source: ThirdParty/vmg/src/units/particle/bspline.hpp@ be848d

Action_Thermostats Add_AtomRandomPerturbation Add_SelectAtomByNameAction Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_StructOpt_integration_tests AutomationFragmentation_failures Candidate_v1.6.1 ChangeBugEmailaddress ChemicalSpaceEvaluator EmpiricalPotential_contain_HomologyGraph_documentation Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph Fix_Verbose_Codepatterns ForceAnnealing_oldresults ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion Gui_displays_atomic_force_velocity IndependentFragmentGrids_IntegrationTest JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks StoppableMakroAction TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps
Last change on this file since be848d was 7faa5c, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit 'de061d9d851257a04e924d4472df4523d33bb08b' as 'ThirdParty/vmg'

  • Property mode set to 100644
File size: 13.8 KB
Line 
1/*
2 * vmg - a versatile multigrid solver
3 * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
4 *
5 * vmg is free software: you can redistribute it and/or modify
6 * it under the terms of the GNU General Public License as published by
7 * the Free Software Foundation, either version 3 of the License, or
8 * (at your option) any later version.
9 *
10 * vmg is distributed in the hope that it will be useful,
11 * but WITHOUT ANY WARRANTY; without even the implied warranty of
12 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13 * GNU General Public License for more details.
14 *
15 * You should have received a copy of the GNU General Public License
16 * along with this program. If not, see <http://www.gnu.org/licenses/>.
17 */
18
19/**
20 * @file bspline.hpp
21 * @author Julian Iseringhausen <isering@ins.uni-bonn.de>
22 * @date Mon Nov 21 13:27:22 2011
23 *
24 * @brief B-Splines for molecular dynamics.
25 *
26 */
27
28#ifndef BSPLINE_HPP_
29#define BSPLINE_HPP_
30
31#include <cmath>
32
33#include "base/helper.hpp"
34#include "base/index.hpp"
35#include "base/polynomial.hpp"
36#include "base/vector.hpp"
37#include "grid/grid.hpp"
38#include "units/particle/particle.hpp"
39
40namespace VMG
41{
42
43namespace Particle
44{
45
46class BSpline
47{
48public:
49 BSpline(const int& near_field_cells, const vmg_float& h);
50
51 vmg_float EvaluateSpline(const vmg_float& val) const
52 {
53 for (unsigned int i=0; i<intervals.size(); ++i)
54 if (val < intervals[i])
55 return spline_nom[i](val) / spline_denom[i](val);
56 return 0.0;
57 }
58
59 void SetSpline(Grid& grid, const Particle& p) const
60 {
61 assert(p.Pos().X() >= grid.Extent().Begin().X() && p.Pos().X() < grid.Extent().End().X());
62 assert(p.Pos().Y() >= grid.Extent().Begin().Y() && p.Pos().Y() < grid.Extent().End().Y());
63 assert(p.Pos().Z() >= grid.Extent().Begin().Z() && p.Pos().Z() < grid.Extent().End().Z());
64
65 vmg_float *vals = new vmg_float[Helper::intpow(2*near_field_cells+1,3)];
66
67 vmg_float temp_val;
68 vmg_float int_val = 0.0;
69 int c = 0;
70
71 const int index_global_x = grid.Global().GlobalBegin().X() + std::floor((p.Pos().X() - grid.Extent().Begin().X()) / grid.Extent().MeshWidth().X());
72 const int index_global_y = grid.Global().GlobalBegin().Y() + std::floor((p.Pos().Y() - grid.Extent().Begin().Y()) / grid.Extent().MeshWidth().Y());
73 const int index_global_z = grid.Global().GlobalBegin().Z() + std::floor((p.Pos().Z() - grid.Extent().Begin().Z()) / grid.Extent().MeshWidth().Z());
74
75 assert(index_global_x >= grid.Global().LocalBegin().X() && index_global_x < grid.Global().LocalEnd().X());
76 assert(index_global_y >= grid.Global().LocalBegin().Y() && index_global_y < grid.Global().LocalEnd().Y());
77 assert(index_global_z >= grid.Global().LocalBegin().Z() && index_global_z < grid.Global().LocalEnd().Z());
78
79 const int index_local_x = index_global_x - grid.Global().LocalBegin().X() + grid.Local().HaloSize1().X();
80 const int index_local_y = index_global_y - grid.Global().LocalBegin().Y() + grid.Local().HaloSize1().Y();
81 const int index_local_z = index_global_z - grid.Global().LocalBegin().Z() + grid.Local().HaloSize1().Z();
82
83 assert(index_local_x >= grid.Local().Begin().X() && index_local_x < grid.Local().End().X());
84 assert(index_local_y >= grid.Local().Begin().Y() && index_local_y < grid.Local().End().Y());
85 assert(index_local_z >= grid.Local().Begin().Z() && index_local_z < grid.Local().End().Z());
86
87 const vmg_float pos_beg_x = grid.Extent().Begin().X() + grid.Extent().MeshWidth().X() * (index_global_x - grid.Global().GlobalBegin().X() - near_field_cells) - p.Pos().X();
88 const vmg_float pos_beg_y = grid.Extent().Begin().Y() + grid.Extent().MeshWidth().Y() * (index_global_y - grid.Global().GlobalBegin().Y() - near_field_cells) - p.Pos().Y();
89 const vmg_float pos_beg_z = grid.Extent().Begin().Z() + grid.Extent().MeshWidth().Z() * (index_global_z - grid.Global().GlobalBegin().Z() - near_field_cells) - p.Pos().Z();
90
91 const vmg_float& h_x = grid.Extent().MeshWidth().X();
92 const vmg_float& h_y = grid.Extent().MeshWidth().Y();
93 const vmg_float& h_z = grid.Extent().MeshWidth().Z();
94
95 // Iterate over all grid points which lie in the support of the interpolating B-Spline
96 vmg_float dir_x = pos_beg_x;
97 for (int i=-1*near_field_cells; i<=near_field_cells; ++i) {
98 vmg_float dir_y = pos_beg_y;
99 for (int j=-1*near_field_cells; j<=near_field_cells; ++j) {
100 vmg_float dir_z = pos_beg_z;
101 for (int k=-1*near_field_cells; k<=near_field_cells; ++k) {
102
103 // Compute distance from grid point to particle
104 temp_val = EvaluateSpline(std::sqrt(dir_x*dir_x+dir_y*dir_y+dir_z*dir_z));
105 vals[c++] = temp_val * p.Charge();
106 int_val += temp_val;
107
108 dir_z += h_z;
109 }
110 dir_y += h_y;
111 }
112 dir_x += h_x;
113 }
114
115 // Reciprocal value of the numerically integrated spline
116 int_val = 1.0 / (int_val * h_x * h_y * h_z);
117
118 c = 0;
119 for (int i=-1*near_field_cells; i<=near_field_cells; ++i)
120 for (int j=-1*near_field_cells; j<=near_field_cells; ++j)
121 for (int k=-1*near_field_cells; k<=near_field_cells; ++k)
122 grid(index_local_x + i,
123 index_local_y + j,
124 index_local_z + k) += vals[c++] * int_val;
125 assert( c == Helper::intpow(2*near_field_cells+1,3) );
126
127 delete [] vals;
128 }
129
130 void changeGridBySelfInducedPotential(Grid& grid, Particle& p, const vmg_float &sign) const
131 {
132 assert(p.Pos().X() >= grid.Extent().Begin().X() && p.Pos().X() < grid.Extent().End().X());
133 assert(p.Pos().Y() >= grid.Extent().Begin().Y() && p.Pos().Y() < grid.Extent().End().Y());
134 assert(p.Pos().Z() >= grid.Extent().Begin().Z() && p.Pos().Z() < grid.Extent().End().Z());
135
136 const int index_global_x = grid.Global().GlobalBegin().X() + std::floor((p.Pos().X() - grid.Extent().Begin().X()) / grid.Extent().MeshWidth().X());
137 const int index_global_y = grid.Global().GlobalBegin().Y() + std::floor((p.Pos().Y() - grid.Extent().Begin().Y()) / grid.Extent().MeshWidth().Y());
138 const int index_global_z = grid.Global().GlobalBegin().Z() + std::floor((p.Pos().Z() - grid.Extent().Begin().Z()) / grid.Extent().MeshWidth().Z());
139
140 assert(index_global_x >= grid.Global().LocalBegin().X() && index_global_x < grid.Global().LocalEnd().X());
141 assert(index_global_y >= grid.Global().LocalBegin().Y() && index_global_y < grid.Global().LocalEnd().Y());
142 assert(index_global_z >= grid.Global().LocalBegin().Z() && index_global_z < grid.Global().LocalEnd().Z());
143
144 const int index_local_x = index_global_x - grid.Global().LocalBegin().X() + grid.Local().HaloSize1().X();
145 const int index_local_y = index_global_y - grid.Global().LocalBegin().Y() + grid.Local().HaloSize1().Y();
146 const int index_local_z = index_global_z - grid.Global().LocalBegin().Z() + grid.Local().HaloSize1().Z();
147
148 assert(index_local_x >= grid.Local().Begin().X() && index_local_x < grid.Local().End().X());
149 assert(index_local_y >= grid.Local().Begin().Y() && index_local_y < grid.Local().End().Y());
150 assert(index_local_z >= grid.Local().Begin().Z() && index_local_z < grid.Local().End().Z());
151
152 const vmg_float pos_beg_x = grid.Extent().Begin().X() + grid.Extent().MeshWidth().X() * (index_global_x - grid.Global().GlobalBegin().X() - near_field_cells) - p.Pos().X();
153 const vmg_float pos_beg_y = grid.Extent().Begin().Y() + grid.Extent().MeshWidth().Y() * (index_global_y - grid.Global().GlobalBegin().Y() - near_field_cells) - p.Pos().Y();
154 const vmg_float pos_beg_z = grid.Extent().Begin().Z() + grid.Extent().MeshWidth().Z() * (index_global_z - grid.Global().GlobalBegin().Z() - near_field_cells) - p.Pos().Z();
155
156 const vmg_float& h_x = grid.Extent().MeshWidth().X();
157 const vmg_float& h_y = grid.Extent().MeshWidth().Y();
158 const vmg_float& h_z = grid.Extent().MeshWidth().Z();
159
160 vmg_float dir_x = pos_beg_x;
161 for (int i=-1*near_field_cells; i<=near_field_cells; ++i) {
162 vmg_float dir_y = pos_beg_y;
163 for (int j=-1*near_field_cells; j<=near_field_cells; ++j) {
164 vmg_float dir_z = pos_beg_z;
165 for (int k=-1*near_field_cells; k<=near_field_cells; ++k) {
166 const double length_sq = dir_x*dir_x+dir_y*dir_y+dir_z*dir_z;
167 const double length = std::sqrt(length_sq);
168 grid(index_local_x + i,
169 index_local_y + j,
170 index_local_z + k) += sign * p.Charge() * EvaluatePotential(length);
171
172 dir_z += h_z;
173 }
174 dir_y += h_y;
175 }
176 dir_x += h_x;
177 }
178 }
179
180 void SubtractSelfInducedForces(const Grid& grid, Particle& p) const
181 {
182 assert(p.Pos().X() >= grid.Extent().Begin().X() && p.Pos().X() < grid.Extent().End().X());
183 assert(p.Pos().Y() >= grid.Extent().Begin().Y() && p.Pos().Y() < grid.Extent().End().Y());
184 assert(p.Pos().Z() >= grid.Extent().Begin().Z() && p.Pos().Z() < grid.Extent().End().Z());
185
186 vmg_float temp_val = 0.;
187
188 const int index_global_x = grid.Global().GlobalBegin().X() + std::floor((p.Pos().X() - grid.Extent().Begin().X()) / grid.Extent().MeshWidth().X());
189 const int index_global_y = grid.Global().GlobalBegin().Y() + std::floor((p.Pos().Y() - grid.Extent().Begin().Y()) / grid.Extent().MeshWidth().Y());
190 const int index_global_z = grid.Global().GlobalBegin().Z() + std::floor((p.Pos().Z() - grid.Extent().Begin().Z()) / grid.Extent().MeshWidth().Z());
191
192 assert(index_global_x >= grid.Global().LocalBegin().X() && index_global_x < grid.Global().LocalEnd().X());
193 assert(index_global_y >= grid.Global().LocalBegin().Y() && index_global_y < grid.Global().LocalEnd().Y());
194 assert(index_global_z >= grid.Global().LocalBegin().Z() && index_global_z < grid.Global().LocalEnd().Z());
195
196 const int index_local_x = index_global_x - grid.Global().LocalBegin().X() + grid.Local().HaloSize1().X();
197 const int index_local_y = index_global_y - grid.Global().LocalBegin().Y() + grid.Local().HaloSize1().Y();
198 const int index_local_z = index_global_z - grid.Global().LocalBegin().Z() + grid.Local().HaloSize1().Z();
199
200 assert(index_local_x >= grid.Local().Begin().X() && index_local_x < grid.Local().End().X());
201 assert(index_local_y >= grid.Local().Begin().Y() && index_local_y < grid.Local().End().Y());
202 assert(index_local_z >= grid.Local().Begin().Z() && index_local_z < grid.Local().End().Z());
203
204 const vmg_float pos_beg_x = grid.Extent().Begin().X() + grid.Extent().MeshWidth().X() * (index_global_x - grid.Global().GlobalBegin().X() - near_field_cells) - p.Pos().X();
205 const vmg_float pos_beg_y = grid.Extent().Begin().Y() + grid.Extent().MeshWidth().Y() * (index_global_y - grid.Global().GlobalBegin().Y() - near_field_cells) - p.Pos().Y();
206 const vmg_float pos_beg_z = grid.Extent().Begin().Z() + grid.Extent().MeshWidth().Z() * (index_global_z - grid.Global().GlobalBegin().Z() - near_field_cells) - p.Pos().Z();
207
208 const vmg_float& h_x = grid.Extent().MeshWidth().X();
209 const vmg_float& h_y = grid.Extent().MeshWidth().Y();
210 const vmg_float& h_z = grid.Extent().MeshWidth().Z();
211
212 vmg_float int_val = 0.;
213 vmg_float dir_x = pos_beg_x;
214 for (int i=-1*near_field_cells; i<=near_field_cells; ++i) {
215 vmg_float dir_y = pos_beg_y;
216 for (int j=-1*near_field_cells; j<=near_field_cells; ++j) {
217 vmg_float dir_z = pos_beg_z;
218 for (int k=-1*near_field_cells; k<=near_field_cells; ++k) {
219
220 const double length_sq = dir_x*dir_x+dir_y*dir_y+dir_z*dir_z;
221 if (fabs(length_sq) > std::numeric_limits<double>::epsilon()) {
222 // Compute distance from grid point to particle
223 int_val += EvaluateSpline(std::sqrt(length_sq));
224 }
225
226 dir_z += h_z;
227 }
228 dir_y += h_y;
229 }
230 dir_x += h_x;
231 }
232 // Reciprocal value of the numerically integrated spline
233 if (fabs(int_val) > std::numeric_limits<double>::epsilon())
234 int_val = 1. / (int_val * h_x * h_y * h_z);
235 else
236 int_val = 1. / (h_x * h_y * h_z);
237
238 // Iterate over all grid points which lie in the support of the interpolating B-Spline
239 vmg_float test_int_val = 0.;
240 dir_x = pos_beg_x;
241 for (int i=-1*near_field_cells; i<=near_field_cells; ++i) {
242 vmg_float dir_y = pos_beg_y;
243 for (int j=-1*near_field_cells; j<=near_field_cells; ++j) {
244 vmg_float dir_z = pos_beg_z;
245 for (int k=-1*near_field_cells; k<=near_field_cells; ++k) {
246
247 // Compute distance from grid point to particle
248 const double length_sq = dir_x*dir_x+dir_y*dir_y+dir_z*dir_z;
249 if (fabs(length_sq) > std::numeric_limits<double>::epsilon()) {
250 const double length = std::sqrt(length_sq);
251
252 temp_val = h_x * h_y * h_z * int_val * EvaluateSpline(length);
253 test_int_val += temp_val;
254 p.Field()[0] -= p.Charge()* temp_val * dir_x / (length_sq*length);
255 p.Field()[1] -= p.Charge()* temp_val * dir_y / (length_sq*length);
256 p.Field()[2] -= p.Charge()* temp_val * dir_z / (length_sq*length);
257 } else {
258 std::cerr << "Value very small " << length_sq << "=("
259 << dir_x << ")^2+(" << dir_y << ")^2+(" << dir_z << ")^2 for particle at ("
260 << p.Pos().X() << ","
261 << p.Pos().Y() << ","
262 << p.Pos().Z() << ")"
263 << "\n";
264 }
265 dir_z += h_z;
266 }
267 dir_y += h_y;
268 }
269 dir_x += h_x;
270 }
271 if ( fabs(test_int_val -1.) > std::numeric_limits<double>::epsilon()*1e4 ) {
272 std::cerr << "Integrated spline value should be 1 but is " << test_int_val << std::endl;
273 assert(0);
274 }
275 }
276
277 vmg_float EvaluatePotential(const vmg_float& val) const
278 {
279 for (unsigned int i=0; i<intervals.size(); ++i)
280 if (val < intervals[i])
281 return potential_nom[i](val) / potential_denom[i](val);
282 return potential_nom.back()(val) / potential_denom.back()(val);
283 }
284
285 vmg_float EvaluateField(const vmg_float& val) const
286 {
287 for (unsigned int i=0; i<intervals.size(); ++i)
288 if (val < intervals[i])
289 return field_nom[i](val) / field_denom[i](val);
290 return 0.0;
291 }
292
293 const vmg_float& GetAntiDerivativeAtZero() const
294 {
295 return antid;
296 }
297
298private:
299 std::vector<Polynomial> spline_nom, spline_denom;
300 std::vector<Polynomial> potential_nom, potential_denom;
301 std::vector<Polynomial> field_nom, field_denom;
302 vmg_float antid;
303 std::vector<vmg_float> intervals;
304
305 const vmg_float R;
306 const int near_field_cells;
307};
308
309}
310
311}
312
313#endif /* BSPLINE_HPP_ */
Note: See TracBrowser for help on using the repository browser.