1 | //
|
---|
2 | // tetra.cc
|
---|
3 | //
|
---|
4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
5 | //
|
---|
6 | // Author: Edward Seidl <seidl@janed.com>
|
---|
7 | // Maintainer: LPS
|
---|
8 | //
|
---|
9 | // This file is part of the SC Toolkit.
|
---|
10 | //
|
---|
11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
12 | // it under the terms of the GNU Library General Public License as published by
|
---|
13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
14 | // any later version.
|
---|
15 | //
|
---|
16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
19 | // GNU Library General Public License for more details.
|
---|
20 | //
|
---|
21 | // You should have received a copy of the GNU Library General Public License
|
---|
22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
24 | //
|
---|
25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
26 | //
|
---|
27 |
|
---|
28 | #include <util/misc/math.h>
|
---|
29 | #include <string.h>
|
---|
30 |
|
---|
31 | #include <math/symmetry/pointgrp.h>
|
---|
32 |
|
---|
33 | using namespace sc;
|
---|
34 |
|
---|
35 | // these are the operations which make up T
|
---|
36 | static void
|
---|
37 | t_ops(SymmetryOperation *symop)
|
---|
38 | {
|
---|
39 | // identity
|
---|
40 | symop[0].E();
|
---|
41 |
|
---|
42 | // C2(x)
|
---|
43 | symop[9].c2_x();
|
---|
44 |
|
---|
45 | // C2(y)
|
---|
46 | symop[10].c2_y();
|
---|
47 |
|
---|
48 | // C2(z)
|
---|
49 | symop[11].rotation((double)M_PI);
|
---|
50 |
|
---|
51 | // a = ( 1, 1, 1)
|
---|
52 | // b = (-1,-1, 1)
|
---|
53 | // c = ( 1,-1,-1)
|
---|
54 | // d = (-1, 1,-1)
|
---|
55 | // C3 (a)
|
---|
56 | symop[1][0][2] = 1.0;
|
---|
57 | symop[1][1][0] = 1.0;
|
---|
58 | symop[1][2][1] = 1.0;
|
---|
59 |
|
---|
60 | // C3 (b)
|
---|
61 | symop[2] = symop[1].transform(symop[11]);
|
---|
62 |
|
---|
63 | // C3 (c)
|
---|
64 | symop[3] = symop[1].transform(symop[9]);
|
---|
65 |
|
---|
66 | // C3 (d)
|
---|
67 | symop[4] = symop[1].transform(symop[10]);
|
---|
68 |
|
---|
69 | // C3^2 (a)
|
---|
70 | symop[5][0][1] = 1.0;
|
---|
71 | symop[5][1][2] = 1.0;
|
---|
72 | symop[5][2][0] = 1.0;
|
---|
73 |
|
---|
74 | // C3^2 (b)
|
---|
75 | symop[6] = symop[5].transform(symop[11]);
|
---|
76 |
|
---|
77 | // C3^2 (c)
|
---|
78 | symop[7] = symop[5].transform(symop[9]);
|
---|
79 |
|
---|
80 | // C3^2 (d)
|
---|
81 | symop[8] = symop[5].transform(symop[10]);
|
---|
82 | }
|
---|
83 |
|
---|
84 | // this gives us the operations in Td which aren't in T.
|
---|
85 | static void
|
---|
86 | td_ops(SymmetryOperation *symop)
|
---|
87 | {
|
---|
88 | // S4 (x)
|
---|
89 | symop[0][0][0] = -1.0;
|
---|
90 | symop[0][1][2] = -1.0;
|
---|
91 | symop[0][2][1] = 1.0;
|
---|
92 |
|
---|
93 | // S4^3 (x)
|
---|
94 | symop[1][0][0] = -1.0;
|
---|
95 | symop[1][1][2] = 1.0;
|
---|
96 | symop[1][2][1] = -1.0;
|
---|
97 |
|
---|
98 | // S4 (y)
|
---|
99 | symop[2][0][2] = 1.0;
|
---|
100 | symop[2][1][1] = -1.0;
|
---|
101 | symop[2][2][0] = -1.0;
|
---|
102 |
|
---|
103 | // S4^3 (y)
|
---|
104 | symop[3][0][2] = -1.0;
|
---|
105 | symop[3][1][1] = -1.0;
|
---|
106 | symop[3][2][0] = 1.0;
|
---|
107 |
|
---|
108 | // S4 (z)
|
---|
109 | symop[4][0][1] = -1.0;
|
---|
110 | symop[4][1][0] = 1.0;
|
---|
111 | symop[4][2][2] = -1.0;
|
---|
112 |
|
---|
113 | // S4^3 (z)
|
---|
114 | symop[5][0][1] = 1.0;
|
---|
115 | symop[5][1][0] = -1.0;
|
---|
116 | symop[5][2][2] = -1.0;
|
---|
117 |
|
---|
118 | // a = ( 1, 1, 1)
|
---|
119 | // b = (-1,-1, 1)
|
---|
120 | // c = ( 1,-1,-1)
|
---|
121 | // d = (-1, 1,-1)
|
---|
122 | // sigma (ac)
|
---|
123 | symop[6][0][0] = 1.0;
|
---|
124 | symop[6][1][2] = 1.0;
|
---|
125 | symop[6][2][1] = 1.0;
|
---|
126 |
|
---|
127 | // sigma (bd)
|
---|
128 | symop[7][0][0] = 1.0;
|
---|
129 | symop[7][1][2] = -1.0;
|
---|
130 | symop[7][2][1] = -1.0;
|
---|
131 |
|
---|
132 | // sigma (ad)
|
---|
133 | symop[8][0][2] = 1.0;
|
---|
134 | symop[8][1][1] = 1.0;
|
---|
135 | symop[8][2][0] = 1.0;
|
---|
136 |
|
---|
137 | // sigma (bc)
|
---|
138 | symop[9][0][2] = -1.0;
|
---|
139 | symop[9][1][1] = 1.0;
|
---|
140 | symop[9][2][0] = -1.0;
|
---|
141 |
|
---|
142 | // sigma (ab)
|
---|
143 | symop[10][0][1] = 1.0;
|
---|
144 | symop[10][1][0] = 1.0;
|
---|
145 | symop[10][2][2] = 1.0;
|
---|
146 |
|
---|
147 | // sigma (dc)
|
---|
148 | symop[11][0][1] = -1.0;
|
---|
149 | symop[11][1][0] = -1.0;
|
---|
150 | symop[11][2][2] = 1.0;
|
---|
151 | }
|
---|
152 |
|
---|
153 | ////////////////////////////////////////////////////////////////////////////
|
---|
154 |
|
---|
155 | void
|
---|
156 | CharacterTable::t()
|
---|
157 | {
|
---|
158 | // t_ops gives us all the symmetry operations we need
|
---|
159 | t_ops(symop);
|
---|
160 |
|
---|
161 | int i;
|
---|
162 |
|
---|
163 | gamma_[0].init(g,1,"A");
|
---|
164 | for (i=0; i < g; i++)
|
---|
165 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
166 |
|
---|
167 | IrreducibleRepresentation& ire = gamma_[1];
|
---|
168 | ire.init(g,2,"E");
|
---|
169 | ire.complex_=1;
|
---|
170 |
|
---|
171 | IrreducibleRepresentation& irt = gamma_[2];
|
---|
172 | irt.init(g,3,"T");
|
---|
173 | irt.nrot_ = 1;
|
---|
174 | irt.ntrans_ = 1;
|
---|
175 |
|
---|
176 | // the symmetry operation matrices give us a basis for irrep T
|
---|
177 | for (i=0; i < g; i++)
|
---|
178 | irt.rep[i] = symop[i];
|
---|
179 |
|
---|
180 | // identity
|
---|
181 | ire.rep[0].E();
|
---|
182 |
|
---|
183 | // 4 C3's
|
---|
184 | ire.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
185 | ire.rep[2] = ire.rep[1];
|
---|
186 | ire.rep[3] = ire.rep[1];
|
---|
187 | ire.rep[4] = ire.rep[1];
|
---|
188 |
|
---|
189 | ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
|
---|
190 | ire.rep[6] = ire.rep[5];
|
---|
191 | ire.rep[7] = ire.rep[5];
|
---|
192 | ire.rep[8] = ire.rep[5];
|
---|
193 |
|
---|
194 | // 3 C2's
|
---|
195 | ire.rep[9].unit();
|
---|
196 | ire.rep[10].unit();
|
---|
197 | ire.rep[11].unit();
|
---|
198 |
|
---|
199 | }
|
---|
200 |
|
---|
201 | void
|
---|
202 | CharacterTable::th()
|
---|
203 | {
|
---|
204 | int i,j;
|
---|
205 |
|
---|
206 | SymmetryOperation so;
|
---|
207 | so.i();
|
---|
208 |
|
---|
209 | t_ops(symop);
|
---|
210 | for (i=0; i < 12; i++)
|
---|
211 | symop[i+12] = symop[i].operate(so);
|
---|
212 |
|
---|
213 | gamma_[0].init(g,1,"Ag");
|
---|
214 | gamma_[1].init(g,1,"Au");
|
---|
215 |
|
---|
216 | for (i=0; i < 12; i++) {
|
---|
217 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
218 | gamma_[1].rep[i][0][0] = 1.0;
|
---|
219 |
|
---|
220 | gamma_[0].rep[i+12][0][0] = 1.0;
|
---|
221 | gamma_[1].rep[i+12][0][0] = -1.0;
|
---|
222 | }
|
---|
223 |
|
---|
224 | IrreducibleRepresentation& ireg = gamma_[2];
|
---|
225 | IrreducibleRepresentation& ireu = gamma_[3];
|
---|
226 |
|
---|
227 | IrreducibleRepresentation& irtg = gamma_[4];
|
---|
228 | IrreducibleRepresentation& irtu = gamma_[5];
|
---|
229 |
|
---|
230 | ireg.init(g,2,"Eg");
|
---|
231 | ireu.init(g,2,"Eu");
|
---|
232 | ireg.complex_=1;
|
---|
233 | ireu.complex_=1;
|
---|
234 |
|
---|
235 | irtg.init(g,3,"Tg");
|
---|
236 | irtu.init(g,3,"Tu");
|
---|
237 | irtg.nrot_=1;
|
---|
238 | irtu.ntrans_=1;
|
---|
239 |
|
---|
240 | // the symmetry operation matrices form a basis for Tu. Tg(g)=Tu(g) for
|
---|
241 | // the proper rotations, and = -Tu(g) for the improper ones
|
---|
242 | for (i=0; i < 12; i++) {
|
---|
243 | irtg.rep[i] = symop[i];
|
---|
244 | irtu.rep[i] = symop[i];
|
---|
245 |
|
---|
246 | irtg.rep[i+12] = symop[i];
|
---|
247 | irtu.rep[i+12] = symop[i+12];
|
---|
248 | }
|
---|
249 |
|
---|
250 | // identity
|
---|
251 | ireg.rep[0].E();
|
---|
252 |
|
---|
253 | // 4 C3's
|
---|
254 | ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
255 | ireg.rep[2] = ireg.rep[1];
|
---|
256 | ireg.rep[3] = ireg.rep[1];
|
---|
257 | ireg.rep[4] = ireg.rep[1];
|
---|
258 |
|
---|
259 | // 4 C3^2's
|
---|
260 | ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
|
---|
261 | ireg.rep[6] = ireg.rep[5];
|
---|
262 | ireg.rep[7] = ireg.rep[5];
|
---|
263 | ireg.rep[8] = ireg.rep[5];
|
---|
264 |
|
---|
265 | // 3 C2's
|
---|
266 | ireg.rep[9].unit();
|
---|
267 | ireg.rep[10].unit();
|
---|
268 | ireg.rep[11].unit();
|
---|
269 |
|
---|
270 | SymRep sr(2);
|
---|
271 | sr.i();
|
---|
272 |
|
---|
273 | for (j=0; j < 12; j++) {
|
---|
274 | ireu.rep[j] = ireg.rep[j];
|
---|
275 | ireg.rep[j+12] = ireg.rep[j];
|
---|
276 | ireu.rep[j+12] = ireg.rep[j].operate(sr);
|
---|
277 | }
|
---|
278 | }
|
---|
279 |
|
---|
280 | void
|
---|
281 | CharacterTable::td()
|
---|
282 | {
|
---|
283 | // first get the T operations, then the Td operations
|
---|
284 | t_ops(symop);
|
---|
285 | td_ops(&symop[12]);
|
---|
286 |
|
---|
287 | int i;
|
---|
288 |
|
---|
289 | gamma_[0].init(g,1,"A1");
|
---|
290 | gamma_[1].init(g,1,"A2");
|
---|
291 |
|
---|
292 | for (i=0; i < 12; i++) {
|
---|
293 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
294 | gamma_[1].rep[i][0][0] = 1.0;
|
---|
295 |
|
---|
296 | gamma_[0].rep[i+12][0][0] = 1.0;
|
---|
297 | gamma_[1].rep[i+12][0][0] = -1.0;
|
---|
298 | }
|
---|
299 |
|
---|
300 | IrreducibleRepresentation& ire = gamma_[2];
|
---|
301 | ire.init(g,2,"E");
|
---|
302 |
|
---|
303 | IrreducibleRepresentation& irt1 = gamma_[3];
|
---|
304 | IrreducibleRepresentation& irt2 = gamma_[4];
|
---|
305 |
|
---|
306 | irt1.init(g,3,"T1");
|
---|
307 | irt2.init(g,3,"T2");
|
---|
308 | irt1.nrot_ = 1;
|
---|
309 | irt2.ntrans_ = 1;
|
---|
310 |
|
---|
311 | // the symmetry operation matrices form a basis for T2. T1(g)=T2(g) for
|
---|
312 | // the proper rotations, and = -T2(g) for the improper ones
|
---|
313 | SymmetryOperation so;
|
---|
314 | so.i();
|
---|
315 |
|
---|
316 | for (i=0; i < 12; i++) {
|
---|
317 | irt1.rep[i] = symop[i];
|
---|
318 | irt2.rep[i] = symop[i];
|
---|
319 | irt1.rep[i+12] = symop[i+12].operate(so);
|
---|
320 | irt2.rep[i+12] = symop[i+12];
|
---|
321 | }
|
---|
322 |
|
---|
323 | // identity
|
---|
324 | ire.rep[0].E();
|
---|
325 |
|
---|
326 | // 4 C3's
|
---|
327 | ire.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
328 | ire.rep[2] = ire.rep[1];
|
---|
329 | ire.rep[3] = ire.rep[1];
|
---|
330 | ire.rep[4] = ire.rep[1];
|
---|
331 |
|
---|
332 | // 4 C3^2's
|
---|
333 | ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
|
---|
334 | ire.rep[6] = ire.rep[5];
|
---|
335 | ire.rep[7] = ire.rep[5];
|
---|
336 | ire.rep[8] = ire.rep[5];
|
---|
337 |
|
---|
338 | // 3 C2's
|
---|
339 | ire.rep[9].unit();
|
---|
340 | ire.rep[10].unit();
|
---|
341 | ire.rep[11].unit();
|
---|
342 |
|
---|
343 | // 6 S4's
|
---|
344 | ire.rep[12].c2_x();
|
---|
345 | ire.rep[13].c2_x();
|
---|
346 |
|
---|
347 | ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
|
---|
348 | ire.rep[15] = ire.rep[14];
|
---|
349 |
|
---|
350 | ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
|
---|
351 | ire.rep[17] = ire.rep[16];
|
---|
352 |
|
---|
353 | for (i=18; i < 24; i++)
|
---|
354 | ire.rep[i] = ire.rep[i-6];
|
---|
355 | }
|
---|
356 |
|
---|
357 | void
|
---|
358 | CharacterTable::o()
|
---|
359 | {
|
---|
360 | int i;
|
---|
361 |
|
---|
362 | // first get the T operations, then the O operations
|
---|
363 | t_ops(symop);
|
---|
364 | td_ops(&symop[12]);
|
---|
365 |
|
---|
366 | SymmetryOperation so;
|
---|
367 | so.i();
|
---|
368 |
|
---|
369 | for (i=12; i < 24; i++)
|
---|
370 | symop[i] = symop[i].operate(so);
|
---|
371 |
|
---|
372 | gamma_[0].init(g,1,"A1");
|
---|
373 | gamma_[1].init(g,1,"A2");
|
---|
374 |
|
---|
375 | for (i=0; i < 12; i++) {
|
---|
376 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
377 | gamma_[1].rep[i][0][0] = 1.0;
|
---|
378 |
|
---|
379 | gamma_[0].rep[i+12][0][0] = 1.0;
|
---|
380 | gamma_[1].rep[i+12][0][0] = -1.0;
|
---|
381 | }
|
---|
382 |
|
---|
383 | IrreducibleRepresentation& ire = gamma_[2];
|
---|
384 | ire.init(g,2,"E");
|
---|
385 |
|
---|
386 | IrreducibleRepresentation& irt1 = gamma_[3];
|
---|
387 | IrreducibleRepresentation& irt2 = gamma_[4];
|
---|
388 |
|
---|
389 | irt1.init(g,3,"T1");
|
---|
390 | irt2.init(g,3,"T2");
|
---|
391 | irt1.nrot_ = 1;
|
---|
392 | irt1.ntrans_ = 1;
|
---|
393 |
|
---|
394 | // the symmetry operation matrices form a basis for T1. T2(g)=T1(g) for
|
---|
395 | // the proper rotations, and = -T1(g) for the improper ones
|
---|
396 |
|
---|
397 | for (i=0; i < 12; i++) {
|
---|
398 | irt1.rep[i] = symop[i];
|
---|
399 | irt2.rep[i] = symop[i];
|
---|
400 | irt1.rep[i+12] = symop[i+12];
|
---|
401 | irt2.rep[i+12] = symop[i+12].operate(so);
|
---|
402 | }
|
---|
403 |
|
---|
404 | // identity
|
---|
405 | ire.rep[0].E();
|
---|
406 |
|
---|
407 | // 4 C3's
|
---|
408 | ire.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
409 | ire.rep[2] = ire.rep[1];
|
---|
410 | ire.rep[3] = ire.rep[1];
|
---|
411 | ire.rep[4] = ire.rep[1];
|
---|
412 |
|
---|
413 | // 4 C3^2's
|
---|
414 | ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
|
---|
415 | ire.rep[6] = ire.rep[5];
|
---|
416 | ire.rep[7] = ire.rep[5];
|
---|
417 | ire.rep[8] = ire.rep[5];
|
---|
418 |
|
---|
419 | // 3 C2's
|
---|
420 | ire.rep[9].unit();
|
---|
421 | ire.rep[10].unit();
|
---|
422 | ire.rep[11].unit();
|
---|
423 |
|
---|
424 | // 6 C4's
|
---|
425 | ire.rep[12].c2_x();
|
---|
426 | ire.rep[13].c2_x();
|
---|
427 |
|
---|
428 | ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
|
---|
429 | ire.rep[15] = ire.rep[14];
|
---|
430 |
|
---|
431 | ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
|
---|
432 | ire.rep[17] = ire.rep[16];
|
---|
433 |
|
---|
434 | // 6 C2's
|
---|
435 | for (i=18; i < 24; i++)
|
---|
436 | ire.rep[i] = ire.rep[i-6];
|
---|
437 | }
|
---|
438 |
|
---|
439 | void CharacterTable::oh()
|
---|
440 | {
|
---|
441 | int i,j;
|
---|
442 |
|
---|
443 | SymmetryOperation so;
|
---|
444 | so.i();
|
---|
445 |
|
---|
446 | // first get the T operations, then the O operations, then the Th
|
---|
447 | // operations, then the Td operations
|
---|
448 | t_ops(symop);
|
---|
449 | td_ops(&symop[36]);
|
---|
450 |
|
---|
451 | for (i=0; i < 12; i++) {
|
---|
452 | symop[i+24] = symop[i].operate(so);
|
---|
453 | symop[i+12] = symop[i+36].operate(so);
|
---|
454 | }
|
---|
455 |
|
---|
456 | gamma_[0].init(g,1,"A1g");
|
---|
457 | gamma_[1].init(g,1,"A2g");
|
---|
458 | gamma_[5].init(g,1,"A1u");
|
---|
459 | gamma_[6].init(g,1,"A2u");
|
---|
460 |
|
---|
461 | for (i=0; i < 12; i++) {
|
---|
462 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
463 | gamma_[1].rep[i][0][0] = 1.0;
|
---|
464 | gamma_[5].rep[i][0][0] = 1.0;
|
---|
465 | gamma_[6].rep[i][0][0] = 1.0;
|
---|
466 |
|
---|
467 | gamma_[0].rep[i+12][0][0] = 1.0;
|
---|
468 | gamma_[1].rep[i+12][0][0] = -1.0;
|
---|
469 | gamma_[5].rep[i+12][0][0] = 1.0;
|
---|
470 | gamma_[6].rep[i+12][0][0] = -1.0;
|
---|
471 |
|
---|
472 | gamma_[0].rep[i+24][0][0] = 1.0;
|
---|
473 | gamma_[1].rep[i+24][0][0] = 1.0;
|
---|
474 | gamma_[5].rep[i+24][0][0] = -1.0;
|
---|
475 | gamma_[6].rep[i+24][0][0] = -1.0;
|
---|
476 |
|
---|
477 | gamma_[0].rep[i+36][0][0] = 1.0;
|
---|
478 | gamma_[1].rep[i+36][0][0] = -1.0;
|
---|
479 | gamma_[5].rep[i+36][0][0] = -1.0;
|
---|
480 | gamma_[6].rep[i+36][0][0] = 1.0;
|
---|
481 | }
|
---|
482 |
|
---|
483 | // the symmetry operation matrices form a basis for T1u. T2u(g)=T1u(g) for
|
---|
484 | // the proper rotations, and = -T1(g) for the improper ones.
|
---|
485 | // T1g(g)=T1u(g) for the O part, and = -T1u(g) for the ixO part.
|
---|
486 | // T2g(g)=T1g(g) for proper rotations and =-T1g(g) for improper
|
---|
487 |
|
---|
488 | gamma_[3].init(g,3,"T1g");
|
---|
489 | gamma_[4].init(g,3,"T2g");
|
---|
490 | gamma_[8].init(g,3,"T1u");
|
---|
491 | gamma_[9].init(g,3,"T2u");
|
---|
492 |
|
---|
493 | gamma_[3].nrot_=1;
|
---|
494 | gamma_[8].ntrans_=1;
|
---|
495 |
|
---|
496 | for (i=0; i < 12; i++) {
|
---|
497 | gamma_[3].rep[i] = symop[i];
|
---|
498 | gamma_[4].rep[i] = symop[i];
|
---|
499 | gamma_[8].rep[i] = symop[i];
|
---|
500 | gamma_[9].rep[i] = symop[i];
|
---|
501 |
|
---|
502 | gamma_[3].rep[i+12] = symop[i+12];
|
---|
503 | gamma_[4].rep[i+12] = symop[i+12].operate(so);
|
---|
504 | gamma_[8].rep[i+12] = symop[i+12];
|
---|
505 | gamma_[9].rep[i+12] = symop[i+12].operate(so);
|
---|
506 |
|
---|
507 | gamma_[3].rep[i+24] = symop[i+24].operate(so);
|
---|
508 | gamma_[4].rep[i+24] = symop[i+24].operate(so);
|
---|
509 | gamma_[8].rep[i+24] = symop[i+24];
|
---|
510 | gamma_[9].rep[i+24] = symop[i+24];
|
---|
511 |
|
---|
512 | gamma_[3].rep[i+36] = symop[i+36].operate(so);
|
---|
513 | gamma_[4].rep[i+36] = symop[i+36];
|
---|
514 | gamma_[8].rep[i+36] = symop[i+36];
|
---|
515 | gamma_[9].rep[i+36] = symop[i+36].operate(so);
|
---|
516 | }
|
---|
517 |
|
---|
518 | IrreducibleRepresentation& ireg = gamma_[2];
|
---|
519 | IrreducibleRepresentation& ireu = gamma_[7];
|
---|
520 |
|
---|
521 | ireg.init(g,2,"Eg");
|
---|
522 | ireu.init(g,2,"Eu");
|
---|
523 |
|
---|
524 | // identity
|
---|
525 | ireg.rep[0].E();
|
---|
526 |
|
---|
527 | // 4 C3's
|
---|
528 | ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
529 | ireg.rep[2] = ireg.rep[1];
|
---|
530 | ireg.rep[3] = ireg.rep[1];
|
---|
531 | ireg.rep[4] = ireg.rep[1];
|
---|
532 |
|
---|
533 | // 4 C3^2's
|
---|
534 | ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
|
---|
535 | ireg.rep[6] = ireg.rep[5];
|
---|
536 | ireg.rep[7] = ireg.rep[5];
|
---|
537 | ireg.rep[8] = ireg.rep[5];
|
---|
538 |
|
---|
539 | // 3 C2's
|
---|
540 | ireg.rep[9].unit();
|
---|
541 | ireg.rep[10].unit();
|
---|
542 | ireg.rep[11].unit();
|
---|
543 |
|
---|
544 | // 6 C4's
|
---|
545 | ireg.rep[12].c2_x();
|
---|
546 | ireg.rep[13].c2_x();
|
---|
547 |
|
---|
548 | ireg.rep[14] = ireg.rep[12].operate(ireg.rep[1]);
|
---|
549 | ireg.rep[15] = ireg.rep[14];
|
---|
550 |
|
---|
551 | ireg.rep[16] = ireg.rep[14].operate(ireg.rep[1]);
|
---|
552 | ireg.rep[17] = ireg.rep[16];
|
---|
553 |
|
---|
554 | // 6 C2's
|
---|
555 | for (i=18; i < 24; i++)
|
---|
556 | ireg.rep[i] = ireg.rep[i-6];
|
---|
557 |
|
---|
558 | SymRep sr(2);
|
---|
559 | sr.i();
|
---|
560 |
|
---|
561 | for (j=0; j < 24; j++) {
|
---|
562 | ireu.rep[j] = ireg.rep[j];
|
---|
563 | ireg.rep[j+24] = ireg.rep[j];
|
---|
564 | ireu.rep[j+24] = ireg.rep[j].operate(sr);
|
---|
565 | }
|
---|
566 | }
|
---|
567 |
|
---|
568 | /////////////////////////////////////////////////////////////////////////////
|
---|
569 |
|
---|
570 | // Local Variables:
|
---|
571 | // mode: c++
|
---|
572 | // c-file-style: "ETS"
|
---|
573 | // End:
|
---|