/*
* vmg - a versatile multigrid solver
* Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn
*
* vmg is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, either version 3 of the License, or
* (at your option) any later version.
*
* vmg is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see .
*/
/**
* @file interface.cpp
* @author Julian Iseringhausen
* @date Mon Apr 18 12:55:48 2011
*
* @brief VMG::Interface
*
*/
#ifdef HAVE_CONFIG_H
#include
#endif
#include
#include
#include "base/helper.hpp"
#include "base/interface.hpp"
using namespace VMG;
void Interface::InitInterface(const Vector& box_offset, const vmg_float& box_size,
const int& max_boundary_nodes, const vmg_float& alpha)
{
Index num_cells, size_factor;
const Index add_node = Index(bc[0]==Periodic ? 0 : 1,
bc[1]==Periodic ? 0 : 1,
bc[2]==Periodic ? 0 : 1);
const Index inner_boundary = Index(bc[0]==Open ? 2 : 0,
bc[1]==Open ? 2 : 0,
bc[2]==Open ? 2 : 0);
const Vector box_center = box_offset + 0.5 * box_size;
/*
* Get Extents
*/
if (bc[0] == Open || bc[1] == Open || bc[2] == Open) {
//TODO: Change this to max_boundary_nodes at one point
while (global.size() == 0 ||
(bc[0] == Open && global.back().GlobalSize()[0] > Helper::intpow(2, levelMin)+1) ||
(bc[1] == Open && global.back().GlobalSize()[1] > Helper::intpow(2, levelMin)+1) ||
(bc[2] == Open && global.back().GlobalSize()[2] > Helper::intpow(2, levelMin)+1)) {
global.push_back(GlobalIndices());
extent.push_back(SpatialExtent());
for (int j=0; j<3; ++j)
size_factor[j] = (bc[j] == Open ? Helper::intpow(2, static_cast(log(pow(alpha, global.size())) / log(2.0) + 1.0)) : 1);
num_cells = static_cast(std::pow(2.0, levelMax-static_cast(global.size())+1)) * size_factor + 0.5;
extent.back().MeshWidth() = box_size * static_cast(size_factor) / num_cells;
extent.back().Size() = (num_cells + inner_boundary) * extent.back().MeshWidth();
extent.back().Begin() = box_center - 0.5 * extent.back().Size();
extent.back().End() = extent.back().Begin() + extent.back().Size();
global.back().LocalSize() = num_cells + add_node + inner_boundary;
global.back().LocalBegin() = -1 * (num_cells + inner_boundary) / 2;
global.back().LocalEnd() = (num_cells + inner_boundary) / 2 + add_node;
global.back().GlobalSize() = global.back().LocalSize();
global.back().GlobalBegin() = global.back().LocalBegin();
global.back().GlobalEnd() = global.back().LocalEnd();
global.back().GlobalSizeFinest() = Helper::intpow(2, global.size()-1) * (num_cells+inner_boundary) + add_node;
global.back().GlobalBeginFinest() = -1 * ((Helper::intpow(2, global.size()-1) * (num_cells + inner_boundary)) / 2);
global.back().GlobalEndFinest() = (Helper::intpow(2, global.size()-1) * (num_cells + inner_boundary)) / 2 + add_node;
global.back().BoundaryType() = LocallyRefined;
}
global.back().BoundaryType() = GlobalMax;
} else {
num_cells = Helper::intpow(2, levelMax);
global.push_back(GlobalIndices());
extent.push_back(SpatialExtent());
extent.back().Size() = box_size;
extent.back().Begin() = box_center - 0.5 * extent.back().Size();
extent.back().End() = extent.back().Begin() + extent.back().Size();
extent.back().MeshWidth() = extent.back().Size() / num_cells;
global.back().LocalSize() = num_cells + add_node;
global.back().LocalBegin() = -1 * num_cells/2;
global.back().LocalEnd() = num_cells/2 + add_node;
global.back().GlobalSize() = global.back().LocalSize();
global.back().GlobalBegin() = global.back().LocalBegin();
global.back().GlobalEnd() = global.back().LocalEnd();
global.back().GlobalSizeFinest() = global.back().LocalSize();
global.back().GlobalBeginFinest() = global.back().LocalBegin();
global.back().GlobalEndFinest() = global.back().LocalEnd();
global.back().BoundaryType() = GlobalMax;
}
while (global.back().GlobalSize().Min() > Helper::intpow(2, levelMin)+1) {
num_cells /= 2;
global.push_back(GlobalIndices());
extent.push_back(SpatialExtent());
extent.back().Size() = (++extent.rbegin())->Size();
extent.back().Begin() = (++extent.rbegin())->Begin();
extent.back().End() = (++extent.rbegin())->End();
extent.back().MeshWidth() = 2.0 * (++extent.rbegin())->MeshWidth();
global.back().LocalSize() = num_cells + add_node;
global.back().LocalBegin() = -1 * num_cells/2;
global.back().LocalEnd() = num_cells/2 + add_node;
global.back().GlobalSize() = global.back().LocalSize();
global.back().GlobalBegin() = global.back().LocalBegin();
global.back().GlobalEnd() = global.back().LocalEnd();
global.back().GlobalSizeFinest() = (++global.rbegin())->GlobalSizeFinest();
global.back().GlobalBeginFinest() = (++global.rbegin())->GlobalBeginFinest();
global.back().GlobalEndFinest() = (++global.rbegin())->GlobalEndFinest();
global.back().BoundaryType() = GlobalCoarsened;
}
levelMin = levelMax - global.size() + 1;
}