[de061d] | 1 | /*
|
---|
| 2 | * vmg - a versatile multigrid solver
|
---|
| 3 | * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
|
---|
| 4 | *
|
---|
| 5 | * vmg is free software: you can redistribute it and/or modify
|
---|
| 6 | * it under the terms of the GNU General Public License as published by
|
---|
| 7 | * the Free Software Foundation, either version 3 of the License, or
|
---|
| 8 | * (at your option) any later version.
|
---|
| 9 | *
|
---|
| 10 | * vmg is distributed in the hope that it will be useful,
|
---|
| 11 | * but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 12 | * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 13 | * GNU General Public License for more details.
|
---|
| 14 | *
|
---|
| 15 | * You should have received a copy of the GNU General Public License
|
---|
| 16 | * along with this program. If not, see <http://www.gnu.org/licenses/>.
|
---|
| 17 | */
|
---|
| 18 |
|
---|
| 19 | /**
|
---|
| 20 | * @file domain_decomposition_mpi.cpp
|
---|
| 21 | * @author Julian Iseringhausen <isering@ins.uni-bonn.de>
|
---|
| 22 | * @date Mon Jun 27 12:53:50 2011
|
---|
| 23 | *
|
---|
| 24 | * @brief Computes a domain decomposition which separates
|
---|
| 25 | * the finest grid equally for all processes.
|
---|
| 26 | *
|
---|
| 27 | */
|
---|
| 28 |
|
---|
| 29 | #ifdef HAVE_CONFIG_H
|
---|
| 30 | #include <libvmg_config.h>
|
---|
| 31 | #endif
|
---|
| 32 |
|
---|
| 33 | #include "base/interface.hpp"
|
---|
| 34 | #include "comm/comm.hpp"
|
---|
| 35 | #include "comm/domain_decomposition_mpi.hpp"
|
---|
| 36 | #include "grid/grid.hpp"
|
---|
| 37 | #include "grid/multigrid.hpp"
|
---|
| 38 |
|
---|
| 39 | using namespace VMG;
|
---|
| 40 |
|
---|
| 41 | void DomainDecompositionMPI::Compute(Comm& comm, const Interface& interface, std::map<Index, std::vector<GlobalIndices> >& global)
|
---|
| 42 | {
|
---|
| 43 |
|
---|
| 44 | GlobalIndices global_l;
|
---|
| 45 | Index pos, remainder, procs;
|
---|
| 46 | Index last_procs = comm.GlobalProcs();
|
---|
| 47 |
|
---|
| 48 | global.clear();
|
---|
| 49 |
|
---|
| 50 | for (unsigned int i=0; i<interface.Global().size(); ++i) {
|
---|
| 51 |
|
---|
| 52 | for (pos.X() = 0; pos.X() < comm.GlobalProcs().X(); ++pos.X())
|
---|
| 53 | for (pos.Y() = 0; pos.Y() < comm.GlobalProcs().Y(); ++pos.Y())
|
---|
| 54 | for (pos.Z() = 0; pos.Z() < comm.GlobalProcs().Z(); ++pos.Z()) {
|
---|
| 55 |
|
---|
| 56 | global_l = interface.Global()[i];
|
---|
| 57 |
|
---|
| 58 | if (IsActive(global_l.GlobalSize(), pos, procs, comm.GlobalProcs())) {
|
---|
| 59 |
|
---|
| 60 | if (i == 0) {
|
---|
| 61 |
|
---|
| 62 | remainder = global_l.GlobalSize() % procs;
|
---|
| 63 |
|
---|
| 64 | global_l.LocalSize() = global_l.GlobalSize() / procs;
|
---|
| 65 | for (int j=0; j<3; ++j)
|
---|
| 66 | if (pos[j] < remainder[j])
|
---|
| 67 | ++(global_l.LocalSize()[j]);
|
---|
| 68 |
|
---|
| 69 | global_l.LocalBegin() = global_l.GlobalBegin() + pos * global_l.LocalSize();
|
---|
| 70 | for (int j=0; j<3; ++j)
|
---|
| 71 | if (pos[j] >= remainder[j])
|
---|
| 72 | global_l.LocalBegin()[j] += remainder[j];
|
---|
| 73 |
|
---|
| 74 | global_l.LocalEnd() = global_l.LocalBegin() + global_l.LocalSize();
|
---|
| 75 |
|
---|
| 76 | } else {
|
---|
| 77 |
|
---|
| 78 | for (int j=0; j<3; ++j) {
|
---|
| 79 |
|
---|
| 80 | if (procs[j] == last_procs[j]) {
|
---|
| 81 |
|
---|
| 82 | if (global[pos].back().LocalBegin()[j] == global[pos].back().GlobalBegin()[j])
|
---|
| 83 | global_l.LocalBegin()[j] = global_l.GlobalBegin()[j];
|
---|
| 84 | else
|
---|
| 85 | global_l.LocalBegin()[j] = global[pos].back().LocalBegin()[j] / 2;
|
---|
| 86 |
|
---|
| 87 | if (global[pos].back().LocalEnd()[j] == global[pos].back().GlobalEnd()[j])
|
---|
| 88 | global_l.LocalEnd()[j] = global_l.GlobalEnd()[j];
|
---|
| 89 | else
|
---|
| 90 | global_l.LocalEnd()[j] = global[pos].back().LocalEnd()[j] / 2;
|
---|
| 91 |
|
---|
| 92 | global_l.LocalSize()[j] = global_l.LocalEnd()[j] - global_l.LocalBegin()[j];
|
---|
| 93 |
|
---|
| 94 | } else {
|
---|
| 95 |
|
---|
| 96 | remainder[j] = global_l.GlobalSize()[j] % procs[j];
|
---|
| 97 |
|
---|
| 98 | global_l.LocalSize()[j] = global_l.GlobalSize()[j] / procs[j];
|
---|
| 99 | if (pos[j] < remainder[j])
|
---|
| 100 | ++(global_l.LocalSize()[j]);
|
---|
| 101 |
|
---|
| 102 | global_l.LocalBegin()[j] = global_l.GlobalBegin()[j] + pos[j] * global_l.LocalSize()[j];
|
---|
| 103 | if (pos[j] >= remainder[j])
|
---|
| 104 | global_l.LocalBegin()[j] += remainder[j];
|
---|
| 105 |
|
---|
| 106 | global_l.LocalEnd()[j] = global_l.LocalBegin()[j] + global_l.LocalSize()[j];
|
---|
| 107 |
|
---|
| 108 | }
|
---|
| 109 | }
|
---|
| 110 | }
|
---|
| 111 | }else {
|
---|
| 112 | global_l.LocalBegin() = 0;
|
---|
| 113 | global_l.LocalEnd() = 0;
|
---|
| 114 | global_l.LocalSize() = 0;
|
---|
| 115 | }
|
---|
| 116 |
|
---|
| 117 | global[pos].push_back(global_l);
|
---|
| 118 |
|
---|
| 119 | }
|
---|
| 120 |
|
---|
| 121 | last_procs = procs;
|
---|
| 122 |
|
---|
| 123 | }
|
---|
| 124 | }
|
---|
| 125 |
|
---|
| 126 | bool DomainDecompositionMPI::IsActive(const Index& size_global, const Index& pos, Index& procs, const Index& max_procs)
|
---|
| 127 | {
|
---|
| 128 | bool is_active = true;
|
---|
| 129 | const int points_min = 5;
|
---|
| 130 |
|
---|
| 131 | procs = size_global / points_min + 1;
|
---|
| 132 |
|
---|
| 133 | for (int i=0; i<3; ++i) {
|
---|
| 134 | procs[i] = std::min(procs[i], max_procs[i]);
|
---|
| 135 | is_active &= pos[i] < procs[i];
|
---|
| 136 | }
|
---|
| 137 |
|
---|
| 138 | return is_active;
|
---|
| 139 | }
|
---|
| 140 |
|
---|
| 141 | void DomainDecompositionMPI::FineToCoarse(Comm& comm, int& begin, int& end, int levels)
|
---|
| 142 | {
|
---|
| 143 | int last_point = end - 1;
|
---|
| 144 |
|
---|
| 145 | for (int i=0; i<levels; ++i) {
|
---|
| 146 |
|
---|
| 147 | if (begin % 2 == 0)
|
---|
| 148 | begin /= 2;
|
---|
| 149 | else
|
---|
| 150 | begin = (begin+1) / 2;
|
---|
| 151 |
|
---|
| 152 | if (last_point % 2 == 0)
|
---|
| 153 | last_point /= 2;
|
---|
| 154 | else
|
---|
| 155 | last_point = (last_point-1) / 2;
|
---|
| 156 |
|
---|
| 157 | }
|
---|
| 158 |
|
---|
| 159 | end = last_point + 1;
|
---|
| 160 | }
|
---|