source: ThirdParty/mpqc_open/src/lib/math/symmetry/tetra.cc@ 860145

Action_Thermostats Add_AtomRandomPerturbation Add_RotateAroundBondAction Add_SelectAtomByNameAction Adding_Graph_to_ChangeBondActions Adding_MD_integration_tests Adding_StructOpt_integration_tests Automaking_mpqc_open AutomationFragmentation_failures Candidate_v1.6.0 Candidate_v1.6.1 ChangeBugEmailaddress ChangingTestPorts ChemicalSpaceEvaluator Combining_Subpackages Debian_Package_split Debian_package_split_molecuildergui_only Disabling_MemDebug Docu_Python_wait EmpiricalPotential_contain_HomologyGraph_documentation Enable_parallel_make_install Enhance_userguide Enhanced_StructuralOptimization Enhanced_StructuralOptimization_continued Example_ManyWaysToTranslateAtom Exclude_Hydrogens_annealWithBondGraph FitPartialCharges_GlobalError Fix_ChronosMutex Fix_StatusMsg Fix_StepWorldTime_single_argument Fix_Verbose_Codepatterns ForceAnnealing_goodresults ForceAnnealing_oldresults ForceAnnealing_tocheck ForceAnnealing_with_BondGraph ForceAnnealing_with_BondGraph_continued ForceAnnealing_with_BondGraph_continued_betteresults ForceAnnealing_with_BondGraph_contraction-expansion GeometryObjects Gui_displays_atomic_force_velocity IndependentFragmentGrids_IntegrationTest JobMarket_RobustOnKillsSegFaults JobMarket_StableWorkerPool JobMarket_unresolvable_hostname_fix ODR_violation_mpqc_open PartialCharges_OrthogonalSummation PythonUI_with_named_parameters QtGui_reactivate_TimeChanged_changes Recreated_GuiChecks RotateToPrincipalAxisSystem_UndoRedo StoppableMakroAction Subpackage_levmar Subpackage_mpqc_open Subpackage_vmg ThirdParty_MPQC_rebuilt_buildsystem TremoloParser_IncreasedPrecision TremoloParser_MultipleTimesteps Ubuntu_1604_changes stable
Last change on this file since 860145 was 860145, checked in by Frederik Heber <heber@…>, 8 years ago

Merge commit '0b990dfaa8c6007a996d030163a25f7f5fc8a7e7' as 'ThirdParty/mpqc_open'

  • Property mode set to 100644
File size: 12.3 KB
Line 
1//
2// tetra.cc
3//
4// Copyright (C) 1996 Limit Point Systems, Inc.
5//
6// Author: Edward Seidl <seidl@janed.com>
7// Maintainer: LPS
8//
9// This file is part of the SC Toolkit.
10//
11// The SC Toolkit is free software; you can redistribute it and/or modify
12// it under the terms of the GNU Library General Public License as published by
13// the Free Software Foundation; either version 2, or (at your option)
14// any later version.
15//
16// The SC Toolkit is distributed in the hope that it will be useful,
17// but WITHOUT ANY WARRANTY; without even the implied warranty of
18// MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19// GNU Library General Public License for more details.
20//
21// You should have received a copy of the GNU Library General Public License
22// along with the SC Toolkit; see the file COPYING.LIB. If not, write to
23// the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
24//
25// The U.S. Government is granted a limited license as per AL 91-7.
26//
27
28#include <util/misc/math.h>
29#include <string.h>
30
31#include <math/symmetry/pointgrp.h>
32
33using namespace sc;
34
35// these are the operations which make up T
36static void
37t_ops(SymmetryOperation *symop)
38{
39 // identity
40 symop[0].E();
41
42 // C2(x)
43 symop[9].c2_x();
44
45 // C2(y)
46 symop[10].c2_y();
47
48 // C2(z)
49 symop[11].rotation((double)M_PI);
50
51 // a = ( 1, 1, 1)
52 // b = (-1,-1, 1)
53 // c = ( 1,-1,-1)
54 // d = (-1, 1,-1)
55 // C3 (a)
56 symop[1][0][2] = 1.0;
57 symop[1][1][0] = 1.0;
58 symop[1][2][1] = 1.0;
59
60 // C3 (b)
61 symop[2] = symop[1].transform(symop[11]);
62
63 // C3 (c)
64 symop[3] = symop[1].transform(symop[9]);
65
66 // C3 (d)
67 symop[4] = symop[1].transform(symop[10]);
68
69 // C3^2 (a)
70 symop[5][0][1] = 1.0;
71 symop[5][1][2] = 1.0;
72 symop[5][2][0] = 1.0;
73
74 // C3^2 (b)
75 symop[6] = symop[5].transform(symop[11]);
76
77 // C3^2 (c)
78 symop[7] = symop[5].transform(symop[9]);
79
80 // C3^2 (d)
81 symop[8] = symop[5].transform(symop[10]);
82}
83
84// this gives us the operations in Td which aren't in T.
85static void
86td_ops(SymmetryOperation *symop)
87{
88 // S4 (x)
89 symop[0][0][0] = -1.0;
90 symop[0][1][2] = -1.0;
91 symop[0][2][1] = 1.0;
92
93 // S4^3 (x)
94 symop[1][0][0] = -1.0;
95 symop[1][1][2] = 1.0;
96 symop[1][2][1] = -1.0;
97
98 // S4 (y)
99 symop[2][0][2] = 1.0;
100 symop[2][1][1] = -1.0;
101 symop[2][2][0] = -1.0;
102
103 // S4^3 (y)
104 symop[3][0][2] = -1.0;
105 symop[3][1][1] = -1.0;
106 symop[3][2][0] = 1.0;
107
108 // S4 (z)
109 symop[4][0][1] = -1.0;
110 symop[4][1][0] = 1.0;
111 symop[4][2][2] = -1.0;
112
113 // S4^3 (z)
114 symop[5][0][1] = 1.0;
115 symop[5][1][0] = -1.0;
116 symop[5][2][2] = -1.0;
117
118 // a = ( 1, 1, 1)
119 // b = (-1,-1, 1)
120 // c = ( 1,-1,-1)
121 // d = (-1, 1,-1)
122 // sigma (ac)
123 symop[6][0][0] = 1.0;
124 symop[6][1][2] = 1.0;
125 symop[6][2][1] = 1.0;
126
127 // sigma (bd)
128 symop[7][0][0] = 1.0;
129 symop[7][1][2] = -1.0;
130 symop[7][2][1] = -1.0;
131
132 // sigma (ad)
133 symop[8][0][2] = 1.0;
134 symop[8][1][1] = 1.0;
135 symop[8][2][0] = 1.0;
136
137 // sigma (bc)
138 symop[9][0][2] = -1.0;
139 symop[9][1][1] = 1.0;
140 symop[9][2][0] = -1.0;
141
142 // sigma (ab)
143 symop[10][0][1] = 1.0;
144 symop[10][1][0] = 1.0;
145 symop[10][2][2] = 1.0;
146
147 // sigma (dc)
148 symop[11][0][1] = -1.0;
149 symop[11][1][0] = -1.0;
150 symop[11][2][2] = 1.0;
151}
152
153////////////////////////////////////////////////////////////////////////////
154
155void
156CharacterTable::t()
157{
158 // t_ops gives us all the symmetry operations we need
159 t_ops(symop);
160
161 int i;
162
163 gamma_[0].init(g,1,"A");
164 for (i=0; i < g; i++)
165 gamma_[0].rep[i][0][0] = 1.0;
166
167 IrreducibleRepresentation& ire = gamma_[1];
168 ire.init(g,2,"E");
169 ire.complex_=1;
170
171 IrreducibleRepresentation& irt = gamma_[2];
172 irt.init(g,3,"T");
173 irt.nrot_ = 1;
174 irt.ntrans_ = 1;
175
176 // the symmetry operation matrices give us a basis for irrep T
177 for (i=0; i < g; i++)
178 irt.rep[i] = symop[i];
179
180 // identity
181 ire.rep[0].E();
182
183 // 4 C3's
184 ire.rep[1].rotation(2.0*(double)M_PI/3.0);
185 ire.rep[2] = ire.rep[1];
186 ire.rep[3] = ire.rep[1];
187 ire.rep[4] = ire.rep[1];
188
189 ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
190 ire.rep[6] = ire.rep[5];
191 ire.rep[7] = ire.rep[5];
192 ire.rep[8] = ire.rep[5];
193
194 // 3 C2's
195 ire.rep[9].unit();
196 ire.rep[10].unit();
197 ire.rep[11].unit();
198
199}
200
201void
202CharacterTable::th()
203{
204 int i,j;
205
206 SymmetryOperation so;
207 so.i();
208
209 t_ops(symop);
210 for (i=0; i < 12; i++)
211 symop[i+12] = symop[i].operate(so);
212
213 gamma_[0].init(g,1,"Ag");
214 gamma_[1].init(g,1,"Au");
215
216 for (i=0; i < 12; i++) {
217 gamma_[0].rep[i][0][0] = 1.0;
218 gamma_[1].rep[i][0][0] = 1.0;
219
220 gamma_[0].rep[i+12][0][0] = 1.0;
221 gamma_[1].rep[i+12][0][0] = -1.0;
222 }
223
224 IrreducibleRepresentation& ireg = gamma_[2];
225 IrreducibleRepresentation& ireu = gamma_[3];
226
227 IrreducibleRepresentation& irtg = gamma_[4];
228 IrreducibleRepresentation& irtu = gamma_[5];
229
230 ireg.init(g,2,"Eg");
231 ireu.init(g,2,"Eu");
232 ireg.complex_=1;
233 ireu.complex_=1;
234
235 irtg.init(g,3,"Tg");
236 irtu.init(g,3,"Tu");
237 irtg.nrot_=1;
238 irtu.ntrans_=1;
239
240 // the symmetry operation matrices form a basis for Tu. Tg(g)=Tu(g) for
241 // the proper rotations, and = -Tu(g) for the improper ones
242 for (i=0; i < 12; i++) {
243 irtg.rep[i] = symop[i];
244 irtu.rep[i] = symop[i];
245
246 irtg.rep[i+12] = symop[i];
247 irtu.rep[i+12] = symop[i+12];
248 }
249
250 // identity
251 ireg.rep[0].E();
252
253 // 4 C3's
254 ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
255 ireg.rep[2] = ireg.rep[1];
256 ireg.rep[3] = ireg.rep[1];
257 ireg.rep[4] = ireg.rep[1];
258
259 // 4 C3^2's
260 ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
261 ireg.rep[6] = ireg.rep[5];
262 ireg.rep[7] = ireg.rep[5];
263 ireg.rep[8] = ireg.rep[5];
264
265 // 3 C2's
266 ireg.rep[9].unit();
267 ireg.rep[10].unit();
268 ireg.rep[11].unit();
269
270 SymRep sr(2);
271 sr.i();
272
273 for (j=0; j < 12; j++) {
274 ireu.rep[j] = ireg.rep[j];
275 ireg.rep[j+12] = ireg.rep[j];
276 ireu.rep[j+12] = ireg.rep[j].operate(sr);
277 }
278}
279
280void
281CharacterTable::td()
282{
283 // first get the T operations, then the Td operations
284 t_ops(symop);
285 td_ops(&symop[12]);
286
287 int i;
288
289 gamma_[0].init(g,1,"A1");
290 gamma_[1].init(g,1,"A2");
291
292 for (i=0; i < 12; i++) {
293 gamma_[0].rep[i][0][0] = 1.0;
294 gamma_[1].rep[i][0][0] = 1.0;
295
296 gamma_[0].rep[i+12][0][0] = 1.0;
297 gamma_[1].rep[i+12][0][0] = -1.0;
298 }
299
300 IrreducibleRepresentation& ire = gamma_[2];
301 ire.init(g,2,"E");
302
303 IrreducibleRepresentation& irt1 = gamma_[3];
304 IrreducibleRepresentation& irt2 = gamma_[4];
305
306 irt1.init(g,3,"T1");
307 irt2.init(g,3,"T2");
308 irt1.nrot_ = 1;
309 irt2.ntrans_ = 1;
310
311 // the symmetry operation matrices form a basis for T2. T1(g)=T2(g) for
312 // the proper rotations, and = -T2(g) for the improper ones
313 SymmetryOperation so;
314 so.i();
315
316 for (i=0; i < 12; i++) {
317 irt1.rep[i] = symop[i];
318 irt2.rep[i] = symop[i];
319 irt1.rep[i+12] = symop[i+12].operate(so);
320 irt2.rep[i+12] = symop[i+12];
321 }
322
323 // identity
324 ire.rep[0].E();
325
326 // 4 C3's
327 ire.rep[1].rotation(2.0*(double)M_PI/3.0);
328 ire.rep[2] = ire.rep[1];
329 ire.rep[3] = ire.rep[1];
330 ire.rep[4] = ire.rep[1];
331
332 // 4 C3^2's
333 ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
334 ire.rep[6] = ire.rep[5];
335 ire.rep[7] = ire.rep[5];
336 ire.rep[8] = ire.rep[5];
337
338 // 3 C2's
339 ire.rep[9].unit();
340 ire.rep[10].unit();
341 ire.rep[11].unit();
342
343 // 6 S4's
344 ire.rep[12].c2_x();
345 ire.rep[13].c2_x();
346
347 ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
348 ire.rep[15] = ire.rep[14];
349
350 ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
351 ire.rep[17] = ire.rep[16];
352
353 for (i=18; i < 24; i++)
354 ire.rep[i] = ire.rep[i-6];
355}
356
357void
358CharacterTable::o()
359{
360 int i;
361
362 // first get the T operations, then the O operations
363 t_ops(symop);
364 td_ops(&symop[12]);
365
366 SymmetryOperation so;
367 so.i();
368
369 for (i=12; i < 24; i++)
370 symop[i] = symop[i].operate(so);
371
372 gamma_[0].init(g,1,"A1");
373 gamma_[1].init(g,1,"A2");
374
375 for (i=0; i < 12; i++) {
376 gamma_[0].rep[i][0][0] = 1.0;
377 gamma_[1].rep[i][0][0] = 1.0;
378
379 gamma_[0].rep[i+12][0][0] = 1.0;
380 gamma_[1].rep[i+12][0][0] = -1.0;
381 }
382
383 IrreducibleRepresentation& ire = gamma_[2];
384 ire.init(g,2,"E");
385
386 IrreducibleRepresentation& irt1 = gamma_[3];
387 IrreducibleRepresentation& irt2 = gamma_[4];
388
389 irt1.init(g,3,"T1");
390 irt2.init(g,3,"T2");
391 irt1.nrot_ = 1;
392 irt1.ntrans_ = 1;
393
394 // the symmetry operation matrices form a basis for T1. T2(g)=T1(g) for
395 // the proper rotations, and = -T1(g) for the improper ones
396
397 for (i=0; i < 12; i++) {
398 irt1.rep[i] = symop[i];
399 irt2.rep[i] = symop[i];
400 irt1.rep[i+12] = symop[i+12];
401 irt2.rep[i+12] = symop[i+12].operate(so);
402 }
403
404 // identity
405 ire.rep[0].E();
406
407 // 4 C3's
408 ire.rep[1].rotation(2.0*(double)M_PI/3.0);
409 ire.rep[2] = ire.rep[1];
410 ire.rep[3] = ire.rep[1];
411 ire.rep[4] = ire.rep[1];
412
413 // 4 C3^2's
414 ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
415 ire.rep[6] = ire.rep[5];
416 ire.rep[7] = ire.rep[5];
417 ire.rep[8] = ire.rep[5];
418
419 // 3 C2's
420 ire.rep[9].unit();
421 ire.rep[10].unit();
422 ire.rep[11].unit();
423
424 // 6 C4's
425 ire.rep[12].c2_x();
426 ire.rep[13].c2_x();
427
428 ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
429 ire.rep[15] = ire.rep[14];
430
431 ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
432 ire.rep[17] = ire.rep[16];
433
434 // 6 C2's
435 for (i=18; i < 24; i++)
436 ire.rep[i] = ire.rep[i-6];
437}
438
439void CharacterTable::oh()
440{
441 int i,j;
442
443 SymmetryOperation so;
444 so.i();
445
446 // first get the T operations, then the O operations, then the Th
447 // operations, then the Td operations
448 t_ops(symop);
449 td_ops(&symop[36]);
450
451 for (i=0; i < 12; i++) {
452 symop[i+24] = symop[i].operate(so);
453 symop[i+12] = symop[i+36].operate(so);
454 }
455
456 gamma_[0].init(g,1,"A1g");
457 gamma_[1].init(g,1,"A2g");
458 gamma_[5].init(g,1,"A1u");
459 gamma_[6].init(g,1,"A2u");
460
461 for (i=0; i < 12; i++) {
462 gamma_[0].rep[i][0][0] = 1.0;
463 gamma_[1].rep[i][0][0] = 1.0;
464 gamma_[5].rep[i][0][0] = 1.0;
465 gamma_[6].rep[i][0][0] = 1.0;
466
467 gamma_[0].rep[i+12][0][0] = 1.0;
468 gamma_[1].rep[i+12][0][0] = -1.0;
469 gamma_[5].rep[i+12][0][0] = 1.0;
470 gamma_[6].rep[i+12][0][0] = -1.0;
471
472 gamma_[0].rep[i+24][0][0] = 1.0;
473 gamma_[1].rep[i+24][0][0] = 1.0;
474 gamma_[5].rep[i+24][0][0] = -1.0;
475 gamma_[6].rep[i+24][0][0] = -1.0;
476
477 gamma_[0].rep[i+36][0][0] = 1.0;
478 gamma_[1].rep[i+36][0][0] = -1.0;
479 gamma_[5].rep[i+36][0][0] = -1.0;
480 gamma_[6].rep[i+36][0][0] = 1.0;
481 }
482
483 // the symmetry operation matrices form a basis for T1u. T2u(g)=T1u(g) for
484 // the proper rotations, and = -T1(g) for the improper ones.
485 // T1g(g)=T1u(g) for the O part, and = -T1u(g) for the ixO part.
486 // T2g(g)=T1g(g) for proper rotations and =-T1g(g) for improper
487
488 gamma_[3].init(g,3,"T1g");
489 gamma_[4].init(g,3,"T2g");
490 gamma_[8].init(g,3,"T1u");
491 gamma_[9].init(g,3,"T2u");
492
493 gamma_[3].nrot_=1;
494 gamma_[8].ntrans_=1;
495
496 for (i=0; i < 12; i++) {
497 gamma_[3].rep[i] = symop[i];
498 gamma_[4].rep[i] = symop[i];
499 gamma_[8].rep[i] = symop[i];
500 gamma_[9].rep[i] = symop[i];
501
502 gamma_[3].rep[i+12] = symop[i+12];
503 gamma_[4].rep[i+12] = symop[i+12].operate(so);
504 gamma_[8].rep[i+12] = symop[i+12];
505 gamma_[9].rep[i+12] = symop[i+12].operate(so);
506
507 gamma_[3].rep[i+24] = symop[i+24].operate(so);
508 gamma_[4].rep[i+24] = symop[i+24].operate(so);
509 gamma_[8].rep[i+24] = symop[i+24];
510 gamma_[9].rep[i+24] = symop[i+24];
511
512 gamma_[3].rep[i+36] = symop[i+36].operate(so);
513 gamma_[4].rep[i+36] = symop[i+36];
514 gamma_[8].rep[i+36] = symop[i+36];
515 gamma_[9].rep[i+36] = symop[i+36].operate(so);
516 }
517
518 IrreducibleRepresentation& ireg = gamma_[2];
519 IrreducibleRepresentation& ireu = gamma_[7];
520
521 ireg.init(g,2,"Eg");
522 ireu.init(g,2,"Eu");
523
524 // identity
525 ireg.rep[0].E();
526
527 // 4 C3's
528 ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
529 ireg.rep[2] = ireg.rep[1];
530 ireg.rep[3] = ireg.rep[1];
531 ireg.rep[4] = ireg.rep[1];
532
533 // 4 C3^2's
534 ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
535 ireg.rep[6] = ireg.rep[5];
536 ireg.rep[7] = ireg.rep[5];
537 ireg.rep[8] = ireg.rep[5];
538
539 // 3 C2's
540 ireg.rep[9].unit();
541 ireg.rep[10].unit();
542 ireg.rep[11].unit();
543
544 // 6 C4's
545 ireg.rep[12].c2_x();
546 ireg.rep[13].c2_x();
547
548 ireg.rep[14] = ireg.rep[12].operate(ireg.rep[1]);
549 ireg.rep[15] = ireg.rep[14];
550
551 ireg.rep[16] = ireg.rep[14].operate(ireg.rep[1]);
552 ireg.rep[17] = ireg.rep[16];
553
554 // 6 C2's
555 for (i=18; i < 24; i++)
556 ireg.rep[i] = ireg.rep[i-6];
557
558 SymRep sr(2);
559 sr.i();
560
561 for (j=0; j < 24; j++) {
562 ireu.rep[j] = ireg.rep[j];
563 ireg.rep[j+24] = ireg.rep[j];
564 ireu.rep[j+24] = ireg.rep[j].operate(sr);
565 }
566}
567
568/////////////////////////////////////////////////////////////////////////////
569
570// Local Variables:
571// mode: c++
572// c-file-style: "ETS"
573// End:
Note: See TracBrowser for help on using the repository browser.