1 | #include <util/misc/math.h>
|
---|
2 | #include <util/render/algebra3.h>
|
---|
3 | #include <util/misc/exenv.h>
|
---|
4 | #include <ctype.h>
|
---|
5 |
|
---|
6 | using namespace std;
|
---|
7 | using namespace sc;
|
---|
8 |
|
---|
9 | // min-max macros
|
---|
10 | #define MIN(A,B) ((A) < (B) ? (A) : (B))
|
---|
11 | #define MAX(A,B) ((A) > (B) ? (A) : (B))
|
---|
12 |
|
---|
13 | // error handling macro
|
---|
14 | #define V_ERROR(E) { ExEnv::errn() << E; exit(1); }
|
---|
15 |
|
---|
16 | /****************************************************************
|
---|
17 | * *
|
---|
18 | * vec2 Member functions *
|
---|
19 | * *
|
---|
20 | ****************************************************************/
|
---|
21 |
|
---|
22 | // CONSTRUCTORS
|
---|
23 |
|
---|
24 | vec2::vec2() {}
|
---|
25 |
|
---|
26 | vec2::vec2(const double x, const double y)
|
---|
27 | { n[VX] = x; n[VY] = y; }
|
---|
28 |
|
---|
29 | vec2::vec2(const double d)
|
---|
30 | { n[VX] = n[VY] = d; }
|
---|
31 |
|
---|
32 | vec2::vec2(const vec2& v)
|
---|
33 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; }
|
---|
34 |
|
---|
35 | vec2::vec2(const vec3& v) // it is up to caller to avoid divide-by-zero
|
---|
36 | { n[VX] = v.n[VX]/v.n[VZ]; n[VY] = v.n[VY]/v.n[VZ]; };
|
---|
37 |
|
---|
38 | vec2::vec2(const vec3& v, int dropAxis) {
|
---|
39 | switch (dropAxis) {
|
---|
40 | case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; break;
|
---|
41 | case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; break;
|
---|
42 | default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; break;
|
---|
43 | }
|
---|
44 | }
|
---|
45 |
|
---|
46 |
|
---|
47 | // ASSIGNMENT OPERATORS
|
---|
48 |
|
---|
49 | vec2& vec2::operator = (const vec2& v)
|
---|
50 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; return *this; }
|
---|
51 |
|
---|
52 | vec2& vec2::operator += ( const vec2& v )
|
---|
53 | { n[VX] += v.n[VX]; n[VY] += v.n[VY]; return *this; }
|
---|
54 |
|
---|
55 | vec2& vec2::operator -= ( const vec2& v )
|
---|
56 | { n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; return *this; }
|
---|
57 |
|
---|
58 | vec2& vec2::operator *= ( const double d )
|
---|
59 | { n[VX] *= d; n[VY] *= d; return *this; }
|
---|
60 |
|
---|
61 | vec2& vec2::operator /= ( const double d )
|
---|
62 | { double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; return *this; }
|
---|
63 |
|
---|
64 | double& vec2::operator [] ( int i) {
|
---|
65 | if (i < VX || i > VY)
|
---|
66 | V_ERROR("vec2 [] operator: illegal access; index = " << i << '\n')
|
---|
67 | return n[i];
|
---|
68 | }
|
---|
69 |
|
---|
70 | const double& vec2::operator [] ( int i) const {
|
---|
71 | if (i < VX || i > VY)
|
---|
72 | V_ERROR("vec2 [] operator: illegal access; index = " << i << '\n')
|
---|
73 | return n[i];
|
---|
74 | }
|
---|
75 |
|
---|
76 |
|
---|
77 | // SPECIAL FUNCTIONS
|
---|
78 |
|
---|
79 | double vec2::length()
|
---|
80 | { return sqrt(length2()); }
|
---|
81 |
|
---|
82 | double vec2::length2()
|
---|
83 | { return n[VX]*n[VX] + n[VY]*n[VY]; }
|
---|
84 |
|
---|
85 | vec2& vec2::normalize() // it is up to caller to avoid divide-by-zero
|
---|
86 | { *this /= length(); return *this; }
|
---|
87 |
|
---|
88 | vec2& vec2::apply(V_FCT_PTR fct)
|
---|
89 | { n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); return *this; }
|
---|
90 |
|
---|
91 |
|
---|
92 | // FRIENDS
|
---|
93 |
|
---|
94 | namespace sc {
|
---|
95 |
|
---|
96 | vec2 operator - (const vec2& a)
|
---|
97 | { return vec2(-a.n[VX],-a.n[VY]); }
|
---|
98 |
|
---|
99 | vec2 operator + (const vec2& a, const vec2& b)
|
---|
100 | { return vec2(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY]); }
|
---|
101 |
|
---|
102 | vec2 operator - (const vec2& a, const vec2& b)
|
---|
103 | { return vec2(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY]); }
|
---|
104 |
|
---|
105 | vec2 operator * (const vec2& a, const double d)
|
---|
106 | { return vec2(d*a.n[VX], d*a.n[VY]); }
|
---|
107 |
|
---|
108 | vec2 operator * (const double d, const vec2& a)
|
---|
109 | { return a*d; }
|
---|
110 |
|
---|
111 | vec2 operator * (const mat3& a, const vec2& v) {
|
---|
112 | vec3 av;
|
---|
113 |
|
---|
114 | av.n[VX] = a.v[0].n[VX]*v.n[VX] + a.v[0].n[VY]*v.n[VY] + a.v[0].n[VZ];
|
---|
115 | av.n[VY] = a.v[1].n[VX]*v.n[VX] + a.v[1].n[VY]*v.n[VY] + a.v[1].n[VZ];
|
---|
116 | av.n[VZ] = a.v[2].n[VX]*v.n[VX] + a.v[2].n[VY]*v.n[VY] + a.v[2].n[VZ];
|
---|
117 | return av;
|
---|
118 | }
|
---|
119 |
|
---|
120 | vec2 operator * (const vec2& v, const mat3& a)
|
---|
121 | { return a.transpose() * v; }
|
---|
122 |
|
---|
123 | double operator * (const vec2& a, const vec2& b)
|
---|
124 | { return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY]); }
|
---|
125 |
|
---|
126 | vec2 operator / (const vec2& a, const double d)
|
---|
127 | { double d_inv = 1./d; return vec2(a.n[VX]*d_inv, a.n[VY]*d_inv); }
|
---|
128 |
|
---|
129 | vec3 operator ^ (const vec2& a, const vec2& b)
|
---|
130 | { return vec3(0.0, 0.0, a.n[VX] * b.n[VY] - b.n[VX] * a.n[VY]); }
|
---|
131 |
|
---|
132 | int operator == (const vec2& a, const vec2& b)
|
---|
133 | { return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]); }
|
---|
134 |
|
---|
135 | int operator != (const vec2& a, const vec2& b)
|
---|
136 | { return !(a == b); }
|
---|
137 |
|
---|
138 | ostream& operator << (ostream& s, vec2& v)
|
---|
139 | { return s << "| " << v.n[VX] << ' ' << v.n[VY] << " |"; }
|
---|
140 |
|
---|
141 | istream& operator >> (istream& s, vec2& v) {
|
---|
142 | vec2 v_tmp;
|
---|
143 | char c = ' ';
|
---|
144 |
|
---|
145 | while (isspace(c))
|
---|
146 | s >> c;
|
---|
147 | // The vectors can be formatted either as x y or | x y |
|
---|
148 | if (c == '|') {
|
---|
149 | s >> v_tmp[VX] >> v_tmp[VY];
|
---|
150 | while (s >> c && isspace(c)) ;
|
---|
151 | //if (c != '|')
|
---|
152 | // s.set(_bad);
|
---|
153 | }
|
---|
154 | else {
|
---|
155 | s.putback(c);
|
---|
156 | s >> v_tmp[VX] >> v_tmp[VY];
|
---|
157 | }
|
---|
158 | if (s)
|
---|
159 | v = v_tmp;
|
---|
160 | return s;
|
---|
161 | }
|
---|
162 |
|
---|
163 | void swap(vec2& a, vec2& b)
|
---|
164 | { vec2 tmp(a); a = b; b = tmp; }
|
---|
165 |
|
---|
166 | vec2 min(const vec2& a, const vec2& b)
|
---|
167 | { return vec2(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY])); }
|
---|
168 |
|
---|
169 | vec2 max(const vec2& a, const vec2& b)
|
---|
170 | { return vec2(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY])); }
|
---|
171 |
|
---|
172 | vec2 prod(const vec2& a, const vec2& b)
|
---|
173 | { return vec2(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY]); }
|
---|
174 |
|
---|
175 | }
|
---|
176 |
|
---|
177 | /****************************************************************
|
---|
178 | * *
|
---|
179 | * vec3 Member functions *
|
---|
180 | * *
|
---|
181 | ****************************************************************/
|
---|
182 |
|
---|
183 | // CONSTRUCTORS
|
---|
184 |
|
---|
185 | vec3::vec3() {}
|
---|
186 |
|
---|
187 | vec3::vec3(const double x, const double y, const double z)
|
---|
188 | { n[VX] = x; n[VY] = y; n[VZ] = z; }
|
---|
189 |
|
---|
190 | vec3::vec3(const double d)
|
---|
191 | { n[VX] = n[VY] = n[VZ] = d; }
|
---|
192 |
|
---|
193 | vec3::vec3(const vec3& v)
|
---|
194 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; }
|
---|
195 |
|
---|
196 | vec3::vec3(const vec2& v)
|
---|
197 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = 1.0; }
|
---|
198 |
|
---|
199 | vec3::vec3(const vec2& v, double d)
|
---|
200 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = d; }
|
---|
201 |
|
---|
202 | vec3::vec3(const vec4& v) // it is up to caller to avoid divide-by-zero
|
---|
203 | { n[VX] = v.n[VX] / v.n[VW]; n[VY] = v.n[VY] / v.n[VW];
|
---|
204 | n[VZ] = v.n[VZ] / v.n[VW]; }
|
---|
205 |
|
---|
206 | vec3::vec3(const vec4& v, int dropAxis) {
|
---|
207 | switch (dropAxis) {
|
---|
208 | case VX: n[VX] = v.n[VY]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
|
---|
209 | case VY: n[VX] = v.n[VX]; n[VY] = v.n[VZ]; n[VZ] = v.n[VW]; break;
|
---|
210 | case VZ: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VW]; break;
|
---|
211 | default: n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; break;
|
---|
212 | }
|
---|
213 | }
|
---|
214 |
|
---|
215 |
|
---|
216 | // ASSIGNMENT OPERATORS
|
---|
217 |
|
---|
218 | vec3& vec3::operator = (const vec3& v)
|
---|
219 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; return *this; }
|
---|
220 |
|
---|
221 | vec3& vec3::operator += ( const vec3& v )
|
---|
222 | { n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; return *this; }
|
---|
223 |
|
---|
224 | vec3& vec3::operator -= ( const vec3& v )
|
---|
225 | { n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; return *this; }
|
---|
226 |
|
---|
227 | vec3& vec3::operator *= ( const double d )
|
---|
228 | { n[VX] *= d; n[VY] *= d; n[VZ] *= d; return *this; }
|
---|
229 |
|
---|
230 | vec3& vec3::operator /= ( const double d )
|
---|
231 | { double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
|
---|
232 | return *this; }
|
---|
233 |
|
---|
234 | double& vec3::operator [] ( int i) {
|
---|
235 | if (i < VX || i > VZ)
|
---|
236 | V_ERROR("vec3 [] operator: illegal access; index = " << i << '\n')
|
---|
237 | return n[i];
|
---|
238 | }
|
---|
239 |
|
---|
240 | const double& vec3::operator [] ( int i) const {
|
---|
241 | if (i < VX || i > VZ)
|
---|
242 | V_ERROR("vec3 [] operator: illegal access; index = " << i << '\n')
|
---|
243 | return n[i];
|
---|
244 | }
|
---|
245 |
|
---|
246 |
|
---|
247 | // SPECIAL FUNCTIONS
|
---|
248 |
|
---|
249 | double vec3::length()
|
---|
250 | { return sqrt(length2()); }
|
---|
251 |
|
---|
252 | double vec3::length2()
|
---|
253 | { return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ]; }
|
---|
254 |
|
---|
255 | vec3& vec3::normalize() // it is up to caller to avoid divide-by-zero
|
---|
256 | { *this /= length(); return *this; }
|
---|
257 |
|
---|
258 | vec3& vec3::apply(V_FCT_PTR fct)
|
---|
259 | { n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
|
---|
260 | return *this; }
|
---|
261 |
|
---|
262 |
|
---|
263 | // FRIENDS
|
---|
264 |
|
---|
265 | namespace sc {
|
---|
266 |
|
---|
267 | vec3 operator - (const vec3& a)
|
---|
268 | { return vec3(-a.n[VX],-a.n[VY],-a.n[VZ]); }
|
---|
269 |
|
---|
270 | vec3 operator + (const vec3& a, const vec3& b)
|
---|
271 | { return vec3(a.n[VX]+ b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ]); }
|
---|
272 |
|
---|
273 | vec3 operator - (const vec3& a, const vec3& b)
|
---|
274 | { return vec3(a.n[VX]-b.n[VX], a.n[VY]-b.n[VY], a.n[VZ]-b.n[VZ]); }
|
---|
275 |
|
---|
276 | vec3 operator * (const vec3& a, const double d)
|
---|
277 | { return vec3(d*a.n[VX], d*a.n[VY], d*a.n[VZ]); }
|
---|
278 |
|
---|
279 | vec3 operator * (const double d, const vec3& a)
|
---|
280 | { return a*d; }
|
---|
281 |
|
---|
282 | vec3 operator * (const mat4& a, const vec3& v)
|
---|
283 | { return a * vec4(v); }
|
---|
284 |
|
---|
285 | vec3 operator * (const vec3& v, const mat4& a)
|
---|
286 | { return a.transpose() * v; }
|
---|
287 |
|
---|
288 | double operator * (const vec3& a, const vec3& b)
|
---|
289 | { return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ]); }
|
---|
290 |
|
---|
291 | vec3 operator / (const vec3& a, const double d)
|
---|
292 | { double d_inv = 1./d; return vec3(a.n[VX]*d_inv, a.n[VY]*d_inv,
|
---|
293 | a.n[VZ]*d_inv); }
|
---|
294 |
|
---|
295 | vec3 operator ^ (const vec3& a, const vec3& b) {
|
---|
296 | return vec3(a.n[VY]*b.n[VZ] - a.n[VZ]*b.n[VY],
|
---|
297 | a.n[VZ]*b.n[VX] - a.n[VX]*b.n[VZ],
|
---|
298 | a.n[VX]*b.n[VY] - a.n[VY]*b.n[VX]);
|
---|
299 | }
|
---|
300 |
|
---|
301 | int operator == (const vec3& a, const vec3& b)
|
---|
302 | { return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ]);
|
---|
303 | }
|
---|
304 |
|
---|
305 | int operator != (const vec3& a, const vec3& b)
|
---|
306 | { return !(a == b); }
|
---|
307 |
|
---|
308 | ostream& operator << (ostream& s, vec3& v)
|
---|
309 | { return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << " |"; }
|
---|
310 |
|
---|
311 | istream& operator >> (istream& s, vec3& v) {
|
---|
312 | vec3 v_tmp;
|
---|
313 | char c = ' ';
|
---|
314 |
|
---|
315 | while (isspace(c))
|
---|
316 | s >> c;
|
---|
317 | // The vectors can be formatted either as x y z or | x y z |
|
---|
318 | if (c == '|') {
|
---|
319 | s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
|
---|
320 | while (s >> c && isspace(c)) ;
|
---|
321 | //if (c != '|')
|
---|
322 | // s.set(_bad);
|
---|
323 | }
|
---|
324 | else {
|
---|
325 | s.putback(c);
|
---|
326 | s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ];
|
---|
327 | }
|
---|
328 | if (s)
|
---|
329 | v = v_tmp;
|
---|
330 | return s;
|
---|
331 | }
|
---|
332 |
|
---|
333 | void swap(vec3& a, vec3& b)
|
---|
334 | { vec3 tmp(a); a = b; b = tmp; }
|
---|
335 |
|
---|
336 | vec3 min(const vec3& a, const vec3& b)
|
---|
337 | { return vec3(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
|
---|
338 | b.n[VZ])); }
|
---|
339 |
|
---|
340 | vec3 max(const vec3& a, const vec3& b)
|
---|
341 | { return vec3(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
|
---|
342 | b.n[VZ])); }
|
---|
343 |
|
---|
344 | vec3 prod(const vec3& a, const vec3& b)
|
---|
345 | { return vec3(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ]); }
|
---|
346 |
|
---|
347 | }
|
---|
348 |
|
---|
349 | /****************************************************************
|
---|
350 | * *
|
---|
351 | * vec4 Member functions *
|
---|
352 | * *
|
---|
353 | ****************************************************************/
|
---|
354 |
|
---|
355 | // CONSTRUCTORS
|
---|
356 |
|
---|
357 | vec4::vec4() {}
|
---|
358 |
|
---|
359 | vec4::vec4(const double x, const double y, const double z, const double w)
|
---|
360 | { n[VX] = x; n[VY] = y; n[VZ] = z; n[VW] = w; }
|
---|
361 |
|
---|
362 | vec4::vec4(const double d)
|
---|
363 | { n[VX] = n[VY] = n[VZ] = n[VW] = d; }
|
---|
364 |
|
---|
365 | vec4::vec4(const vec4& v)
|
---|
366 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW]; }
|
---|
367 |
|
---|
368 | vec4::vec4(const vec3& v)
|
---|
369 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = 1.0; }
|
---|
370 |
|
---|
371 | vec4::vec4(const vec3& v, const double d)
|
---|
372 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = d; }
|
---|
373 |
|
---|
374 |
|
---|
375 | // ASSIGNMENT OPERATORS
|
---|
376 |
|
---|
377 | vec4& vec4::operator = (const vec4& v)
|
---|
378 | { n[VX] = v.n[VX]; n[VY] = v.n[VY]; n[VZ] = v.n[VZ]; n[VW] = v.n[VW];
|
---|
379 | return *this; }
|
---|
380 |
|
---|
381 | vec4& vec4::operator += ( const vec4& v )
|
---|
382 | { n[VX] += v.n[VX]; n[VY] += v.n[VY]; n[VZ] += v.n[VZ]; n[VW] += v.n[VW];
|
---|
383 | return *this; }
|
---|
384 |
|
---|
385 | vec4& vec4::operator -= ( const vec4& v )
|
---|
386 | { n[VX] -= v.n[VX]; n[VY] -= v.n[VY]; n[VZ] -= v.n[VZ]; n[VW] -= v.n[VW];
|
---|
387 | return *this; }
|
---|
388 |
|
---|
389 | vec4& vec4::operator *= ( const double d )
|
---|
390 | { n[VX] *= d; n[VY] *= d; n[VZ] *= d; n[VW] *= d; return *this; }
|
---|
391 |
|
---|
392 | vec4& vec4::operator /= ( const double d )
|
---|
393 | { double d_inv = 1./d; n[VX] *= d_inv; n[VY] *= d_inv; n[VZ] *= d_inv;
|
---|
394 | n[VW] *= d_inv; return *this; }
|
---|
395 |
|
---|
396 | double& vec4::operator [] ( int i) {
|
---|
397 | if (i < VX || i > VW)
|
---|
398 | V_ERROR("vec4 [] operator: illegal access; index = " << i << '\n')
|
---|
399 | return n[i];
|
---|
400 | }
|
---|
401 |
|
---|
402 | const double& vec4::operator [] ( int i) const {
|
---|
403 | if (i < VX || i > VW)
|
---|
404 | V_ERROR("vec4 [] operator: illegal access; index = " << i << '\n')
|
---|
405 | return n[i];
|
---|
406 | }
|
---|
407 |
|
---|
408 |
|
---|
409 | // SPECIAL FUNCTIONS
|
---|
410 |
|
---|
411 | double vec4::length()
|
---|
412 | { return sqrt(length2()); }
|
---|
413 |
|
---|
414 | double vec4::length2()
|
---|
415 | { return n[VX]*n[VX] + n[VY]*n[VY] + n[VZ]*n[VZ] + n[VW]*n[VW]; }
|
---|
416 |
|
---|
417 | vec4& vec4::normalize() // it is up to caller to avoid divide-by-zero
|
---|
418 | { *this /= length(); return *this; }
|
---|
419 |
|
---|
420 | vec4& vec4::apply(V_FCT_PTR fct)
|
---|
421 | { n[VX] = (*fct)(n[VX]); n[VY] = (*fct)(n[VY]); n[VZ] = (*fct)(n[VZ]);
|
---|
422 | n[VW] = (*fct)(n[VW]); return *this; }
|
---|
423 |
|
---|
424 |
|
---|
425 | // FRIENDS
|
---|
426 |
|
---|
427 | namespace sc {
|
---|
428 |
|
---|
429 | vec4 operator - (const vec4& a)
|
---|
430 | { return vec4(-a.n[VX],-a.n[VY],-a.n[VZ],-a.n[VW]); }
|
---|
431 |
|
---|
432 | vec4 operator + (const vec4& a, const vec4& b)
|
---|
433 | { return vec4(a.n[VX] + b.n[VX], a.n[VY] + b.n[VY], a.n[VZ] + b.n[VZ],
|
---|
434 | a.n[VW] + b.n[VW]); }
|
---|
435 |
|
---|
436 | vec4 operator - (const vec4& a, const vec4& b)
|
---|
437 | { return vec4(a.n[VX] - b.n[VX], a.n[VY] - b.n[VY], a.n[VZ] - b.n[VZ],
|
---|
438 | a.n[VW] - b.n[VW]); }
|
---|
439 |
|
---|
440 | vec4 operator * (const vec4& a, const double d)
|
---|
441 | { return vec4(d*a.n[VX], d*a.n[VY], d*a.n[VZ], d*a.n[VW] ); }
|
---|
442 |
|
---|
443 | vec4 operator * (const double d, const vec4& a)
|
---|
444 | { return a*d; }
|
---|
445 |
|
---|
446 | vec4 operator * (const mat4& a, const vec4& v) {
|
---|
447 | #define ROWCOL(i) a.v[i].n[0]*v.n[VX] + a.v[i].n[1]*v.n[VY] \
|
---|
448 | + a.v[i].n[2]*v.n[VZ] + a.v[i].n[3]*v.n[VW]
|
---|
449 | return vec4(ROWCOL(0), ROWCOL(1), ROWCOL(2), ROWCOL(3));
|
---|
450 | #undef ROWCOL
|
---|
451 | }
|
---|
452 |
|
---|
453 | vec4 operator * (const vec4& v, const mat4& a)
|
---|
454 | { return a.transpose() * v; }
|
---|
455 |
|
---|
456 | double operator * (const vec4& a, const vec4& b)
|
---|
457 | { return (a.n[VX]*b.n[VX] + a.n[VY]*b.n[VY] + a.n[VZ]*b.n[VZ] +
|
---|
458 | a.n[VW]*b.n[VW]); }
|
---|
459 |
|
---|
460 | vec4 operator / (const vec4& a, const double d)
|
---|
461 | { double d_inv = 1./d; return vec4(a.n[VX]*d_inv, a.n[VY]*d_inv, a.n[VZ]*d_inv,
|
---|
462 | a.n[VW]*d_inv); }
|
---|
463 |
|
---|
464 | int operator == (const vec4& a, const vec4& b)
|
---|
465 | { return (a.n[VX] == b.n[VX]) && (a.n[VY] == b.n[VY]) && (a.n[VZ] == b.n[VZ])
|
---|
466 | && (a.n[VW] == b.n[VW]); }
|
---|
467 |
|
---|
468 | int operator != (const vec4& a, const vec4& b)
|
---|
469 | { return !(a == b); }
|
---|
470 |
|
---|
471 | ostream& operator << (ostream& s, vec4& v)
|
---|
472 | { return s << "| " << v.n[VX] << ' ' << v.n[VY] << ' ' << v.n[VZ] << ' '
|
---|
473 | << v.n[VW] << " |"; }
|
---|
474 |
|
---|
475 | istream& operator >> (istream& s, vec4& v) {
|
---|
476 | vec4 v_tmp;
|
---|
477 | char c = ' ';
|
---|
478 |
|
---|
479 | while (isspace(c))
|
---|
480 | s >> c;
|
---|
481 | // The vectors can be formatted either as x y z w or | x y z w |
|
---|
482 | if (c == '|') {
|
---|
483 | s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
|
---|
484 | while (s >> c && isspace(c)) ;
|
---|
485 | //if (c != '|')
|
---|
486 | // s.set(_bad);
|
---|
487 | }
|
---|
488 | else {
|
---|
489 | s.putback(c);
|
---|
490 | s >> v_tmp[VX] >> v_tmp[VY] >> v_tmp[VZ] >> v_tmp[VW];
|
---|
491 | }
|
---|
492 | if (s)
|
---|
493 | v = v_tmp;
|
---|
494 | return s;
|
---|
495 | }
|
---|
496 |
|
---|
497 | void swap(vec4& a, vec4& b)
|
---|
498 | { vec4 tmp(a); a = b; b = tmp; }
|
---|
499 |
|
---|
500 | vec4 min(const vec4& a, const vec4& b)
|
---|
501 | { return vec4(MIN(a.n[VX], b.n[VX]), MIN(a.n[VY], b.n[VY]), MIN(a.n[VZ],
|
---|
502 | b.n[VZ]), MIN(a.n[VW], b.n[VW])); }
|
---|
503 |
|
---|
504 | vec4 max(const vec4& a, const vec4& b)
|
---|
505 | { return vec4(MAX(a.n[VX], b.n[VX]), MAX(a.n[VY], b.n[VY]), MAX(a.n[VZ],
|
---|
506 | b.n[VZ]), MAX(a.n[VW], b.n[VW])); }
|
---|
507 |
|
---|
508 | vec4 prod(const vec4& a, const vec4& b)
|
---|
509 | { return vec4(a.n[VX] * b.n[VX], a.n[VY] * b.n[VY], a.n[VZ] * b.n[VZ],
|
---|
510 | a.n[VW] * b.n[VW]); }
|
---|
511 |
|
---|
512 | }
|
---|
513 |
|
---|
514 | /****************************************************************
|
---|
515 | * *
|
---|
516 | * mat3 member functions *
|
---|
517 | * *
|
---|
518 | ****************************************************************/
|
---|
519 |
|
---|
520 | // CONSTRUCTORS
|
---|
521 |
|
---|
522 | mat3::mat3() {}
|
---|
523 |
|
---|
524 | mat3::mat3(const vec3& v0, const vec3& v1, const vec3& v2)
|
---|
525 | { v[0] = v0; v[1] = v1; v[2] = v2; }
|
---|
526 |
|
---|
527 | mat3::mat3(const double d)
|
---|
528 | { v[0] = v[1] = v[2] = vec3(d); }
|
---|
529 |
|
---|
530 | mat3::mat3(const mat3& m)
|
---|
531 | { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; }
|
---|
532 |
|
---|
533 |
|
---|
534 | // ASSIGNMENT OPERATORS
|
---|
535 |
|
---|
536 | mat3& mat3::operator = ( const mat3& m )
|
---|
537 | { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; return *this; }
|
---|
538 |
|
---|
539 | mat3& mat3::operator += ( const mat3& m )
|
---|
540 | { v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; return *this; }
|
---|
541 |
|
---|
542 | mat3& mat3::operator -= ( const mat3& m )
|
---|
543 | { v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; return *this; }
|
---|
544 |
|
---|
545 | mat3& mat3::operator *= ( const double d )
|
---|
546 | { v[0] *= d; v[1] *= d; v[2] *= d; return *this; }
|
---|
547 |
|
---|
548 | mat3& mat3::operator /= ( const double d )
|
---|
549 | { v[0] /= d; v[1] /= d; v[2] /= d; return *this; }
|
---|
550 |
|
---|
551 | vec3& mat3::operator [] ( int i) {
|
---|
552 | if (i < VX || i > VZ)
|
---|
553 | V_ERROR("mat3 [] operator: illegal access; index = " << i << '\n')
|
---|
554 | return v[i];
|
---|
555 | }
|
---|
556 |
|
---|
557 | const vec3& mat3::operator [] ( int i) const {
|
---|
558 | if (i < VX || i > VZ)
|
---|
559 | V_ERROR("mat3 [] operator: illegal access; index = " << i << '\n')
|
---|
560 | return v[i];
|
---|
561 | }
|
---|
562 |
|
---|
563 |
|
---|
564 | // SPECIAL FUNCTIONS
|
---|
565 |
|
---|
566 | mat3 mat3::transpose() const {
|
---|
567 | return mat3(vec3(v[0][0], v[1][0], v[2][0]),
|
---|
568 | vec3(v[0][1], v[1][1], v[2][1]),
|
---|
569 | vec3(v[0][2], v[1][2], v[2][2]));
|
---|
570 | }
|
---|
571 |
|
---|
572 | mat3 mat3::inverse() // Gauss-Jordan elimination with partial pivoting
|
---|
573 | {
|
---|
574 | mat3 a(*this), // As a evolves from original mat into identity
|
---|
575 | b(identity2D()); // b evolves from identity into inverse(a)
|
---|
576 | int i, j, i1;
|
---|
577 |
|
---|
578 | // Loop over cols of a from left to right, eliminating above and below diag
|
---|
579 | for (j=0; j<3; j++) { // Find largest pivot in column j among rows j..2
|
---|
580 | i1 = j; // Row with largest pivot candidate
|
---|
581 | for (i=j+1; i<3; i++)
|
---|
582 | if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
|
---|
583 | i1 = i;
|
---|
584 |
|
---|
585 | // Swap rows i1 and j in a and b to put pivot on diagonal
|
---|
586 | swap(a.v[i1], a.v[j]);
|
---|
587 | swap(b.v[i1], b.v[j]);
|
---|
588 |
|
---|
589 | // Scale row j to have a unit diagonal
|
---|
590 | if (a.v[j].n[j]==0.)
|
---|
591 | V_ERROR("mat3::inverse: singular matrix; can't invert\n")
|
---|
592 | b.v[j] /= a.v[j].n[j];
|
---|
593 | a.v[j] /= a.v[j].n[j];
|
---|
594 |
|
---|
595 | // Eliminate off-diagonal elems in col j of a, doing identical ops to b
|
---|
596 | for (i=0; i<3; i++)
|
---|
597 | if (i!=j) {
|
---|
598 | b.v[i] -= a.v[i].n[j]*b.v[j];
|
---|
599 | a.v[i] -= a.v[i].n[j]*a.v[j];
|
---|
600 | }
|
---|
601 | }
|
---|
602 | return b;
|
---|
603 | }
|
---|
604 |
|
---|
605 | mat3& mat3::apply(V_FCT_PTR fct) {
|
---|
606 | v[VX].apply(fct);
|
---|
607 | v[VY].apply(fct);
|
---|
608 | v[VZ].apply(fct);
|
---|
609 | return *this;
|
---|
610 | }
|
---|
611 |
|
---|
612 |
|
---|
613 | // FRIENDS
|
---|
614 |
|
---|
615 | namespace sc {
|
---|
616 |
|
---|
617 | mat3 operator - (const mat3& a)
|
---|
618 | { return mat3(-a.v[0], -a.v[1], -a.v[2]); }
|
---|
619 |
|
---|
620 | mat3 operator + (const mat3& a, const mat3& b)
|
---|
621 | { return mat3(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2]); }
|
---|
622 |
|
---|
623 | mat3 operator - (const mat3& a, const mat3& b)
|
---|
624 | { return mat3(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2]); }
|
---|
625 |
|
---|
626 | mat3 operator * (const mat3& a, const mat3& b) {
|
---|
627 | #define ROWCOL(i, j) \
|
---|
628 | a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + a.v[i].n[2]*b.v[2][j]
|
---|
629 | return mat3(vec3(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2)),
|
---|
630 | vec3(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2)),
|
---|
631 | vec3(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2)));
|
---|
632 | #undef ROWCOL
|
---|
633 | }
|
---|
634 |
|
---|
635 | mat3 operator * (const mat3& a, const double d)
|
---|
636 | { return mat3(a.v[0] * d, a.v[1] * d, a.v[2] * d); }
|
---|
637 |
|
---|
638 | mat3 operator * (const double d, const mat3& a)
|
---|
639 | { return a*d; }
|
---|
640 |
|
---|
641 | mat3 operator / (const mat3& a, const double d)
|
---|
642 | { return mat3(a.v[0] / d, a.v[1] / d, a.v[2] / d); }
|
---|
643 |
|
---|
644 | int operator == (const mat3& a, const mat3& b)
|
---|
645 | { return (a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]); }
|
---|
646 |
|
---|
647 | int operator != (const mat3& a, const mat3& b)
|
---|
648 | { return !(a == b); }
|
---|
649 |
|
---|
650 | ostream& operator << (ostream& s, mat3& m)
|
---|
651 | { return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ]; }
|
---|
652 |
|
---|
653 | istream& operator >> (istream& s, mat3& m) {
|
---|
654 | mat3 m_tmp;
|
---|
655 |
|
---|
656 | s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ];
|
---|
657 | if (s)
|
---|
658 | m = m_tmp;
|
---|
659 | return s;
|
---|
660 | }
|
---|
661 |
|
---|
662 | void swap(mat3& a, mat3& b)
|
---|
663 | { mat3 tmp(a); a = b; b = tmp; }
|
---|
664 |
|
---|
665 | }
|
---|
666 |
|
---|
667 | /****************************************************************
|
---|
668 | * *
|
---|
669 | * mat4 member functions *
|
---|
670 | * *
|
---|
671 | ****************************************************************/
|
---|
672 |
|
---|
673 | // CONSTRUCTORS
|
---|
674 |
|
---|
675 | mat4::mat4() {}
|
---|
676 |
|
---|
677 | mat4::mat4(const vec4& v0, const vec4& v1, const vec4& v2, const vec4& v3)
|
---|
678 | { v[0] = v0; v[1] = v1; v[2] = v2; v[3] = v3; }
|
---|
679 |
|
---|
680 | mat4::mat4(const double d)
|
---|
681 | { v[0] = v[1] = v[2] = v[3] = vec4(d); }
|
---|
682 |
|
---|
683 | mat4::mat4(const mat4& m)
|
---|
684 | { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3]; }
|
---|
685 |
|
---|
686 |
|
---|
687 | // ASSIGNMENT OPERATORS
|
---|
688 |
|
---|
689 | mat4& mat4::operator = ( const mat4& m )
|
---|
690 | { v[0] = m.v[0]; v[1] = m.v[1]; v[2] = m.v[2]; v[3] = m.v[3];
|
---|
691 | return *this; }
|
---|
692 |
|
---|
693 | mat4& mat4::operator += ( const mat4& m )
|
---|
694 | { v[0] += m.v[0]; v[1] += m.v[1]; v[2] += m.v[2]; v[3] += m.v[3];
|
---|
695 | return *this; }
|
---|
696 |
|
---|
697 | mat4& mat4::operator -= ( const mat4& m )
|
---|
698 | { v[0] -= m.v[0]; v[1] -= m.v[1]; v[2] -= m.v[2]; v[3] -= m.v[3];
|
---|
699 | return *this; }
|
---|
700 |
|
---|
701 | mat4& mat4::operator *= ( const double d )
|
---|
702 | { v[0] *= d; v[1] *= d; v[2] *= d; v[3] *= d; return *this; }
|
---|
703 |
|
---|
704 | mat4& mat4::operator /= ( const double d )
|
---|
705 | { v[0] /= d; v[1] /= d; v[2] /= d; v[3] /= d; return *this; }
|
---|
706 |
|
---|
707 | vec4& mat4::operator [] ( int i) {
|
---|
708 | if (i < VX || i > VW)
|
---|
709 | V_ERROR("mat4 [] operator: illegal access; index = " << i << '\n')
|
---|
710 | return v[i];
|
---|
711 | }
|
---|
712 |
|
---|
713 | const vec4& mat4::operator [] ( int i) const {
|
---|
714 | if (i < VX || i > VW)
|
---|
715 | V_ERROR("mat4 [] operator: illegal access; index = " << i << '\n')
|
---|
716 | return v[i];
|
---|
717 | }
|
---|
718 |
|
---|
719 | // SPECIAL FUNCTIONS;
|
---|
720 |
|
---|
721 | mat4 mat4::transpose() const {
|
---|
722 | return mat4(vec4(v[0][0], v[1][0], v[2][0], v[3][0]),
|
---|
723 | vec4(v[0][1], v[1][1], v[2][1], v[3][1]),
|
---|
724 | vec4(v[0][2], v[1][2], v[2][2], v[3][2]),
|
---|
725 | vec4(v[0][3], v[1][3], v[2][3], v[3][3]));
|
---|
726 | }
|
---|
727 |
|
---|
728 | mat4 mat4::inverse() // Gauss-Jordan elimination with partial pivoting
|
---|
729 | {
|
---|
730 | mat4 a(*this), // As a evolves from original mat into identity
|
---|
731 | b(identity3D()); // b evolves from identity into inverse(a)
|
---|
732 | int i, j, i1;
|
---|
733 |
|
---|
734 | // Loop over cols of a from left to right, eliminating above and below diag
|
---|
735 | for (j=0; j<4; j++) { // Find largest pivot in column j among rows j..3
|
---|
736 | i1 = j; // Row with largest pivot candidate
|
---|
737 | for (i=j+1; i<4; i++)
|
---|
738 | if (fabs(a.v[i].n[j]) > fabs(a.v[i1].n[j]))
|
---|
739 | i1 = i;
|
---|
740 |
|
---|
741 | // Swap rows i1 and j in a and b to put pivot on diagonal
|
---|
742 | swap(a.v[i1], a.v[j]);
|
---|
743 | swap(b.v[i1], b.v[j]);
|
---|
744 |
|
---|
745 | // Scale row j to have a unit diagonal
|
---|
746 | if (a.v[j].n[j]==0.)
|
---|
747 | V_ERROR("mat4::inverse: singular matrix; can't invert\n");
|
---|
748 | b.v[j] /= a.v[j].n[j];
|
---|
749 | a.v[j] /= a.v[j].n[j];
|
---|
750 |
|
---|
751 | // Eliminate off-diagonal elems in col j of a, doing identical ops to b
|
---|
752 | for (i=0; i<4; i++)
|
---|
753 | if (i!=j) {
|
---|
754 | b.v[i] -= a.v[i].n[j]*b.v[j];
|
---|
755 | a.v[i] -= a.v[i].n[j]*a.v[j];
|
---|
756 | }
|
---|
757 | }
|
---|
758 | return b;
|
---|
759 | }
|
---|
760 |
|
---|
761 | mat4& mat4::apply(V_FCT_PTR fct)
|
---|
762 | { v[VX].apply(fct); v[VY].apply(fct); v[VZ].apply(fct); v[VW].apply(fct);
|
---|
763 | return *this; }
|
---|
764 |
|
---|
765 |
|
---|
766 | // FRIENDS
|
---|
767 |
|
---|
768 | namespace sc {
|
---|
769 |
|
---|
770 | mat4 operator - (const mat4& a)
|
---|
771 | { return mat4(-a.v[0], -a.v[1], -a.v[2], -a.v[3]); }
|
---|
772 |
|
---|
773 | mat4 operator + (const mat4& a, const mat4& b)
|
---|
774 | { return mat4(a.v[0] + b.v[0], a.v[1] + b.v[1], a.v[2] + b.v[2],
|
---|
775 | a.v[3] + b.v[3]);
|
---|
776 | }
|
---|
777 |
|
---|
778 | mat4 operator - (const mat4& a, const mat4& b)
|
---|
779 | { return mat4(a.v[0] - b.v[0], a.v[1] - b.v[1], a.v[2] - b.v[2], a.v[3] - b.v[3]); }
|
---|
780 |
|
---|
781 | mat4 operator * (const mat4& a, const mat4& b) {
|
---|
782 | #define ROWCOL(i, j) a.v[i].n[0]*b.v[0][j] + a.v[i].n[1]*b.v[1][j] + \
|
---|
783 | a.v[i].n[2]*b.v[2][j] + a.v[i].n[3]*b.v[3][j]
|
---|
784 | return mat4(
|
---|
785 | vec4(ROWCOL(0,0), ROWCOL(0,1), ROWCOL(0,2), ROWCOL(0,3)),
|
---|
786 | vec4(ROWCOL(1,0), ROWCOL(1,1), ROWCOL(1,2), ROWCOL(1,3)),
|
---|
787 | vec4(ROWCOL(2,0), ROWCOL(2,1), ROWCOL(2,2), ROWCOL(2,3)),
|
---|
788 | vec4(ROWCOL(3,0), ROWCOL(3,1), ROWCOL(3,2), ROWCOL(3,3))
|
---|
789 | );
|
---|
790 | }
|
---|
791 |
|
---|
792 | mat4 operator * (const mat4& a, const double d)
|
---|
793 | { return mat4(a.v[0] * d, a.v[1] * d, a.v[2] * d, a.v[3] * d); }
|
---|
794 |
|
---|
795 | mat4 operator * (const double d, const mat4& a)
|
---|
796 | { return a*d; }
|
---|
797 |
|
---|
798 | mat4 operator / (const mat4& a, const double d)
|
---|
799 | { return mat4(a.v[0] / d, a.v[1] / d, a.v[2] / d, a.v[3] / d); }
|
---|
800 |
|
---|
801 | int operator == (const mat4& a, const mat4& b)
|
---|
802 | { return ((a.v[0] == b.v[0]) && (a.v[1] == b.v[1]) && (a.v[2] == b.v[2]) &&
|
---|
803 | (a.v[3] == b.v[3])); }
|
---|
804 |
|
---|
805 | int operator != (const mat4& a, const mat4& b)
|
---|
806 | { return !(a == b); }
|
---|
807 |
|
---|
808 | ostream& operator << (ostream& s, mat4& m)
|
---|
809 | { return s << m.v[VX] << '\n' << m.v[VY] << '\n' << m.v[VZ] << '\n' << m.v[VW]; }
|
---|
810 |
|
---|
811 | istream& operator >> (istream& s, mat4& m)
|
---|
812 | {
|
---|
813 | mat4 m_tmp;
|
---|
814 |
|
---|
815 | s >> m_tmp[VX] >> m_tmp[VY] >> m_tmp[VZ] >> m_tmp[VW];
|
---|
816 | if (s)
|
---|
817 | m = m_tmp;
|
---|
818 | return s;
|
---|
819 | }
|
---|
820 |
|
---|
821 | void swap(mat4& a, mat4& b)
|
---|
822 | { mat4 tmp(a); a = b; b = tmp; }
|
---|
823 |
|
---|
824 | }
|
---|
825 |
|
---|
826 |
|
---|
827 | /****************************************************************
|
---|
828 | * *
|
---|
829 | * 2D functions and 3D functions *
|
---|
830 | * *
|
---|
831 | ****************************************************************/
|
---|
832 |
|
---|
833 | namespace sc {
|
---|
834 |
|
---|
835 | mat3 identity2D()
|
---|
836 | { return mat3(vec3(1.0, 0.0, 0.0),
|
---|
837 | vec3(0.0, 1.0, 0.0),
|
---|
838 | vec3(0.0, 0.0, 1.0)); }
|
---|
839 |
|
---|
840 | mat3 translation2D(const vec2& v)
|
---|
841 | { return mat3(vec3(1.0, 0.0, v[VX]),
|
---|
842 | vec3(0.0, 1.0, v[VY]),
|
---|
843 | vec3(0.0, 0.0, 1.0)); }
|
---|
844 |
|
---|
845 | mat3 rotation2D(const vec2& Center, const double angleDeg) {
|
---|
846 | double angleRad = angleDeg * M_PI / 180.0,
|
---|
847 | c = cos(angleRad),
|
---|
848 | s = sin(angleRad);
|
---|
849 |
|
---|
850 | return mat3(vec3(c, -s, Center[VX] * (1.0-c) + Center[VY] * s),
|
---|
851 | vec3(s, c, Center[VY] * (1.0-c) - Center[VX] * s),
|
---|
852 | vec3(0.0, 0.0, 1.0));
|
---|
853 | }
|
---|
854 |
|
---|
855 | mat3 scaling2D(const vec2& scaleVector)
|
---|
856 | { return mat3(vec3(scaleVector[VX], 0.0, 0.0),
|
---|
857 | vec3(0.0, scaleVector[VY], 0.0),
|
---|
858 | vec3(0.0, 0.0, 1.0)); }
|
---|
859 |
|
---|
860 | mat4 identity3D()
|
---|
861 | { return mat4(vec4(1.0, 0.0, 0.0, 0.0),
|
---|
862 | vec4(0.0, 1.0, 0.0, 0.0),
|
---|
863 | vec4(0.0, 0.0, 1.0, 0.0),
|
---|
864 | vec4(0.0, 0.0, 0.0, 1.0)); }
|
---|
865 |
|
---|
866 | mat4 translation3D(const vec3& v)
|
---|
867 | { return mat4(vec4(1.0, 0.0, 0.0, v[VX]),
|
---|
868 | vec4(0.0, 1.0, 0.0, v[VY]),
|
---|
869 | vec4(0.0, 0.0, 1.0, v[VZ]),
|
---|
870 | vec4(0.0, 0.0, 0.0, 1.0)); }
|
---|
871 |
|
---|
872 | mat4 rotation3D(const vec3& Axisarg, const double angleDeg) {
|
---|
873 | double angleRad = angleDeg * M_PI / 180.0,
|
---|
874 | c = cos(angleRad),
|
---|
875 | s = sin(angleRad),
|
---|
876 | t = 1.0 - c;
|
---|
877 |
|
---|
878 | vec3 Axis(Axisarg);
|
---|
879 | Axis.normalize();
|
---|
880 | return mat4(vec4(t * Axis[VX] * Axis[VX] + c,
|
---|
881 | t * Axis[VX] * Axis[VY] - s * Axis[VZ],
|
---|
882 | t * Axis[VX] * Axis[VZ] + s * Axis[VY],
|
---|
883 | 0.0),
|
---|
884 | vec4(t * Axis[VX] * Axis[VY] + s * Axis[VZ],
|
---|
885 | t * Axis[VY] * Axis[VY] + c,
|
---|
886 | t * Axis[VY] * Axis[VZ] - s * Axis[VX],
|
---|
887 | 0.0),
|
---|
888 | vec4(t * Axis[VX] * Axis[VZ] - s * Axis[VY],
|
---|
889 | t * Axis[VY] * Axis[VZ] + s * Axis[VX],
|
---|
890 | t * Axis[VZ] * Axis[VZ] + c,
|
---|
891 | 0.0),
|
---|
892 | vec4(0.0, 0.0, 0.0, 1.0));
|
---|
893 | }
|
---|
894 |
|
---|
895 | mat4 scaling3D(const vec3& scaleVector)
|
---|
896 | { return mat4(vec4(scaleVector[VX], 0.0, 0.0, 0.0),
|
---|
897 | vec4(0.0, scaleVector[VY], 0.0, 0.0),
|
---|
898 | vec4(0.0, 0.0, scaleVector[VZ], 0.0),
|
---|
899 | vec4(0.0, 0.0, 0.0, 1.0)); }
|
---|
900 |
|
---|
901 | mat4 perspective3D(const double d)
|
---|
902 | { return mat4(vec4(1.0, 0.0, 0.0, 0.0),
|
---|
903 | vec4(0.0, 1.0, 0.0, 0.0),
|
---|
904 | vec4(0.0, 0.0, 1.0, 0.0),
|
---|
905 | vec4(0.0, 0.0, 1.0/d, 0.0)); }
|
---|
906 |
|
---|
907 | }
|
---|