source: doc/userguide/userguide.xml@ 867473

Action_Thermostats Add_AtomRandomPerturbation Add_FitFragmentPartialChargesAction Add_RotateAroundBondAction Add_SelectAtomByNameAction Added_ParseSaveFragmentResults AddingActions_SaveParseParticleParameters Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_ParticleName_to_Atom Adding_StructOpt_integration_tests AtomFragments Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.5.4 Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator CombiningParticlePotentialParsing Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_BoundInBox_CenterInBox_MoleculeActions Fix_ChargeSampling_PBC Fix_ChronosMutex Fix_FitPartialCharges Fix_FitPotential_needs_atomicnumbers Fix_ForceAnnealing Fix_IndependentFragmentGrids Fix_ParseParticles Fix_ParseParticles_split_forward_backward_Actions Fix_PopActions Fix_QtFragmentList_sorted_selection Fix_Restrictedkeyset_FragmentMolecule Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns Fix_fitting_potentials Fixes ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion FragmentAction_writes_AtomFragments FragmentMolecule_checks_bonddegrees GeometryObjects Gui_Fixes Gui_displays_atomic_force_velocity ImplicitCharges IndependentFragmentGrids IndependentFragmentGrids_IndividualZeroInstances IndependentFragmentGrids_IntegrationTest IndependentFragmentGrids_Sole_NN_Calculation JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix MoreRobust_FragmentAutomation ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PdbParser_setsAtomName PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks Rewrite_FitPartialCharges RotateToPrincipalAxisSystem_UndoRedo SaturateAtoms_findBestMatching SaturateAtoms_singleDegree StoppableMakroAction Subpackage_CodePatterns Subpackage_JobMarket Subpackage_LinearAlgebra Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg Switchable_LogView ThirdParty_MPQC_rebuilt_buildsystem TrajectoryDependenant_MaxOrder TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps TremoloParser_setsAtomName Ubuntu_1604_changes stable
Last change on this file since 867473 was 867473, checked in by Frederik Heber <heber@…>, 10 years ago

Added new RemoveAction for molecules.

  • also add regression test.
  • added remove-molecule to userguide.
  • Property mode set to 100644
File size: 123.2 KB
Line 
1<?xml version="1.0" encoding="UTF-8"?>
2<!DOCTYPE book PUBLIC "-//OASIS//DTD DocBook XML V4.5//EN"
3 "http://www.oasis-open.org/docbook/xml/4.5/docbookx.dtd" [
4<!ENTITY molecuilder_logo SYSTEM "pictures/molecuilder_logo.png" NDATA PNG>
5<!ENTITY dialog_box SYSTEM "pictures/dialog_box.png" NDATA PNG>
6<!ENTITY dialog_add-atom_tooltip SYSTEM "pictures/dialog_add-atom_tooltip.png" NDATA PNG>
7<!ENTITY dialog_complex SYSTEM "pictures/dialog_complex.png" NDATA PNG>
8<!ENTITY dialog_exit SYSTEM "pictures/dialog_exit.png" NDATA PNG>
9<!ENTITY example_basic_view SYSTEM "pictures/example_basic_view.png" NDATA PNG>
10]>
11<book version="5.0" xmlns="http://docbook.org/ns/docbook"
12 xmlns:xlink="http://www.w3.org/1999/xlink"
13 xmlns:xi="http://www.w3.org/2001/XInclude"
14 xmlns:svg="http://www.w3.org/2000/svg"
15 xmlns:m="http://www.w3.org/1998/Math/MathML"
16 xmlns:html="http://www.w3.org/1999/xhtml"
17 xmlns:db="http://docbook.org/ns/docbook">
18 <info>
19 <title>MoleCuilder - a Molecule Builder</title>
20
21 <author>
22 <personname><firstname>Frederik</firstname><surname>Heber</surname></personname>
23
24 <affiliation>
25 <orgname>heber@ins.uni-bonn.de</orgname>
26 </affiliation>
27 </author>
28
29 <pubdate>07/03/14</pubdate>
30 </info>
31
32 <chapter>
33 <title>Introduction</title>
34
35 <figure>
36 <title>MoleCuilder logo depicting a tesselated buckyball and a benzene
37 molecule</title>
38
39 <mediaobject>
40 <imageobject>
41 <imagedata entityref="molecuilder_logo" scalefit="1" width="100%"/>
42 </imageobject>
43 </mediaobject>
44 </figure>
45
46 <section xml:id='whatis'>
47 <title xml:id='whatis.title'>What is MoleCuilder?</title>
48
49 <para>In Short,<command> MoleCuilder</command> is a concatenation of
50 molecule and builder.</para>
51
52 <para>In more words, molecular dynamics simulations are frequently
53 employed to simulate material behavior under stress, chemical reactions
54 such as of cementitious materials, or folding pathways and docking
55 procedures of bio proteins. Even if the computational load, due to the
56 large number of atoms, is very demanding, nonetheless they may serve as
57 a starting point, e.g. extracting parameters for a coarser model.
58 However, what is on the other hand the starting point of molecular
59 dynamics simulations? It is the coordinate and element of each atom
60 combined with potential functions that model the interactions.</para>
61
62 <para>MoleCuilder allows to fully construct such a starting point:
63 letting the user construct atomic and molecular geometries by a simple
64 point&amp;click approach, a CAD-pendant on the nanoscale. Creating
65 suitable empirical potentials by fitting parameters to ab-initio
66 calculations within hours. Specific emphasis is placed on a
67 simple-to-use interface, allowing for the quick-and-dirty building of
68 molecular systems, and on scriptability. Eventually, not a single, but
69 many, related molecular systems have to be created.</para>
70
71 <section xml:id='installation'>
72 <title xml:id='installation.title'>Installation requirements</title>
73
74 <para>For installations requirements and instructions we refer to the
75 internal documentation of MoleCuilder, created via doxgen from the
76 source code.</para>
77 </section>
78
79 <section xml:id='license'>
80 <title xml:id='license.title'>License</title>
81
82 <para>As long as no other license statement is given, MoleCuilder is
83 free for user under the GNU Public License (GPL) Version 2 (see
84 <uri>www.gnu.de/documents/gpl-2.0.de.html</uri>).</para>
85 </section>
86
87 <section xml:id='disclaimer'>
88 <title xml:id='disclaimer.title'>Disclaimer</title>
89
90 <para>We quote section 11 from the GPLv2 license:</para>
91
92 <remark>Because the program is licensed free of charge, there is not
93 warranty for the program, to the extent permitted by applicable law.
94 Except when otherwise stated in writing in the copyright holders
95 and/or other parties provide the program "as is" without warranty of
96 any kind, either expressed or implied. Including, but not limited to,
97 the implied warranties of merchantability and fitness for a particular
98 purpose. The entire risk as to the quality and performance of the
99 program is with you. Should the program prove defective, you assume
100 the cost of all necessary servicing, repair, or correction.</remark>
101 </section>
102
103 <section xml:id='feedback'>
104 <title xml:id='feedback.title'>Feedback</title>
105
106 <para>If you encounter any bugs, errors, or would like to submit
107 feature request, please use the email address provided at the very
108 beginning of this user guide. The author is especially thankful for
109 any description of all related events prior to occurrence of the
110 error, saved "session scripts" (see below) and auxiliary files. Please
111 mind sensible space restrictions of email attachments.</para>
112 </section>
113
114 <section xml:id='notation'>
115 <title xml:id='notation.title'>Notation</title>
116
117 <para>We briefly explain a few specific wordings associated with the
118 program:</para>
119
120 <itemizedlist>
121 <listitem>
122 <para><emphasis>Action</emphasis> is a command that allows for
123 undoing and redoing, i.e. a single atomic procedure for
124 manipulating the molecular system.</para>
125 </listitem>
126
127 <listitem>
128 <para>Selection refers to a subsets from the set of instances of a
129 particular type, e.g. atoms.</para>
130 </listitem>
131
132 <listitem>
133 <para>Shape means a specific region of the domain that can be
134 described in the way of constructive geometry, i.e. as the
135 intersection, negation, and combination of primitives such as
136 spheres or cylinders.</para>
137 </listitem>
138 </itemizedlist>
139 </section>
140
141 <section xml:id='completeness'>
142 <title xml:id='completeness.title'>Completeness</title>
143
144 <para>This documentation takes quite some effort to write. Hence, the
145 described features and especially the actions herein are settled with
146 respect to their functionality, while newer features or actions are
147 probably missing. This should be a clear sign to you that these are
148 probably not safe to use yet. If you nonetheless require them and thus
149 should acquire some familiarity with the code itself. This suggests
150 changing to the developer documentation which is maintained along with
151 the source code with <productname>doxygen</productname>.</para>
152 </section>
153 </section>
154 </chapter>
155
156 <chapter>
157 <title>Features</title>
158
159 <para>Basically, <command>MoleCuilder</command> parses geometries from
160 files, manipulates them and stores them again in files. The manipulation
161 can be done either via a command-line interface or via the graphical user
162 interface.</para>
163
164 <section xml:id='concepts'>
165 <title xml:id='concepts.title'>Concepts</title>
166
167 <para>In general, we divide the molecular systems into three different
168 components or scales.</para>
169
170 <orderedlist>
171 <listitem>
172 <para>Atoms</para>
173
174 <para>Atoms are the undividable objects of the molecular systems.
175 They have an element <quote>Z</quote> and three coordinates
176 <quote>(x,y,z)</quote>.</para>
177 </listitem>
178
179 <listitem>
180 <para>Molecules</para>
181
182 <para>Molecules are bound conglomeration of atoms. They contain a
183 number of atoms and a specific center in the domain such that its
184 atoms are placed relative to this center. Also, they may have a
185 bounding box, i.e. a subdomain that contains all of the atoms in the
186 molecule.</para>
187
188 <para>Note that the molecular structure of the system, i.e. the
189 bonding graph, is determined by MoleCuilder and used to dissect the
190 system into distinct molecules automatically.</para>
191 </listitem>
192
193 <listitem>
194 <para>Clusters</para>
195
196 <para>Clusters are unbound conglomeration of atoms. Clusters serves
197 as groups of atoms for specific operations that would be to
198 restricted if they worked on just molecules.</para>
199 </listitem>
200
201 <listitem>
202 <para>Domain</para>
203
204 <para>The domain refers to the simulation domain. It is
205 parallelepiped in <inlineequation>
206 <m:math display="inline">
207 <m:mi>\mathbb{R}^3</m:mi>
208 </m:math>
209 </inlineequation>where either periodic, wrapped, or open boundary
210 conditions apply. The domain contains all atoms, i.e. the box
211 containing all atoms.</para>
212 </listitem>
213 </orderedlist>
214 </section>
215
216 <section xml:id='interfaces'>
217 <title xml:id='interfaces.title'>Interfaces</title>
218
219 <para>MoleCuilder has four different interfaces: Command-line, text
220 menu, graphical user interface, and python interface.</para>
221
222 <orderedlist>
223 <listitem>
224 <para>Command-Line</para>
225
226 <para>The command-line interface allows to use MoleCuilder
227 non-interactively via a terminal session. The program is executed by
228 expanding the shell command with a number of commands including all
229 required options that are executed one after the other. After
230 execution of the last command, the program quits. The command-line
231 interface usually works on a specific file that is given as input,
232 manipulated, analysed, ... via the sequence of commands and
233 eventually all changes are stored in the this file. Hence, the input
234 file acts as the state of the starting configuration that is
235 modified via MoleCuilder.</para>
236 </listitem>
237
238 <listitem>
239 <para>Text menu</para>
240
241 <para>The text-menu is similar to the command-line interface with
242 the exception that it allows for interactive sessions. Commands are
243 chosen from a text menu and executed directly after selection by the
244 user.</para>
245 </listitem>
246
247 <listitem>
248 <para>Graphical interface</para>
249
250 <para>The graphical interface is based on Qt. It features a full
251 graphical representation of the simulation domain with atoms and
252 their bonds. It allows manipulation in point&amp;click fashion.
253 Commands are selected from pull-down menus and dialogs are used to
254 query the user for all required parameters to such a command.</para>
255 </listitem>
256
257 <listitem>
258 <para>Python interface</para>
259
260 <para>The last interface is accessible only within the python
261 programming language. MoleCuilder can be loaded as a module and its
262 commands can be executed with either the python interpreter
263 interactively or via python scripts non-interactively. Note that
264 this allows auxiliary calculations to be performed in pythons whose
265 results may be used as parameters in subsequent commands.</para>
266 </listitem>
267 </orderedlist>
268 </section>
269
270 <section xml:id='fileformats'>
271 <title xml:id='fileformats.title'>Known File formats</title>
272
273 <para>We briefly the file formats MoleCuilder can parse and
274 store.</para>
275
276 <itemizedlist>
277 <listitem>
278 <para>XYZ, <filename>.xyz</filename> (simplest of all formats,
279 line-wise element and three coordinates with two line header, number
280 of lines and a comment line)</para>
281 </listitem>
282
283 <listitem>
284 <para><link xlink:href="http://www.mpqc.org/"><productname>MPQC
285 </productname></link>, <filename>.in</filename></para>
286 </listitem>
287
288 <listitem>
289 <para><link xlink:href="http://www.pdb.org/">PDB</link>, <filename>
290 .pdb</filename></para>
291 </listitem>
292
293 <listitem>
294 <para><productname>ESPACK</productname>, <filename>.conf</filename>
295 (electronic structure package by Institute for Numerical Simulation,
296 University of Bonn, code not in circulation)</para>
297 </listitem>
298
299 <listitem>
300 <para><link xlink:href="http://www.psicode.org/"><productname>PSI4
301 </productname></link>, <filename>.psi</filename></para>
302 </listitem>
303
304 <listitem>
305 <para><link xlink:href="http://www.tremolo-x.org/"><productname>
306 TREMOLO</productname></link>, <filename>.data</filename></para>
307 </listitem>
308
309 <listitem>
310 <para>XML, <filename>.xml</filename> (XML as read by
311 <link xlink:href="http://www.scafacos.org/">ScaFaCoS</link>
312 project)</para>
313 </listitem>
314 </itemizedlist>
315
316 <para>These are identified via their suffixes and can be converted from
317 one into another (with loss of all data not in the intersection of
318 stored properties of the two involved file formats).</para>
319 </section>
320 </chapter>
321
322 <chapter>
323 <title>Interfaces</title>
324
325 <para>In this chapter, we explain the intention and use of the four
326 interfaces.</para>
327
328 <para>We give the most extensive explanation of the command-line
329 interface, all subsequent interfaces are explained in highlighting their
330 differences with respect to the command-line interface. This is because
331 the command-line lends itself very well to representation in this textual
332 user guide. Although some images of the graphical interface are given
333 below, they would blow the size of the guide out of proportion.</para>
334
335 <para>In any case, you should make yourself familiar with at least one of
336 the interactive (text menu, GUI) and one of the non-interactive
337 (command-line, python) interfaces to use MoleCuilder to is full potential:
338 The interactive interface gives you the immediate feedback in constructing
339 "synthesis" (build) chains (of commands) for constructing your specific
340 molecular system in the computer. The non-interactive interface lends
341 itself to quick creation of related systems that differ only by specific
342 parameters you have modified in the script (command-line can be used in
343 shell scripts, python itself is a scripted language). Also, the
344 non-interactive interfaces are used for storing sessions which helps you
345 in documentation your experiments and lateron understanding of what has
346 been done.</para>
347
348 <section xml:id='command-line-interface'>
349 <title xml:id='command-line-interface.title'>Command-line interface</title>
350
351 <para>The command-line interface reads options and commands from the
352 command line and executes them sequentially. This may be for example:
353 Open an empty file, add 2 hydrogen atoms and add 1 oxygen atom, choose a
354 simulation box, fill the box with this given "filler" molecule, save the
355 file. This enables the use of MoleCuilder in simple script-files to
356 create a whole range of geometries that only differ in a few parameters
357 automatically.</para>
358
359 <para>Traditionally, <command>MoleCuilder</command> operates on a single
360 configuration file - the state - which may also store additional
361 information depending on the chosen file format such as parameters for
362 ab-initio computations. An example for the above procedure is given
363 below:</para>
364
365 <programlisting>
366 ./molecuilder \
367 -i sample.xyz \
368 --add-atom H \
369 --domain-position "0.,0.,0." \
370 ...
371 </programlisting>
372
373 <para>The first argument is the executable itself. Second, there is a
374 slew of arguments -- one per line split with a backslash telling the
375 shell that the line still continues -- consisting of the input action and
376 an arbitrarily named file <filename>sample.xyz</filename>, which may be
377 empty and whose file format is chosen by the given extension. The third
378 is the add-atom action following by an option that gives the position in
379 the domain where to add the "H"ydrogen atom. An action is always
380 introduced via a double hyphen and its full name (containing just
381 non-capital letters and hyphens) or a single hyphen and a single letter
382 for its shortform, e.g. -a for adding an atom to the system. It is
383 followed by a fixed number of options. Most of these have default values
384 and in this do not have to be specified. If not enough options are given
385 or invalid values have been entered, an error message is printed stating
386 the name of the first missing or invalid option value.</para>
387
388 <note>
389 <para>Note that not all action have shortforms and it is best practice
390 to have the full action name instead of its shortform to make the
391 command-line understable to you in years to come.</para>
392 </note>
393
394 <section xml:id='preliminaries'>
395 <title xml:id='preliminaries.title'>Preliminaries</title>
396
397 <para>Some preliminary remarks are in order which we have gathered
398 here on how these actions work in general.</para>
399
400 <para>Below we first delve into some details about secondary structure
401 such as selections, shapes, and randomization required to specify
402 subsets of atoms and molecules you wish to manipulate. Then, we have
403 ordered the subsequent details on the manipulation depending on the
404 scale they act upon - single atoms, multiple atoms organised as
405 molecules, and all atoms organised by their containing domain.</para>
406
407 <para>In the following we will always give a command to illustrate the
408 procedure but just the necessary parts, i.e. "..." implies to prepend
409 it with the executable and input command for a specific configuration
410 file, for storing the manipulated state of the molecular system. Note
411 that</para>
412
413 <programlisting>./molecuilder --help</programlisting>
414
415 <para>will always give you a list of all available actions and also a
416 brief explanation on how to properly enter values of a specific type,
417 e.g. an element, a vector, or a list of numbers. Details to a specific
418 action can be requested when its full name is known, e.g. for
419 "add-atom",</para>
420
421 <programlisting>./molecuilder --help --actionname add-atom</programlisting>
422
423 <para>which fills you in on each option to the action: its full name,
424 its expected type, and a possibly present default value, and a brief
425 description of the option.</para>
426
427 <para>An Action can be undone and redone, e.g. undo adding an atom as
428 follows,</para>
429
430 <programlisting>... --add-atom H --domain-position "0,0,0" --undo</programlisting>
431
432 <para>and redo as follows</para>
433
434 <programlisting>... --add-atom H --domain-position "0,0,0" --undo --redo</programlisting>
435
436 <para>With the non-interactive interfaces this may seem rather
437 superfluous but it comes in very handy in the interactive ones. Also
438 this tells you that actions are placed in a queue, i.e. a history,
439 that undo and redo manipulate.</para>
440 </section>
441
442 <section xml:id='fileparsers'>
443 <title xml:id='fileparsers.title'>File parsers</title>
444
445 <para>We have already given a list of all known file formats, see
446 <link linkend="fileformats">File formats</link>. Next, we explain how these
447 file formats are picked and manipulated.</para>
448
449 <section xml:id='fileparsers.parsing'>
450 <title xml:id='fileparsers.parsing.title'>Parsing files</title>
451
452 <para>We already discussed that the command-line interface works
453 state-based and hence you should supply it with a file to work
454 on.</para>
455
456 <programlisting>... --input water.data</programlisting>
457
458 <para>This will load all information, especially atoms with their
459 element and position, from the file <filename>water.data</filename>
460 into the state. All changes will eventually be stored to this file,
461 or to files with the prefix <filename>water</filename> and suffixes
462 of desired file formats, e.g. <filename>water.in</filename> if you
463 specified <productname>MPQC</productname>.</para>
464
465 <programlisting>... --load morewater.xyz</programlisting>
466
467 <para>This will load another file <filename>water.xyz</filename>,
468 however changes will still be written to files prefixed with
469 <filename>water</filename>. Note that now already two state files
470 will stored, <filename>water.data</filename> and
471 <filename>water.xyz</filename> as these two different file formats
472 have been used.</para>
473 </section>
474
475 <section xml:id='fileparsers.set-output'>
476 <title xml:id='fileparsers.set-output.tile'>Adding output file
477 formats</title>
478
479 <para>We already know that loading a file also picks a file format
480 by its suffix. We may add further file formats to which the state of
481 the molecular system on program exit.</para>
482
483 <programlisting>... --set-output mpqc tremolo</programlisting>
484
485 <para>This will store the final state of the molecular systems as
486 <productname>MPQC</productname> and as
487 <productname>TREMOLO</productname> configuration file.</para>
488 </section>
489
490 <section xml:id='fileparsers.output-as'>
491 <title xml:id='fileparsers.output-as.title'>Output the current
492 molecular system</title>
493
494 <para>This will store the current World, i.e. all its atoms, to a
495 given file, where the output format is determined from the file
496 suffix.</para>
497
498 <programlisting>... --output-as world.xyz</programlisting>
499 </section>
500
501 <section xml:id='fileparsers.save-selected-molecules'>
502 <title xml:id='fileparsers.save-selected-molecules.title'>Output
503 the current molecular system</title>
504
505 <para>This will store all atoms contained in the currently selected
506 molecules to file. This is different to "store-saturated-fragment"
507 as it will not saturate dangling bonds because only whole molecules,
508 i.e. whose bond graph is connected, will be stored.</para>
509
510 <programlisting>... --save-selected-molecules waters.pdb
511 </programlisting>
512 </section>
513
514 <section xml:id='fileparsers.bond-file'>
515 <title xml:id='fileparsers.bond-file.title'>Load extra bond
516 information</title>
517
518 <para>For some parsers bond information is stored not with the atoms
519 coordinates but in an extra file. This action parses such a file.</para>
520
521 <programlisting>... --bond-file water.dbond
522 </programlisting>
523 </section>
524 </section>
525
526 <section xml:id='selections'>
527 <title xml:id='selections.title'>Selections and unselections</title>
528
529 <para>In order to tell MoleCuilder on what subset of atoms a specific
530 Action is to be performed, there are <emphasis>selection
531 actions</emphasis>. Note that a selection per se does not change
532 anything in the state of the molecular system in any way.</para>
533
534 <para>Selections either work on atoms, on molecules, or on shapes
535 (this we explain lateron). A given selection is maintained from the
536 execution of the selection action to the end of program or until
537 modified by another selection applied on the same type (atom,
538 molecule, shape).</para>
539
540 <para>We only give a brief list on the kind of selections per type,
541 each action is executed either as follows, exemplified by selecting
542 all atoms.</para>
543
544 <programlisting>.... --select-all-atoms</programlisting>
545
546 <para>or, exemplified by unselecting the last molecule,</para>
547
548 <programlisting>... --unselect-molecule-by-order -1</programlisting>
549
550 <itemizedlist>
551 <listitem>
552 <para>Atoms</para>
553
554 <itemizedlist>
555 <listitem>
556 <para>All</para>
557 <programlisting>
558 ... --select-all-atoms
559 </programlisting>
560 </listitem>
561
562 <listitem>
563 <para>None</para>
564 <programlisting>
565 ... --unselect-all-atoms
566 </programlisting>
567 <programlisting>
568 ... --clear-atom-selection
569 </programlisting>
570 </listitem>
571
572 <listitem>
573 <para>Invert selection</para>
574 <programlisting>
575 ... --invert-atoms
576 </programlisting>
577 </listitem>
578
579 <listitem>
580 <para>By Element (all hydrogen atoms, all sulphur atoms,
581 ...)</para>
582 <programlisting>
583 ... --select-atom-by-element 1
584 </programlisting>
585 <programlisting>
586 ... --unselect-atom-by-element 1
587 </programlisting>
588 </listitem>
589
590 <listitem>
591 <para>By Id (atom with id 76)</para>
592 <programlisting>
593 ... --select-atom-by-id 76
594 </programlisting>
595 <programlisting>
596 ... --unselect-atom-by-id 76
597 </programlisting>
598 </listitem>
599
600 <listitem>
601 <para>By Order (the first (1), the second, ... the last
602 created(-1), the last but one)</para>
603 <programlisting>
604 ... --select-atom-by-order 1
605 </programlisting>
606 <programlisting>
607 ... --unselect-atom-by-order -2
608 </programlisting>
609 </listitem>
610
611 <listitem>
612 <para>By Shape (specific region of the domain)</para>
613 <programlisting>
614 ... --select-atom-inside-volume
615 </programlisting>
616 <programlisting>
617 ... --unselect-atoms-inside-volume
618 </programlisting>
619 </listitem>
620
621 <listitem>
622 <para>By Molecule (all atoms belonging to currently selected
623 molecules)</para>
624 <programlisting>
625 ... --select-molecules-atoms
626 </programlisting>
627 <programlisting>
628 ... --unselect-molecules-atoms
629 </programlisting>
630 </listitem>
631 </itemizedlist>
632 </listitem>
633
634 <listitem>
635 <para>Molecules</para>
636
637 <itemizedlist>
638 <listitem>
639 <para>All</para>
640 <programlisting>
641 ... --select-all-molecules
642 </programlisting>
643 </listitem>
644
645 <listitem>
646 <para>None</para>
647 <programlisting>
648 ... --unselect-all-molecules
649 </programlisting>
650 <programlisting>
651 ... --clear-molecule-selection
652 </programlisting>
653 </listitem>
654
655 <listitem>
656 <para>Invert selection</para>
657 <programlisting>
658 ... --invert-molecules
659 </programlisting>
660 </listitem>
661
662 <listitem>
663 <para>By Id (molecule with id 4)</para>
664 <programlisting>
665 ... --select-molecule-by-id 2
666 </programlisting>
667 <programlisting>
668 ... --unselect-molecule-by-id 2
669 </programlisting>
670 </listitem>
671
672 <listitem>
673 <para>By Order (first created molecule, second created
674 molecule, ...)</para>
675 <programlisting>
676 ... --select-molecule-by-order 2
677 </programlisting>
678 <programlisting>
679 ... --unselect-molecule-by-order -2
680 </programlisting>
681 </listitem>
682
683 <listitem>
684 <para>By Formula (molecule with H2O as formula)</para>
685 <programlisting>
686 ... --select-molecules-by-formula "H2O"
687 </programlisting>
688 <programlisting>
689 ... --unselect-molecules-by-formula "H2O"
690 </programlisting>
691 </listitem>
692
693 <listitem>
694 <para>By Name (molecule named "water4")</para>
695 <programlisting>
696 ... --select-molecules-by-name "water4"
697 </programlisting>
698 <programlisting>
699 ... --unselect-molecules-by-name "water4"
700 </programlisting>
701 </listitem>
702
703 <listitem>
704 <para>By Atom (all molecules for which at least one atom is
705 currently selected)</para>
706 <programlisting>
707 ... --select-atoms-molecules
708 </programlisting>
709 <programlisting>
710 ... --unselect-atoms-molecules
711 </programlisting>
712 </listitem>
713 </itemizedlist>
714 </listitem>
715
716 <listitem>
717 <para>Shapes</para>
718
719 <itemizedlist>
720 <listitem>
721 <para>All</para>
722 <programlisting>
723 ... --select-all-shapes
724 </programlisting>
725 </listitem>
726
727 <listitem>
728 <para>None</para>
729 <programlisting>
730 ... --unselect-all-shapes
731 </programlisting>
732 </listitem>
733
734 <listitem>
735 <para>By Name (shape name "sphere1")</para>
736 <programlisting>
737 ... --select-shape-by-name "sphere1"
738 </programlisting>
739 <programlisting>
740 ... --unselect-shape-by-name "sphere1"
741 </programlisting>
742 </listitem>
743 </itemizedlist>
744 </listitem>
745
746 </itemizedlist>
747
748 <remark>Note that an unselected instance (e.g. an atom) remains
749 unselected upon further unselection and vice versa with
750 selection.</remark>
751
752 <para>These above selections work then in conjunction with other
753 actions and make them very powerful, e.g. you can remove all atoms
754 inside a sphere by a selecting the spherical shape and subsequently
755 selecting all atoms inside the shape and then removing them.</para>
756 </section>
757
758 <section xml:id='shapes'>
759 <title xml:id='shapes.title'>Shapes</title>
760
761 <para>Shapes are specific regions of the domain. There are just a few
762 so-called <emphasis>primitive</emphasis> shapes such as cuboid,
763 sphere, cylinder, the whole domain, none of it. However, these can be
764 combined via boolean operations such as and, or, and not. This
765 approach is called <emphasis>constructive geometry</emphasis>. E.g. by
766 combining a sphere with the negated (not) of a smaller sphere, we
767 obtain a spherical surface of specific thickness.</para>
768
769 <section xml:id='shapes.create-shape'>
770 <title xml:id='shapes.create-shape.title'>Creating shapes</title>
771
772 <para>Primitive shapes can be created as follows,</para>
773
774 <programlisting>
775 ... --create-shape \
776 --shape-type sphere \
777 --shape-name "sphere1" \
778 --stretch "2,2,2" \
779 --translation "5,5,5"
780 </programlisting>
781
782 <para>This will create a sphere of radius 2 (initial radius is 1)
783 with name "sphere1" that is centered at (5,5,5). Other primitives at
784 cuboid and cylinder, where a rotation can be specified as
785 follows.</para>
786
787 <programlisting>
788 ... --create-shape \
789 --shape-type cuboid \
790 --shape-name "box" \
791 --stretch "1,2,2" \
792 --translation "5,5,5" \
793 --angle-x "90"
794 </programlisting>
795 </section>
796
797 <section xml:id='shapes.combine-shapes'>
798 <title xml:id='shapes.combine-shapes.title'>Combining shapes</title>
799
800 <para>Any two shapes can be combined by boolean operations as follows</para>
801
802 <programlisting>
803 ... --combine-shapes \
804 --shape-name "combinedshape" \
805 --shape-op "AND" \
806 </programlisting>
807
808 <para>This will combine two currently selected shapes vis the "AND" operation
809 and create a new shape called "combinedshape". Note that the two old shapes
810 are still present after this operation. We briefly explain each operation:
811 </para>
812 <itemizedlist>
813 <listitem>
814 <para><emphasis>AND</emphasis> combines two currently selected shapes
815 into a new shape that only consists of the volume where shapes overlap.</para>
816 </listitem>
817 <listitem>
818 <para><emphasis>OR</emphasis> combines two currently selected shapes
819 into a new shape that consists of all the volume where that either shape
820 occupies.</para>
821 </listitem>
822 <listitem>
823 <para><emphasis>NOT</emphasis> creates the inverse to a currently selected
824 single shape that contains the volume with respect to the simulation domain
825 that the present one does not.</para>
826 </listitem>
827 </itemizedlist>
828 </section>
829
830 <section xml:id='shapes.remove-shape'>
831 <title xml:id='shapes.remove-shape.title'>Removing shapes</title>
832
833 <para>Removing a shape is as simple as removing an atom.</para>
834
835 <programlisting>... --remove-shape </programlisting>
836
837 <para>This removes the currently selected shapes.</para>
838 </section>
839
840 <section xml:id='shapes.manipulation'>
841 <title xml:id='shapes.manipulation.title'>Manipulating shapes</title>
842
843 <para>Shapes can be stretched, scaled, rotated, and translated to
844 modify primitives or combined primitive shapes. As you have seen
845 this manipulation could have occurred already at creation but also
846 later on. We just the list examples of the various manipulations
847 below, each works on the currently selected shapes.</para>
848
849 <programlisting>
850 ... --stretch-shapes "1,1,2" \
851 --stretch-center "5,5,5"
852 </programlisting>
853
854 <para>This stretches the shapes relative to the center at (5,5,5)
855 (default is origin) by a factor of 2 in the z direction.</para>
856
857 <programlisting>
858 ... --rotate-shapes \
859 --center "10,2,2" \
860 --angle-x 90 \
861 --angle-y 0 \
862 --angle-z 0
863 </programlisting>
864
865 <para>This way all selected shapes are rotated by 90 degrees around
866 the x axis with respect to the center at (10,2,2).</para>
867
868 <programlisting>... --translate-shapes "5,0,0" </programlisting>
869
870 <para>This translates all selected shapes by 5 along the x
871 axis.</para>
872 </section>
873 </section>
874
875 <section xml:id='randomization'>
876 <title xml:id='randomization.title'>Randomization</title>
877
878 <para>Some operations require randomness as input, e.g. when filling a
879 domain with molecules these may be randomly translated and rotated.
880 Random values are obtained by a random number generator that consists
881 of two parts: engine and distribution. The engine yields a uniform set
882 of random numbers in a specific interval, the distribution modifies
883 them, e.g. to become gaussian.</para>
884
885 <para>There are several Actions to modify the specific engine and
886 distribution and their parameters. One example usage is that with the
887 aforementioned filling of the domain molecules are rotated randomly.
888 If you specify a random number generator that randomly just spills out
889 values 0,1,2,3, then the randomness is just the orientation of the
890 molecule with respect to a specific axis: x,y,z. (rotation is at most
891 360 degrees and 0,1,2,3 act as divisor, hence rotation angle is always
892 a multiple of 90 degrees).</para>
893
894 <programlisting>
895 ... --set-random-number-distribution "uniform_int" \
896 --random-number-distribution-parameters "p=1"
897 </programlisting>
898
899 <para>This changes the distribution to "uniform_int", i.e. integer
900 numbers distributed uniformly.</para>
901
902 <programlisting>
903 ... --set-random-number-engine "mt19937" \
904 --random-numner-engine-parameters "seed=10"
905 </programlisting>
906
907 <para>Specifying the seed allows you to obtain the same sequence of
908 random numbers for testing purposes.</para>
909 </section>
910
911 <section xml:id='atoms'>
912 <title xml:id='atoms.title'>Manipulate atoms</title>
913
914 <para>Here, we explain in detail how to add, remove atoms, change its
915 element type, scale the bond in between or measure the bond length or
916 angle.</para>
917
918 <section xml:id='atoms.add-atom'>
919 <title xml:id='atoms.add-atom.title'>Adding atoms</title>
920
921 <para>Adding an atom to the domain requires the element of the atom
922 and its coordinates as follows,</para>
923
924 <programlisting>
925 ... --add-atom O \
926 --domain-position "2.,3.,2.35"
927 </programlisting>
928
929 <para>where the element is given via its chemical symbol and the
930 vector gives the position within the domain</para>
931 </section>
932
933 <section xml:id='atoms.remove-atom'>
934 <title xml:id='atoms.remove-atom.title'>Removing atoms</title>
935
936 <para>Removing atom(s) does not need any option and operates on the
937 currently selected ones.</para>
938
939 <programlisting>... --remove-atom</programlisting>
940 </section>
941
942 <section xml:id='atoms.translate-atom'>
943 <title xml:id='atoms.translate-atom.title'>Translating atoms</title>
944
945 <para>In order to translate the current selected subset of atoms you
946 specify a translation vector.</para>
947
948 <programlisting>
949 ... --translate-atoms "-1,0,0" \
950 --periodic 0
951 </programlisting>
952
953 <para>This translate all atoms by "-1" along the x axis and does not
954 mind the boundary conditions, i.e. might shift atoms outside of the
955 domain.</para>
956 </section>
957
958 <section xml:id='atoms.mirror-atoms'>
959 <title xml:id='atoms.mirror-atoms.title'>Mirroring atoms</title>
960
961 <para>Present (and selected) atoms can be mirrored with respect to
962 a certain plane. You have to specify the normal vector of the plane
963 and the offset with respect to the origin as follows</para>
964
965 <programlisting>
966 ... --mirror-atoms "1,0,0" \
967 --plane-offset 10.1 \
968 --periodic 0
969 </programlisting>
970 </section>
971
972 <section xml:id='atoms.translate-to-origin'>
973 <title xml:id='atoms.translate-to-origin.title'>Translating atoms</title>
974
975 <para>The following Action is convenient to place a subset of atoms
976 at a known position, the origin, and then translate to some other
977 absolute coordinate. It calculates the average position of the set
978 of selected atoms and then translates all atoms by the negative of
979 this center, i.e. the center is afterwards at the origin.</para>
980
981 <programlisting>... --translate-to-origin</programlisting>
982 </section>
983
984 <section xml:id='atoms.change-element'>
985 <title xml:id='atoms.change-element.title'>Changing an atoms element
986 </title>
987
988 <para>You can easily turn lead or silver into gold, by selecting the
989 silver atom and calling the change element action.</para>
990
991 <programlisting>... --change-element Au</programlisting>
992 </section>
993 </section>
994
995 <section xml:id='bond'>
996 <title xml:id='bond.title'>Bond-related manipulation</title>
997
998 <para>Atoms can also be manipulated with respect to the bonds.
999 <remark>Note that with bonds we always mean covalent bonds.</remark>
1000 First, we explain how to modify the bond structure itself, then we go
1001 in the details of using the bond information to change bond distance
1002 and angles.</para>
1003
1004 <section xml:id='bond.create-adjacency'>
1005 <title xml:id='bond.create-adjacency.title'>Creating a bond graph
1006 </title>
1007
1008 <para>In case you have loaded a configuration file with no bond
1009 information, e.g. XYZ, it is necessary to create the bond graph.
1010 This is done by a heuristic distance criterion.</para>
1011
1012 <programlisting>... --create-adjacency</programlisting>
1013
1014 <para>This uses by default a criterion based on van-der-Waals radii,
1015 i.e. if we look at two atoms indexed by "a" and "b"</para>
1016
1017 <equation>
1018 <title>V(a) + V(b) - \tau &lt; R_{ab} &lt; V(a) + V(b) +
1019 \tau</title>
1020
1021 <m:math display="block">
1022 <m:mi>where V(.) is the lookup table for the radii for a given
1023 element and \tau is a threshold value, set to 0.4.</m:mi>
1024 </m:math>
1025 </equation>
1026
1027 <para>As a second option, you may load a file containing bond table
1028 information.</para>
1029
1030 <programlisting>... --bond-table table.dat</programlisting>
1031
1032 <para>which would parse a file <filename>table.dat</filename> for a
1033 table giving typical bond distances between elements a and b. These
1034 are used in the above criterion as <inlineequation>
1035 <m:math display="inline">
1036 <m:mi>V(a,b)</m:mi>
1037 </m:math>
1038 </inlineequation> in place of <inlineequation>
1039 <m:math display="inline">
1040 <m:mi>V(a)+V(b)</m:mi>
1041 </m:math>
1042 </inlineequation>.</para>
1043 </section>
1044
1045 <section xml:id='bond.destroy-adjacency'>
1046 <title xml:id='bond.destroy-adjacency.title'>Destroying the bond
1047 graph</title>
1048
1049 <para>The bond graph can be removed completely (and all bonds along
1050 with it).</para>
1051
1052 <programlisting>... --destroy-adjacency</programlisting>
1053 </section>
1054
1055 <section xml:id='bond.correct-bonddegree'>
1056 <title xml:id='bond.correct-bonddegree.title'>Correcting bond
1057 degrees</title>
1058
1059 <para>Typically, after loading an input file bond information, e.g.
1060 a PDB file, the bond graph is complete but we lack the weights. That
1061 is we do not know whether a bond is single, double, triple, ...
1062 This action corrects the bond degree by enforcing charge neutrality
1063 among the connected atoms.
1064 </para>
1065 <para>This action is in fact quadratically scaling in the number of
1066 atoms. Hence, for large systems this may take longer than expected.
1067 </para>
1068
1069 <programlisting>... --correct-bonddegree</programlisting>
1070 </section>
1071
1072 <section xml:id='bond.depth-first-search'>
1073 <title xml:id='bond.depth-first-search.title'>Analysing a bond
1074 graph</title>
1075
1076 <para>You can perform a depth-first search analysis that reveals
1077 cycles and other graph-related information.</para>
1078
1079 <programlisting>... --depth-first-search</programlisting>
1080 </section>
1081
1082 <section xml:id='bond.subgraph-dissection'>
1083 <title xml:id='bond.subgraph-dissection.title'>Dissecting the
1084 molecular system into molecules</title>
1085
1086 <para>The bond graph information can be used to recognize the
1087 molecule within the system. Imagine you have just loaded a PDB file
1088 containing bond information. However, initially all atoms are dumped
1089 into the same molecule. Before you can start manipulating, you need
1090 to dissect the system into individual molecules. Note that this is
1091 just structural information and does not change the state of the
1092 system.</para>
1093
1094 <programlisting>... --subgraph-dissection</programlisting>
1095
1096 <para>This analyses the bond graph and splits the single molecule up
1097 into individual (new) ones that each contain a single connected
1098 subgraph, hence the naming.</para>
1099 </section>
1100
1101 <section xml:id='bond.update-molecules'>
1102 <title xml:id='bond.update-molecules.title'>Updating molecule
1103 structure</title>
1104
1105 <para>When the bond information has changed, new molecules might
1106 have formed, this action updates all the molecules by scanning
1107 the connectedness of the bond grapf of the molecular system.
1108 </para>
1109
1110 <programlisting>... --update-molecules</programlisting>
1111 </section>
1112
1113 <section xml:id='bond.add-bond'>
1114 <title xml:id='bond.add-bond.title'>Adding a bond manually</title>
1115
1116 <para>When the automatically created adjacency or bond graph
1117 contains faulty bonds or lacks some, you can add them manually.
1118 First, you must have selected two atoms.</para>
1119
1120 <programlisting>... --add-bond</programlisting>
1121 </section>
1122
1123 <section xml:id='bond.remove-bond'>
1124 <title xml:id='bond.remove-bond.title'>Removing a bond manually
1125 </title>
1126
1127 <para>In much the same way as adding a bond, you can also remove a
1128 bond.</para>
1129
1130 <programlisting>... --remove-bond</programlisting>
1131 </section>
1132
1133 <section xml:id='bond.save-bonds'>
1134 <title xml:id='bond.save-bonds.title'>Saving bond information
1135 </title>
1136
1137 <para>Bond information can be saved to a file in <link
1138 xlink:href="http://www.molecuilder.com/"><productname>TREMOLO
1139 </productname></link>'s dbond style.</para>
1140
1141 <programlisting>... --save-bonds system.dbonds</programlisting>
1142
1143 <para>Similarly is the following Action which saves the bond
1144 information as a simple list of one atomic id per line and in
1145 the same line, separated by spaces, the ids of all atoms connected
1146 to it.</para>
1147
1148 <programlisting>... --save-adjacency system.adj</programlisting>
1149
1150 </section>
1151
1152 <section xml:id='bond.stretch-bond'>
1153 <title xml:id='bond.stretch-bond.title'>Stretching a bond</title>
1154
1155 <para>Stretching a bond actually refers to translation of the
1156 associated pair of atoms. However, this action will keep the rest of
1157 the molecule to which both atoms belong to invariant as well.</para>
1158
1159 <programlisting>... --stretch-bond 1.2</programlisting>
1160
1161 <para>This scales the original bond distance to the new bond
1162 distance 1.2, shifting the right hand side and the left hand side of
1163 the molecule accordingly.</para>
1164
1165 <warning>
1166 <para>this fails with aromatic rings (but you can always
1167 undo).</para>
1168 </warning>
1169 </section>
1170
1171 <section xml:id='bond.change-bond-angle'>
1172 <title xml:id='bond.change-bond-angle.title'>Changing a bond angle
1173 </title>
1174
1175 <para>In the same way as stretching a bond, you can change the angle
1176 in between two bonds. This works if exactly three atoms are selected
1177 and two pairs are bonded.</para>
1178
1179 <programlisting>... --change-bond-angle 90</programlisting>
1180
1181 <para>This will change the angle from its value to 90 degree by
1182 translating the two outer atoms of this triangle (the atom connected
1183 to both others is the axis of the rotation).</para>
1184 </section>
1185 </section>
1186
1187 <section xml:id='molecule'>
1188 <title xml:id='molecule.title'>Manipulate molecules</title>
1189
1190 <para>Molecules are agglomerations of atoms that are bonded. Hence,
1191 the actions working on molecules differ from those working on atoms.
1192 Joining two molecules can only be accomplished by adding a bond in
1193 between, and in the reverse fashion splitting a molecule by removing
1194 all bonds in between. Actions below mostly deal with copying
1195 molecules. Removing of molecules is done via selecting the molecule's
1196 atoms and removing them, which removes the atoms as well.</para>
1197
1198 <note>
1199 <para>Initially when you load a file via the input action all atoms
1200 are placed in a single molecule despite any present bond
1201 information, see <link linkend="fragmentation">Dissecting the
1202 molecular system into molecules</link></para>
1203 </note>
1204
1205 <section xml:id='molecule.copy'>
1206 <title xml:id='molecule.copy.title'>Copy molecules</title>
1207
1208 <para>A basic operation is to duplicate a molecule. This works on a
1209 single, currently selected molecule. Afterwards, we elaborate on a
1210 more complex manner of copying, filling a specific shape with
1211 molecules.</para>
1212
1213 <programlisting>
1214 ... --copy-molecule \
1215 --position "10,10,10"
1216 </programlisting>
1217
1218 <para>This action copies the selected molecule and inserts it at the
1219 position (10,10,10) in the domain with respect to the molecule's
1220 center. In effect, it copies all the atoms of the original molecule
1221 and adds new bonds in between these copied atoms such that their
1222 bond subgraphs are identical.</para>
1223 </section>
1224
1225 <section xml:id='molecule.change-molname'>
1226 <title xml:id='molecule.change-molname.title'>Change a molecules
1227 name</title>
1228
1229 <para>You can change the name of a molecule which is important for
1230 selection.</para>
1231
1232 <programlisting>... -change-molname "test</programlisting>
1233
1234 <para>This will change the name of the (only) selected molecule to
1235 "test".</para>
1236
1237 <para>Connected with this is the default name an unknown molecule
1238 gets.</para>
1239
1240 <programlisting>... --default-molname test</programlisting>
1241
1242 <para>This will change the default name of a molecule to
1243 "test".</para>
1244
1245 <note>
1246 <para>Note that a molecule loaded from file gets the filename
1247 (without suffix) as its name.</para>
1248 </note>
1249 </section>
1250
1251 <section xml:id='molecule.remove-molecule'>
1252 <title xml:id='molecule.remove-molecule.title'>Remove molecules
1253 </title>
1254
1255 <para>This removes one or multiple selected molecules.</para>
1256
1257 <programlisting>... -remove-molecule</programlisting>
1258
1259 <para>This essentially just removes all of the molecules' atoms
1260 which in turn also causes the removal of the molecule.</para>
1261 </section>
1262
1263 <section xml:id='molecule.rotate-around-self'>
1264 <title xml:id='molecule.rotate-around-self.title'>Rotate around self
1265 </title>
1266
1267 <para>You can rotate a molecule around its own axis.</para>
1268
1269 <programlisting>
1270 ... --rotate-around-self "90" \
1271 --axis "0,0,1"
1272 </programlisting>
1273
1274 <para>This rotates the molecule around the z axis by 90 degrees as
1275 if the origin were at its center of origin.</para>
1276 </section>
1277
1278 <section xml:id='molecule.rotate-around-origin'>
1279 <title xml:id='molecule.rotate-around-origin.title'>Rotate around
1280 origin</title>
1281
1282 <para>In the same manner the molecule can be rotated around an
1283 external origin.</para>
1284
1285 <programlisting>
1286 ... --rotate-around-origin 90 \
1287 --position "0,0,1"\
1288 </programlisting>
1289
1290 <para>This rotates the molecule around an axis from the origin to
1291 the position (0,0,1), i.e. around the z axis, by 90 degrees.</para>
1292 </section>
1293
1294 <section xml:id='molecule.rotate-to-principal-axis-system'>
1295 <title xml:id='molecule.rotate-to-principal-axis-system.title'>
1296 Rotate to principal axis system</title>
1297
1298 <para>The principal axis system is given by an ellipsoid that mostly
1299 matches the molecules shape. The principal axis system can be just
1300 simply determined by</para>
1301
1302 <programlisting>... --principal-axis-system</programlisting>
1303
1304 <para>To rotate the molecule around itself to align with this system
1305 do as follows.</para>
1306
1307 <programlisting>... --rotate-to-principal-axis-system "0,0,1"
1308 </programlisting>
1309
1310 <para>This rotates the molecule in such a manner that the ellipsoids
1311 largest axis is aligned with the z axis. <remark>Note that "0,0,-1"
1312 would align anti-parallel.</remark></para>
1313 </section>
1314
1315 <section xml:id='molecule.verlet-integration'>
1316 <title xml:id='molecule.verlet-integration.title'>Perform verlet
1317 integration</title>
1318
1319 <para>Atoms not only have a position, but each instance also stores
1320 velocity and a force vector. These can be used in a velocity verlet
1321 integration step. Velocity verlet is a often employed time
1322 integration algorithm in molecular dynamics simulations.</para>
1323
1324 <programlisting>
1325 ... --verlet-integration \
1326 --deltat 0.1 \
1327 --keep-fixed-CenterOfMass 0
1328 </programlisting>
1329
1330 <para>This will integrate with a timestep of <inlineequation>
1331 <m:math display="inline">
1332 <m:mi>\Delta_t = 0.1</m:mi>
1333 </m:math>
1334 </inlineequation>and correcting forces and velocities such that
1335 the sum over all atoms is zero.</para>
1336 </section>
1337
1338 <section xml:id='molecule.force-annealing'>
1339 <title xml:id='molecule.force-annealing.title'>Anneal the atomic
1340 forces</title>
1341
1342 <para>This will shift the atoms in a such a way as to decrease (or
1343 anneal) the forces acting upon them.</para>
1344
1345 <para>Forces may either be already present for the set of atoms by
1346 some other way (e.g. from a prior fragmentation calculation) or,
1347 as shown here, from an external file. We anneal the forces for
1348 one step with a certain initial step width of 0.5 atomic time
1349 units and do not create a new timestep for each optimization
1350 step.</para>
1351
1352 <programlisting>
1353 ... --force-annealing \
1354 --forces-file test.forces \
1355 --deltat 0.5 \
1356 --steps 1 \
1357 --output-every-step 0
1358 </programlisting>
1359 </section>
1360
1361 <section xml:id='molecule.linear-interpolation-of-trajectories'>
1362 <title xml:id='molecule.linear-interpolation-of-trajectories.title'>
1363 Linear interpolation between configurations</title>
1364
1365 <para>This is similar to verlet-integration, only that it performs
1366 a linear integration irrespective of the acting atomic forces.
1367 </para>
1368
1369 <para>The following call will produce an interpolation between the
1370 configurations in time step 0 and time step 1 with 98 intermediate
1371 steps, i.e. current step 1 will end up in time step 99. In this
1372 case an idential mapping is used to associated atoms in start and
1373 end configuration.</para>
1374
1375 <programlisting>
1376 ... --linear-interpolation-of-trajectories \
1377 --start-step 0 \
1378 --end-step 1 \
1379 --interpolation-steps 100 \
1380 --id-mapping 1
1381 </programlisting>
1382 </section>
1383 </section>
1384
1385 <section xml:id='domain'>
1386 <title xml:id='domain.title'>Manipulate domain</title>
1387
1388 <para>Here, we elaborate on how to duplicate all the atoms inside the
1389 domain, how the scale the coordinate system, how to center the atoms
1390 with respect to certain points, how to realign them by given
1391 constraints, how to mirror and most importantly how to specify the
1392 domain.</para>
1393
1394 <section xml:id='domain.change-box'>
1395 <title xml:id='domain.change-box.title'>Changing the domain</title>
1396
1397 <para>The domain is specified by a symmetric 3x3 matrix. The
1398 eigenvalues (diagonal entries in case of a diagonal matrix) give the
1399 length of the edges, additional entries specify transformations of
1400 the box such that it becomes a more general parallelepiped.</para>
1401
1402 <programlisting>... change-box "20,0,20,0,0,20"</programlisting>
1403
1404 <para>As the domain matrix is symmetric, six values suffice to fully
1405 specify it. We have to give the six components of the lower diagonal
1406 matrix. Here, we change the box to a cuboid of equal edge length of
1407 20.</para>
1408 </section>
1409
1410 <section xml:id='domain.bound-in-box'>
1411 <title xml:id='domain.bound-in-box.title'>Bound atoms inside box
1412 </title>
1413
1414 <para>The following applies the current boundary conditions to the
1415 atoms. In case of periodic or wrapped boundary conditions the atoms
1416 will be periodically translated to be inside the domain
1417 again.</para>
1418
1419 <programlisting>... --bound-in-box</programlisting>
1420 </section>
1421
1422 <section xml:id='domain.center-in-box'>
1423 <title xml:id='domain.center-in-box.title'>Center atoms inside the
1424 domain</title>
1425
1426 <para>This is a combination of changing the box and bounding the
1427 atoms inside it.</para>
1428
1429 <programlisting>... --center-in-box "20,0,20,0,0,"</programlisting>
1430 </section>
1431
1432 <section xml:id='domain.center-edge'>
1433 <title xml:id='domain.center-edge.title'>Center the atoms at an
1434 edge</title>
1435
1436 <para>MoleCuilder can calculate the minimum box (parallel to the
1437 cardinal axis) all atoms would fit in and translate all atoms in
1438 such a way that the lower, left, front edge of this minimum is at
1439 the origin (0,0,0).</para>
1440
1441 <programlisting>... --center-edge</programlisting>
1442 </section>
1443
1444 <section xml:id='domain.add-empty-boundary'>
1445 <title xml:id='domain.add-empty-boundary.title'>Extending the
1446 boundary by adding an empty boundary</title>
1447
1448 <para>In the same manner as above a minimum box is determined that
1449 is subsequently expanded by a boundary of the given additional
1450 thickness. This applies to either side.</para>
1451
1452 <programlisting>... --add-empty-boundary "5,5,5"</programlisting>
1453
1454 <para>This will enlarge the box in such a way that every atom is at
1455 least by a distance of 5 away from the boundary of the domain (in
1456 the infinity norm).</para>
1457 </section>
1458
1459 <section xml:id='domain.scale-box'>
1460 <title xml:id='domain.scale-box.title'>Scaling the box</title>
1461
1462 <para>You can enlarge the domain by simple scaling factors.</para>
1463
1464 <programlisting>... --scale-box "1,1,2.5"</programlisting>
1465
1466 <para>Here, the domain is stretched in the z direction by a factor
1467 of 2.5.</para>
1468 </section>
1469
1470 <section xml:id='domain.repeat-box'>
1471 <title xml:id='domain.repeat-box.title'>Repeating the box</title>
1472
1473 <para>Under periodic boundary conditions often only the minimal
1474 periodic cell is stored. If need be, multiple images can be easily
1475 added to the current state of the system by repeating the box, i.e.
1476 the box along with all contained atoms is copied and placed
1477 adjacently.</para>
1478
1479 <programlisting>... --repeat-box "1,2,2"</programlisting>
1480
1481 <para>This will create a 2x2 grid of the current domain, replicating
1482 it along the y and z direction along with all atoms. If the domain
1483 contained before a single water molecule, we will now have four of
1484 them.</para>
1485 </section>
1486
1487 <section xml:id='domain.set-boundary-conditions'>
1488 <title xml:id='domain.set-boundary-conditions.title'>Change the
1489 boundary conditions</title>
1490
1491 <para>Various boundary conditions can be applied that affect how
1492 certain Actions work, e.g. translate-atoms. We briefly give a list
1493 of all possible conditions:</para>
1494 <itemizedlist>
1495 <listitem>
1496 <para>Wrap</para>
1497 <para>Coordinates are wrapped to the other side of the domain,
1498 i.e. periodic boundary conditions.</para>
1499 </listitem>
1500 <listitem>
1501 <para>Bounce</para>
1502 <para>Coordinates are bounced back into the domain, i.e. they
1503 are reflected from the domain walls.</para>
1504 </listitem>
1505 <listitem>
1506 <para>Ignore</para>
1507 <para>No boundary conditions apply.</para>
1508 </listitem>
1509 </itemizedlist>
1510
1511 <para>The following will set the boundary conditions to periodic.
1512 </para>
1513
1514 <programlisting>... --set-boundary-conditions "Wrap Wrap Wrap"
1515 </programlisting>
1516 </section>
1517 </section>
1518
1519 <section xml:id='filling'>
1520 <title xml:id='filling.title'>Filling</title>
1521
1522 <para>Filling a specific part of the domain with one type of
1523 molecule, e.g. a water molecule, is the more advanced type of
1524 copying of a molecule (see copy-molecule) and we need several
1525 ingredients.</para>
1526
1527 <para>First, we need to specify the part of the domain. This is done
1528 via a shape. We have already learned how to create and select
1529 shapes. The currently selected shape will serve as the fill-in
1530 region.</para>
1531
1532 <para>Then, they are three types of filling, domain, volume, and
1533 surface. The domain is filled with a regular grid of fill-in points.
1534 A volume and a surface are filled by a set of equidistant points
1535 distributed within the volume or on the surface of a selected
1536 shape. Molecules will then be copied and translated points when they
1537 "fit".</para>
1538
1539 <para>The filler procedure checks each fill-in point whether there
1540 is enough space for the molecule. To know this, we require a cluster
1541 instead of a molecule. This is just a general agglomeration of atoms
1542 combined with a bounding box that contains all of them and serves as
1543 its minimal volume. I.e. we need this cluster. For this a number of
1544 atoms have to be specified, the minimum bounding box is generated
1545 automatically.</para>
1546
1547 <para>On top of that molecules can be selected whose volume is
1548 additionally excluded from the filling region.</para>
1549
1550 <section xml:id='filling.fill-regular-grid'>
1551 <title xml:id='filling.fill-regular-grid.title'>Fill the domain with
1552 molecules</title>
1553
1554 <para>The call to fill the volume of the selected shape with the
1555 selected atoms is then as follows,</para>
1556
1557 <programlisting>
1558 ... --fill-regular-grid \
1559 --mesh-size "5,5,5" \
1560 --mesh-offset ".5,.5,.5" \
1561 --DoRotate 1 \
1562 --min-distance 1. \
1563 --random-atom-displacement 0.05 \
1564 --random-molecule-displacement 0.4 \
1565 --tesselation-radius 2.5
1566 </programlisting>
1567
1568 <para>This generates a grid of 5x5x5 fill-in points within the
1569 sphere that are offset such as to lay centered within the sphere
1570 (offset per axis in [0,1]). Additionally, each molecule is rotated
1571 by random rotation matrix, each atom is translated randomly by at
1572 most 0.05, each molecule's center at most by 0.4. The selected
1573 molecules' volume is obtained by tesselating their surface and
1574 excluding every fill-in point whose distance to this surface does
1575 not exceed 1. We refer to our comments in
1576 <link linkend="randomization">Randomization</link>for details on
1577 changing the randomness.</para>
1578 </section>
1579
1580 <section xml:id='filling.fill-volume'>
1581 <title xml:id='filling.fill-volume.title'>Fill a shape's volume
1582 with molecules</title>
1583
1584 <para>More specifically than filling the whole domain with molecules,
1585 maybe except areas where other molecules already are, we also can
1586 fill only specific parts by selecting a shape and calling upon
1587 the following action:</para>
1588
1589 <programlisting>
1590 ... --fill-volume \
1591 --counts 12 \
1592 --min-distance 1. \
1593 --DoRotate 1 \
1594 --random-atom-displacement 0.05 \
1595 --random-molecule-displacement 0.4 \
1596 --tesselation-radius 2.5
1597 </programlisting>
1598 </section>
1599
1600 <section xml:id='filling.fill-surface'>
1601 <title xml:id='filling.fill-surface.title'>Fill a shape's surface
1602 with molecules</title>
1603
1604 <para>Filling a surface is very similar to filling its volume.
1605 Again the number of equidistant points has to be specified.
1606 However, randomness is constrained as the molecule is be aligned
1607 with the surface in a specific manner. The alignment axis refers
1608 to the largest principal axis of the filler molecule and will
1609 be aligned parallel to the surface normal at the fill-in point.
1610 </para>
1611
1612 <para>The call below fill in 12 points with a minimum distance
1613 between the instances of 1 angstroem. We allow for certain random
1614 displacements and use the z-axis for aligning the molecules on
1615 the surface.</para>
1616
1617 <programlisting>
1618 ... --fill-surface \
1619 --counts 12 \
1620 --min-distance 1. \
1621 --DoRotate 1 \
1622 --random-atom-displacement 0.05 \
1623 --random-molecule-displacement 0.4 \
1624 --Alignment-Axis "0,0,1"
1625 </programlisting>
1626 </section>
1627
1628 <section xml:id='filling.suspend-in-molecule'>
1629 <title xml:id='filling.suspend-in-molecule.title'>Suspend in molecule
1630 </title>
1631
1632 <para>Add a given molecule in the simulation domain in such a way
1633 that the total density is as desired.</para>
1634
1635 <programlisting>
1636 ... --suspend-in-molecule 1.
1637 </programlisting>
1638 </section>
1639
1640 <section xml:id='filling.fill-molecule'>
1641 <title xml:id='filling.fill-molecule.title'>Fill in molecule</title>
1642
1643 <para>This action will be soon be removed.</para>
1644
1645 <programlisting>
1646 ... --fill-molecule
1647 </programlisting>
1648 </section>
1649
1650 <section xml:id='filling.fill-void'>
1651 <title xml:id='filling.fill-void.title'>Fill void with molecule
1652 </title>
1653
1654 <para>This action will be soon be removed.</para>
1655
1656 <programlisting>
1657 ... --fill-void
1658 </programlisting>
1659 </section>
1660 </section>
1661
1662 <section xml:id='analysis'>
1663 <title xml:id='analysis.title'>Analysis</title>
1664
1665 <para></para>
1666
1667 <section xml:id='analysis.pair-correlation'>
1668 <title xml:id='analysis.pair-correlation.title'>Pair Correlation
1669 </title>
1670
1671 <para>Pair correlation checks for two given elements on the typical
1672 distance they can be found with respect to one another. E.g. for
1673 water one might be interested what is the typical distance for
1674 hydrogen and oxygen atoms.</para>
1675
1676 <programlisting>
1677 ... --pair-correlation \
1678 --elements 1 8 \
1679 --bin-start 0 \
1680 --bin-width 0.7 \
1681 --bin-end 10 \
1682 --output-file histogram.dat \
1683 --bin-output-file bins.dat \
1684 --periodic 0
1685 </programlisting>
1686
1687 <para>This will compile a histogram for the interval [0,10] in steps
1688 of 0.7 and increment a specific bin if the distance of one such pair
1689 of a hydrogen and an oxygen atom can be found within its distance
1690 interval.</para>
1691 </section>
1692
1693 <section xml:id='analysis.dipole-correlation'>
1694 <title xml:id='analysis.dipole-correlation.title'>Dipole Correlation
1695 </title>
1696
1697 <para>The dipole correlation is similar to the pair correlation, only
1698 that it correlates the orientation of dipoles in the molecular
1699 system with one another.</para>
1700 <para>Note that the dipole correlation works on the currently
1701 selected molecules, e.g. all water molecules if so selected.</para>
1702
1703 <programlisting>
1704 ... --dipole-correlation \
1705 --bin-start 0 \
1706 --bin-width 0.7 \
1707 --bin-end 10 \
1708 --output-file histogram.dat \
1709 --bin-output-file bins.dat \
1710 --periodic 0
1711 </programlisting>
1712 </section>
1713
1714 <section xml:id='analysis.dipole-angular-correlation'>
1715 <title xml:id='analysis.dipole-angular-correlation.title'>Dipole
1716 Angular Correlation</title>
1717
1718 <para>The dipole angular correlation looks at the angles of a
1719 dipole over time. It takes the orientation of a certain time step
1720 as the zero angle and bins all other orientations found in later
1721 time steps relative to it.
1722 </para>
1723 <para>Note that in contrast to the dipole correlation the dipole
1724 angular correlation works on the molecules determined by a formula.
1725 This is because selections do not work over time steps as molecules
1726 might change.
1727 </para>
1728
1729 <programlisting>
1730 ... --dipole-angular-correlation H2O \
1731 --bin-start 0 \
1732 --bin-width 5 \
1733 --bin-end 360 \
1734 --output-file histogram.dat \
1735 --bin-output-file bins.dat \
1736 --periodic 0 \
1737 --time-step-zero 0
1738 </programlisting>
1739 </section>
1740
1741 <section xml:id='analysis.point-correlation'>
1742 <title xml:id='analysis.point-correlation.title'>Point Correlation
1743 </title>
1744
1745 <para>Point correlation is very similar to pair correlation, only
1746 that it correlates not positions of atoms among one another but
1747 against a fixed, given point.</para>
1748
1749 <programlisting>
1750 ... --point-correlation \
1751 --elements 1 8 \
1752 --position "0,0,0" \
1753 --bin-start 0 \
1754 --bin-width 0.7 \
1755 --bin-end 10 \
1756 --output-file histogram.dat \
1757 --bin-output-file bins.dat \
1758 --periodic 0
1759 </programlisting>
1760
1761 <para>This would calculate the correlation of all hydrogen and
1762 oxygen atoms with respect to the origin.</para>
1763 </section>
1764
1765 <section xml:id='analysis.surface-correlation'>
1766 <title xml:id='analysis.surface-correlation.title'>Surface
1767 Correlation</title>
1768
1769 <para>The surface correlation calculates the distance of a set
1770 of atoms with respect to a tesselated surface.</para>
1771
1772 <programlisting>
1773 ... --surface-correlation \
1774 --elements 1 8 \
1775 --bin-start 0 \
1776 --bin-width 0.7 \
1777 --bin-end 10 \
1778 --output-file histogram.dat \
1779 --bin-output-file bins.dat \
1780 --periodic 0
1781 </programlisting>
1782 </section>
1783
1784 <section xml:id='analysis.molecular-volume'>
1785 <title xml:id='analysis.molecular-volume.title'>Molecular Volume
1786 </title>
1787
1788 <para>This simply calculates the volume that a selected molecule
1789 occupies. For this the molecular surface is determined via a
1790 tesselation. Note that this surface is minimal is that aspect
1791 that each node of the tesselation consists of an atom of the
1792 molecule.</para>
1793
1794 <programlisting>... --molecular-volume</programlisting>
1795 </section>
1796
1797 <section xml:id='analysis.average-molecule-force'>
1798 <title xml:id='analysis.average-molecule-forcetitle'>Average force
1799 acting on a molecule</title>
1800
1801 <para>This sums up all the forces of each atom of a currently
1802 selected molecule and returns the average force vector. This should
1803 give you the general direction of acceleration of the molecule.
1804 </para>
1805
1806 <programlisting>... --molecular-volume</programlisting>
1807 </section>
1808
1809 </section>
1810
1811 <section xml:id='fragmentation'>
1812 <title xml:id='fragmentation.title'>Fragmentation</title>
1813
1814 <para>Fragmentation refers to a so-called linear-scaling method called
1815 "Bond-Order diSSection in an ANOVA-like fashion" (BOSSANOVA),
1816 developed by <personname>Frederik Heber</personname>. In this section
1817 we briefly explain what the method does and how the associated actions
1818 work.</para>
1819
1820 <para>The central idea behind the BOSSANOVA scheme is to fragment the
1821 graph of the molecular system into connected subgraphs of a certain
1822 number of vertices (atoms). To give an example, loading a ethane atom
1823 with the chemical formula C2H6, fragmenting the molecule up to order 1
1824 means creating two fragments, both methane-like from either carbon
1825 atom including surrounding hydrogen atoms. Fragmenting up to order 2
1826 would return both the methane fragments and additionally the full
1827 ethane molecule as it resembles a fragment of order 2, namely
1828 containing two (non-hydrogen) atoms.</para>
1829
1830 <para>The reason for doing this is that usual ab-initio calculations
1831 of molecular systems via methods such as Density Functional Theory or
1832 Hartree-Fock scale at least as <inlineequation>
1833 <m:math display="inline">
1834 <m:mi>{\cal O}(M^3}</m:mi>
1835 </m:math>
1836 </inlineequation>with the number of atoms <inlineequation>
1837 <m:math display="inline">
1838 <m:mi>M</m:mi>
1839 </m:math>
1840 </inlineequation>. Hence, calculating the ground state energy of a
1841 number of fragment molecules scaling linearly with the number of atoms
1842 yields a linear-scaling methods. In the doctoral thesis of Frederik
1843 Heber, it is explained why this is a sensible ansatz mathematically
1844 and shown that it delivers a very good accuracy if electrons (and
1845 hence interactions) are in general localized.</para>
1846
1847 <para>Long-range interactions are artificially truncated, however,
1848 with this fragment ansatz. It can be obtained in a perturbation manner
1849 by sampling the resulting electronic and nuclei charge density on a
1850 grid, summing over all fragments, and solving the associated Poisson
1851 equation. Such a calculation is implemented via the solver
1852 <productname>vmg</productname> by Julian Iseringhausen that is
1853 contained in the <link xlink:href="http://www.scafacos.org/">
1854 <productname>ScaFaCoS</productname></link>.</para>
1855
1856 <para>Note that we treat hydrogen special (but can be switched off) as
1857 fragments are calculated as closed shell (total spin equals zero).
1858 Also, we use hydrogen to saturate any dangling bonds that occur as
1859 bonds are cut when fragmenting a molecule (this, too, can be switched
1860 off).</para>
1861
1862 <section xml:id='fragmentation.fragment-molecule'>
1863 <title xml:id='fragmentation.fragment-molecule.title'>Fragmenting a
1864 molecular system</title>
1865
1866 <para>For the current selection of atoms, all fragments consisting
1867 of these (sub)set of atoms are created in the following
1868 manner.</para>
1869
1870 <programlisting>
1871 ... --fragment-molecule "BondFragment" \
1872 --DoCyclesFull 1 \
1873 --distance 3. \
1874 --order 3 \
1875 --grid-level 5 \
1876 --output-types xyz mpqc
1877 </programlisting>
1878
1879 <para>We go through each of the options one after the other. During
1880 fragmentation some files are created storing state information, i.e.
1881 the vertex/atom indices per fragment and so on. These files all need
1882 a common prefix, here "BondFragment". Then, we specify that cycles
1883 should be treated fully. This compensates for electrons in aromatic
1884 rings being delocalized over the ring. If cycles in the graph,
1885 originating from aromatic rings, are always calculated fully, i.e.
1886 the whole ring becomes a fragment, we partially overcome these
1887 issues. This does however not work indefinitely and accuracy of the
1888 approximation is limited (<inlineequation>
1889 <m:math display="inline">
1890 <m:mi>&gt;10^{-4}</m:mi>
1891 </m:math>
1892 </inlineequation>) in systems with many interconnected aromatic
1893 rings, such as graphene. Next, we give a distance cutoff of 3 used
1894 in bond graph creation. Then, we specify the maximum order, i.e. the
1895 maximum number of (non-hydrogen) atoms per fragment, here 3. The
1896 higher this number the more expensive the calculation becomes
1897 (because substantially more fragments are created) but also the more
1898 accurate. The grid level refers to the part where long-range Coulomb
1899 interactions are calculated. This is done via solving the associated
1900 Poisson equation with a multigrid solver. As input the solver
1901 requires the density which is sampled on a cartesian grid whose
1902 resolution these parameter defines (<inlineequation>
1903 <m:math display="inline">
1904 <m:mi>2^{\mathrm{level}}</m:mi>
1905 </m:math>
1906 </inlineequation>). And finally, we give the output file formats,
1907 i.e. which file formats are used for writing each fragment
1908 configuration (prefix is "BondFragment", remember?). Here, we use
1909 XYZ (mainly for checking the configurations visually) and MPQC,
1910 which is a very robust Hartree-Fock solver. We refer to the
1911 discussion of the <link linkend="fileparsers">Parsers</link> above
1912 on how to change the parameters of the ab-initio calculation.</para>
1913
1914 <para>After having written all fragment configuration files, you
1915 need to calculate each fragment, grab the resulting energy (and
1916 force vectors) and place them into a result file manually. This at
1917 least is necessary if you have specified output-types above. If not,
1918 the fragments are not written to file but stored internally. Read
1919 on.</para>
1920 </section>
1921
1922 <section xml:id='fragmentation.fragment-automation'>
1923 <title xml:id='fragmentation.fragment-automation.title'>Calculating
1924 fragment energies automatically</title>
1925
1926 <para>Another way of doing this is enabled if you have
1927 <productname>JobMarket</productname> package. JobMarket implements a
1928 client/server ansatz, i.e. two (or more) independent programs are
1929 running (even on another computer but connected via an IP network),
1930 namely a server and at least one client. The server receives
1931 fragment configurations from MoleCuilder and assigns these to a
1932 client who is not busy. The client launches an executable that is
1933 specified in the work package he is assigned and gathers after
1934 calculation a number of values, samewise specified in the package.
1935 The results are gathered together by the server and can be requested
1936 from MoleCuilder once they are done. This essentially describe what
1937 is happening during the execution of this action.</para>
1938
1939 <para>Stored fragment jobs can also be parsed again, i.e. reversing
1940 the effect of having output-types specified in <link
1941 linkend="fragmentation.fragment-molecule">Fragmenting a molecule
1942 </link>.</para>
1943
1944 <programlisting>
1945 ... --parse-fragment-jobs \
1946 --fragment-jobs "BondFragment00.in" "BondFragment01.in" \
1947 --fragment-path "./" \
1948 --grid-level 5
1949 </programlisting>
1950
1951 <para>Here, we have specified two files, namely
1952 <filename>BondFragment00.in</filename> and
1953 <filename>BondFragment01.in</filename>, to be parsed from the path
1954 "./", i.e. the current directory. Also, we have specified to sample
1955 the electronic charge density obtained from the calculated ground
1956 state energy solution with a resolution of 5 (see fragment molecule
1957 and also below).</para>
1958
1959 <para>This allows for automated and parallel calculation of all
1960 fragment energies and forces directly within MoleCuilder. The
1961 FragmentationAutomation action takes the fragment configurations
1962 from an internal storage wherein they are placed if in
1963 FragmentMolecule no output-types have been specified.</para>
1964
1965 <programlisting>
1966 ... --fragment-automation \
1967 --fragment-executable mpqc \
1968 --fragment-resultfile BondFragment_results.dat \
1969 --DoLongrange 1 \
1970 --DoValenceOnly 1 \
1971 --grid-level 5 \
1972 --interpolation-degree 3 \
1973 --near-field-cells 4 \
1974 --server-address 127.0.0.1 \
1975 --server-port 1025
1976 </programlisting>
1977
1978 <para>Again, we go through each of the action's options step by
1979 step.</para>
1980
1981 <para>The executable is required if you do not have a patched
1982 version of <productname>MPQC</productname> that may directly act as
1983 a client to JobMarket's server. All calculated results are placed in
1984 the result file. If none is given, they are instead again placed in
1985 an internal storage for later access.</para>
1986
1987 <note>
1988 <para>Long-calculations are only possible with a client that knows
1989 how to handle VMG jobs. If you encounter failures, then it is most
1990 likely that you do not have a suitable client.</para>
1991 </note>
1992
1993 <para>In the next line, we have all options related to calculation
1994 of long-range interactions. We only sample valence charges on the
1995 grid, i.e. not core electrons and the nuclei charge is reduces
1996 respectively. This avoids problems with sampling highly localized
1997 charges on the grid and is in general recommended. Next, there
1998 follow parameters for the multi grid solver, namely the resolution
1999 of the grid, see under fragmenting the molecule, the interpolation
2000 degree and the number of near field cells. A grid level of 6 is
2001 recommended but costly in terms of memory, the other values are at
2002 their recommend values.</para>
2003
2004 <para>In the last line, parameters are given on how to access the
2005 JobMarket server, namely it address and its port.</para>
2006 </section>
2007
2008 <section xml:id='fragmentation.analyse-fragment-results'>
2009 <title xml:id='fragmentation.analyse-fragment-results.title'>
2010 Analyse fragment results</title>
2011
2012 <para>After the energies and force vectors of each fragment have
2013 been calculated, they need to be summed up to an approximation for
2014 the energy and force vectors of the whole molecular system. This is
2015 done by calling this action.</para>
2016
2017 <programlisting>
2018 ... --analyse-fragment-results \
2019 --fragment-prefix "BondFragment" \
2020 --fragment-resultfile BondFragment_results.dat \
2021 --store-grids 1
2022 </programlisting>
2023
2024 <para>The purpose of the prefix should already be known to you, same
2025 with the result file that is the file parsed by MoleCuilder. The
2026 last option states that the sampled charge densities and the
2027 calculated potential from the long-range calculations should be
2028 stored with the summed up energies and forces. Note that this makes
2029 the resulting files substantially larger (Hundreds of megabyte or
2030 even gigabytes). Fragment energies and forces are stored in
2031 so-called internal homology containers. These are explained in the
2032 next section.</para>
2033
2034 <para>Note that this action sets the force vector if these have been
2035 calculated for the fragment. Hence, a
2036 <link linkend="molecule.verlet-integration">verlet integration</link>
2037 is possible afterwards.</para>
2038 </section>
2039
2040 <section xml:id='fragmentation.store-saturated-fragment'>
2041 <title xml:id='fragmentation.store-saturated-fragment.title'>Store
2042 a saturated fragment</title>
2043
2044 <para>After the energies and force vectors of each fragment have
2045 been calculated, they need to be summed up to an approximation for
2046 the energy and force vectors of the whole molecular system. This is
2047 done by calling this action.</para>
2048
2049 <para>This will store the currently selected atoms as a fragment
2050 where all dangling bonds (by atoms that are connected in the bond
2051 graph but have not been selected as well) are saturated with
2052 additional hydrogen atoms. The output formats are set to just xyz.
2053 </para>
2054
2055 <programlisting>
2056 ... --store-saturated-fragment \
2057 --DoSaturate 1 \
2058 --output-types xyz
2059 </programlisting>
2060 </section>
2061 </section>
2062
2063 <section xml:id='homology'>
2064 <title xml:id='homology.title'>Homologies</title>
2065
2066 <para>After a fragmentation procedure has been performed fully, what
2067 to do with the results? The forces can be used already but what about
2068 the energies? The energy value is basically the function evaluation of
2069 the Born-Oppenheimer surface. For molecular dynamics simulations
2070 continuous ab-initio calculations to evaluate the Born-Oppenheimer
2071 surface is not feasible. Instead usually empirical potential functions
2072 are fitted as to resemble the Born-Oppenheimer surface to a sufficient
2073 degree.</para>
2074
2075 <para>One frequent method is the many-body expansion of said surface
2076 which is basically nothing else than the fragment ansatz described
2077 above. Potential functions resemble a specific term in this many-body
2078 expansion. These are discussed in the next section.</para>
2079
2080 <para>For each of these terms all homologous fragments (i.e. having
2081 the same atoms with respect to the present elements and bonded in the
2082 same way), differing only in the coordinate of each atom, are just a
2083 sampling or a function evaluation of this term of the many-body
2084 expansion with respect to varying nuclei coordinates. Hence, it is
2085 appropriate to use these function evaluations in a non-linear
2086 regression procedure. That is, we want to tune the parameter of the
2087 empirical potential function in such a way as to most closely obtain
2088 the same function evaluation as the ab-initio calculation did with the
2089 same nuclear coordinates. Usually, this is done in a least-square
2090 sense, minimising the euclidean norm.</para>
2091
2092 <para>Homologies are then nothing else but containers for a specific
2093 type of fragment of all the different, calculated configurations (i.e.
2094 varying nuclear coordinates of the same fragment).</para>
2095
2096 <para>Now, we explain the actions that parse and store
2097 homologies.</para>
2098
2099 <programlisting>... --parse-homologies homologies.dat</programlisting>
2100
2101 <para>This parses the all homologies contained in the file
2102 <filename>homologies.dat</filename> and appends them to the homology
2103 container.</para>
2104
2105 <programlisting>... --save-homologies homologies.dat</programlisting>
2106
2107 <para>Complementary, this stores the current contents of the homology
2108 container, overwriting the file
2109 <filename>homologies.dat</filename>.</para>
2110 </section>
2111
2112 <section xml:id='potentials'>
2113 <title xml:id='potentials.title'>Potentials</title>
2114
2115 <para>In much the same manner, we would now ask what are homology
2116 files or containers good for but with the just had explanation it
2117 should be clear: We fit potential function to these function
2118 evaluation of terms of the many-body expansion of the Born-Oppenheimer
2119 surface of the full system.</para>
2120
2121 <section xml:id='potentials.fit-potential'>
2122 <title xml:id='potentials.fit-potential.title'>Fitting empirical
2123 potentials</title>
2124
2125 <para>Let's take a look at an exemplary call to the fit potential
2126 action.</para>
2127
2128 <programlisting>
2129 ... --fit-potential \
2130 --fragment-charges 8 1 1 \
2131 --potential-charges 8 1 \
2132 --potential-type morse \
2133 --take-best-of 5
2134 </programlisting>
2135
2136 <para>Again, we look at each option in turn. The first is the
2137 charges or elements specifying the set of homologous fragments that
2138 we want to look at. Here, obviously we are interested in water
2139 molecules, consisting of a single oxygen and two hydrogen atoms.
2140 Next, we specify the nuclei coordinates of the potential. We give
2141 the type of the potential as morse, which requires a single distance
2142 or two nuclear coordinates, here between an oxygen and a hydrogen
2143 atom. Finally, we state that the non-linear regression should be
2144 done with five random starting positions and the set of parameters
2145 with the smallest L2 norm wins.</para>
2146
2147 <note>
2148 <para>Due to translational and rotational degrees of freedom for
2149 fragments smaller than 7 atoms, it is appropriate to look at the
2150 pair-wise distances and not at the absolute coordinates. Hence,
2151 the two atomic positions, here for oxygen and hydrogen, are
2152 converted to a single distance. If we had given an harmonic
2153 angular potential and three charges/element, 8 1 1, i.e. oxygen
2154 and two hydrogens, we would have obtained three distances.</para>
2155
2156 <para>MoleCuilder always adds a so-called constant potential to
2157 the fit containing only a single parameter, the energy offset.
2158 This offset compensates for the interaction energy associated with
2159 a fragment of order 1, e.g. a single hydrogen atom.</para>
2160 </note>
2161 </section>
2162
2163 <section xml:id='potentials.fit-compound-potential'>
2164 <title xml:id='potentials.fit-compound-potential.title'>Fitting
2165 many empirical potentials simultaneously</title>
2166
2167
2168 <para>Another way is using a file containing a specific set of
2169 potential functions, possibly even with initial values.</para>
2170
2171 <programlisting>
2172 ... --fit-compound-potential \
2173 --fragment-charges 8 1 1 \
2174 --potential-file water.potentials \
2175 --set-threshold 1e-3 \
2176 --training-file test.dat
2177 </programlisting>
2178
2179 <para>Now, all empirical potential functions are summed up into a
2180 so-called compound potential over the combined set of parameters.
2181 These are now fitted simultaneously. For example, if the potential
2182 file <filename>water.potentials</filename> contains a harmonic bond
2183 potential between oxygen and hydrogen and another angular potential
2184 for the angle between hydrogen, oxygen, and hydrogen atom we would
2185 fit a still simple function approximating the energy of a single
2186 water molecule. Here, the threshold takes the place of the
2187 take-best-of option. Here, random starting parameters are used as
2188 long as the final L2 error is not below 1e-3. Also, all data used
2189 for training, i.e. the tuples consisting of the fragments nuclei
2190 coordinates and the associated energy value are written to the file
2191 <filename>test.dat</filename>. This allows for graphical or other
2192 type of analysis.</para>
2193
2194 <para>Note that you can combine the two ways, i.e. start with a
2195 fit-potential call but give an empty potential file. The resulting
2196 parameters are stored in it. Fit other potentials and give different
2197 file names for each in turn. Eventually, you have to combine the file
2198 in a text editor at the moment. And perform a fit-compound-potential
2199 with this file.</para>
2200 </section>
2201
2202
2203 <section xml:id='potentials.parse-potential'>
2204 <title xml:id='potentials.parse-potential.title'>Parsing an
2205 empirical potentials file</title>
2206
2207 <para>Responsible for the compound potential is every potential
2208 function whose signature matches with the designated fragment-charges
2209 and who is currently known to an internal instance called the
2210 PotentialRegistry.</para>
2211
2212 <para>More potentials can be registered (fit-potential will also
2213 register the potential it fits) by parsing them from a file.</para>
2214
2215 <programlisting>
2216 ... --parse-potentials water.potentials
2217 </programlisting>
2218
2219 <note>Currently, only <productname>TREMOLO</productname> potential
2220 files are understood and can be parsed.</note>
2221 </section>
2222
2223 <section xml:id='potentials.save-potential'>
2224 <title xml:id='potentials.save-potential.title'>Saving an
2225 empirical potentials file</title>
2226
2227 <para>The opposite to parse-potentials is save-potentials that writes
2228 every potential currently known to the PotentialRegistry to the given
2229 file along with the currently fitted parameters</para>
2230
2231 <programlisting>
2232 ... --save-potentials water.potentials
2233 </programlisting>
2234
2235 <note>Again, only the <productname>TREMOLO</productname> potential
2236 format is understood currently and is written.</note>
2237 </section>
2238
2239 <section xml:id='potentials.fit-particle-charges'>
2240 <title xml:id='potentials.fit-particle-charges.title'>Fitting
2241 particle charges</title>
2242
2243 <para>The above empirical potential just model the short-range
2244 behavior in the molecular fragment, namely the bonded interaction.
2245 In order to model the long-range interaction as well without solving
2246 for the electronic ground state in each time step, particle charges
2247 are used that capture to some degree the created dipoles due to
2248 charge transfer from one atom to another when bonded.</para>
2249
2250 <para>To allow least-squares regression of these partial charges we
2251 need the results of long-range calculations and the store-grids
2252 option (see above under <link linkend="fragmentation">Fragmentation
2253 </link>) must have been given. With these sampled charge density and
2254 Coulomb potential stored in the homology containers, we call this
2255 action as follows.</para>
2256
2257 <programlisting>
2258 ... --fit-particle-charges \
2259 --fragment-charges 8 1 1 \
2260 --potential-file water.potentials \
2261 --radius 0.2
2262 </programlisting>
2263
2264 <para>This will again use water molecule as homologous fragment
2265 "key" to request configurations from the container. Results are
2266 stored in <filename>water.potentials</filename>. The radius is used
2267 to mark the region directly around the nuclei from the fit
2268 procedure. As here the charges of the core electrons and the nuclei
2269 itself dominate, we however are only interested in a good
2270 approximation to the long-range potential, this mask radius allows
2271 to give the range of the excluded zone.</para>
2272 </section>
2273 </section>
2274
2275 <section xml:id='dynamics'>
2276 <title xml:id='dynamics.title'>Dynamics</title>
2277
2278 <para>For fitting potentials or charges we need many homologuous but
2279 different fragments, i.e. atoms with slightly different positions.
2280 How can we generate these?</para>
2281
2282 <para>One possibility is to use molecular dynamics. With the
2283 aforementioned fragmentation scheme we can quickly calculate not only
2284 energies but also forces if the chosen solver, such as
2285 <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2286 </productname></link>, supports it. Integrating these forces
2287 discretely over time gives insight into vibrational features of a
2288 molecular system and allows to generate those positions for fitting
2289 potentials that describe these vibrations.</para>
2290
2291 <section xml:id='dynamics.molecular-dynamics'>
2292 <title xml:id='dynamics.molecular-dynamics.title'>Molecular dynamics
2293 </title>
2294
2295 <para>The molecular dynamics action is a so-called macro Action,
2296 i.e. it combines several other Actions into one, namely:</para>
2297 <itemizedlist>
2298 <listitem>
2299 <para>--verlet-integration</para>
2300 </listitem>
2301 <listitem>
2302 <para>--output</para>
2303 </listitem>
2304 <listitem>
2305 <para>--clear-fragment-results</para>
2306 </listitem>
2307 <listitem>
2308 <para>--destroy-adjacency</para>
2309 </listitem>
2310 <listitem>
2311 <para>--create-adjacency</para>
2312 </listitem>
2313 <listitem>
2314 <para>--update-molecules</para>
2315 </listitem>
2316 <listitem>
2317 <para>--fragment-molecule</para>
2318 </listitem>
2319 <listitem>
2320 <para>--fragment-automation</para>
2321 </listitem>
2322 <listitem>
2323 <para>--analyse-fragment-results</para>
2324 </listitem>
2325 </itemizedlist>
2326
2327 <para>The following will perform a molecular dynamics simulation
2328 for 100 time steps, each time step combining 0.5 atomic time units,
2329 i.e. 1.2 1e-17 s. The other options listed below will seem familiar
2330 to you if you have read about the other Actions listed above. Below
2331 we will not keep the bondgraph, i.e bonds and molecules may change
2332 over the simulation and hence also the created fragments per time
2333 step.
2334 </para>
2335
2336 <programlisting>
2337 ... --molecular-dynamics \
2338 --steps 100 \
2339 --keep-bondgraph 0 \
2340 --order 3 \
2341 --distance 3. \
2342 --deltat 0.5 \
2343 --keep-fixed-CenterOfMass 1 \
2344 --fragment-executable mpqc \
2345 </programlisting>
2346 </section>
2347
2348 <section xml:id='dynamics.optimize-structure'>
2349 <title xml:id='dynamics.optimize-structure.title'>Structure
2350 optimization</title>
2351
2352 <para>Structure optimization is also a macro Action, it basically
2353 combines the same Actions as molecular-dynamics does. However, it
2354 uses force-annealing instead of verlet-integration.</para>
2355
2356 <para>The following performs a structure optimization of the
2357 currently selected atoms (may also be a subset) for up to 100 time
2358 steps, where each time step ist 0.5 atomic time units. The time
2359 step here is the initial step with for annealing.
2360 </para>
2361
2362 <programlisting>
2363 ... --optimize-structure \
2364 --keep-bondgraph 1 \
2365 --output-every-step 1 \
2366 --steps 100 \
2367 --order 3 \
2368 --distance 3. \
2369 --deltat 0.5 \
2370 --keep-fixed-CenterOfMass 1 \
2371 --fragment-executable mpqc \
2372 </programlisting>
2373
2374 <para>Note that output-every-step will allow you to watch the
2375 optimization as each step is placed into a distinct time step.
2376 Otherwise only two time steps would be created: the initial and
2377 the final one containing the optimized structure.</para>
2378 </section>
2379
2380 <section xml:id='dynamics.set-world-time'>
2381 <title xml:id='dynamics.set-world-time.title'>Set the world's time
2382 step</title>
2383
2384 <para>In order to inspect or manipulate atoms and molecules at a
2385 certain time step, the World's time has to be set with the following
2386 Action.
2387 </para>
2388
2389 <para>This will set the World's time to the fifth step (counting
2390 starts at zero).</para>
2391
2392 <programlisting>... --set-world-time 4</programlisting>
2393 </section>
2394
2395 <section xml:id='dynamics.save-temperature'>
2396 <title xml:id='dynamics.save-temperature.title'>Save the
2397 temperature information</title>
2398
2399 <para>For each time step the temperature (i.e. the average velocity
2400 per atom times its mass) will be stored to a file.</para>
2401
2402 <programlisting>
2403 ... --save-temperature temperature.dat \
2404 </programlisting>
2405 </section>
2406 </section>
2407
2408 <section xml:id='dynamics.tesselation'>
2409 <title xml:id='dynamics.tesselation.title'>Tesselations</title>
2410
2411 <para>Tesselations obtain molecular surfaces (and volumes) by rolling
2412 a virtual sphere of a certain radii on a molecule until a closed
2413 surface of connected triangles is created.</para>
2414
2415 <section xml:id='dynamics.tesselation.nonconvex-envelope'>
2416 <title xml:id='dynamics.tesselation.nonconvex-envelope.title'>
2417 Non-convex envelope</title>
2418
2419 <para>This will create a non-convex envelope for a molecule and store
2420 it to a file for viewing with external programs.</para>
2421
2422 <programlisting>
2423 ... --nonconvex-envelope 6. \
2424 --nonconvex-file nonconvex.dat
2425 </programlisting>
2426
2427 <para>This tesselation file can be conveniently viewed with
2428 <productname>TecPlot</productname> or with one of the Tcl script
2429 in the util folder with <productname>VMD</productname>. Also,
2430 still pictures can be produced with <productname>Raster3D
2431 </productname>.
2432 <note>The required file header.r3d can be found in a subfolder of
2433 the util folder.</note>
2434 </para>
2435 </section>
2436
2437 <section xml:id='dynamics.tesselation.convex-envelope'>
2438 <title xml:id='dynamics.tesselation.convex-envelope.title'>Convex
2439 envelope</title>
2440
2441 <para>This will create a convex envelope for a molecule and give the
2442 volumes of both the non-convex and the convex envelope. This is good
2443 for measuring the space a molecule takes up, e.g. when filling a
2444 domain and taking care of correct densities.</para>
2445
2446 <programlisting>
2447 ... --convex-envelope 6. \
2448 --convex-file convex.dat
2449 </programlisting>
2450
2451 <para>This tesselation file can be likewise viewed with
2452 <productname>TecPlot</productname> or with one of the Tcl script
2453 in the util folder with <productname>VMD</productname>.</para>
2454 </section>
2455 </section>
2456
2457 <section xml:id='various'>
2458 <title xml:id='various.title'>Various commands</title>
2459
2460 <para>Here, we gather all commands that do not fit into one of above
2461 categories for completeness.</para>
2462
2463 <section xml:id='various.verbose'>
2464 <title xml:id='various.verbose.title'>Changing verbosity</title>
2465
2466 <para>The verbosity level is the amount of stuff printed to screen.
2467 This information will in general help you to understand when
2468 something does not work. Mind the <emphasis>ERROR</emphasis> and
2469 <emphasis>WARNING</emphasis> messages in any case.</para>
2470
2471 <para>This sets the verbosity from default of 2 to 4,</para>
2472
2473 <programlisting>... --verbose 4</programlisting>
2474
2475 <para>or shorter,</para>
2476
2477 <programlisting>... -v 4</programlisting>
2478 </section>
2479
2480 <section xml:id='various.element-db'>
2481 <title xml:id='various.element-db.title'>Loading an element
2482 database</title>
2483
2484 <para>Element databases contain information on valency, van der
2485 Waals-radii and other information for each element.</para>
2486
2487 <para>This loads all element database from the current folder (in a
2488 unix environment):</para>
2489
2490 <programlisting>... --element-db ./</programlisting>
2491
2492 </section>
2493
2494 <section xml:id='various.fastparsing'>
2495 <title xml:id='various.fastparsing.title'>Fast parsing</title>
2496
2497 <para>Parsing all time steps from a given input file can take a
2498 while, especially for larger systems. If fast parsing is activated,
2499 only the first time step is loaded, all other are ignored.</para>
2500
2501 <programlisting>... --fastparsing 1</programlisting>
2502 </section>
2503
2504 <section xml:id='various.version'>
2505 <title xml:id='various.version.title'>Giving the version of the
2506 program</title>
2507
2508 <para>This prints the version information of the code, especially
2509 important when you request the fixing of bugs or implementation of
2510 features.</para>
2511
2512 <programlisting>... --version</programlisting>
2513 </section>
2514
2515 <section xml:id='various.warranty'>
2516 <title xml:id='various.warranty.title'>Giving warranty
2517 information</title>
2518
2519 <para>As follows warranty information is given,</para>
2520
2521 <programlisting>... --warranty</programlisting>
2522 </section>
2523
2524 <section xml:id='various.help-redistribute'>
2525 <title xml:id='various.help-redistribute.title'>Giving
2526 redistribution information</title>
2527
2528 <para>This gives information on the license and how to redistribute
2529 the program and its source code</para>
2530
2531 <programlisting>... --help-redistribute</programlisting>
2532 </section>
2533 </section>
2534
2535 <section xml:id='sessions'>
2536 <title xml:id='sessions.title'>Sessions</title>
2537
2538 <para>A session refers to the queue of actions you have executed.
2539 Together with the initial configuration (and all files required for
2540 actions in the queue) this might be seen as a clever way of storing
2541 the state of a molecular system. When proceeding in a try&amp;error
2542 fashion to construct a certain system, it is a good idea, to store the
2543 session at the point where your attempts start to deviate from one
2544 another.</para>
2545
2546 <section xml:id='sessions.store-session'>
2547 <title xml:id='sessions.store-session.title'>Storing a session
2548 </title>
2549
2550 <para>Storing sessions is simple,</para>
2551
2552 <programlisting>
2553 ... --store-session "session.py" \
2554 --session-type python
2555 </programlisting>
2556
2557 <para>Here, the session type is given as python (the other option is
2558 cli for in the manner of the command-line interface) and the written
2559 python script <filename>session.py</filename> can even be used with
2560 the python interface described below, i.e. it is a full python script
2561 (that however requires the so-called pyMoleCuilder module).</para>
2562 </section>
2563
2564 <section xml:id='sessions.load-session'>
2565 <title xml:id='sessions.load-session.title'>Loading a session</title>
2566
2567 <para>Loading a session only works for python scripts. This actually
2568 blurs the line between the command-line interface and the python
2569 interface a bit. But even more, MoleCuilder automatically executes a
2570 script called <filename>molecuilder.py</filename> if such a file is
2571 contained in the current directory.</para>
2572
2573 <programlisting>... --load-session "session.py"</programlisting>
2574
2575 <para>This will execute every action with its options contained in the
2576 script <filename>session.py</filename>.</para>
2577 </section>
2578 </section>
2579
2580 <section xml:id='various-specific'>
2581 <title xml:id='various-specific.title'>Various specific commands
2582 </title>
2583
2584 <para>In this (final) section of the action description we list a number
2585 Actions that are very specific to some purposes (or other programs).
2586 </para>
2587
2588 <section xml:id='various-specific.save-selected-atoms-as-exttypes'>
2589 <title xml:id='various-specific.save-selected-atoms-as-exttypes.title'>
2590 Saving exttypes of a set of atoms</title>
2591
2592 <para>This saves the atomic ids of all currently selected atoms in a
2593 <link xlink:href="http://www.tremolo-x.com/"><productname>TREMOLO
2594 </productname></link> exttypes file with the given name.</para>
2595
2596 <programlisting>
2597 ... --save-selected-atoms-as-exttypes \
2598 --filename test.exttypes </programlisting>
2599 </section>
2600
2601 <section xml:id='various-specific.set-parser-parameters'>
2602 <title xml:id='various-specific.set-parser-parameters.title'>Setting
2603 parser specific parameters</title>
2604
2605 <para>You can also tweak the parameters stored in this file easily.
2606 For example, <productname>MPQC</productname> stores various
2607 parameters modifying the specific ab-initio calculation performed.
2608 For <link xlink:href="http://www.mpqc.org/"><productname>MPQC
2609 </productname></link> and
2610 <link xlink:href="http://www.psicode.org/"><productname>Psi4
2611 </productname></link> this can be modified as follows.</para>
2612
2613 <programlisting>
2614 ... --set-parser-parameters mpqc \
2615 --parser-parameters "theory=CLHF;basis=6-31*G;"
2616 </programlisting>
2617
2618 <para>This sets the ab-initio theory to closed-shell Hartree-Fock
2619 and the basis set to 6-31*G. Please check the
2620 <productname>MPQC</productname> manual on specific
2621 parameters.</para>
2622 </section>
2623
2624 <section xml:id='various-specific.set-tremolo-atomdata'>
2625 <title xml:id='various-specific.set-tremolo-atomdata.title'>Tremolo
2626 specific options and potential files</title>
2627
2628 <para><productname>TREMOLO</productname>'s configuration files start
2629 with a specific line telling the amount of information stored in the
2630 file. This file can be modified, e.g. to enforce storing of
2631 velocities and forces as well as the atoms positions and
2632 element.</para>
2633
2634 <programlisting>
2635 ... --set-tremolo-atomdata "ATOM id element u=3 v=3 F=3" \
2636 --reset 1
2637 </programlisting>
2638
2639 <para>This will not append but reset the old line and fill it with
2640 the given string.</para>
2641
2642 <para>One specific action is required when loading certain
2643 <productname>TREMOLO</productname> configuration files. These
2644 contain element notations that refer to parameterized names used in
2645 empirical potentials and molecular dynamics simulations and not the
2646 usual chemical symbols, such as H or O. We may load an auxiliary
2647 file that gives the required conversion from OH1 to H, which is the
2648 so-called potential file.</para>
2649
2650 <programlisting>... --parse-tremolo-potentials water.potentials</programlisting>
2651
2652 <para>This parses the lookup table from the file
2653 <filename>water.potentials</filename> and it can be used in
2654 following load actions.</para>
2655 </section>
2656 </section>
2657 </section>
2658
2659 <section xml:id='textmenu-interface'>
2660 <title xml:id='textmenu-interface.title'>Text menu</title>
2661
2662 <para>We now discuss how to use the text menu interface.</para>
2663
2664 <para>The text menu is very much the interface counterpart to the
2665 command-line interface. Both work in a terminal session.</para>
2666
2667 <para>In the text menu, actions can be selected from hierarchical lists.
2668 Note that the menus for the graphical interface are organized in the
2669 exactly same way. After an action has been chosen, the option values
2670 have to be entered one after the other. After the last option value has
2671 been given, the action is executed and the result printed to the
2672 screen.</para>
2673
2674 <para>With regards to the other functionality, it is very much the same
2675 as the command-line interface above.</para>
2676 </section>
2677
2678 <section xml:id='graphical-user-interface'>
2679 <title xml:id='graphical-user-interface.title'>Graphical user interface
2680 </title>
2681
2682 <para>The main point of the GUI is that it renders the atoms and
2683 molecules visually. These are represented by the common
2684 stick-and-ball-model. Single or multiple atoms and molecules can easily
2685 be accessed, activated and manipulated via tables. Changes made in the
2686 tables cause immediate update of the visual representation. Under the
2687 hood each of these manipulations is nothing but the call to an action,
2688 hence is fully undo- and redoable.</para>
2689
2690 <para>This is mostly helpful to design more advanced structures that are
2691 conceptually difficult to imagine without visual aid. At the end, a
2692 session may be stored and this script can then be used to construct
2693 various derived or slightly modified structures.</para>
2694
2695 <section xml:id='graphical-user-interface.basic-view'>
2696 <title xml:id='graphical-user-interface.basic-view.title'>Basic view
2697 </title>
2698
2699 <para>Let us first give an impression of the basic view of the gui
2700 after a molecule has been loaded.</para>
2701
2702 <figure>
2703 <title>Screenshot of the basic view of the GUI after loading a file
2704 with eight water molecules.</title>
2705
2706 <mediaobject>
2707 <imageobject>
2708 <imagedata entityref="example_basic_view" scalefit="1" width="100%"/>
2709 </imageobject>
2710 </mediaobject>
2711 </figure>
2712
2713 <section xml:id='graphical-user-interface.3d-view'>
2714 <title xml:id='graphical-user-interface.3d-view.title'>3D view
2715 </title>
2716
2717 <para>In the above figure, you see the stick-and-ball representation
2718 of the water molecules, the dreibein giving the positive axis
2719 direction and the cuboidal domain on a black background.</para>
2720 </section>
2721
2722 <section xml:id='graphical-user-interface.information-tabs'>
2723 <title xml:id='graphical-user-interface.information-tabs.title'>
2724 Information Tabs</title>
2725
2726 <para>Beneath this 3D view that you can rotate at will your mouse
2727 and zoom in and out with your scroll wheel, you find to the right a
2728 part containing two tabs named Atom and Molecule. Look at where the
2729 mouse pointer is. It has colored the atom underneath in cyan
2730 (although it's also an oxygen atom and should bne coloured in rose
2731 as the rest). You can inspect its properties in the tab Atom: Name,
2732 element, mass, charge, position and number of bonds. If you switch
2733 to the Molecule tab, you would see the properties of the water
2734 molecule this specific atom belongs to.</para>
2735 </section>
2736
2737 <section xml:id='graphical-user-interface.shape'>
2738 <title xml:id='graphical-user-interface.shape.title'>Shape section
2739 </title>
2740
2741 <para>Beneath these information tabs you find the shape sections.
2742 There you find a list of all currently created shapes and you can
2743 manipulate them via the buttons beneath this list.</para>
2744 </section>
2745
2746 <section xml:id='graphical-user-interface.timeline'>
2747 <title xml:id='graphical-user-interface.timeline.title'>Timeline
2748 </title>
2749
2750 <para>Directly below the 3D view there is a long slider. If a loaded
2751 file has multiple time step entries, this slider allows you to
2752 smoothly select one time frame after another. Sliding it with the
2753 mouse from left to right will reveal the animation that is hidden
2754 behind the distinct snapshots stored in the configuration
2755 file.</para>
2756 </section>
2757
2758 <section xml:id='graphical-user-interface.tables'>
2759 <title xml:id='graphical-user-interface.tables.title'>Selection
2760 tables</title>
2761
2762 <para>Underneath the time line there is another place for
2763 tabs.</para>
2764
2765 <para>The first is on molecules, listing all present molecules of
2766 the molecular system in a list view. If you click on a specific
2767 molecule, the one will get selected or unselected depending on its
2768 current selection state (see below for details on this with respect
2769 to the GUI).</para>
2770
2771 <para>The next tab enumerates all elements known to MoleCuilder
2772 where the ones are greyed out that are not present in the molecular
2773 system. Clicking on a present element will select all atoms of this
2774 specific element. A subsequent click unselects again.</para>
2775
2776 <para>Subsequent follow tabs on enumerating the fragments and their
2777 fragment energies if calculated and the homologies along with
2778 graphical depiction (via QWT) if present.</para>
2779 </section>
2780 </section>
2781
2782 <section xml:id='graphical-user-interface.selections'>
2783 <title xml:id='graphical-user-interface.selections.title'>Selections
2784 </title>
2785
2786 <para>Selections work generally always by selecting the respective
2787 action from the pull-down menu.</para>
2788
2789 <para>However, it may also be accessed directly. The row of icons
2790 above the 3D view has two icons depicting the selection of individual
2791 atoms or molecules. If either of them is selected, clicking with the
2792 left mouse button on an atom will either (un)select the atom or its
2793 associated molecule. Multiple atoms can be selected in this
2794 manner.</para>
2795
2796 <para>Also the selection tabs may be used by clicking on the name of a
2797 molecule as stated above or at an element.</para>
2798
2799 <para>Similarly, if shapes are present in the shape section, clicking
2800 them with select them and also cause a translucent visualization to
2801 appear in the 3D view. Note that this visualization is quite costly
2802 right now and not suited to complex shapes.</para>
2803 </section>
2804
2805 <section xml:id='graphical-user-interface.dialogs'>
2806 <title xml:id='graphical-user-interface.dialogs.title'>Dialogs</title>
2807
2808 <para>Most essential, however, to the GUI are the dialogs. Each action
2809 calls forth such a dialog even if no options are required (the
2810 execution of the action has at least to be confirmed). Each dialog
2811 consisting of queries for a particular option value. As each option
2812 value has a specific type, we briefly go into the details of how these
2813 queries look like.</para>
2814
2815 <note>
2816 <para>Each dialog's Ok is greyed out until all entered option values
2817 are valid.</para>
2818 </note>
2819
2820 <section xml:id='graphical-user-interface.dialogs.domain'>
2821 <title xml:id='graphical-user-interface.dialogs.domain.title'>Domain
2822 query</title>
2823
2824 <figure>
2825 <title>Screenshot of a dialog showing a domain query</title>
2826
2827 <mediaobject>
2828 <imageobject>
2829 <imagedata entityref="dialog_box" scalefit="1" width="100%"/>
2830 </imageobject>
2831 </mediaobject>
2832
2833 <para>In the domain query a 3x3 symmetric matrix has to be
2834 entered. In the above screenshots you notice that the only
2835 non-zero entries are on the main diagonal. Here, we have simply
2836 specified a cube of edge length 8. The ok button will be greyed
2837 out if the matrix is either singular or not symmetric.</para>
2838 </figure>
2839 </section>
2840
2841 <section xml:id='graphical-user-interface.dialogs.element'>
2842 <title xml:id='graphical-user-interface.dialogs.element.title'>
2843 Element query</title>
2844
2845 <figure>
2846 <title>Screenshot the add atom action containing an element
2847 query</title>
2848
2849 <mediaobject>
2850 <imageobject>
2851 <imagedata entityref="dialog_add-atom_tooltip" scalefit="1" width="100%"/>
2852 </imageobject>
2853 </mediaobject>
2854
2855 <para>Elements are picked from a pull-down box where all known
2856 elements are listed.</para>
2857
2858 <para>In this dialog you also notice that a tooltip is given,
2859 briefly explaining what the action does.</para>
2860 </figure>
2861 </section>
2862
2863 <section xml:id='graphical-user-interface.dialogs.action'>
2864 <title xml:id='graphical-user-interface.dialogs.action.title'>
2865 Complex query</title>
2866
2867 <figure>
2868 <title>Screenshot of a complex dialog consisting of multiple
2869 queries</title>
2870
2871 <mediaobject>
2872 <imageobject>
2873 <imagedata entityref="dialog_complex" scalefit="1" width="100%"/>
2874 </imageobject>
2875 </mediaobject>
2876
2877 <para>Here we show a more complex dialog. It queries for strings,
2878 for integer values (see the increase/decrease arrows), for
2879 booleans and for files (the "choose" buttons opens a file
2880 dialog).</para>
2881 </figure>
2882 </section>
2883
2884 <section xml:id='graphical-user-interface.dialogs.exit'>
2885 <title xml:id='graphical-user-interface.dialogs.exit.title'>Exit
2886 query</title>
2887
2888 <figure>
2889 <title>Screenshort showing the exit dialog</title>
2890
2891 <mediaobject>
2892 <imageobject>
2893 <imagedata entityref="dialog_exit" scalefit="1" width="100%"/>
2894 </imageobject>
2895 </mediaobject>
2896
2897 <para>Finally, we show the dialog that will pop up when exiting
2898 the graphical interface. It will ask whether it should store the
2899 current state of the system in the input file or not. You may
2900 cancel the exit, close without saving or save the current
2901 state.</para>
2902 </figure>
2903 </section>
2904 </section>
2905 </section>
2906
2907 <section xml:id='python-interface'>
2908 <title xml:id='python-interface.title'>Python interface</title>
2909
2910 <para>Last but not least we elaborate on the python interface. We have
2911 already discusses this interface to some extent. The current session,
2912 i.e. the queue of actions you have executed, can be stored as a python
2913 script and subsequently executed independently of the user interface it
2914 was created with. More general, MoleCuilder can execute arbitrary python
2915 scripts where prior to its execution a specific module is loaded by
2916 default enabling access to MoleCuilder's actions from inside the
2917 script.</para>
2918
2919 <para>MoleCuilder's python module is called pyMoleCuilder. it is
2920 essentially a library that can be imported into python just as any other
2921 module. Let us assume you have started the python interpreter and you
2922 have added the destination of the <filename>pyMoleCuilder</filename>
2923 library to the <varname>PYTHONPATH</varname> variable.</para>
2924
2925 <programlisting>import pyMoleCuilder as mol</programlisting>
2926
2927 <para>Subsequently, you can access the help via</para>
2928
2929 <programlisting>help(mol)</programlisting>
2930
2931 <para>This will list all of MoleCuilder's actions with their function
2932 signatures within python as contained in the module pyMoleCuilder named
2933 as mol in the scope of the currently running interpreter. Note that the
2934 function names are not the names you know from the command-line
2935 interface, they might be called
2936 <computeroutput>WorldChangeBox(...)</computeroutput> or alike.</para>
2937
2938 <para>Let's try it out.</para>
2939
2940 <programlisting>print mol.CommandVersion()</programlisting>
2941
2942 <para>This will state the current version of the library.</para>
2943
2944 <para>Go ahead and try out other commands. Refer to the documentation
2945 under the command-line interface and look up the function name via
2946 help.</para>
2947 </section>
2948 </chapter>
2949
2950 <chapter>
2951 <title>Conclusions</title>
2952
2953 <para>This ends this user guide.</para>
2954
2955 <para>We have given you a brief introduction to the aim of the program and
2956 how each of the four interfaces are to be used. The rest is up to
2957 you.</para>
2958
2959 <para>Tutorials and more information is available online, see <link
2960 xlink:href="http://www.molecuilder.com/">MoleCuilder's website</link>.
2961 </para>
2962
2963 <para>Be aware that in general knowing how the code works allows you to
2964 understand what's going wrong if something's going wrong.</para>
2965
2966 <section>
2967 <title>Thanks</title>
2968
2969 <para>Huge thanks go out to Saskia Metzler who was patient enough to let
2970 me sit next to her while riding ten hours in a bus to Berlin.</para>
2971 </section>
2972 </chapter>
2973</book>
Note: See TracBrowser for help on using the repository browser.