/*
* vmg - a versatile multigrid solver
* Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
*
* vmg is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* vmg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/**
* @file interface_particles.cpp
* @author Julian Iseringhausen
* @date Mon Apr 18 12:56:48 2011
*
* @brief VMG::InterfaceParticles
*
*/
#ifdef HAVE_CONFIG_H
#include
#endif
#ifdef HAVE_MPI
#include
#ifdef HAVE_MARMOT
#include
#include
#endif
#endif
#include
#include
#include
#include "base/helper.hpp"
#include "base/index.hpp"
#include "base/math.hpp"
#include "base/vector.hpp"
#include "comm/comm.hpp"
#include "grid/grid.hpp"
#include "grid/multigrid.hpp"
#include "grid/tempgrid.hpp"
#include "units/particle/comm_mpi_particle.hpp"
#include "units/particle/interface_particles.hpp"
#include "units/particle/interpolation.hpp"
#include "units/particle/linked_cell_list.hpp"
#include "mg.hpp"
using namespace VMG;
void InterfaceParticles::ImportRightHandSide(Multigrid& multigrid)
{
Index index_global, index_local, index;
Vector pos_rel, pos_abs, grid_val;
Factory& factory = MG::GetFactory();
Particle::CommMPI& comm = *dynamic_cast(MG::GetComm());
const int& near_field_cells = factory.GetObjectStorageVal("PARTICLE_NEAR_FIELD_CELLS");
Grid& grid = multigrid(multigrid.MaxLevel());
Grid& particle_grid = comm.GetParticleGrid();
// grid.Clear();
particle_grid.Clear();
assert(particle_grid.Global().LocalSize().IsComponentwiseGreater(near_field_cells));
/*
* Distribute particles to their processes
*/
particles.clear();
comm.CommParticles(grid, particles);
/*
* Charge assignment on the grid
*/
std::list::iterator iter;
#ifdef OUTPUT_DEBUG
vmg_float particle_charges = 0.0;
for (iter=particles.begin(); iter!=particles.end(); ++iter)
particle_charges += iter->Charge();
particle_charges = MG::GetComm()->GlobalSumRoot(particle_charges);
comm.PrintOnce(Debug, "Particle list charge sum: %e", particle_charges);
comm.Print(Debug, "Local number of particles: %d", particles.size());
#endif
for (iter=particles.begin(); iter!=particles.end(); ++iter)
spl.SetSpline(particle_grid, *iter);
// Communicate charges over halo
comm.CommFromGhosts(particle_grid);
// Assign charge values to the right hand side
for (int i=0; iGlobalSum(charge_sum);
comm.PrintOnce(Debug, "Grid charge sum: %e", charge_sum);
#endif
}
void InterfaceParticles::ExportSolution(Grid& grid)
{
Index i;
#ifdef OUTPUT_DEBUG
vmg_float e = 0.0;
vmg_float e_long = 0.0;
vmg_float e_self = 0.0;
vmg_float e_short_peak = 0.0;
vmg_float e_short_spline = 0.0;
#endif
Factory& factory = MG::GetFactory();
Particle::CommMPI& comm = *dynamic_cast(MG::GetComm());
/*
* Get parameters and arrays
*/
const vmg_int& near_field_cells = factory.GetObjectStorageVal("PARTICLE_NEAR_FIELD_CELLS");
const vmg_int& interpolation_degree = factory.GetObjectStorageVal("PARTICLE_INTERPOLATION_DEGREE");
Particle::Interpolation ip(interpolation_degree);
const vmg_float r_cut = near_field_cells * grid.Extent().MeshWidth().Max();
/*
* Copy potential values to a grid with sufficiently large halo size.
* This may be optimized in future.
* The parameters of this grid have been set in the import step.
*/
Grid& particle_grid = comm.GetParticleGrid();
for (i.X()=0; i.X() 0)
ip.ComputeCoefficients(particle_grid, Index(i,j,k) - lc.Local().Begin() + particle_grid.Local().Begin());
for (p1=lc(i,j,k).begin(); p1!=lc(i,j,k).end(); ++p1) {
// Interpolate long-range part of potential and electric field
ip.Evaluate(**p1);
// Subtract self-induced potential
(*p1)->Pot() -= (*p1)->Charge() * spl.GetAntiDerivativeAtZero();
// spl.SubtractSelfInducedForces(particle_grid, **p1);
#ifdef OUTPUT_DEBUG
e_long += 0.5 * (*p1)->Charge() * ip.EvaluatePotentialLR(**p1);
e_self += 0.5 * (*p1)->Charge() * (*p1)->Charge() * spl.GetAntiDerivativeAtZero();
#endif
for (int dx=-1*near_field_cells; dx<=near_field_cells; ++dx)
for (int dy=-1*near_field_cells; dy<=near_field_cells; ++dy)
for (int dz=-1*near_field_cells; dz<=near_field_cells; ++dz) {
for (p2=lc(i+dx,j+dy,k+dz).begin(); p2!=lc(i+dx,j+dy,k+dz).end(); ++p2)
if (*p1 != *p2) {
const Vector dir = (*p1)->Pos() - (*p2)->Pos();
const vmg_float length = dir.Length();
if (length < r_cut) {
(*p1)->Pot() += (*p2)->Charge() / length * (1.0 + spl.EvaluatePotential(length));
(*p1)->Field() += (*p2)->Charge() * dir * spl.EvaluateField(length);
#ifdef OUTPUT_DEBUG
e_short_peak += 0.5 * (*p1)->Charge() * (*p2)->Charge() / length;
e_short_spline += 0.5 * (*p1)->Charge() * (*p2)->Charge() / length * spl.EvaluatePotential(length);
#endif
}
}
}
}
}
/* Remove average force term */
// Vector average_force = 0.0;
// for (std::list::const_iterator iter=particles.begin(); iter!=particles.end(); ++iter)
// average_force += iter->Charge() * iter->Field();
// const vmg_int& npl = MG::GetFactory().GetObjectStorageVal("PARTICLE_NUM_LOCAL");
// const vmg_int num_particles_global = comm.GlobalSum(npl);
// average_force /= num_particles_global;
// comm.GlobalSumArray(average_force.vec(), 3);
// for (std::list::iterator iter=particles.begin(); iter!=particles.end(); ++iter)
// iter->Field() -= average_force / iter->Charge();
comm.CommParticlesBack(particles);
#ifdef OUTPUT_DEBUG
vmg_float* q = factory.GetObjectStorageArray("PARTICLE_CHARGE_ARRAY");
const vmg_int& num_particles_local = factory.GetObjectStorageVal("PARTICLE_NUM_LOCAL");
const vmg_float* p = factory.GetObjectStorageArray("PARTICLE_POTENTIAL_ARRAY");
const vmg_float* f = factory.GetObjectStorageArray("PARTICLE_FIELD_ARRAY");
// extract forces
if (num_particles_local != 0) {
size_t index = 0;
comm.PrintOnce(Debug, "%d force vector: %e %e %e", (index/3)+1, f[index++], f[index++], f[index++]);
}
e_long = comm.GlobalSumRoot(e_long);
e_short_peak = comm.GlobalSumRoot(e_short_peak);
e_short_spline = comm.GlobalSumRoot(e_short_spline);
e_self = comm.GlobalSumRoot(e_self);
for (int j=0; j