/* * vmg - a versatile multigrid solver * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn * * vmg is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * vmg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** * @file discretization_poisson_fv.cpp * @author Julian Iseringhausen * @date Mon Apr 18 13:03:47 2011 * * @brief Finite volume discretization for the Poisson * equation. Absolutely equivalent to the finite * difference discretization unless you use * hierarchically coarsened grids. * */ #ifdef HAVE_CONFIG_H #include #endif #include "comm/comm.hpp" #include "discretization/discretization_poisson_fv.hpp" #include "grid/grid_index_translations.hpp" using namespace VMG; void DiscretizationPoissonFV::InitDiscretizationPoissonFV() { switch (order) { case 2: stencil.SetDiag(6.0); stencil.push_back(-1, 0, 0, -1.0); stencil.push_back( 1, 0, 0, -1.0); stencil.push_back( 0, -1, 0, -1.0); stencil.push_back( 0, 1, 0, -1.0); stencil.push_back( 0, 0, -1, -1.0); stencil.push_back( 0, 0, 1, -1.0); break; case 4: stencil.SetDiag(24.0/6.0); stencil.push_back(-1, 0, 0, -2.0/6.0); stencil.push_back( 1, 0, 0, -2.0/6.0); stencil.push_back( 0, -1, 0, -2.0/6.0); stencil.push_back( 0, 1, 0, -2.0/6.0); stencil.push_back( 0, 0, -1, -2.0/6.0); stencil.push_back( 0, 0, 1, -2.0/6.0); stencil.push_back(-1, -1, 0, -1.0/6.0); stencil.push_back(-1, 1, 0, -1.0/6.0); stencil.push_back( 1, -1, 0, -1.0/6.0); stencil.push_back( 1, 1, 0, -1.0/6.0); stencil.push_back(-1, 0, -1, -1.0/6.0); stencil.push_back(-1, 0, 1, -1.0/6.0); stencil.push_back( 1, 0, -1, -1.0/6.0); stencil.push_back( 1, 0, 1, -1.0/6.0); stencil.push_back( 0, -1, -1, -1.0/6.0); stencil.push_back( 0, -1, 1, -1.0/6.0); stencil.push_back( 0, 1, -1, -1.0/6.0); stencil.push_back( 0, 1, 1, -1.0/6.0); break; default: assert(0 != "vmg choose discretization order 2 or 4"); break; } } void DiscretizationPoissonFV::ModifyRightHandSide() { if (order == 4) { Grid& rhs = MG::GetRhsMaxLevel(); Stencil stencil(6.0/12.0); stencil.push_back(-1, 0, 0, 1.0/12.0); stencil.push_back( 1, 0, 0, 1.0/12.0); stencil.push_back( 0, -1, 0, 1.0/12.0); stencil.push_back( 0, 1, 0, 1.0/12.0); stencil.push_back( 0, 0, -1, 1.0/12.0); stencil.push_back( 0, 0, 1, 1.0/12.0); stencil.Apply(rhs); } } void DiscretizationPoissonFV::SetInnerBoundaryCompute(Grid& sol_f, Grid& rhs_f, Grid& sol_c) const { Index i_c, i_f; Comm& comm = *MG::GetComm(); const Boundary& bc = comm.BoundaryConditions(); const Index off((GridIndexTranslations::LocalToGlobal(sol_f, sol_f.Local().Begin())[0] % 2 == 0 ? 0 : 1), (GridIndexTranslations::LocalToGlobal(sol_f, sol_f.Local().Begin())[1] % 2 == 0 ? 0 : 1), (GridIndexTranslations::LocalToGlobal(sol_f, sol_f.Local().Begin())[2] % 2 == 0 ? 0 : 1)); const Index begin_f = sol_f.Local().Begin() - off; const Index end_f = sol_f.Local().End(); const Index begin_c = GridIndexTranslations::GlobalFinestToLocal(sol_c, GridIndexTranslations::LocalToGlobalFinest(sol_f, begin_f)); const Index b1_f = sol_f.Local().BoundaryBegin1(); const Index b2_f = sol_f.Local().BoundaryBegin2(); const Index b1_finest = GridIndexTranslations::LocalToGlobalFinest(sol_f, sol_f.Local().Begin() + off); const Index b2_finest = GridIndexTranslations::LocalToGlobalFinest(sol_f, sol_f.Local().End()-1); const Index b1_c = GridIndexTranslations::GlobalFinestToLocal(sol_c, b1_finest) - 1; const Index b2_c = GridIndexTranslations::GlobalFinestToLocal(sol_c, b2_finest) + 1; const vmg_float c_1_3 = 1.0 / 3.0; const vmg_float c_2_3 = 2.0 / 3.0; const vmg_float c_4_3 = 4.0 / 3.0; comm.CommToGhosts(sol_f); comm.CommToGhosts(sol_c); // // X-direction // if (bc.X() == Open) { if (sol_f.Local().BoundarySize1().X() > 0) { for (i_f.Y()=begin_f.Y(), i_c.Y()=begin_c.Y(); i_f.Y() 0) { for (i_f.Y()=begin_f.Y(), i_c.Y()=begin_c.Y(); i_f.Y() 0) { for (i_f.X()=begin_f.X(), i_c.X()=begin_c.X(); i_f.X() 0) { for (i_f.X()=begin_f.X(), i_c.X()=begin_c.X(); i_f.X() 0) { for (i_f.X()=begin_f.X(), i_c.X()=begin_c.X(); i_f.X() 0) { for (i_f.X()=begin_f.X(), i_c.X()=begin_c.X(); i_f.X()