[de061d] | 1 | /*
|
---|
| 2 | * vmg - a versatile multigrid solver
|
---|
| 3 | * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
|
---|
| 4 | *
|
---|
| 5 | * vmg is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * vmg is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 | /**
|
---|
| 20 | * @file solver_singular.cpp
|
---|
| 21 | * @author Julian Iseringhausen <isering@ins.uni-bonn.de>
|
---|
| 22 | * @date Mon Apr 18 13:12:02 2011
|
---|
| 23 | *
|
---|
| 24 | * @brief VMG::SolverSingular
|
---|
| 25 | *
|
---|
| 26 | */
|
---|
| 27 |
|
---|
| 28 | #ifdef HAVE_CONFIG_H
|
---|
| 29 | #include <libvmg_config.h>
|
---|
| 30 | #endif
|
---|
| 31 |
|
---|
| 32 | #include <cmath>
|
---|
| 33 | #include <cassert>
|
---|
| 34 | #include <iostream>
|
---|
| 35 | #include <limits>
|
---|
| 36 |
|
---|
| 37 | #include "base/discretization.hpp"
|
---|
| 38 | #include "base/stencil.hpp"
|
---|
| 39 | #include "comm/comm.hpp"
|
---|
| 40 | #include "grid/multigrid.hpp"
|
---|
| 41 | #include "solver/solver_singular.hpp"
|
---|
| 42 | #include "mg.hpp"
|
---|
| 43 |
|
---|
| 44 | using namespace VMG;
|
---|
| 45 |
|
---|
| 46 | //TODO: Implement global MPI communication here
|
---|
| 47 |
|
---|
| 48 | void SolverSingular::AssembleMatrix(const Grid& rhs)
|
---|
| 49 | {
|
---|
| 50 | Grid::iterator grid_iter;
|
---|
| 51 | Stencil::iterator stencil_iter;
|
---|
| 52 | Index i;
|
---|
| 53 | int index, index2;
|
---|
| 54 | vmg_float row_sum;
|
---|
| 55 |
|
---|
| 56 | Comm* comm = MG::GetComm();
|
---|
| 57 |
|
---|
| 58 | const vmg_float prefactor = MG::GetDiscretization()->OperatorPrefactor(rhs);
|
---|
| 59 | const Stencil& A = MG::GetDiscretization()->GetStencil();
|
---|
| 60 |
|
---|
| 61 | // Make sure that arrays are big enough to hold expanded system of equations
|
---|
| 62 | this->Realloc(rhs.Global().GlobalSize().Product() + 1);
|
---|
| 63 |
|
---|
| 64 | for (grid_iter = rhs.Iterators().Local().Begin(); grid_iter != rhs.Iterators().Local().End(); ++grid_iter) {
|
---|
| 65 |
|
---|
| 66 | // Compute 1-dimensional index from 3-dimensional grid
|
---|
| 67 | index = rhs.GlobalLinearIndex(*grid_iter - rhs.Local().Begin() + rhs.Global().LocalBegin());
|
---|
| 68 |
|
---|
| 69 | // Check if we computed the index correctly
|
---|
| 70 | assert(index >= 0 && index < this->Size()-1);
|
---|
| 71 |
|
---|
| 72 | // Set solution and right hand side vectors
|
---|
| 73 | this->Sol(index) = 0.0;
|
---|
| 74 | this->Rhs(index) = rhs.GetVal(*grid_iter);
|
---|
| 75 |
|
---|
| 76 | // Initialize matrix with zeros and then set entries according to the stencil
|
---|
| 77 | for (int l=0; l<this->Size(); l++)
|
---|
| 78 | this->Mat(index,l) = 0.0;
|
---|
| 79 |
|
---|
| 80 | this->Mat(index,index) = prefactor * A.GetDiag();
|
---|
| 81 |
|
---|
| 82 | for (stencil_iter = A.begin(); stencil_iter != A.end(); ++stencil_iter) {
|
---|
| 83 |
|
---|
| 84 | i = *grid_iter - rhs.Local().Begin() + rhs.Global().LocalBegin() + stencil_iter->Disp();
|
---|
| 85 |
|
---|
| 86 | for (int j=0; j<3; ++j)
|
---|
| 87 | if (comm->BoundaryConditions()[j] == Periodic) {
|
---|
| 88 | if (i[j] < rhs.Global().GlobalBegin()[j])
|
---|
| 89 | i[j] += rhs.Global().GlobalSize()[j];
|
---|
| 90 | else if (i[j] >= rhs.Global().GlobalEnd()[j])
|
---|
| 91 | i[j] -= rhs.Global().GlobalSize()[j];
|
---|
| 92 | }
|
---|
| 93 |
|
---|
| 94 | // Compute global 1-dimensional index
|
---|
| 95 | index2 = rhs.GlobalLinearIndex(i);
|
---|
| 96 |
|
---|
| 97 | // Set matrix entry
|
---|
| 98 | this->Mat(index,index2) += prefactor * stencil_iter->Val();
|
---|
| 99 | }
|
---|
| 100 | }
|
---|
| 101 |
|
---|
| 102 | // Check if matrix has zero row sum (i.e. (1,1,...,1) is an Eigenvector to the Eigenvalue 0)
|
---|
| 103 | row_sum = A.GetDiag();
|
---|
| 104 | for (Stencil::iterator iter=A.begin(); iter!=A.end(); iter++)
|
---|
| 105 | row_sum += iter->Val();
|
---|
| 106 |
|
---|
| 107 | if (std::abs(row_sum) <= (A.size()+1) * std::numeric_limits<vmg_float>::epsilon()) {
|
---|
| 108 |
|
---|
| 109 | // Expand equation system in order to make the system regular.
|
---|
| 110 | // The last entry of the solution vector will hold a correction to the right hand side,
|
---|
| 111 | // ensuring that the discrete compatibility condition holds. (Compare Trottenberg)
|
---|
| 112 | for (int i=0; i<this->Size()-1; i++)
|
---|
| 113 | this->Mat(this->Size()-1, i) = this->Mat(i, this->Size()-1) = 1.0;
|
---|
| 114 |
|
---|
| 115 | this->Mat(this->Size()-1, this->Size()-1) = 0.0;
|
---|
| 116 | this->Sol(this->Size()-1) = 0.0;
|
---|
| 117 | this->Rhs(this->Size()-1) = 0.0;
|
---|
| 118 |
|
---|
| 119 | }else {
|
---|
| 120 | //TODO: Implement this
|
---|
| 121 | assert(0 == "At the first glance your stencil does not seem to be singular. Try SolverRegular instead.");
|
---|
| 122 | }
|
---|
| 123 | }
|
---|
| 124 |
|
---|
| 125 | void SolverSingular::ExportSol(Grid& sol, Grid& rhs)
|
---|
| 126 | {
|
---|
| 127 | int index;
|
---|
| 128 | const vmg_float correction = this->Sol(this->Size()-1);
|
---|
| 129 |
|
---|
| 130 | for (int i=0; i<sol.Local().Size().X(); i++)
|
---|
| 131 | for (int j=0; j<sol.Local().Size().Y(); j++)
|
---|
| 132 | for (int k=0; k<sol.Local().Size().Z(); k++) {
|
---|
| 133 |
|
---|
| 134 | // Compute global 1-dimensional index
|
---|
| 135 | index = sol.GlobalLinearIndex(sol.Global().LocalBegin().X() + i,
|
---|
| 136 | sol.Global().LocalBegin().Y() + j,
|
---|
| 137 | sol.Global().LocalBegin().Z() + k);
|
---|
| 138 |
|
---|
| 139 | assert(index >= 0 && index < sol.Global().GlobalSize().Product());
|
---|
| 140 |
|
---|
| 141 | // Set solution
|
---|
| 142 | sol(sol.Local().Begin().X()+i, sol.Local().Begin().Y()+j, sol.Local().Begin().Z()+k) = this->Sol(index) - correction;
|
---|
| 143 |
|
---|
| 144 | }
|
---|
| 145 | }
|
---|