| 411 |
|
|---|
| 412 | double& SingleVector::at(size_t i){
|
|---|
| 413 | return (*this)[i];
|
|---|
| 414 | }
|
|---|
| 415 |
|
|---|
| 416 | const double& SingleVector::at(size_t i) const{
|
|---|
| 417 | return (*this)[i];
|
|---|
| 418 | }
|
|---|
| 419 |
|
|---|
| 420 | double* SingleVector::get(){
|
|---|
| 421 | return x;
|
|---|
| 422 | }
|
|---|
| 423 | /** Scales each atom coordinate by an individual \a factor.
|
|---|
| 424 | * \param *factor pointer to scaling factor
|
|---|
| 425 | */
|
|---|
| 426 | void SingleVector::Scale(const double ** const factor)
|
|---|
| 427 | {
|
|---|
| 428 | for (int i=NDIM;i--;)
|
|---|
| 429 | x[i] *= (*factor)[i];
|
|---|
| 430 | };
|
|---|
| 431 |
|
|---|
| 432 | void SingleVector::Scale(const double * const factor)
|
|---|
| 433 | {
|
|---|
| 434 | for (int i=NDIM;i--;)
|
|---|
| 435 | x[i] *= *factor;
|
|---|
| 436 | };
|
|---|
| 437 |
|
|---|
| 438 | void SingleVector::Scale(const double factor)
|
|---|
| 439 | {
|
|---|
| 440 | for (int i=NDIM;i--;)
|
|---|
| 441 | x[i] *= factor;
|
|---|
| 442 | };
|
|---|
| 443 |
|
|---|
| 444 | /** Translate atom by given vector.
|
|---|
| 445 | * \param trans[] translation vector.
|
|---|
| 446 | */
|
|---|
| 447 | void SingleVector::Translate(const Vector &trans)
|
|---|
| 448 | {
|
|---|
| 449 | for (int i=NDIM;i--;)
|
|---|
| 450 | x[i] += trans[i];
|
|---|
| 451 | };
|
|---|
| 452 |
|
|---|
| 453 | /** Given a box by its matrix \a *M and its inverse *Minv the vector is made to point within that box.
|
|---|
| 454 | * \param *M matrix of box
|
|---|
| 455 | * \param *Minv inverse matrix
|
|---|
| 456 | */
|
|---|
| 457 | void SingleVector::WrapPeriodically(const double * const M, const double * const Minv)
|
|---|
| 458 | {
|
|---|
| 459 | MatrixMultiplication(Minv);
|
|---|
| 460 | // truncate to [0,1] for each axis
|
|---|
| 461 | for (int i=0;i<NDIM;i++) {
|
|---|
| 462 | x[i] += 0.5; // set to center of box
|
|---|
| 463 | while (x[i] >= 1.)
|
|---|
| 464 | x[i] -= 1.;
|
|---|
| 465 | while (x[i] < 0.)
|
|---|
| 466 | x[i] += 1.;
|
|---|
| 467 | }
|
|---|
| 468 | MatrixMultiplication(M);
|
|---|
| 469 | };
|
|---|
| 470 |
|
|---|
| 471 | /** Do a matrix multiplication.
|
|---|
| 472 | * \param *matrix NDIM_NDIM array
|
|---|
| 473 | */
|
|---|
| 474 | void SingleVector::MatrixMultiplication(const double * const M)
|
|---|
| 475 | {
|
|---|
| 476 | Vector C;
|
|---|
| 477 | // do the matrix multiplication
|
|---|
| 478 | C[0] = M[0]*x[0]+M[3]*x[1]+M[6]*x[2];
|
|---|
| 479 | C[1] = M[1]*x[0]+M[4]*x[1]+M[7]*x[2];
|
|---|
| 480 | C[2] = M[2]*x[0]+M[5]*x[1]+M[8]*x[2];
|
|---|
| 481 |
|
|---|
| 482 | *this = C;
|
|---|
| 483 | };
|
|---|
| 484 |
|
|---|
| 485 | /** Do a matrix multiplication with the \a *A' inverse.
|
|---|
| 486 | * \param *matrix NDIM_NDIM array
|
|---|
| 487 | */
|
|---|
| 488 | bool SingleVector::InverseMatrixMultiplication(const double * const A)
|
|---|
| 489 | {
|
|---|
| 490 | Vector C;
|
|---|
| 491 | double B[NDIM*NDIM];
|
|---|
| 492 | double detA = RDET3(A);
|
|---|
| 493 | double detAReci;
|
|---|
| 494 |
|
|---|
| 495 | // calculate the inverse B
|
|---|
| 496 | if (fabs(detA) > MYEPSILON) {; // RDET3(A) yields precisely zero if A irregular
|
|---|
| 497 | detAReci = 1./detA;
|
|---|
| 498 | B[0] = detAReci*RDET2(A[4],A[5],A[7],A[8]); // A_11
|
|---|
| 499 | B[1] = -detAReci*RDET2(A[1],A[2],A[7],A[8]); // A_12
|
|---|
| 500 | B[2] = detAReci*RDET2(A[1],A[2],A[4],A[5]); // A_13
|
|---|
| 501 | B[3] = -detAReci*RDET2(A[3],A[5],A[6],A[8]); // A_21
|
|---|
| 502 | B[4] = detAReci*RDET2(A[0],A[2],A[6],A[8]); // A_22
|
|---|
| 503 | B[5] = -detAReci*RDET2(A[0],A[2],A[3],A[5]); // A_23
|
|---|
| 504 | B[6] = detAReci*RDET2(A[3],A[4],A[6],A[7]); // A_31
|
|---|
| 505 | B[7] = -detAReci*RDET2(A[0],A[1],A[6],A[7]); // A_32
|
|---|
| 506 | B[8] = detAReci*RDET2(A[0],A[1],A[3],A[4]); // A_33
|
|---|
| 507 |
|
|---|
| 508 | // do the matrix multiplication
|
|---|
| 509 | C[0] = B[0]*x[0]+B[3]*x[1]+B[6]*x[2];
|
|---|
| 510 | C[1] = B[1]*x[0]+B[4]*x[1]+B[7]*x[2];
|
|---|
| 511 | C[2] = B[2]*x[0]+B[5]*x[1]+B[8]*x[2];
|
|---|
| 512 |
|
|---|
| 513 | *this = C;
|
|---|
| 514 | return true;
|
|---|
| 515 | } else {
|
|---|
| 516 | return false;
|
|---|
| 517 | }
|
|---|
| 518 | };
|
|---|
| 519 |
|
|---|
| 520 |
|
|---|
| 521 | /** Creates this vector as the b y *factors' components scaled linear combination of the given three.
|
|---|
| 522 | * this vector = x1*factors[0] + x2* factors[1] + x3*factors[2]
|
|---|
| 523 | * \param *x1 first vector
|
|---|
| 524 | * \param *x2 second vector
|
|---|
| 525 | * \param *x3 third vector
|
|---|
| 526 | * \param *factors three-component vector with the factor for each given vector
|
|---|
| 527 | */
|
|---|
| 528 | void SingleVector::LinearCombinationOfVectors(const Vector &x1, const Vector &x2, const Vector &x3, const double * const factors)
|
|---|
| 529 | {
|
|---|
| 530 | for(int i=NDIM;i--;)
|
|---|
| 531 | x[i] = factors[0]*x1[i] + factors[1]*x2[i] + factors[2]*x3[i];
|
|---|
| 532 | };
|
|---|
| 533 |
|
|---|
| 534 | /** Mirrors atom against a given plane.
|
|---|
| 535 | * \param n[] normal vector of mirror plane.
|
|---|
| 536 | */
|
|---|
| 537 | void SingleVector::Mirror(const Vector &n)
|
|---|
| 538 | {
|
|---|
| 539 | double projection;
|
|---|
| 540 | projection = ScalarProduct(n)/n.NormSquared(); // remove constancy from n (keep as logical one)
|
|---|
| 541 | // withdraw projected vector twice from original one
|
|---|
| 542 | for (int i=NDIM;i--;)
|
|---|
| 543 | x[i] -= 2.*projection*n[i];
|
|---|
| 544 | };
|
|---|
| 545 |
|
|---|
| 546 |
|
|---|
| 547 | /** Calculates orthonormal vector to one given vector.
|
|---|
| 548 | * Just subtracts the projection onto the given vector from this vector.
|
|---|
| 549 | * The removed part of the vector is Vector::Projection()
|
|---|
| 550 | * \param *x1 vector
|
|---|
| 551 | * \return true - success, false - vector is zero
|
|---|
| 552 | */
|
|---|
| 553 | bool SingleVector::MakeNormalTo(const Vector &y1)
|
|---|
| 554 | {
|
|---|
| 555 | bool result = false;
|
|---|
| 556 | double factor = y1.ScalarProduct(*this)/y1.NormSquared();
|
|---|
| 557 | Vector x1;
|
|---|
| 558 | x1 = factor * y1;
|
|---|
| 559 | SubtractVector(x1);
|
|---|
| 560 | for (int i=NDIM;i--;)
|
|---|
| 561 | result = result || (fabs(x[i]) > MYEPSILON);
|
|---|
| 562 |
|
|---|
| 563 | return result;
|
|---|
| 564 | };
|
|---|
| 565 |
|
|---|
| 566 | /** Creates this vector as one of the possible orthonormal ones to the given one.
|
|---|
| 567 | * Just scan how many components of given *vector are unequal to zero and
|
|---|
| 568 | * try to get the skp of both to be zero accordingly.
|
|---|
| 569 | * \param *vector given vector
|
|---|
| 570 | * \return true - success, false - failure (null vector given)
|
|---|
| 571 | */
|
|---|
| 572 | bool SingleVector::GetOneNormalVector(const Vector &GivenVector)
|
|---|
| 573 | {
|
|---|
| 574 | int Components[NDIM]; // contains indices of non-zero components
|
|---|
| 575 | int Last = 0; // count the number of non-zero entries in vector
|
|---|
| 576 | int j; // loop variables
|
|---|
| 577 | double norm;
|
|---|
| 578 |
|
|---|
| 579 | for (j=NDIM;j--;)
|
|---|
| 580 | Components[j] = -1;
|
|---|
| 581 | // find two components != 0
|
|---|
| 582 | for (j=0;j<NDIM;j++)
|
|---|
| 583 | if (fabs(GivenVector[j]) > MYEPSILON)
|
|---|
| 584 | Components[Last++] = j;
|
|---|
| 585 |
|
|---|
| 586 | switch(Last) {
|
|---|
| 587 | case 3: // threecomponent system
|
|---|
| 588 | case 2: // two component system
|
|---|
| 589 | norm = sqrt(1./(GivenVector[Components[1]]*GivenVector[Components[1]]) + 1./(GivenVector[Components[0]]*GivenVector[Components[0]]));
|
|---|
| 590 | x[Components[2]] = 0.;
|
|---|
| 591 | // in skp both remaining parts shall become zero but with opposite sign and third is zero
|
|---|
| 592 | x[Components[1]] = -1./GivenVector[Components[1]] / norm;
|
|---|
| 593 | x[Components[0]] = 1./GivenVector[Components[0]] / norm;
|
|---|
| 594 | return true;
|
|---|
| 595 | break;
|
|---|
| 596 | case 1: // one component system
|
|---|
| 597 | // set sole non-zero component to 0, and one of the other zero component pendants to 1
|
|---|
| 598 | x[(Components[0]+2)%NDIM] = 0.;
|
|---|
| 599 | x[(Components[0]+1)%NDIM] = 1.;
|
|---|
| 600 | x[Components[0]] = 0.;
|
|---|
| 601 | return true;
|
|---|
| 602 | break;
|
|---|
| 603 | default:
|
|---|
| 604 | return false;
|
|---|
| 605 | }
|
|---|
| 606 | };
|
|---|
| 607 |
|
|---|
| 608 | /**
|
|---|
| 609 | * Checks whether this vector is within the parallelepiped defined by the given three vectors and
|
|---|
| 610 | * their offset.
|
|---|
| 611 | *
|
|---|
| 612 | * @param offest for the origin of the parallelepiped
|
|---|
| 613 | * @param three vectors forming the matrix that defines the shape of the parallelpiped
|
|---|
| 614 | */
|
|---|
| 615 | bool SingleVector::IsInParallelepiped(const Vector &offset, const double * const parallelepiped) const
|
|---|
| 616 | {
|
|---|
| 617 | Vector a = (*this) - offset;
|
|---|
| 618 | a.InverseMatrixMultiplication(parallelepiped);
|
|---|
| 619 | bool isInside = true;
|
|---|
| 620 |
|
|---|
| 621 | for (int i=NDIM;i--;)
|
|---|
| 622 | isInside = isInside && ((a[i] <= 1) && (a[i] >= 0));
|
|---|
| 623 |
|
|---|
| 624 | return isInside;
|
|---|
| 625 | }
|
|---|