/*
* vmg - a versatile multigrid solver
* Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
*
* vmg is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* vmg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/**
* @file discretization_poisson_fv.cpp
* @author Julian Iseringhausen
* @date Mon Apr 18 13:03:47 2011
*
* @brief Finite volume discretization for the Poisson
* equation. Absolutely equivalent to the finite
* difference discretization unless you use
* hierarchically coarsened grids.
*
*/
#ifdef HAVE_CONFIG_H
#include
#endif
#include "comm/comm.hpp"
#include "discretization/discretization_poisson_fv.hpp"
#include "grid/grid_index_translations.hpp"
using namespace VMG;
void DiscretizationPoissonFV::InitDiscretizationPoissonFV()
{
switch (order)
{
case 2:
stencil.SetDiag(6.0);
stencil.push_back(-1, 0, 0, -1.0);
stencil.push_back( 1, 0, 0, -1.0);
stencil.push_back( 0, -1, 0, -1.0);
stencil.push_back( 0, 1, 0, -1.0);
stencil.push_back( 0, 0, -1, -1.0);
stencil.push_back( 0, 0, 1, -1.0);
break;
case 4:
stencil.SetDiag(24.0/6.0);
stencil.push_back(-1, 0, 0, -2.0/6.0);
stencil.push_back( 1, 0, 0, -2.0/6.0);
stencil.push_back( 0, -1, 0, -2.0/6.0);
stencil.push_back( 0, 1, 0, -2.0/6.0);
stencil.push_back( 0, 0, -1, -2.0/6.0);
stencil.push_back( 0, 0, 1, -2.0/6.0);
stencil.push_back(-1, -1, 0, -1.0/6.0);
stencil.push_back(-1, 1, 0, -1.0/6.0);
stencil.push_back( 1, -1, 0, -1.0/6.0);
stencil.push_back( 1, 1, 0, -1.0/6.0);
stencil.push_back(-1, 0, -1, -1.0/6.0);
stencil.push_back(-1, 0, 1, -1.0/6.0);
stencil.push_back( 1, 0, -1, -1.0/6.0);
stencil.push_back( 1, 0, 1, -1.0/6.0);
stencil.push_back( 0, -1, -1, -1.0/6.0);
stencil.push_back( 0, -1, 1, -1.0/6.0);
stencil.push_back( 0, 1, -1, -1.0/6.0);
stencil.push_back( 0, 1, 1, -1.0/6.0);
break;
default:
assert(0 != "vmg choose discretization order 2 or 4");
break;
}
}
void DiscretizationPoissonFV::ModifyRightHandSide()
{
if (order == 4) {
Grid& rhs = MG::GetRhsMaxLevel();
Stencil stencil(6.0/12.0);
stencil.push_back(-1, 0, 0, 1.0/12.0);
stencil.push_back( 1, 0, 0, 1.0/12.0);
stencil.push_back( 0, -1, 0, 1.0/12.0);
stencil.push_back( 0, 1, 0, 1.0/12.0);
stencil.push_back( 0, 0, -1, 1.0/12.0);
stencil.push_back( 0, 0, 1, 1.0/12.0);
stencil.Apply(rhs);
}
}
void DiscretizationPoissonFV::SetInnerBoundaryCompute(Grid& sol_f, Grid& rhs_f, Grid& sol_c) const
{
Index i_c, i_f;
Comm& comm = *MG::GetComm();
const Boundary& bc = comm.BoundaryConditions();
const Index off((GridIndexTranslations::LocalToGlobal(sol_f, sol_f.Local().Begin())[0] % 2 == 0 ? 0 : 1),
(GridIndexTranslations::LocalToGlobal(sol_f, sol_f.Local().Begin())[1] % 2 == 0 ? 0 : 1),
(GridIndexTranslations::LocalToGlobal(sol_f, sol_f.Local().Begin())[2] % 2 == 0 ? 0 : 1));
const Index begin_f = sol_f.Local().Begin() - off;
const Index end_f = sol_f.Local().End();
const Index begin_c = GridIndexTranslations::GlobalFinestToLocal(sol_c, GridIndexTranslations::LocalToGlobalFinest(sol_f, begin_f));
const Index b1_f = sol_f.Local().BoundaryBegin1();
const Index b2_f = sol_f.Local().BoundaryBegin2();
const Index b1_finest = GridIndexTranslations::LocalToGlobalFinest(sol_f, sol_f.Local().Begin() + off);
const Index b2_finest = GridIndexTranslations::LocalToGlobalFinest(sol_f, sol_f.Local().End()-1);
const Index b1_c = GridIndexTranslations::GlobalFinestToLocal(sol_c, b1_finest) - 1;
const Index b2_c = GridIndexTranslations::GlobalFinestToLocal(sol_c, b2_finest) + 1;
const vmg_float c_1_3 = 1.0 / 3.0;
const vmg_float c_2_3 = 2.0 / 3.0;
const vmg_float c_4_3 = 4.0 / 3.0;
comm.CommToGhosts(sol_f);
comm.CommToGhosts(sol_c);
//
// X-direction
//
if (bc.X() == Open) {
if (sol_f.Local().BoundarySize1().X() > 0) {
for (i_f.Y()=begin_f.Y(), i_c.Y()=begin_c.Y(); i_f.Y() 0) {
for (i_f.Y()=begin_f.Y(), i_c.Y()=begin_c.Y(); i_f.Y() 0) {
for (i_f.X()=begin_f.X(), i_c.X()=begin_c.X(); i_f.X() 0) {
for (i_f.X()=begin_f.X(), i_c.X()=begin_c.X(); i_f.X() 0) {
for (i_f.X()=begin_f.X(), i_c.X()=begin_c.X(); i_f.X() 0) {
for (i_f.X()=begin_f.X(), i_c.X()=begin_c.X(); i_f.X()