1 | /*
|
---|
2 | * vmg - a versatile multigrid solver
|
---|
3 | * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
|
---|
4 | *
|
---|
5 | * vmg is free software: you can redistribute it and/or modify
|
---|
6 | * it under the terms of the GNU General Public License as published by
|
---|
7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
8 | * (at your option) any later version.
|
---|
9 | *
|
---|
10 | * vmg is distributed in the hope that it will be useful,
|
---|
11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
13 | * GNU General Public License for more details.
|
---|
14 | *
|
---|
15 | * You should have received a copy of the GNU General Public License
|
---|
16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
17 | */
|
---|
18 |
|
---|
19 | /**
|
---|
20 | * @file grid_index_translations.cpp
|
---|
21 | * @author Julian Iseringhausen <isering@ins.uni-bonn.de>
|
---|
22 | * @date Tue May 17 11:46:37 2011
|
---|
23 | *
|
---|
24 | * @brief Class to convert different representations of grid
|
---|
25 | * indices.
|
---|
26 | *
|
---|
27 | */
|
---|
28 |
|
---|
29 | #ifdef HAVE_CONFIG_H
|
---|
30 | #include <libvmg_config.h>
|
---|
31 | #endif
|
---|
32 |
|
---|
33 | #include "base/helper.hpp"
|
---|
34 | #include "comm/comm.hpp"
|
---|
35 | #include "grid/grid_double_iterator.hpp"
|
---|
36 | #include "grid/grid_index_translations.hpp"
|
---|
37 | #include "grid/grid.hpp"
|
---|
38 | #include "grid/multigrid.hpp"
|
---|
39 | #include "mg.hpp"
|
---|
40 |
|
---|
41 | using namespace VMG;
|
---|
42 |
|
---|
43 | bool GridIndexTranslations::IsGridPointOf(const Grid& grid, const Index& index_finest)
|
---|
44 | {
|
---|
45 | const int max_level = MG::GetSol()->MaxLevel();
|
---|
46 | return index_finest[0] % Helper::intpow(2, max_level - grid.Level()) == 0 &&
|
---|
47 | index_finest[1] % Helper::intpow(2, max_level - grid.Level()) == 0 &&
|
---|
48 | index_finest[2] % Helper::intpow(2, max_level - grid.Level()) == 0;
|
---|
49 | }
|
---|
50 |
|
---|
51 | Index GridIndexTranslations::LocalToGlobal(const Grid& grid, const Index& index_local)
|
---|
52 | {
|
---|
53 | return index_local - grid.Local().HaloSize1() + grid.Global().LocalBegin();
|
---|
54 | }
|
---|
55 |
|
---|
56 | Index GridIndexTranslations::LocalToGlobalFinest(const Grid& grid, const Index& index_local)
|
---|
57 | {
|
---|
58 | return GlobalToGlobalFinest(grid, LocalToGlobal(grid, index_local));
|
---|
59 | }
|
---|
60 |
|
---|
61 | Index GridIndexTranslations::GlobalToLocal(const Grid& grid, const Index& index_global)
|
---|
62 | {
|
---|
63 | return index_global - grid.Global().LocalBegin() + grid.Local().HaloSize1();
|
---|
64 | }
|
---|
65 |
|
---|
66 | Index GridIndexTranslations::GlobalToGlobalFinest(const Grid& grid, const Index& index_global)
|
---|
67 | {
|
---|
68 | return Helper::intpow(2, MG::GetSol()->MaxLevel() - grid.Level()) * index_global;
|
---|
69 | }
|
---|
70 |
|
---|
71 | Index GridIndexTranslations::GlobalFinestToLocal(const Grid& grid, const Index& index_finest)
|
---|
72 | {
|
---|
73 | return GlobalToLocal(grid, GlobalFinestToGlobal(grid, index_finest));
|
---|
74 | }
|
---|
75 |
|
---|
76 | Index GridIndexTranslations::GlobalFinestToGlobal(const Grid& grid, const Index& index_finest)
|
---|
77 | {
|
---|
78 | assert(IsGridPointOf(grid, index_finest));
|
---|
79 | return index_finest / Helper::intpow(2, MG::GetSol()->MaxLevel() - grid.Level());
|
---|
80 | }
|
---|
81 |
|
---|
82 | void GridIndexTranslations::GlobalCoarseToFine(Index& begin, Index& end)
|
---|
83 | {
|
---|
84 | for (int j=0; j<3; ++j) {
|
---|
85 | begin[j] = 2 * begin[j];
|
---|
86 | end[j] = 2 * (end[j]-1) + 1;
|
---|
87 | }
|
---|
88 | }
|
---|
89 |
|
---|
90 | void GridIndexTranslations::GlobalFineToCoarse(Index& begin, Index& end)
|
---|
91 | {
|
---|
92 | for (int j=0; j<3; ++j) {
|
---|
93 | begin[j] = Helper::RoundUpToNextMultiple(begin[j], 2) / 2;
|
---|
94 | end[j] = Helper::RoundDownToNextMultiple(end[j]-1, 2) / 2 + 1;
|
---|
95 | }
|
---|
96 | }
|
---|
97 |
|
---|
98 | void GridIndexTranslations::GetGridAlignment(const Grid& grid_1, GridIteratorSet& bounds_1,
|
---|
99 | const Grid& grid_2, GridIteratorSet& bounds_2)
|
---|
100 | {
|
---|
101 | const Boundary& boundary = MG::GetComm()->BoundaryConditions();
|
---|
102 |
|
---|
103 | if (grid_1.Level() == grid_2.Level()) {
|
---|
104 | Index begin_global = grid_1.Global()
|
---|
105 | .LocalBegin()
|
---|
106 | .Clamp(grid_2.Global().LocalBegin(), grid_2.Global().LocalEnd());
|
---|
107 |
|
---|
108 | Index end_global = grid_1.Global()
|
---|
109 | .LocalEnd()
|
---|
110 | .Clamp(grid_2.Global().LocalBegin(), grid_2.Global().LocalEnd());
|
---|
111 |
|
---|
112 | for (int j=0; j<3; ++j) {
|
---|
113 | if (boundary[j] == Dirichlet) {
|
---|
114 | if (begin_global[j] == grid_1.Global().GlobalBegin()[j] || begin_global[j] == grid_2.Global().GlobalBegin()[j])
|
---|
115 | begin_global[j] += 1;
|
---|
116 | if (end_global[j] == grid_1.Global().GlobalEnd()[j] || end_global[j] == grid_2.Global().GlobalEnd()[j])
|
---|
117 | end_global[j] -= 1;
|
---|
118 | }
|
---|
119 | }
|
---|
120 |
|
---|
121 | bounds_1 = GridIteratorSet(GlobalToLocal(grid_1, begin_global), GlobalToLocal(grid_2, end_global));
|
---|
122 | bounds_2 = GridIteratorSet(GlobalToLocal(grid_2, begin_global), GlobalToLocal(grid_2, end_global));
|
---|
123 |
|
---|
124 | } else {
|
---|
125 |
|
---|
126 | const Grid& grid_c = (grid_1.Level() < grid_2.Level() ? grid_1 : grid_2);
|
---|
127 | const int global_mult = Helper::intpow(2, MG::GetSol()->MaxLevel() - grid_c.Level());
|
---|
128 |
|
---|
129 | Index begin_finest = GlobalToGlobalFinest(grid_1, grid_1.Global().LocalBegin())
|
---|
130 | .Clamp(GlobalToGlobalFinest(grid_2, grid_2.Global().LocalBegin()),
|
---|
131 | GlobalToGlobalFinest(grid_2, grid_2.Global().LocalEnd()-1));
|
---|
132 |
|
---|
133 | Index end_finest = GlobalToGlobalFinest(grid_1, grid_1.Global().LocalEnd()-1)
|
---|
134 | .Clamp(GlobalToGlobalFinest(grid_2, grid_2.Global().LocalBegin()),
|
---|
135 | GlobalToGlobalFinest(grid_2, grid_2.Global().LocalEnd()-1));
|
---|
136 |
|
---|
137 | for (int j=0; j<3; ++j) {
|
---|
138 | begin_finest[j] = Helper::RoundUpToNextMultiple(begin_finest[j], global_mult);
|
---|
139 | end_finest[j] = Helper::RoundDownToNextMultiple(end_finest[j], global_mult);
|
---|
140 | }
|
---|
141 |
|
---|
142 | for (int j=0; j<3; ++j) {
|
---|
143 | if (boundary[j] == Dirichlet) {
|
---|
144 | if (grid_1.Global().LocalBegin()[j] == grid_1.Global().GlobalBegin()[j] || grid_2.Global().LocalBegin()[j] == grid_2.Global().GlobalBegin()[j])
|
---|
145 | begin_finest[j] += global_mult;
|
---|
146 | if (grid_1.Global().LocalEnd()[j] == grid_1.Global().GlobalEnd()[j] || grid_2.Global().LocalEnd()[j] == grid_2.Global().GlobalEnd()[j])
|
---|
147 | end_finest[j] -= global_mult;
|
---|
148 | }
|
---|
149 | }
|
---|
150 |
|
---|
151 | bounds_1 = GridIteratorSet(GlobalFinestToLocal(grid_1, begin_finest), GlobalFinestToLocal(grid_1, end_finest)+1);
|
---|
152 | bounds_2 = GridIteratorSet(GlobalFinestToLocal(grid_2, begin_finest), GlobalFinestToLocal(grid_2, end_finest)+1);
|
---|
153 |
|
---|
154 | }
|
---|
155 | }
|
---|