/* * vmg - a versatile multigrid solver * Copyright (C) 2012 Institute for Numerical Simulation, University of Bonn * * vmg is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, either version 3 of the License, or * (at your option) any later version. * * vmg is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with this program. If not, see . */ /** * @file interface.cpp * @author Julian Iseringhausen * @date Mon Apr 18 12:55:48 2011 * * @brief VMG::Interface * */ #ifdef HAVE_CONFIG_H #include #endif #include #include #include "base/helper.hpp" #include "base/interface.hpp" using namespace VMG; void Interface::InitInterface(const Vector& box_offset, const vmg_float& box_size, const int& max_boundary_nodes, const vmg_float& alpha) { Index num_cells, size_factor; const Index add_node = Index(bc[0]==Periodic ? 0 : 1, bc[1]==Periodic ? 0 : 1, bc[2]==Periodic ? 0 : 1); const Index inner_boundary = Index(bc[0]==Open ? 2 : 0, bc[1]==Open ? 2 : 0, bc[2]==Open ? 2 : 0); const Vector box_center = box_offset + 0.5 * box_size; /* * Get Extents */ if (bc[0] == Open || bc[1] == Open || bc[2] == Open) { //TODO: Change this to max_boundary_nodes at one point while (global.size() == 0 || (bc[0] == Open && global.back().GlobalSize()[0] > Helper::intpow(2, levelMin)+1) || (bc[1] == Open && global.back().GlobalSize()[1] > Helper::intpow(2, levelMin)+1) || (bc[2] == Open && global.back().GlobalSize()[2] > Helper::intpow(2, levelMin)+1)) { global.push_back(GlobalIndices()); extent.push_back(SpatialExtent()); for (int j=0; j<3; ++j) size_factor[j] = (bc[j] == Open ? Helper::intpow(2, static_cast(log(pow(alpha, global.size())) / log(2.0) + 1.0)) : 1); num_cells = static_cast(std::pow(2.0, levelMax-static_cast(global.size())+1)) * size_factor + 0.5; extent.back().MeshWidth() = box_size * static_cast(size_factor) / num_cells; extent.back().Size() = (num_cells + inner_boundary) * extent.back().MeshWidth(); extent.back().Begin() = box_center - 0.5 * extent.back().Size(); extent.back().End() = extent.back().Begin() + extent.back().Size(); global.back().LocalSize() = num_cells + add_node + inner_boundary; global.back().LocalBegin() = -1 * (num_cells + inner_boundary) / 2; global.back().LocalEnd() = (num_cells + inner_boundary) / 2 + add_node; global.back().GlobalSize() = global.back().LocalSize(); global.back().GlobalBegin() = global.back().LocalBegin(); global.back().GlobalEnd() = global.back().LocalEnd(); global.back().GlobalSizeFinest() = Helper::intpow(2, global.size()-1) * (num_cells+inner_boundary) + add_node; global.back().GlobalBeginFinest() = -1 * ((Helper::intpow(2, global.size()-1) * (num_cells + inner_boundary)) / 2); global.back().GlobalEndFinest() = (Helper::intpow(2, global.size()-1) * (num_cells + inner_boundary)) / 2 + add_node; global.back().BoundaryType() = LocallyRefined; } global.back().BoundaryType() = GlobalMax; } else { num_cells = Helper::intpow(2, levelMax); global.push_back(GlobalIndices()); extent.push_back(SpatialExtent()); extent.back().Size() = box_size; extent.back().Begin() = box_center - 0.5 * extent.back().Size(); extent.back().End() = extent.back().Begin() + extent.back().Size(); extent.back().MeshWidth() = extent.back().Size() / num_cells; global.back().LocalSize() = num_cells + add_node; global.back().LocalBegin() = -1 * num_cells/2; global.back().LocalEnd() = num_cells/2 + add_node; global.back().GlobalSize() = global.back().LocalSize(); global.back().GlobalBegin() = global.back().LocalBegin(); global.back().GlobalEnd() = global.back().LocalEnd(); global.back().GlobalSizeFinest() = global.back().LocalSize(); global.back().GlobalBeginFinest() = global.back().LocalBegin(); global.back().GlobalEndFinest() = global.back().LocalEnd(); global.back().BoundaryType() = GlobalMax; } while (global.back().GlobalSize().Min() > Helper::intpow(2, levelMin)+1) { num_cells /= 2; global.push_back(GlobalIndices()); extent.push_back(SpatialExtent()); extent.back().Size() = (++extent.rbegin())->Size(); extent.back().Begin() = (++extent.rbegin())->Begin(); extent.back().End() = (++extent.rbegin())->End(); extent.back().MeshWidth() = 2.0 * (++extent.rbegin())->MeshWidth(); global.back().LocalSize() = num_cells + add_node; global.back().LocalBegin() = -1 * num_cells/2; global.back().LocalEnd() = num_cells/2 + add_node; global.back().GlobalSize() = global.back().LocalSize(); global.back().GlobalBegin() = global.back().LocalBegin(); global.back().GlobalEnd() = global.back().LocalEnd(); global.back().GlobalSizeFinest() = (++global.rbegin())->GlobalSizeFinest(); global.back().GlobalBeginFinest() = (++global.rbegin())->GlobalBeginFinest(); global.back().GlobalEndFinest() = (++global.rbegin())->GlobalEndFinest(); global.back().BoundaryType() = GlobalCoarsened; } levelMin = levelMax - global.size() + 1; }