[de061d] | 1 | /*
|
---|
| 2 | * vmg - a versatile multigrid solver
|
---|
| 3 | * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
|
---|
| 4 | *
|
---|
| 5 | * vmg is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * vmg is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 | /**
|
---|
| 20 | * @file grid_index_translations.cpp
|
---|
| 21 | * @author Julian Iseringhausen <isering@ins.uni-bonn.de>
|
---|
| 22 | * @date Tue May 17 11:46:37 2011
|
---|
| 23 | *
|
---|
| 24 | * @brief Class to convert different representations of grid
|
---|
| 25 | * indices.
|
---|
| 26 | *
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | #ifdef HAVE_CONFIG_H
|
---|
| 30 | #include <libvmg_config.h>
|
---|
| 31 | #endif
|
---|
| 32 |
|
---|
| 33 | #include "base/helper.hpp"
|
---|
| 34 | #include "comm/comm.hpp"
|
---|
| 35 | #include "grid/grid_double_iterator.hpp"
|
---|
| 36 | #include "grid/grid_index_translations.hpp"
|
---|
| 37 | #include "grid/grid.hpp"
|
---|
| 38 | #include "grid/multigrid.hpp"
|
---|
| 39 | #include "mg.hpp"
|
---|
| 40 |
|
---|
| 41 | using namespace VMG;
|
---|
| 42 |
|
---|
| 43 | bool GridIndexTranslations::IsGridPointOf(const Grid& grid, const Index& index_finest)
|
---|
| 44 | {
|
---|
| 45 | const int max_level = MG::GetSol()->MaxLevel();
|
---|
| 46 | return index_finest[0] % Helper::intpow(2, max_level - grid.Level()) == 0 &&
|
---|
| 47 | index_finest[1] % Helper::intpow(2, max_level - grid.Level()) == 0 &&
|
---|
| 48 | index_finest[2] % Helper::intpow(2, max_level - grid.Level()) == 0;
|
---|
| 49 | }
|
---|
| 50 |
|
---|
| 51 | Index GridIndexTranslations::LocalToGlobal(const Grid& grid, const Index& index_local)
|
---|
| 52 | {
|
---|
| 53 | return index_local - grid.Local().HaloSize1() + grid.Global().LocalBegin();
|
---|
| 54 | }
|
---|
| 55 |
|
---|
| 56 | Index GridIndexTranslations::LocalToGlobalFinest(const Grid& grid, const Index& index_local)
|
---|
| 57 | {
|
---|
| 58 | return GlobalToGlobalFinest(grid, LocalToGlobal(grid, index_local));
|
---|
| 59 | }
|
---|
| 60 |
|
---|
| 61 | Index GridIndexTranslations::GlobalToLocal(const Grid& grid, const Index& index_global)
|
---|
| 62 | {
|
---|
| 63 | return index_global - grid.Global().LocalBegin() + grid.Local().HaloSize1();
|
---|
| 64 | }
|
---|
| 65 |
|
---|
| 66 | Index GridIndexTranslations::GlobalToGlobalFinest(const Grid& grid, const Index& index_global)
|
---|
| 67 | {
|
---|
| 68 | return Helper::intpow(2, MG::GetSol()->MaxLevel() - grid.Level()) * index_global;
|
---|
| 69 | }
|
---|
| 70 |
|
---|
| 71 | Index GridIndexTranslations::GlobalFinestToLocal(const Grid& grid, const Index& index_finest)
|
---|
| 72 | {
|
---|
| 73 | return GlobalToLocal(grid, GlobalFinestToGlobal(grid, index_finest));
|
---|
| 74 | }
|
---|
| 75 |
|
---|
| 76 | Index GridIndexTranslations::GlobalFinestToGlobal(const Grid& grid, const Index& index_finest)
|
---|
| 77 | {
|
---|
| 78 | assert(IsGridPointOf(grid, index_finest));
|
---|
| 79 | return index_finest / Helper::intpow(2, MG::GetSol()->MaxLevel() - grid.Level());
|
---|
| 80 | }
|
---|
| 81 |
|
---|
| 82 | void GridIndexTranslations::GlobalCoarseToFine(Index& begin, Index& end)
|
---|
| 83 | {
|
---|
| 84 | for (int j=0; j<3; ++j) {
|
---|
| 85 | begin[j] = 2 * begin[j];
|
---|
| 86 | end[j] = 2 * (end[j]-1) + 1;
|
---|
| 87 | }
|
---|
| 88 | }
|
---|
| 89 |
|
---|
| 90 | void GridIndexTranslations::GlobalFineToCoarse(Index& begin, Index& end)
|
---|
| 91 | {
|
---|
| 92 | for (int j=0; j<3; ++j) {
|
---|
| 93 | begin[j] = Helper::RoundUpToNextMultiple(begin[j], 2) / 2;
|
---|
| 94 | end[j] = Helper::RoundDownToNextMultiple(end[j]-1, 2) / 2 + 1;
|
---|
| 95 | }
|
---|
| 96 | }
|
---|
| 97 |
|
---|
| 98 | void GridIndexTranslations::GetGridAlignment(const Grid& grid_1, GridIteratorSet& bounds_1,
|
---|
| 99 | const Grid& grid_2, GridIteratorSet& bounds_2)
|
---|
| 100 | {
|
---|
| 101 | const Boundary& boundary = MG::GetComm()->BoundaryConditions();
|
---|
| 102 |
|
---|
| 103 | if (grid_1.Level() == grid_2.Level()) {
|
---|
| 104 | Index begin_global = grid_1.Global()
|
---|
| 105 | .LocalBegin()
|
---|
| 106 | .Clamp(grid_2.Global().LocalBegin(), grid_2.Global().LocalEnd());
|
---|
| 107 |
|
---|
| 108 | Index end_global = grid_1.Global()
|
---|
| 109 | .LocalEnd()
|
---|
| 110 | .Clamp(grid_2.Global().LocalBegin(), grid_2.Global().LocalEnd());
|
---|
| 111 |
|
---|
| 112 | for (int j=0; j<3; ++j) {
|
---|
| 113 | if (boundary[j] == Dirichlet) {
|
---|
| 114 | if (begin_global[j] == grid_1.Global().GlobalBegin()[j] || begin_global[j] == grid_2.Global().GlobalBegin()[j])
|
---|
| 115 | begin_global[j] += 1;
|
---|
| 116 | if (end_global[j] == grid_1.Global().GlobalEnd()[j] || end_global[j] == grid_2.Global().GlobalEnd()[j])
|
---|
| 117 | end_global[j] -= 1;
|
---|
| 118 | }
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | bounds_1 = GridIteratorSet(GlobalToLocal(grid_1, begin_global), GlobalToLocal(grid_2, end_global));
|
---|
| 122 | bounds_2 = GridIteratorSet(GlobalToLocal(grid_2, begin_global), GlobalToLocal(grid_2, end_global));
|
---|
| 123 |
|
---|
| 124 | } else {
|
---|
| 125 |
|
---|
| 126 | const Grid& grid_c = (grid_1.Level() < grid_2.Level() ? grid_1 : grid_2);
|
---|
| 127 | const int global_mult = Helper::intpow(2, MG::GetSol()->MaxLevel() - grid_c.Level());
|
---|
| 128 |
|
---|
| 129 | Index begin_finest = GlobalToGlobalFinest(grid_1, grid_1.Global().LocalBegin())
|
---|
| 130 | .Clamp(GlobalToGlobalFinest(grid_2, grid_2.Global().LocalBegin()),
|
---|
| 131 | GlobalToGlobalFinest(grid_2, grid_2.Global().LocalEnd()-1));
|
---|
| 132 |
|
---|
| 133 | Index end_finest = GlobalToGlobalFinest(grid_1, grid_1.Global().LocalEnd()-1)
|
---|
| 134 | .Clamp(GlobalToGlobalFinest(grid_2, grid_2.Global().LocalBegin()),
|
---|
| 135 | GlobalToGlobalFinest(grid_2, grid_2.Global().LocalEnd()-1));
|
---|
| 136 |
|
---|
| 137 | for (int j=0; j<3; ++j) {
|
---|
| 138 | begin_finest[j] = Helper::RoundUpToNextMultiple(begin_finest[j], global_mult);
|
---|
| 139 | end_finest[j] = Helper::RoundDownToNextMultiple(end_finest[j], global_mult);
|
---|
| 140 | }
|
---|
| 141 |
|
---|
| 142 | for (int j=0; j<3; ++j) {
|
---|
| 143 | if (boundary[j] == Dirichlet) {
|
---|
| 144 | if (grid_1.Global().LocalBegin()[j] == grid_1.Global().GlobalBegin()[j] || grid_2.Global().LocalBegin()[j] == grid_2.Global().GlobalBegin()[j])
|
---|
| 145 | begin_finest[j] += global_mult;
|
---|
| 146 | if (grid_1.Global().LocalEnd()[j] == grid_1.Global().GlobalEnd()[j] || grid_2.Global().LocalEnd()[j] == grid_2.Global().GlobalEnd()[j])
|
---|
| 147 | end_finest[j] -= global_mult;
|
---|
| 148 | }
|
---|
| 149 | }
|
---|
| 150 |
|
---|
| 151 | bounds_1 = GridIteratorSet(GlobalFinestToLocal(grid_1, begin_finest), GlobalFinestToLocal(grid_1, end_finest)+1);
|
---|
| 152 | bounds_2 = GridIteratorSet(GlobalFinestToLocal(grid_2, begin_finest), GlobalFinestToLocal(grid_2, end_finest)+1);
|
---|
| 153 |
|
---|
| 154 | }
|
---|
| 155 | }
|
---|