#include #include #include #include using namespace std; using namespace sc; // min-max macros #define MIN(A,B) ((A) < (B) ? (A) : (B)) #define MAX(A,B) ((A) > (B) ? (A) : (B)) // error handling macro #define V_ERROR(E) { ExEnv::errn() << E; exit(1); } /**************************************************************** * * * vec2 Member functions * * * ****************************************************************/ // CONSTRUCTORS vec2::vec2() {} vec2::vec2(const double x, const double y) { n[VX] = x; n[VY] = y; } vec2::vec2(const double d) { n[VX] = n[VY] = d; } vec2::vec2(const vec2& v) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; } vec2::vec2(const vec3& v) // it is up to caller to avoid divide-by-zero { n[VX] = v.n[VX]/v.n[VZ]; n[VY] = v.n[VY]/v.n[VZ]; }; vec2::vec2(const vec3& v, int dropAxis) { switch (dropAxis) { case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; break; case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; break; default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; break; } } // ASSIGNMENT OPERATORS vec2& vec2::operator = (const vec2& v) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; return *this; } vec2& vec2::operator += ( const vec2& v ) { n[VX] += v.n[VX]; n[VY] += v.n[VY]; return *this; } vec2& vec2::operator -= ( const vec2& v ) { n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; return *this; } vec2& vec2::operator *= ( const double d ) { n[VX] *= d; n[VY] *= d; return *this; } vec2& vec2::operator /= ( const double d ) { double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; return *this; } double& vec2::operator [] ( int i) { if (i < VX || i > VY) V_ERROR("vec2 [] operator: illegal access; index = " << i << '\n') return n[i]; } const double& vec2::operator [] ( int i) const { if (i < VX || i > VY) V_ERROR("vec2 [] operator: illegal access; index = " << i << '\n') return n[i]; } // SPECIAL FUNCTIONS double vec2::length() { return sqrt(length2()); } double vec2::length2() { return n[VX]*n[VX] + n[VY]*n[VY]; } vec2& vec2::normalize() // it is up to caller to avoid divide-by-zero { *this /= length(); return *this; } vec2& vec2::apply(V_FCT_PTR fct) { n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); return *this; } // FRIENDS namespace sc { vec2 operator - (const vec2& a) { return vec2(-a.n[VX],-a.n[VY]); } vec2 operator + (const vec2& a, const vec2& b) { return vec2(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY]); } vec2 operator - (const vec2& a, const vec2& b) { return vec2(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY]); } vec2 operator * (const vec2& a, const double d) { return vec2(d*a.n[VX], d*a.n[VY]); } vec2 operator * (const double d, const vec2& a) { return a*d; } vec2 operator * (const mat3& a, const vec2& v) { vec3 av; av.n[VX] = a.v[0].n[VX]*v.n[VX] + a.v[0].n[VY]*v.n[VY] + a.v[0].n[VZ]; av.n[VY] = a.v[1].n[VX]*v.n[VX] + a.v[1].n[VY]*v.n[VY] + a.v[1].n[VZ]; av.n[VZ] = a.v[2].n[VX]*v.n[VX] + a.v[2].n[VY]*v.n[VY] + a.v[2].n[VZ]; return av; } vec2 operator * (const vec2& v, const mat3& a) { return a.transpose() * v; } double operator * (const vec2& a, const vec2& b) { return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY]); } vec2 operator / (const vec2& a, const double d) { double d_inv = 1./d; return vec2(a.n[VX]*d_inv, a.n[VY]*d_inv); } vec3 operator ^ (const vec2& a, const vec2& b) { return vec3(0.0, 0.0, a.n[VX] * b.n[VY] - b.n[VX] * a.n[VY]); } int operator == (const vec2& a, const vec2& b) { return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]); } int operator != (const vec2& a, const vec2& b) { return !(a == b); } ostream& operator << (ostream& s, vec2& v) { return s << "| " << v.n[VX] << ' ' << v.n[VY] << " |"; } istream& operator >> (istream& s, vec2& v) { vec2 v_tmp; char c = ' '; while (isspace(c)) s >> c; // The vectors can be formatted either as x y or | x y | if (c == '|') { s >> v_tmp[VX] >> v_tmp[VY]; while (s >> c && isspace(c)) ; //if (c != '|') // s.set(_bad); } else { s.putback(c); s >> v_tmp[VX] >> v_tmp[VY]; } if (s) v = v_tmp; return s; } void swap(vec2& a, vec2& b) { vec2 tmp(a); a = b; b = tmp; } vec2 min(const vec2& a, const vec2& b) { return vec2(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY])); } vec2 max(const vec2& a, const vec2& b) { return vec2(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY])); } vec2 prod(const vec2& a, const vec2& b) { return vec2(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY]); } } /**************************************************************** * * * vec3 Member functions * * * ****************************************************************/ // CONSTRUCTORS vec3::vec3() {} vec3::vec3(const double x, const double y, const double z) { n[VX] = x; n[VY] = y; n[VZ] = z; } vec3::vec3(const double d) { n[VX] = n[VY] = n[VZ] = d; } vec3::vec3(const vec3& v) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; } vec3::vec3(const vec2& v) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = 1.0; } vec3::vec3(const vec2& v, double d) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = d; } vec3::vec3(const vec4& v) // it is up to caller to avoid divide-by-zero { n[VX] = v.n[VX] / v.n[VW]; n[VY] = v.n[VY] / v.n[VW]; n[VZ] = v.n[VZ] / v.n[VW]; } vec3::vec3(const vec4& v, int dropAxis) { switch (dropAxis) { case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break; case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break; case VZ: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VW]; break; default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; break; } } // ASSIGNMENT OPERATORS vec3& vec3::operator = (const vec3& v) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; return *this; } vec3& vec3::operator += ( const vec3& v ) { n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; return *this; } vec3& vec3::operator -= ( const vec3& v ) { n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; return *this; } vec3& vec3::operator *= ( const double d ) { n[VX] *= d; n[VY] *= d; n[VZ] *= d; return *this; } vec3& vec3::operator /= ( const double d ) { double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv; return *this; } double& vec3::operator [] ( int i) { if (i < VX || i > VZ) V_ERROR("vec3 [] operator: illegal access; index = " << i << '\n') return n[i]; } const double& vec3::operator [] ( int i) const { if (i < VX || i > VZ) V_ERROR("vec3 [] operator: illegal access; index = " << i << '\n') return n[i]; } // SPECIAL FUNCTIONS double vec3::length() { return sqrt(length2()); } double vec3::length2() { return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ]; } vec3& vec3::normalize() // it is up to caller to avoid divide-by-zero { *this /= length(); return *this; } vec3& vec3::apply(V_FCT_PTR fct) { n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]); return *this; } // FRIENDS namespace sc { vec3 operator - (const vec3& a) { return vec3(-a.n[VX],-a.n[VY],-a.n[VZ]); } vec3 operator + (const vec3& a, const vec3& b) { return vec3(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ]); } vec3 operator - (const vec3& a, const vec3& b) { return vec3(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY], a.n[VZ]-b.n[VZ]); } vec3 operator * (const vec3& a, const double d) { return vec3(d*a.n[VX], d*a.n[VY], d*a.n[VZ]); } vec3 operator * (const double d, const vec3& a) { return a*d; } vec3 operator * (const mat4& a, const vec3& v) { return a * vec4(v); } vec3 operator * (const vec3& v, const mat4& a) { return a.transpose() * v; } double operator * (const vec3& a, const vec3& b) { return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ]); } vec3 operator / (const vec3& a, const double d) { double d_inv = 1./d; return vec3(a.n[VX]*d_inv, a.n[VY]*d_inv, a.n[VZ]*d_inv); } vec3 operator ^ (const vec3& a, const vec3& b) { return vec3(a.n[VY]*b.n[VZ] - a.n[VZ]*b.n[VY], a.n[VZ]*b.n[VX] - a.n[VX]*b.n[VZ], a.n[VX]*b.n[VY] - a.n[VY]*b.n[VX]); } int operator == (const vec3& a, const vec3& b) { return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ]); } int operator != (const vec3& a, const vec3& b) { return !(a == b); } ostream& operator << (ostream& s, vec3& v) { return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << " |"; } istream& operator >> (istream& s, vec3& v) { vec3 v_tmp; char c = ' '; while (isspace(c)) s >> c; // The vectors can be formatted either as x y z or | x y z | if (c == '|') { s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ]; while (s >> c && isspace(c)) ; //if (c != '|') // s.set(_bad); } else { s.putback(c); s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ]; } if (s) v = v_tmp; return s; } void swap(vec3& a, vec3& b) { vec3 tmp(a); a = b; b = tmp; } vec3 min(const vec3& a, const vec3& b) { return vec3(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ], b.n[VZ])); } vec3 max(const vec3& a, const vec3& b) { return vec3(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ], b.n[VZ])); } vec3 prod(const vec3& a, const vec3& b) { return vec3(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ]); } } /**************************************************************** * * * vec4 Member functions * * * ****************************************************************/ // CONSTRUCTORS vec4::vec4() {} vec4::vec4(const double x, const double y, const double z, const double w) { n[VX] = x; n[VY] = y; n[VZ] = z; n[VW] = w; } vec4::vec4(const double d) { n[VX] = n[VY] = n[VZ] = n[VW] = d; } vec4::vec4(const vec4& v) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW]; } vec4::vec4(const vec3& v) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = 1.0; } vec4::vec4(const vec3& v, const double d) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = d; } // ASSIGNMENT OPERATORS vec4& vec4::operator = (const vec4& v) { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW]; return *this; } vec4& vec4::operator += ( const vec4& v ) { n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; n[VW] += v.n[VW]; return *this; } vec4& vec4::operator -= ( const vec4& v ) { n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; n[VW] -= v.n[VW]; return *this; } vec4& vec4::operator *= ( const double d ) { n[VX] *= d; n[VY] *= d; n[VZ] *= d; n[VW] *= d; return *this; } vec4& vec4::operator /= ( const double d ) { double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv; n[VW] *= d_inv; return *this; } double& vec4::operator [] ( int i) { if (i < VX || i > VW) V_ERROR("vec4 [] operator: illegal access; index = " << i << '\n') return n[i]; } const double& vec4::operator [] ( int i) const { if (i < VX || i > VW) V_ERROR("vec4 [] operator: illegal access; index = " << i << '\n') return n[i]; } // SPECIAL FUNCTIONS double vec4::length() { return sqrt(length2()); } double vec4::length2() { return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ] + n[VW]*n[VW]; } vec4& vec4::normalize() // it is up to caller to avoid divide-by-zero { *this /= length(); return *this; } vec4& vec4::apply(V_FCT_PTR fct) { n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]); n[VW] = (*fct)(n[VW]); return *this; } // FRIENDS namespace sc { vec4 operator - (const vec4& a) { return vec4(-a.n[VX],-a.n[VY],-a.n[VZ],-a.n[VW]); } vec4 operator + (const vec4& a, const vec4& b) { return vec4(a.n[VX] + b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ], a.n[VW] + b.n[VW]); } vec4 operator - (const vec4& a, const vec4& b) { return vec4(a.n[VX] - b.n[VX], a.n[VY] - b.n[VY], a.n[VZ] - b.n[VZ], a.n[VW] - b.n[VW]); } vec4 operator * (const vec4& a, const double d) { return vec4(d*a.n[VX], d*a.n[VY], d*a.n[VZ], d*a.n[VW] ); } vec4 operator * (const double d, const vec4& a) { return a*d; } vec4 operator * (const mat4& a, const vec4& v) { #define ROWCOL(i) a.v[i].n[0]*v.n[VX] + a.v[i].n[1]*v.n[VY] \ + a.v[i].n[2]*v.n[VZ] + a.v[i].n[3]*v.n[VW] return vec4(ROWCOL(0), ROWCOL(1), ROWCOL(2), ROWCOL(3)); #undef ROWCOL } vec4 operator * (const vec4& v, const mat4& a) { return a.transpose() * v; } double operator * (const vec4& a, const vec4& b) { return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ] + a.n[VW]*b.n[VW]); } vec4 operator / (const vec4& a, const double d) { double d_inv = 1./d; return vec4(a.n[VX]*d_inv, a.n[VY]*d_inv, a.n[VZ]*d_inv, a.n[VW]*d_inv); } int operator == (const vec4& a, const vec4& b) { return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ]) && (a.n[VW] == b.n[VW]); } int operator != (const vec4& a, const vec4& b) { return !(a == b); } ostream& operator << (ostream& s, vec4& v) { return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << ' ' << v.n[VW] << " |"; } istream& operator >> (istream& s, vec4& v) { vec4 v_tmp; char c = ' '; while (isspace(c)) s >> c; // The vectors can be formatted either as x y z w or | x y z w | if (c == '|') { s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW]; while (s >> c && isspace(c)) ; //if (c != '|') // s.set(_bad); } else { s.putback(c); s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW]; } if (s) v = v_tmp; return s; } void swap(vec4& a, vec4& b) { vec4 tmp(a); a = b; b = tmp; } vec4 min(const vec4& a, const vec4& b) { return vec4(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ], b.n[VZ]), MIN(a.n[VW], b.n[VW])); } vec4 max(const vec4& a, const vec4& b) { return vec4(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ], b.n[VZ]), MAX(a.n[VW], b.n[VW])); } vec4 prod(const vec4& a, const vec4& b) { return vec4(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ], a.n[VW] * b.n[VW]); } } /**************************************************************** * * * mat3 member functions * * * ****************************************************************/ // CONSTRUCTORS mat3::mat3() {} mat3::mat3(const vec3& v0, const vec3& v1, const vec3& v2) { v[0] = v0; v[1] = v1; v[2] = v2; } mat3::mat3(const double d) { v[0] = v[1] = v[2] = vec3(d); } mat3::mat3(const mat3& m) { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; } // ASSIGNMENT OPERATORS mat3& mat3::operator = ( const mat3& m ) { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; return *this; } mat3& mat3::operator += ( const mat3& m ) { v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; return *this; } mat3& mat3::operator -= ( const mat3& m ) { v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; return *this; } mat3& mat3::operator *= ( const double d ) { v[0] *= d; v[1] *= d; v[2] *= d; return *this; } mat3& mat3::operator /= ( const double d ) { v[0] /= d; v[1] /= d; v[2] /= d; return *this; } vec3& mat3::operator [] ( int i) { if (i < VX || i > VZ) V_ERROR("mat3 [] operator: illegal access; index = " << i << '\n') return v[i]; } const vec3& mat3::operator [] ( int i) const { if (i < VX || i > VZ) V_ERROR("mat3 [] operator: illegal access; index = " << i << '\n') return v[i]; } // SPECIAL FUNCTIONS mat3 mat3::transpose() const { return mat3(vec3(v[0][0], v[1][0], v[2][0]), vec3(v[0][1], v[1][1], v[2][1]), vec3(v[0][2], v[1][2], v[2][2])); } mat3 mat3::inverse() // Gauss-Jordan elimination with partial pivoting { mat3 a(*this), // As a evolves from original mat into identity b(identity2D()); // b evolves from identity into inverse(a) int i, j, i1; // Loop over cols of a from left to right, eliminating above and below diag for (j=0; j<3; j++) { // Find largest pivot in column j among rows j..2 i1 = j; // Row with largest pivot candidate for (i=j+1; i<3; i++) if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j])) i1 = i; // Swap rows i1 and j in a and b to put pivot on diagonal swap(a.v[i1], a.v[j]); swap(b.v[i1], b.v[j]); // Scale row j to have a unit diagonal if (a.v[j].n[j]==0.) V_ERROR("mat3::inverse: singular matrix; can't invert\n") b.v[j] /= a.v[j].n[j]; a.v[j] /= a.v[j].n[j]; // Eliminate off-diagonal elems in col j of a, doing identical ops to b for (i=0; i<3; i++) if (i!=j) { b.v[i] -= a.v[i].n[j]*b.v[j]; a.v[i] -= a.v[i].n[j]*a.v[j]; } } return b; } mat3& mat3::apply(V_FCT_PTR fct) { v[VX].apply(fct); v[VY].apply(fct); v[VZ].apply(fct); return *this; } // FRIENDS namespace sc { mat3 operator - (const mat3& a) { return mat3(-a.v[0], -a.v[1], -a.v[2]); } mat3 operator + (const mat3& a, const mat3& b) { return mat3(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2]); } mat3 operator - (const mat3& a, const mat3& b) { return mat3(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2]); } mat3 operator * (const mat3& a, const mat3& b) { #define ROWCOL(i, j) \ a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + a.v[i].n[2]*b.v[2][j] return mat3(vec3(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)), vec3(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)), vec3(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2))); #undef ROWCOL } mat3 operator * (const mat3& a, const double d) { return mat3(a.v[0] * d, a.v[1] * d, a.v[2] * d); } mat3 operator * (const double d, const mat3& a) { return a*d; } mat3 operator / (const mat3& a, const double d) { return mat3(a.v[0] / d, a.v[1] / d, a.v[2] / d); } int operator == (const mat3& a, const mat3& b) { return (a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]); } int operator != (const mat3& a, const mat3& b) { return !(a == b); } ostream& operator << (ostream& s, mat3& m) { return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ]; } istream& operator >> (istream& s, mat3& m) { mat3 m_tmp; s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ]; if (s) m = m_tmp; return s; } void swap(mat3& a, mat3& b) { mat3 tmp(a); a = b; b = tmp; } } /**************************************************************** * * * mat4 member functions * * * ****************************************************************/ // CONSTRUCTORS mat4::mat4() {} mat4::mat4(const vec4& v0, const vec4& v1, const vec4& v2, const vec4& v3) { v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; } mat4::mat4(const double d) { v[0] = v[1] = v[2] = v[3] = vec4(d); } mat4::mat4(const mat4& m) { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3]; } // ASSIGNMENT OPERATORS mat4& mat4::operator = ( const mat4& m ) { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3]; return *this; } mat4& mat4::operator += ( const mat4& m ) { v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; v[3] += m.v[3]; return *this; } mat4& mat4::operator -= ( const mat4& m ) { v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; v[3] -= m.v[3]; return *this; } mat4& mat4::operator *= ( const double d ) { v[0] *= d; v[1] *= d; v[2] *= d; v[3] *= d; return *this; } mat4& mat4::operator /= ( const double d ) { v[0] /= d; v[1] /= d; v[2] /= d; v[3] /= d; return *this; } vec4& mat4::operator [] ( int i) { if (i < VX || i > VW) V_ERROR("mat4 [] operator: illegal access; index = " << i << '\n') return v[i]; } const vec4& mat4::operator [] ( int i) const { if (i < VX || i > VW) V_ERROR("mat4 [] operator: illegal access; index = " << i << '\n') return v[i]; } // SPECIAL FUNCTIONS; mat4 mat4::transpose() const { return mat4(vec4(v[0][0], v[1][0], v[2][0], v[3][0]), vec4(v[0][1], v[1][1], v[2][1], v[3][1]), vec4(v[0][2], v[1][2], v[2][2], v[3][2]), vec4(v[0][3], v[1][3], v[2][3], v[3][3])); } mat4 mat4::inverse() // Gauss-Jordan elimination with partial pivoting { mat4 a(*this), // As a evolves from original mat into identity b(identity3D()); // b evolves from identity into inverse(a) int i, j, i1; // Loop over cols of a from left to right, eliminating above and below diag for (j=0; j<4; j++) { // Find largest pivot in column j among rows j..3 i1 = j; // Row with largest pivot candidate for (i=j+1; i<4; i++) if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j])) i1 = i; // Swap rows i1 and j in a and b to put pivot on diagonal swap(a.v[i1], a.v[j]); swap(b.v[i1], b.v[j]); // Scale row j to have a unit diagonal if (a.v[j].n[j]==0.) V_ERROR("mat4::inverse: singular matrix; can't invert\n"); b.v[j] /= a.v[j].n[j]; a.v[j] /= a.v[j].n[j]; // Eliminate off-diagonal elems in col j of a, doing identical ops to b for (i=0; i<4; i++) if (i!=j) { b.v[i] -= a.v[i].n[j]*b.v[j]; a.v[i] -= a.v[i].n[j]*a.v[j]; } } return b; } mat4& mat4::apply(V_FCT_PTR fct) { v[VX].apply(fct); v[VY].apply(fct); v[VZ].apply(fct); v[VW].apply(fct); return *this; } // FRIENDS namespace sc { mat4 operator - (const mat4& a) { return mat4(-a.v[0], -a.v[1], -a.v[2], -a.v[3]); } mat4 operator + (const mat4& a, const mat4& b) { return mat4(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2], a.v[3] + b.v[3]); } mat4 operator - (const mat4& a, const mat4& b) { return mat4(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2], a.v[3] - b.v[3]); } mat4 operator * (const mat4& a, const mat4& b) { #define ROWCOL(i, j) a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + \ a.v[i].n[2]*b.v[2][j] + a.v[i].n[3]*b.v[3][j] return mat4( vec4(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2), ROWCOL(0,3)), vec4(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2), ROWCOL(1,3)), vec4(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2), ROWCOL(2,3)), vec4(ROWCOL(3,0), ROWCOL(3,1), ROWCOL(3,2), ROWCOL(3,3)) ); } mat4 operator * (const mat4& a, const double d) { return mat4(a.v[0] * d, a.v[1] * d, a.v[2] * d, a.v[3] * d); } mat4 operator * (const double d, const mat4& a) { return a*d; } mat4 operator / (const mat4& a, const double d) { return mat4(a.v[0] / d, a.v[1] / d, a.v[2] / d, a.v[3] / d); } int operator == (const mat4& a, const mat4& b) { return ((a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]) && (a.v[3] == b.v[3])); } int operator != (const mat4& a, const mat4& b) { return !(a == b); } ostream& operator << (ostream& s, mat4& m) { return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ] << '\n' << m.v[VW]; } istream& operator >> (istream& s, mat4& m) { mat4 m_tmp; s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ] >> m_tmp[VW]; if (s) m = m_tmp; return s; } void swap(mat4& a, mat4& b) { mat4 tmp(a); a = b; b = tmp; } } /**************************************************************** * * * 2D functions and 3D functions * * * ****************************************************************/ namespace sc { mat3 identity2D() { return mat3(vec3(1.0, 0.0, 0.0), vec3(0.0, 1.0, 0.0), vec3(0.0, 0.0, 1.0)); } mat3 translation2D(const vec2& v) { return mat3(vec3(1.0, 0.0, v[VX]), vec3(0.0, 1.0, v[VY]), vec3(0.0, 0.0, 1.0)); } mat3 rotation2D(const vec2& Center, const double angleDeg) { double angleRad = angleDeg * M_PI / 180.0, c = cos(angleRad), s = sin(angleRad); return mat3(vec3(c, -s, Center[VX] * (1.0-c) + Center[VY] * s), vec3(s, c, Center[VY] * (1.0-c) - Center[VX] * s), vec3(0.0, 0.0, 1.0)); } mat3 scaling2D(const vec2& scaleVector) { return mat3(vec3(scaleVector[VX], 0.0, 0.0), vec3(0.0, scaleVector[VY], 0.0), vec3(0.0, 0.0, 1.0)); } mat4 identity3D() { return mat4(vec4(1.0, 0.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 0.0, 1.0)); } mat4 translation3D(const vec3& v) { return mat4(vec4(1.0, 0.0, 0.0, v[VX]), vec4(0.0, 1.0, 0.0, v[VY]), vec4(0.0, 0.0, 1.0, v[VZ]), vec4(0.0, 0.0, 0.0, 1.0)); } mat4 rotation3D(const vec3& Axisarg, const double angleDeg) { double angleRad = angleDeg * M_PI / 180.0, c = cos(angleRad), s = sin(angleRad), t = 1.0 - c; vec3 Axis(Axisarg); Axis.normalize(); return mat4(vec4(t * Axis[VX] * Axis[VX] + c, t * Axis[VX] * Axis[VY] - s * Axis[VZ], t * Axis[VX] * Axis[VZ] + s * Axis[VY], 0.0), vec4(t * Axis[VX] * Axis[VY] + s * Axis[VZ], t * Axis[VY] * Axis[VY] + c, t * Axis[VY] * Axis[VZ] - s * Axis[VX], 0.0), vec4(t * Axis[VX] * Axis[VZ] - s * Axis[VY], t * Axis[VY] * Axis[VZ] + s * Axis[VX], t * Axis[VZ] * Axis[VZ] + c, 0.0), vec4(0.0, 0.0, 0.0, 1.0)); } mat4 scaling3D(const vec3& scaleVector) { return mat4(vec4(scaleVector[VX], 0.0, 0.0, 0.0), vec4(0.0, scaleVector[VY], 0.0, 0.0), vec4(0.0, 0.0, scaleVector[VZ], 0.0), vec4(0.0, 0.0, 0.0, 1.0)); } mat4 perspective3D(const double d) { return mat4(vec4(1.0, 0.0, 0.0, 0.0), vec4(0.0, 1.0, 0.0, 0.0), vec4(0.0, 0.0, 1.0, 0.0), vec4(0.0, 0.0, 1.0/d, 0.0)); } }