1 | /*
|
---|
2 | * vmg - a versatile multigrid solver
|
---|
3 | * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
|
---|
4 | *
|
---|
5 | * vmg is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * vmg is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 | /**
|
---|
20 | * @file gsrb_poisson_4.cpp
|
---|
21 | * @author Julian Iseringhausen <isering@ins.uni-bonn.de>
|
---|
22 | * @date Fri May 11 18:30:20 2012
|
---|
23 | *
|
---|
24 | * @brief Gauss-Seidel Red Black method, specialized to
|
---|
25 | * the Poisson equation. Performance improved by
|
---|
26 | * explicit loop unrolling.
|
---|
27 | *
|
---|
28 | */
|
---|
29 |
|
---|
30 | #ifdef HAVE_CONFIG_H
|
---|
31 | #include <libvmg_config.h>
|
---|
32 | #endif
|
---|
33 |
|
---|
34 | #ifdef HAVE_MPI
|
---|
35 | #include <mpi.h>
|
---|
36 | #endif
|
---|
37 |
|
---|
38 | #include "base/helper.hpp"
|
---|
39 | #include "comm/comm.hpp"
|
---|
40 | #include "grid/grid.hpp"
|
---|
41 | #include "smoother/gsrb_poisson_4.hpp"
|
---|
42 | #include "mg.hpp"
|
---|
43 |
|
---|
44 | using namespace VMG;
|
---|
45 |
|
---|
46 | static inline void ComputePartial(Grid& sol, Grid& rhs,
|
---|
47 | const Index& begin, const Index& end,
|
---|
48 | const vmg_float& prefactor, const int& off)
|
---|
49 | {
|
---|
50 | const vmg_float fac_1 = 1.0 / 12.0;
|
---|
51 | const vmg_float fac_2 = 1.0 / 24.0;
|
---|
52 |
|
---|
53 | for (int i=begin.X(); i<end.X(); ++i)
|
---|
54 | for (int j=begin.Y(); j<end.Y(); ++j)
|
---|
55 | for (int k=begin.Z() + (i + j + begin.Z() + off) % 2; k<end.Z(); k+=2)
|
---|
56 | sol(i,j,k) = prefactor * rhs.GetVal(i,j,k) + fac_1 * (sol.GetVal(i-1,j ,k ) +
|
---|
57 | sol.GetVal(i+1,j ,k ) +
|
---|
58 | sol.GetVal(i ,j-1,k ) +
|
---|
59 | sol.GetVal(i ,j+1,k ) +
|
---|
60 | sol.GetVal(i ,j ,k-1) +
|
---|
61 | sol.GetVal(i ,j ,k+1))
|
---|
62 | + fac_2 * (sol.GetVal(i-1,j-1,k ) +
|
---|
63 | sol.GetVal(i-1,j+1,k ) +
|
---|
64 | sol.GetVal(i+1,j-1,k ) +
|
---|
65 | sol.GetVal(i+1,j+1,k ) +
|
---|
66 | sol.GetVal(i-1,j ,k-1) +
|
---|
67 | sol.GetVal(i-1,j ,k+1) +
|
---|
68 | sol.GetVal(i+1,j ,k-1) +
|
---|
69 | sol.GetVal(i+1,j ,k+1) +
|
---|
70 | sol.GetVal(i ,j-1,k-1) +
|
---|
71 | sol.GetVal(i ,j-1,k+1) +
|
---|
72 | sol.GetVal(i ,j+1,k-1) +
|
---|
73 | sol.GetVal(i ,j+1,k+1));
|
---|
74 | }
|
---|
75 |
|
---|
76 | void GaussSeidelRBPoisson4::Compute(Grid& sol, Grid& rhs)
|
---|
77 | {
|
---|
78 | const vmg_float prefactor_inv = Helper::pow_2(sol.Extent().MeshWidth().Max()) / 4.0;
|
---|
79 | const int off = rhs.Global().LocalBegin().Sum() - rhs.Global().GlobalBegin().Sum() + rhs.Local().HaloSize1().Sum();
|
---|
80 | const LocalIndices& local = rhs.Local();
|
---|
81 | Comm& comm = *MG::GetComm();
|
---|
82 |
|
---|
83 | /*
|
---|
84 | * Compute first halfstep
|
---|
85 | */
|
---|
86 |
|
---|
87 | // Start asynchronous communication
|
---|
88 | comm.CommToGhostsAsyncStart(sol);
|
---|
89 |
|
---|
90 | // Smooth part not depending on ghost cells
|
---|
91 | ComputePartial(sol, rhs,
|
---|
92 | local.Begin()+1, local.End()-1,
|
---|
93 | prefactor_inv, off+1);
|
---|
94 |
|
---|
95 | // Finish asynchronous communication
|
---|
96 | comm.CommToGhostsAsyncFinish(sol);
|
---|
97 |
|
---|
98 | /*
|
---|
99 | * Smooth near boundary cells
|
---|
100 | */
|
---|
101 |
|
---|
102 | ComputePartial(sol, rhs,
|
---|
103 | local.Begin(),
|
---|
104 | Index(local.Begin().X()+1, local.End().Y(), local.End().Z()),
|
---|
105 | prefactor_inv, off+1);
|
---|
106 |
|
---|
107 | ComputePartial(sol, rhs,
|
---|
108 | Index(local.End().X()-1, local.Begin().Y(), local.Begin().Z()),
|
---|
109 | local.End(),
|
---|
110 | prefactor_inv, off+1);
|
---|
111 |
|
---|
112 | ComputePartial(sol, rhs,
|
---|
113 | Index(local.Begin().X()+1, local.Begin().Y(), local.Begin().Z()),
|
---|
114 | Index(local.End().X()-1, local.Begin().Y()+1, local.End().Z()),
|
---|
115 | prefactor_inv, off+1);
|
---|
116 |
|
---|
117 | ComputePartial(sol, rhs,
|
---|
118 | Index(local.Begin().X()+1, local.End().Y()-1, local.Begin().Z()),
|
---|
119 | Index(local.End().X()-1, local.End().Y(), local.End().Z()),
|
---|
120 | prefactor_inv, off+1);
|
---|
121 |
|
---|
122 | ComputePartial(sol, rhs,
|
---|
123 | Index(local.Begin().X()+1, local.Begin().Y()+1, local.Begin().Z()),
|
---|
124 | Index(local.End().X()-1, local.End().Y()-1, local.Begin().Z()+1),
|
---|
125 | prefactor_inv, off+1);
|
---|
126 |
|
---|
127 | ComputePartial(sol, rhs,
|
---|
128 | Index(local.Begin().X()+1, local.Begin().Y()+1, local.End().Z()-1),
|
---|
129 | Index(local.End().X()-1, local.End().Y()-1, local.End().Z()),
|
---|
130 | prefactor_inv, off+1);
|
---|
131 |
|
---|
132 | /*
|
---|
133 | * Compute second halfstep
|
---|
134 | */
|
---|
135 |
|
---|
136 | // Start asynchronous communication
|
---|
137 | comm.CommToGhostsAsyncStart(sol);
|
---|
138 |
|
---|
139 | // Smooth part not depending on ghost cells
|
---|
140 | ComputePartial(sol, rhs,
|
---|
141 | local.Begin()+1, local.End()-1,
|
---|
142 | prefactor_inv, off);
|
---|
143 |
|
---|
144 | // Finish asynchronous communication
|
---|
145 | comm.CommToGhostsAsyncFinish(sol);
|
---|
146 |
|
---|
147 | /*
|
---|
148 | * Smooth near boundary cells
|
---|
149 | */
|
---|
150 |
|
---|
151 | ComputePartial(sol, rhs,
|
---|
152 | local.Begin(),
|
---|
153 | Index(local.Begin().X()+1, local.End().Y(), local.End().Z()),
|
---|
154 | prefactor_inv, off);
|
---|
155 |
|
---|
156 | ComputePartial(sol, rhs,
|
---|
157 | Index(local.End().X()-1, local.Begin().Y(), local.Begin().Z()),
|
---|
158 | local.End(),
|
---|
159 | prefactor_inv, off);
|
---|
160 |
|
---|
161 | ComputePartial(sol, rhs,
|
---|
162 | Index(local.Begin().X()+1, local.Begin().Y(), local.Begin().Z()),
|
---|
163 | Index(local.End().X()-1, local.Begin().Y()+1, local.End().Z()),
|
---|
164 | prefactor_inv, off);
|
---|
165 |
|
---|
166 | ComputePartial(sol, rhs,
|
---|
167 | Index(local.Begin().X()+1, local.End().Y()-1, local.Begin().Z()),
|
---|
168 | Index(local.End().X()-1, local.End().Y(), local.End().Z()),
|
---|
169 | prefactor_inv, off);
|
---|
170 |
|
---|
171 | ComputePartial(sol, rhs,
|
---|
172 | Index(local.Begin().X()+1, local.Begin().Y()+1, local.Begin().Z()),
|
---|
173 | Index(local.End().X()-1, local.End().Y()-1, local.Begin().Z()+1),
|
---|
174 | prefactor_inv, off);
|
---|
175 |
|
---|
176 | ComputePartial(sol, rhs,
|
---|
177 | Index(local.Begin().X()+1, local.Begin().Y()+1, local.End().Z()-1),
|
---|
178 | Index(local.End().X()-1, local.End().Y()-1, local.End().Z()),
|
---|
179 | prefactor_inv, off);
|
---|
180 | }
|
---|