[de061d] | 1 | /*
|
---|
| 2 | * vmg - a versatile multigrid solver
|
---|
| 3 | * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
|
---|
| 4 | *
|
---|
| 5 | * vmg is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * vmg is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 | /**
|
---|
| 20 | * @file bspline.hpp
|
---|
| 21 | * @author Julian Iseringhausen <isering@ins.uni-bonn.de>
|
---|
| 22 | * @date Mon Nov 21 13:27:22 2011
|
---|
| 23 | *
|
---|
| 24 | * @brief B-Splines for molecular dynamics.
|
---|
| 25 | *
|
---|
| 26 | */
|
---|
| 27 |
|
---|
| 28 | #ifndef BSPLINE_HPP_
|
---|
| 29 | #define BSPLINE_HPP_
|
---|
| 30 |
|
---|
| 31 | #include <cmath>
|
---|
| 32 |
|
---|
| 33 | #include "base/helper.hpp"
|
---|
| 34 | #include "base/index.hpp"
|
---|
| 35 | #include "base/polynomial.hpp"
|
---|
| 36 | #include "base/vector.hpp"
|
---|
| 37 | #include "grid/grid.hpp"
|
---|
| 38 | #include "units/particle/particle.hpp"
|
---|
| 39 |
|
---|
| 40 | namespace VMG
|
---|
| 41 | {
|
---|
| 42 |
|
---|
| 43 | namespace Particle
|
---|
| 44 | {
|
---|
| 45 |
|
---|
| 46 | class BSpline
|
---|
| 47 | {
|
---|
| 48 | public:
|
---|
| 49 | BSpline(const int& near_field_cells, const vmg_float& h);
|
---|
| 50 |
|
---|
| 51 | vmg_float EvaluateSpline(const vmg_float& val) const
|
---|
| 52 | {
|
---|
| 53 | for (unsigned int i=0; i<intervals.size(); ++i)
|
---|
| 54 | if (val < intervals[i])
|
---|
| 55 | return spline_nom[i](val) / spline_denom[i](val);
|
---|
| 56 | return 0.0;
|
---|
| 57 | }
|
---|
| 58 |
|
---|
| 59 | void SetSpline(Grid& grid, const Particle& p) const
|
---|
| 60 | {
|
---|
| 61 | assert(p.Pos().X() >= grid.Extent().Begin().X() && p.Pos().X() < grid.Extent().End().X());
|
---|
| 62 | assert(p.Pos().Y() >= grid.Extent().Begin().Y() && p.Pos().Y() < grid.Extent().End().Y());
|
---|
| 63 | assert(p.Pos().Z() >= grid.Extent().Begin().Z() && p.Pos().Z() < grid.Extent().End().Z());
|
---|
| 64 |
|
---|
| 65 | vmg_float *vals = new vmg_float[Helper::intpow(2*near_field_cells+1,3)];
|
---|
| 66 |
|
---|
| 67 | vmg_float temp_val;
|
---|
| 68 | vmg_float int_val = 0.0;
|
---|
| 69 | int c = 0;
|
---|
| 70 |
|
---|
| 71 | const int index_global_x = grid.Global().GlobalBegin().X() + std::floor((p.Pos().X() - grid.Extent().Begin().X()) / grid.Extent().MeshWidth().X());
|
---|
| 72 | const int index_global_y = grid.Global().GlobalBegin().Y() + std::floor((p.Pos().Y() - grid.Extent().Begin().Y()) / grid.Extent().MeshWidth().Y());
|
---|
| 73 | const int index_global_z = grid.Global().GlobalBegin().Z() + std::floor((p.Pos().Z() - grid.Extent().Begin().Z()) / grid.Extent().MeshWidth().Z());
|
---|
| 74 |
|
---|
| 75 | assert(index_global_x >= grid.Global().LocalBegin().X() && index_global_x < grid.Global().LocalEnd().X());
|
---|
| 76 | assert(index_global_y >= grid.Global().LocalBegin().Y() && index_global_y < grid.Global().LocalEnd().Y());
|
---|
| 77 | assert(index_global_z >= grid.Global().LocalBegin().Z() && index_global_z < grid.Global().LocalEnd().Z());
|
---|
| 78 |
|
---|
| 79 | const int index_local_x = index_global_x - grid.Global().LocalBegin().X() + grid.Local().HaloSize1().X();
|
---|
| 80 | const int index_local_y = index_global_y - grid.Global().LocalBegin().Y() + grid.Local().HaloSize1().Y();
|
---|
| 81 | const int index_local_z = index_global_z - grid.Global().LocalBegin().Z() + grid.Local().HaloSize1().Z();
|
---|
| 82 |
|
---|
| 83 | assert(index_local_x >= grid.Local().Begin().X() && index_local_x < grid.Local().End().X());
|
---|
| 84 | assert(index_local_y >= grid.Local().Begin().Y() && index_local_y < grid.Local().End().Y());
|
---|
| 85 | assert(index_local_z >= grid.Local().Begin().Z() && index_local_z < grid.Local().End().Z());
|
---|
| 86 |
|
---|
| 87 | const vmg_float pos_beg_x = grid.Extent().Begin().X() + grid.Extent().MeshWidth().X() * (index_global_x - grid.Global().GlobalBegin().X() - near_field_cells) - p.Pos().X();
|
---|
| 88 | const vmg_float pos_beg_y = grid.Extent().Begin().Y() + grid.Extent().MeshWidth().Y() * (index_global_y - grid.Global().GlobalBegin().Y() - near_field_cells) - p.Pos().Y();
|
---|
| 89 | const vmg_float pos_beg_z = grid.Extent().Begin().Z() + grid.Extent().MeshWidth().Z() * (index_global_z - grid.Global().GlobalBegin().Z() - near_field_cells) - p.Pos().Z();
|
---|
| 90 |
|
---|
| 91 | const vmg_float& h_x = grid.Extent().MeshWidth().X();
|
---|
| 92 | const vmg_float& h_y = grid.Extent().MeshWidth().Y();
|
---|
| 93 | const vmg_float& h_z = grid.Extent().MeshWidth().Z();
|
---|
| 94 |
|
---|
| 95 | // Iterate over all grid points which lie in the support of the interpolating B-Spline
|
---|
| 96 | vmg_float dir_x = pos_beg_x;
|
---|
| 97 | for (int i=-1*near_field_cells; i<=near_field_cells; ++i) {
|
---|
| 98 | vmg_float dir_y = pos_beg_y;
|
---|
| 99 | for (int j=-1*near_field_cells; j<=near_field_cells; ++j) {
|
---|
| 100 | vmg_float dir_z = pos_beg_z;
|
---|
| 101 | for (int k=-1*near_field_cells; k<=near_field_cells; ++k) {
|
---|
| 102 |
|
---|
| 103 | // Compute distance from grid point to particle
|
---|
| 104 | temp_val = EvaluateSpline(std::sqrt(dir_x*dir_x+dir_y*dir_y+dir_z*dir_z));
|
---|
| 105 | vals[c++] = temp_val * p.Charge();
|
---|
| 106 | int_val += temp_val;
|
---|
| 107 |
|
---|
| 108 | dir_z += h_z;
|
---|
| 109 | }
|
---|
| 110 | dir_y += h_y;
|
---|
| 111 | }
|
---|
| 112 | dir_x += h_x;
|
---|
| 113 | }
|
---|
| 114 |
|
---|
| 115 | // Reciprocal value of the numerically integrated spline
|
---|
| 116 | int_val = 1.0 / (int_val * h_x * h_y * h_z);
|
---|
| 117 |
|
---|
| 118 | c = 0;
|
---|
| 119 | for (int i=-1*near_field_cells; i<=near_field_cells; ++i)
|
---|
| 120 | for (int j=-1*near_field_cells; j<=near_field_cells; ++j)
|
---|
| 121 | for (int k=-1*near_field_cells; k<=near_field_cells; ++k)
|
---|
| 122 | grid(index_local_x + i,
|
---|
| 123 | index_local_y + j,
|
---|
| 124 | index_local_z + k) += vals[c++] * int_val;
|
---|
| 125 | assert( c == Helper::intpow(2*near_field_cells+1,3) );
|
---|
| 126 |
|
---|
| 127 | delete [] vals;
|
---|
| 128 | }
|
---|
| 129 |
|
---|
| 130 | void changeGridBySelfInducedPotential(Grid& grid, Particle& p, const vmg_float &sign) const
|
---|
| 131 | {
|
---|
| 132 | assert(p.Pos().X() >= grid.Extent().Begin().X() && p.Pos().X() < grid.Extent().End().X());
|
---|
| 133 | assert(p.Pos().Y() >= grid.Extent().Begin().Y() && p.Pos().Y() < grid.Extent().End().Y());
|
---|
| 134 | assert(p.Pos().Z() >= grid.Extent().Begin().Z() && p.Pos().Z() < grid.Extent().End().Z());
|
---|
| 135 |
|
---|
| 136 | const int index_global_x = grid.Global().GlobalBegin().X() + std::floor((p.Pos().X() - grid.Extent().Begin().X()) / grid.Extent().MeshWidth().X());
|
---|
| 137 | const int index_global_y = grid.Global().GlobalBegin().Y() + std::floor((p.Pos().Y() - grid.Extent().Begin().Y()) / grid.Extent().MeshWidth().Y());
|
---|
| 138 | const int index_global_z = grid.Global().GlobalBegin().Z() + std::floor((p.Pos().Z() - grid.Extent().Begin().Z()) / grid.Extent().MeshWidth().Z());
|
---|
| 139 |
|
---|
| 140 | assert(index_global_x >= grid.Global().LocalBegin().X() && index_global_x < grid.Global().LocalEnd().X());
|
---|
| 141 | assert(index_global_y >= grid.Global().LocalBegin().Y() && index_global_y < grid.Global().LocalEnd().Y());
|
---|
| 142 | assert(index_global_z >= grid.Global().LocalBegin().Z() && index_global_z < grid.Global().LocalEnd().Z());
|
---|
| 143 |
|
---|
| 144 | const int index_local_x = index_global_x - grid.Global().LocalBegin().X() + grid.Local().HaloSize1().X();
|
---|
| 145 | const int index_local_y = index_global_y - grid.Global().LocalBegin().Y() + grid.Local().HaloSize1().Y();
|
---|
| 146 | const int index_local_z = index_global_z - grid.Global().LocalBegin().Z() + grid.Local().HaloSize1().Z();
|
---|
| 147 |
|
---|
| 148 | assert(index_local_x >= grid.Local().Begin().X() && index_local_x < grid.Local().End().X());
|
---|
| 149 | assert(index_local_y >= grid.Local().Begin().Y() && index_local_y < grid.Local().End().Y());
|
---|
| 150 | assert(index_local_z >= grid.Local().Begin().Z() && index_local_z < grid.Local().End().Z());
|
---|
| 151 |
|
---|
| 152 | const vmg_float pos_beg_x = grid.Extent().Begin().X() + grid.Extent().MeshWidth().X() * (index_global_x - grid.Global().GlobalBegin().X() - near_field_cells) - p.Pos().X();
|
---|
| 153 | const vmg_float pos_beg_y = grid.Extent().Begin().Y() + grid.Extent().MeshWidth().Y() * (index_global_y - grid.Global().GlobalBegin().Y() - near_field_cells) - p.Pos().Y();
|
---|
| 154 | const vmg_float pos_beg_z = grid.Extent().Begin().Z() + grid.Extent().MeshWidth().Z() * (index_global_z - grid.Global().GlobalBegin().Z() - near_field_cells) - p.Pos().Z();
|
---|
| 155 |
|
---|
| 156 | const vmg_float& h_x = grid.Extent().MeshWidth().X();
|
---|
| 157 | const vmg_float& h_y = grid.Extent().MeshWidth().Y();
|
---|
| 158 | const vmg_float& h_z = grid.Extent().MeshWidth().Z();
|
---|
| 159 |
|
---|
| 160 | vmg_float dir_x = pos_beg_x;
|
---|
| 161 | for (int i=-1*near_field_cells; i<=near_field_cells; ++i) {
|
---|
| 162 | vmg_float dir_y = pos_beg_y;
|
---|
| 163 | for (int j=-1*near_field_cells; j<=near_field_cells; ++j) {
|
---|
| 164 | vmg_float dir_z = pos_beg_z;
|
---|
| 165 | for (int k=-1*near_field_cells; k<=near_field_cells; ++k) {
|
---|
| 166 | const double length_sq = dir_x*dir_x+dir_y*dir_y+dir_z*dir_z;
|
---|
| 167 | const double length = std::sqrt(length_sq);
|
---|
| 168 | grid(index_local_x + i,
|
---|
| 169 | index_local_y + j,
|
---|
| 170 | index_local_z + k) += sign * p.Charge() * EvaluatePotential(length);
|
---|
| 171 |
|
---|
| 172 | dir_z += h_z;
|
---|
| 173 | }
|
---|
| 174 | dir_y += h_y;
|
---|
| 175 | }
|
---|
| 176 | dir_x += h_x;
|
---|
| 177 | }
|
---|
| 178 | }
|
---|
| 179 |
|
---|
| 180 | void SubtractSelfInducedForces(const Grid& grid, Particle& p) const
|
---|
| 181 | {
|
---|
| 182 | assert(p.Pos().X() >= grid.Extent().Begin().X() && p.Pos().X() < grid.Extent().End().X());
|
---|
| 183 | assert(p.Pos().Y() >= grid.Extent().Begin().Y() && p.Pos().Y() < grid.Extent().End().Y());
|
---|
| 184 | assert(p.Pos().Z() >= grid.Extent().Begin().Z() && p.Pos().Z() < grid.Extent().End().Z());
|
---|
| 185 |
|
---|
| 186 | vmg_float temp_val = 0.;
|
---|
| 187 |
|
---|
| 188 | const int index_global_x = grid.Global().GlobalBegin().X() + std::floor((p.Pos().X() - grid.Extent().Begin().X()) / grid.Extent().MeshWidth().X());
|
---|
| 189 | const int index_global_y = grid.Global().GlobalBegin().Y() + std::floor((p.Pos().Y() - grid.Extent().Begin().Y()) / grid.Extent().MeshWidth().Y());
|
---|
| 190 | const int index_global_z = grid.Global().GlobalBegin().Z() + std::floor((p.Pos().Z() - grid.Extent().Begin().Z()) / grid.Extent().MeshWidth().Z());
|
---|
| 191 |
|
---|
| 192 | assert(index_global_x >= grid.Global().LocalBegin().X() && index_global_x < grid.Global().LocalEnd().X());
|
---|
| 193 | assert(index_global_y >= grid.Global().LocalBegin().Y() && index_global_y < grid.Global().LocalEnd().Y());
|
---|
| 194 | assert(index_global_z >= grid.Global().LocalBegin().Z() && index_global_z < grid.Global().LocalEnd().Z());
|
---|
| 195 |
|
---|
| 196 | const int index_local_x = index_global_x - grid.Global().LocalBegin().X() + grid.Local().HaloSize1().X();
|
---|
| 197 | const int index_local_y = index_global_y - grid.Global().LocalBegin().Y() + grid.Local().HaloSize1().Y();
|
---|
| 198 | const int index_local_z = index_global_z - grid.Global().LocalBegin().Z() + grid.Local().HaloSize1().Z();
|
---|
| 199 |
|
---|
| 200 | assert(index_local_x >= grid.Local().Begin().X() && index_local_x < grid.Local().End().X());
|
---|
| 201 | assert(index_local_y >= grid.Local().Begin().Y() && index_local_y < grid.Local().End().Y());
|
---|
| 202 | assert(index_local_z >= grid.Local().Begin().Z() && index_local_z < grid.Local().End().Z());
|
---|
| 203 |
|
---|
| 204 | const vmg_float pos_beg_x = grid.Extent().Begin().X() + grid.Extent().MeshWidth().X() * (index_global_x - grid.Global().GlobalBegin().X() - near_field_cells) - p.Pos().X();
|
---|
| 205 | const vmg_float pos_beg_y = grid.Extent().Begin().Y() + grid.Extent().MeshWidth().Y() * (index_global_y - grid.Global().GlobalBegin().Y() - near_field_cells) - p.Pos().Y();
|
---|
| 206 | const vmg_float pos_beg_z = grid.Extent().Begin().Z() + grid.Extent().MeshWidth().Z() * (index_global_z - grid.Global().GlobalBegin().Z() - near_field_cells) - p.Pos().Z();
|
---|
| 207 |
|
---|
| 208 | const vmg_float& h_x = grid.Extent().MeshWidth().X();
|
---|
| 209 | const vmg_float& h_y = grid.Extent().MeshWidth().Y();
|
---|
| 210 | const vmg_float& h_z = grid.Extent().MeshWidth().Z();
|
---|
| 211 |
|
---|
| 212 | vmg_float int_val = 0.;
|
---|
| 213 | vmg_float dir_x = pos_beg_x;
|
---|
| 214 | for (int i=-1*near_field_cells; i<=near_field_cells; ++i) {
|
---|
| 215 | vmg_float dir_y = pos_beg_y;
|
---|
| 216 | for (int j=-1*near_field_cells; j<=near_field_cells; ++j) {
|
---|
| 217 | vmg_float dir_z = pos_beg_z;
|
---|
| 218 | for (int k=-1*near_field_cells; k<=near_field_cells; ++k) {
|
---|
| 219 |
|
---|
| 220 | const double length_sq = dir_x*dir_x+dir_y*dir_y+dir_z*dir_z;
|
---|
| 221 | if (fabs(length_sq) > std::numeric_limits<double>::epsilon()) {
|
---|
| 222 | // Compute distance from grid point to particle
|
---|
| 223 | int_val += EvaluateSpline(std::sqrt(length_sq));
|
---|
| 224 | }
|
---|
| 225 |
|
---|
| 226 | dir_z += h_z;
|
---|
| 227 | }
|
---|
| 228 | dir_y += h_y;
|
---|
| 229 | }
|
---|
| 230 | dir_x += h_x;
|
---|
| 231 | }
|
---|
| 232 | // Reciprocal value of the numerically integrated spline
|
---|
| 233 | if (fabs(int_val) > std::numeric_limits<double>::epsilon())
|
---|
| 234 | int_val = 1. / (int_val * h_x * h_y * h_z);
|
---|
| 235 | else
|
---|
| 236 | int_val = 1. / (h_x * h_y * h_z);
|
---|
| 237 |
|
---|
| 238 | // Iterate over all grid points which lie in the support of the interpolating B-Spline
|
---|
| 239 | vmg_float test_int_val = 0.;
|
---|
| 240 | dir_x = pos_beg_x;
|
---|
| 241 | for (int i=-1*near_field_cells; i<=near_field_cells; ++i) {
|
---|
| 242 | vmg_float dir_y = pos_beg_y;
|
---|
| 243 | for (int j=-1*near_field_cells; j<=near_field_cells; ++j) {
|
---|
| 244 | vmg_float dir_z = pos_beg_z;
|
---|
| 245 | for (int k=-1*near_field_cells; k<=near_field_cells; ++k) {
|
---|
| 246 |
|
---|
| 247 | // Compute distance from grid point to particle
|
---|
| 248 | const double length_sq = dir_x*dir_x+dir_y*dir_y+dir_z*dir_z;
|
---|
| 249 | if (fabs(length_sq) > std::numeric_limits<double>::epsilon()) {
|
---|
| 250 | const double length = std::sqrt(length_sq);
|
---|
| 251 |
|
---|
| 252 | temp_val = h_x * h_y * h_z * int_val * EvaluateSpline(length);
|
---|
| 253 | test_int_val += temp_val;
|
---|
| 254 | p.Field()[0] -= p.Charge()* temp_val * dir_x / (length_sq*length);
|
---|
| 255 | p.Field()[1] -= p.Charge()* temp_val * dir_y / (length_sq*length);
|
---|
| 256 | p.Field()[2] -= p.Charge()* temp_val * dir_z / (length_sq*length);
|
---|
| 257 | } else {
|
---|
| 258 | std::cerr << "Value very small " << length_sq << "=("
|
---|
| 259 | << dir_x << ")^2+(" << dir_y << ")^2+(" << dir_z << ")^2 for particle at ("
|
---|
| 260 | << p.Pos().X() << ","
|
---|
| 261 | << p.Pos().Y() << ","
|
---|
| 262 | << p.Pos().Z() << ")"
|
---|
| 263 | << "\n";
|
---|
| 264 | }
|
---|
| 265 | dir_z += h_z;
|
---|
| 266 | }
|
---|
| 267 | dir_y += h_y;
|
---|
| 268 | }
|
---|
| 269 | dir_x += h_x;
|
---|
| 270 | }
|
---|
| 271 | if ( fabs(test_int_val -1.) > std::numeric_limits<double>::epsilon()*1e4 ) {
|
---|
| 272 | std::cerr << "Integrated spline value should be 1 but is " << test_int_val << std::endl;
|
---|
| 273 | assert(0);
|
---|
| 274 | }
|
---|
| 275 | }
|
---|
| 276 |
|
---|
| 277 | vmg_float EvaluatePotential(const vmg_float& val) const
|
---|
| 278 | {
|
---|
| 279 | for (unsigned int i=0; i<intervals.size(); ++i)
|
---|
| 280 | if (val < intervals[i])
|
---|
| 281 | return potential_nom[i](val) / potential_denom[i](val);
|
---|
| 282 | return potential_nom.back()(val) / potential_denom.back()(val);
|
---|
| 283 | }
|
---|
| 284 |
|
---|
| 285 | vmg_float EvaluateField(const vmg_float& val) const
|
---|
| 286 | {
|
---|
| 287 | for (unsigned int i=0; i<intervals.size(); ++i)
|
---|
| 288 | if (val < intervals[i])
|
---|
| 289 | return field_nom[i](val) / field_denom[i](val);
|
---|
| 290 | return 0.0;
|
---|
| 291 | }
|
---|
| 292 |
|
---|
| 293 | const vmg_float& GetAntiDerivativeAtZero() const
|
---|
| 294 | {
|
---|
| 295 | return antid;
|
---|
| 296 | }
|
---|
| 297 |
|
---|
| 298 | private:
|
---|
| 299 | std::vector<Polynomial> spline_nom, spline_denom;
|
---|
| 300 | std::vector<Polynomial> potential_nom, potential_denom;
|
---|
| 301 | std::vector<Polynomial> field_nom, field_denom;
|
---|
| 302 | vmg_float antid;
|
---|
| 303 | std::vector<vmg_float> intervals;
|
---|
| 304 |
|
---|
| 305 | const vmg_float R;
|
---|
| 306 | const int near_field_cells;
|
---|
| 307 | };
|
---|
| 308 |
|
---|
| 309 | }
|
---|
| 310 |
|
---|
| 311 | }
|
---|
| 312 |
|
---|
| 313 | #endif /* BSPLINE_HPP_ */
|
---|