| 1 | //
 | 
|---|
| 2 | // tetra.cc
 | 
|---|
| 3 | //
 | 
|---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
 | 
|---|
| 5 | //
 | 
|---|
| 6 | // Author: Edward Seidl <seidl@janed.com>
 | 
|---|
| 7 | // Maintainer: LPS
 | 
|---|
| 8 | //
 | 
|---|
| 9 | // This file is part of the SC Toolkit.
 | 
|---|
| 10 | //
 | 
|---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
 | 
|---|
| 12 | // it under the terms of the GNU Library General Public License as published by
 | 
|---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
 | 
|---|
| 14 | // any later version.
 | 
|---|
| 15 | //
 | 
|---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
 | 
|---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
 | 
|---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 | 
|---|
| 19 | // GNU Library General Public License for more details.
 | 
|---|
| 20 | //
 | 
|---|
| 21 | // You should have received a copy of the GNU Library General Public License
 | 
|---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to
 | 
|---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
 | 
|---|
| 24 | //
 | 
|---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
 | 
|---|
| 26 | //
 | 
|---|
| 27 | 
 | 
|---|
| 28 | #include <util/misc/math.h>
 | 
|---|
| 29 | #include <string.h>
 | 
|---|
| 30 | 
 | 
|---|
| 31 | #include <math/symmetry/pointgrp.h>
 | 
|---|
| 32 | 
 | 
|---|
| 33 | using namespace sc;
 | 
|---|
| 34 | 
 | 
|---|
| 35 | // these are the operations which make up T
 | 
|---|
| 36 | static void
 | 
|---|
| 37 | t_ops(SymmetryOperation *symop)
 | 
|---|
| 38 | {
 | 
|---|
| 39 |   // identity
 | 
|---|
| 40 |   symop[0].E();
 | 
|---|
| 41 | 
 | 
|---|
| 42 |   // C2(x)
 | 
|---|
| 43 |   symop[9].c2_x();
 | 
|---|
| 44 | 
 | 
|---|
| 45 |   // C2(y)
 | 
|---|
| 46 |   symop[10].c2_y();
 | 
|---|
| 47 | 
 | 
|---|
| 48 |   // C2(z)
 | 
|---|
| 49 |   symop[11].rotation((double)M_PI);
 | 
|---|
| 50 | 
 | 
|---|
| 51 |   // a = ( 1, 1, 1)
 | 
|---|
| 52 |   // b = (-1,-1, 1)
 | 
|---|
| 53 |   // c = ( 1,-1,-1)
 | 
|---|
| 54 |   // d = (-1, 1,-1)
 | 
|---|
| 55 |   // C3 (a)
 | 
|---|
| 56 |   symop[1][0][2] =  1.0;
 | 
|---|
| 57 |   symop[1][1][0] =  1.0;
 | 
|---|
| 58 |   symop[1][2][1] =  1.0;
 | 
|---|
| 59 | 
 | 
|---|
| 60 |   // C3 (b)
 | 
|---|
| 61 |   symop[2] = symop[1].transform(symop[11]);
 | 
|---|
| 62 | 
 | 
|---|
| 63 |   // C3 (c)
 | 
|---|
| 64 |   symop[3] = symop[1].transform(symop[9]);
 | 
|---|
| 65 | 
 | 
|---|
| 66 |   // C3 (d)
 | 
|---|
| 67 |   symop[4] = symop[1].transform(symop[10]);
 | 
|---|
| 68 | 
 | 
|---|
| 69 |   // C3^2 (a)
 | 
|---|
| 70 |   symop[5][0][1] =  1.0;
 | 
|---|
| 71 |   symop[5][1][2] =  1.0;
 | 
|---|
| 72 |   symop[5][2][0] =  1.0;
 | 
|---|
| 73 | 
 | 
|---|
| 74 |   // C3^2 (b)
 | 
|---|
| 75 |   symop[6] = symop[5].transform(symop[11]);
 | 
|---|
| 76 | 
 | 
|---|
| 77 |   // C3^2 (c)
 | 
|---|
| 78 |   symop[7] = symop[5].transform(symop[9]);
 | 
|---|
| 79 | 
 | 
|---|
| 80 |   // C3^2 (d)
 | 
|---|
| 81 |   symop[8] = symop[5].transform(symop[10]);
 | 
|---|
| 82 | }
 | 
|---|
| 83 | 
 | 
|---|
| 84 | // this gives us the operations in Td which aren't in T.
 | 
|---|
| 85 | static void
 | 
|---|
| 86 | td_ops(SymmetryOperation *symop)
 | 
|---|
| 87 | {
 | 
|---|
| 88 |   // S4 (x)
 | 
|---|
| 89 |   symop[0][0][0] = -1.0;
 | 
|---|
| 90 |   symop[0][1][2] = -1.0;
 | 
|---|
| 91 |   symop[0][2][1] =  1.0;
 | 
|---|
| 92 | 
 | 
|---|
| 93 |   // S4^3 (x)
 | 
|---|
| 94 |   symop[1][0][0] = -1.0;
 | 
|---|
| 95 |   symop[1][1][2] =  1.0;
 | 
|---|
| 96 |   symop[1][2][1] = -1.0;
 | 
|---|
| 97 | 
 | 
|---|
| 98 |   // S4 (y)
 | 
|---|
| 99 |   symop[2][0][2] =  1.0;
 | 
|---|
| 100 |   symop[2][1][1] = -1.0;
 | 
|---|
| 101 |   symop[2][2][0] = -1.0;
 | 
|---|
| 102 | 
 | 
|---|
| 103 |   // S4^3 (y)
 | 
|---|
| 104 |   symop[3][0][2] = -1.0;
 | 
|---|
| 105 |   symop[3][1][1] = -1.0;
 | 
|---|
| 106 |   symop[3][2][0] =  1.0;
 | 
|---|
| 107 | 
 | 
|---|
| 108 |   // S4 (z)
 | 
|---|
| 109 |   symop[4][0][1] = -1.0;
 | 
|---|
| 110 |   symop[4][1][0] =  1.0;
 | 
|---|
| 111 |   symop[4][2][2] = -1.0;
 | 
|---|
| 112 | 
 | 
|---|
| 113 |   // S4^3 (z)
 | 
|---|
| 114 |   symop[5][0][1] =  1.0;
 | 
|---|
| 115 |   symop[5][1][0] = -1.0;
 | 
|---|
| 116 |   symop[5][2][2] = -1.0;
 | 
|---|
| 117 | 
 | 
|---|
| 118 |   // a = ( 1, 1, 1)
 | 
|---|
| 119 |   // b = (-1,-1, 1)
 | 
|---|
| 120 |   // c = ( 1,-1,-1)
 | 
|---|
| 121 |   // d = (-1, 1,-1)
 | 
|---|
| 122 |   // sigma (ac)
 | 
|---|
| 123 |   symop[6][0][0] =  1.0;
 | 
|---|
| 124 |   symop[6][1][2] =  1.0;
 | 
|---|
| 125 |   symop[6][2][1] =  1.0;
 | 
|---|
| 126 | 
 | 
|---|
| 127 |   // sigma (bd)
 | 
|---|
| 128 |   symop[7][0][0] =  1.0;
 | 
|---|
| 129 |   symop[7][1][2] = -1.0;
 | 
|---|
| 130 |   symop[7][2][1] = -1.0;
 | 
|---|
| 131 | 
 | 
|---|
| 132 |   // sigma (ad)
 | 
|---|
| 133 |   symop[8][0][2] =  1.0;
 | 
|---|
| 134 |   symop[8][1][1] =  1.0;
 | 
|---|
| 135 |   symop[8][2][0] =  1.0;
 | 
|---|
| 136 | 
 | 
|---|
| 137 |   // sigma (bc)
 | 
|---|
| 138 |   symop[9][0][2] = -1.0;
 | 
|---|
| 139 |   symop[9][1][1] =  1.0;
 | 
|---|
| 140 |   symop[9][2][0] = -1.0;
 | 
|---|
| 141 | 
 | 
|---|
| 142 |   // sigma (ab)
 | 
|---|
| 143 |   symop[10][0][1] =  1.0;
 | 
|---|
| 144 |   symop[10][1][0] =  1.0;
 | 
|---|
| 145 |   symop[10][2][2] =  1.0;
 | 
|---|
| 146 | 
 | 
|---|
| 147 |   // sigma (dc)
 | 
|---|
| 148 |   symop[11][0][1] = -1.0;
 | 
|---|
| 149 |   symop[11][1][0] = -1.0;
 | 
|---|
| 150 |   symop[11][2][2] =  1.0;
 | 
|---|
| 151 | }
 | 
|---|
| 152 | 
 | 
|---|
| 153 | ////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 154 | 
 | 
|---|
| 155 | void
 | 
|---|
| 156 | CharacterTable::t()
 | 
|---|
| 157 | {
 | 
|---|
| 158 |   // t_ops gives us all the symmetry operations we need
 | 
|---|
| 159 |   t_ops(symop);
 | 
|---|
| 160 | 
 | 
|---|
| 161 |   int i;
 | 
|---|
| 162 | 
 | 
|---|
| 163 |   gamma_[0].init(g,1,"A");
 | 
|---|
| 164 |   for (i=0; i < g; i++)
 | 
|---|
| 165 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
| 166 | 
 | 
|---|
| 167 |   IrreducibleRepresentation& ire = gamma_[1];
 | 
|---|
| 168 |   ire.init(g,2,"E");
 | 
|---|
| 169 |   ire.complex_=1;
 | 
|---|
| 170 | 
 | 
|---|
| 171 |   IrreducibleRepresentation& irt = gamma_[2];
 | 
|---|
| 172 |   irt.init(g,3,"T");
 | 
|---|
| 173 |   irt.nrot_ = 1;
 | 
|---|
| 174 |   irt.ntrans_ = 1;
 | 
|---|
| 175 | 
 | 
|---|
| 176 |   // the symmetry operation matrices give us a basis for irrep T
 | 
|---|
| 177 |   for (i=0; i < g; i++)
 | 
|---|
| 178 |     irt.rep[i] = symop[i];
 | 
|---|
| 179 | 
 | 
|---|
| 180 |   // identity
 | 
|---|
| 181 |   ire.rep[0].E();
 | 
|---|
| 182 | 
 | 
|---|
| 183 |   // 4 C3's
 | 
|---|
| 184 |   ire.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
| 185 |   ire.rep[2] = ire.rep[1];
 | 
|---|
| 186 |   ire.rep[3] = ire.rep[1];
 | 
|---|
| 187 |   ire.rep[4] = ire.rep[1];
 | 
|---|
| 188 | 
 | 
|---|
| 189 |   ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
 | 
|---|
| 190 |   ire.rep[6] = ire.rep[5];
 | 
|---|
| 191 |   ire.rep[7] = ire.rep[5];
 | 
|---|
| 192 |   ire.rep[8] = ire.rep[5];
 | 
|---|
| 193 |   
 | 
|---|
| 194 |   // 3 C2's
 | 
|---|
| 195 |   ire.rep[9].unit();
 | 
|---|
| 196 |   ire.rep[10].unit();
 | 
|---|
| 197 |   ire.rep[11].unit();
 | 
|---|
| 198 | 
 | 
|---|
| 199 | }
 | 
|---|
| 200 | 
 | 
|---|
| 201 | void
 | 
|---|
| 202 | CharacterTable::th()
 | 
|---|
| 203 | {
 | 
|---|
| 204 |   int i,j;
 | 
|---|
| 205 | 
 | 
|---|
| 206 |   SymmetryOperation so;
 | 
|---|
| 207 |   so.i();
 | 
|---|
| 208 |   
 | 
|---|
| 209 |   t_ops(symop);
 | 
|---|
| 210 |   for (i=0; i < 12; i++)
 | 
|---|
| 211 |     symop[i+12] = symop[i].operate(so);
 | 
|---|
| 212 |   
 | 
|---|
| 213 |   gamma_[0].init(g,1,"Ag");
 | 
|---|
| 214 |   gamma_[1].init(g,1,"Au");
 | 
|---|
| 215 | 
 | 
|---|
| 216 |   for (i=0; i < 12; i++) {
 | 
|---|
| 217 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
| 218 |     gamma_[1].rep[i][0][0] = 1.0;
 | 
|---|
| 219 | 
 | 
|---|
| 220 |     gamma_[0].rep[i+12][0][0] =  1.0;
 | 
|---|
| 221 |     gamma_[1].rep[i+12][0][0] = -1.0;
 | 
|---|
| 222 |   }
 | 
|---|
| 223 | 
 | 
|---|
| 224 |   IrreducibleRepresentation& ireg = gamma_[2];
 | 
|---|
| 225 |   IrreducibleRepresentation& ireu = gamma_[3];
 | 
|---|
| 226 | 
 | 
|---|
| 227 |   IrreducibleRepresentation& irtg = gamma_[4];
 | 
|---|
| 228 |   IrreducibleRepresentation& irtu = gamma_[5];
 | 
|---|
| 229 | 
 | 
|---|
| 230 |   ireg.init(g,2,"Eg");
 | 
|---|
| 231 |   ireu.init(g,2,"Eu");
 | 
|---|
| 232 |   ireg.complex_=1;
 | 
|---|
| 233 |   ireu.complex_=1;
 | 
|---|
| 234 | 
 | 
|---|
| 235 |   irtg.init(g,3,"Tg");
 | 
|---|
| 236 |   irtu.init(g,3,"Tu");
 | 
|---|
| 237 |   irtg.nrot_=1;
 | 
|---|
| 238 |   irtu.ntrans_=1;
 | 
|---|
| 239 | 
 | 
|---|
| 240 |   // the symmetry operation matrices form a basis for Tu.  Tg(g)=Tu(g) for
 | 
|---|
| 241 |   // the proper rotations, and = -Tu(g) for the improper ones
 | 
|---|
| 242 |   for (i=0; i < 12; i++) {
 | 
|---|
| 243 |     irtg.rep[i] = symop[i];
 | 
|---|
| 244 |     irtu.rep[i] = symop[i];
 | 
|---|
| 245 | 
 | 
|---|
| 246 |     irtg.rep[i+12] = symop[i];
 | 
|---|
| 247 |     irtu.rep[i+12] = symop[i+12];
 | 
|---|
| 248 |   }
 | 
|---|
| 249 |     
 | 
|---|
| 250 |   // identity
 | 
|---|
| 251 |   ireg.rep[0].E();
 | 
|---|
| 252 |   
 | 
|---|
| 253 |   // 4 C3's
 | 
|---|
| 254 |   ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
| 255 |   ireg.rep[2] = ireg.rep[1];
 | 
|---|
| 256 |   ireg.rep[3] = ireg.rep[1];
 | 
|---|
| 257 |   ireg.rep[4] = ireg.rep[1];
 | 
|---|
| 258 | 
 | 
|---|
| 259 |   // 4 C3^2's
 | 
|---|
| 260 |   ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
 | 
|---|
| 261 |   ireg.rep[6] = ireg.rep[5];
 | 
|---|
| 262 |   ireg.rep[7] = ireg.rep[5];
 | 
|---|
| 263 |   ireg.rep[8] = ireg.rep[5];
 | 
|---|
| 264 | 
 | 
|---|
| 265 |   // 3 C2's
 | 
|---|
| 266 |   ireg.rep[9].unit();
 | 
|---|
| 267 |   ireg.rep[10].unit();
 | 
|---|
| 268 |   ireg.rep[11].unit();
 | 
|---|
| 269 | 
 | 
|---|
| 270 |   SymRep sr(2);
 | 
|---|
| 271 |   sr.i();
 | 
|---|
| 272 |   
 | 
|---|
| 273 |   for (j=0; j < 12; j++) {
 | 
|---|
| 274 |     ireu.rep[j] = ireg.rep[j];
 | 
|---|
| 275 |     ireg.rep[j+12] = ireg.rep[j];
 | 
|---|
| 276 |     ireu.rep[j+12] = ireg.rep[j].operate(sr);
 | 
|---|
| 277 |   }
 | 
|---|
| 278 | }
 | 
|---|
| 279 | 
 | 
|---|
| 280 | void
 | 
|---|
| 281 | CharacterTable::td()
 | 
|---|
| 282 | {
 | 
|---|
| 283 |   // first get the T operations, then the Td operations
 | 
|---|
| 284 |   t_ops(symop);
 | 
|---|
| 285 |   td_ops(&symop[12]);
 | 
|---|
| 286 |   
 | 
|---|
| 287 |   int i;
 | 
|---|
| 288 |   
 | 
|---|
| 289 |   gamma_[0].init(g,1,"A1");
 | 
|---|
| 290 |   gamma_[1].init(g,1,"A2");
 | 
|---|
| 291 | 
 | 
|---|
| 292 |   for (i=0; i < 12; i++) {
 | 
|---|
| 293 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
| 294 |     gamma_[1].rep[i][0][0] = 1.0;
 | 
|---|
| 295 | 
 | 
|---|
| 296 |     gamma_[0].rep[i+12][0][0] =  1.0;
 | 
|---|
| 297 |     gamma_[1].rep[i+12][0][0] = -1.0;
 | 
|---|
| 298 |   }
 | 
|---|
| 299 | 
 | 
|---|
| 300 |   IrreducibleRepresentation& ire = gamma_[2];
 | 
|---|
| 301 |   ire.init(g,2,"E");
 | 
|---|
| 302 | 
 | 
|---|
| 303 |   IrreducibleRepresentation& irt1 = gamma_[3];
 | 
|---|
| 304 |   IrreducibleRepresentation& irt2 = gamma_[4];
 | 
|---|
| 305 | 
 | 
|---|
| 306 |   irt1.init(g,3,"T1");
 | 
|---|
| 307 |   irt2.init(g,3,"T2");
 | 
|---|
| 308 |   irt1.nrot_ = 1;
 | 
|---|
| 309 |   irt2.ntrans_ = 1;
 | 
|---|
| 310 | 
 | 
|---|
| 311 |   // the symmetry operation matrices form a basis for T2.  T1(g)=T2(g) for
 | 
|---|
| 312 |   // the proper rotations, and = -T2(g) for the improper ones
 | 
|---|
| 313 |   SymmetryOperation so;
 | 
|---|
| 314 |   so.i();
 | 
|---|
| 315 |   
 | 
|---|
| 316 |   for (i=0; i < 12; i++) {
 | 
|---|
| 317 |     irt1.rep[i] = symop[i];
 | 
|---|
| 318 |     irt2.rep[i] = symop[i];
 | 
|---|
| 319 |     irt1.rep[i+12] = symop[i+12].operate(so);
 | 
|---|
| 320 |     irt2.rep[i+12] = symop[i+12];
 | 
|---|
| 321 |   }
 | 
|---|
| 322 |   
 | 
|---|
| 323 |   // identity
 | 
|---|
| 324 |   ire.rep[0].E();
 | 
|---|
| 325 | 
 | 
|---|
| 326 |   // 4 C3's
 | 
|---|
| 327 |   ire.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
| 328 |   ire.rep[2] = ire.rep[1];
 | 
|---|
| 329 |   ire.rep[3] = ire.rep[1];
 | 
|---|
| 330 |   ire.rep[4] = ire.rep[1];
 | 
|---|
| 331 | 
 | 
|---|
| 332 |   // 4 C3^2's
 | 
|---|
| 333 |   ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
 | 
|---|
| 334 |   ire.rep[6] = ire.rep[5];
 | 
|---|
| 335 |   ire.rep[7] = ire.rep[5];
 | 
|---|
| 336 |   ire.rep[8] = ire.rep[5];
 | 
|---|
| 337 | 
 | 
|---|
| 338 |   // 3 C2's
 | 
|---|
| 339 |   ire.rep[9].unit();
 | 
|---|
| 340 |   ire.rep[10].unit();
 | 
|---|
| 341 |   ire.rep[11].unit();
 | 
|---|
| 342 | 
 | 
|---|
| 343 |   // 6 S4's
 | 
|---|
| 344 |   ire.rep[12].c2_x();
 | 
|---|
| 345 |   ire.rep[13].c2_x();
 | 
|---|
| 346 | 
 | 
|---|
| 347 |   ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
 | 
|---|
| 348 |   ire.rep[15] = ire.rep[14];
 | 
|---|
| 349 |   
 | 
|---|
| 350 |   ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
 | 
|---|
| 351 |   ire.rep[17] = ire.rep[16];
 | 
|---|
| 352 | 
 | 
|---|
| 353 |   for (i=18; i < 24; i++)
 | 
|---|
| 354 |     ire.rep[i] = ire.rep[i-6];
 | 
|---|
| 355 | }
 | 
|---|
| 356 | 
 | 
|---|
| 357 | void
 | 
|---|
| 358 | CharacterTable::o()
 | 
|---|
| 359 | {
 | 
|---|
| 360 |   int i;
 | 
|---|
| 361 |   
 | 
|---|
| 362 |   // first get the T operations, then the O operations
 | 
|---|
| 363 |   t_ops(symop);
 | 
|---|
| 364 |   td_ops(&symop[12]);
 | 
|---|
| 365 |   
 | 
|---|
| 366 |   SymmetryOperation so;
 | 
|---|
| 367 |   so.i();
 | 
|---|
| 368 | 
 | 
|---|
| 369 |   for (i=12; i < 24; i++)
 | 
|---|
| 370 |     symop[i] = symop[i].operate(so);
 | 
|---|
| 371 |   
 | 
|---|
| 372 |   gamma_[0].init(g,1,"A1");
 | 
|---|
| 373 |   gamma_[1].init(g,1,"A2");
 | 
|---|
| 374 | 
 | 
|---|
| 375 |   for (i=0; i < 12; i++) {
 | 
|---|
| 376 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
| 377 |     gamma_[1].rep[i][0][0] = 1.0;
 | 
|---|
| 378 | 
 | 
|---|
| 379 |     gamma_[0].rep[i+12][0][0] =  1.0;
 | 
|---|
| 380 |     gamma_[1].rep[i+12][0][0] = -1.0;
 | 
|---|
| 381 |   }
 | 
|---|
| 382 | 
 | 
|---|
| 383 |   IrreducibleRepresentation& ire = gamma_[2];
 | 
|---|
| 384 |   ire.init(g,2,"E");
 | 
|---|
| 385 | 
 | 
|---|
| 386 |   IrreducibleRepresentation& irt1 = gamma_[3];
 | 
|---|
| 387 |   IrreducibleRepresentation& irt2 = gamma_[4];
 | 
|---|
| 388 | 
 | 
|---|
| 389 |   irt1.init(g,3,"T1");
 | 
|---|
| 390 |   irt2.init(g,3,"T2");
 | 
|---|
| 391 |   irt1.nrot_ = 1;
 | 
|---|
| 392 |   irt1.ntrans_ = 1;
 | 
|---|
| 393 | 
 | 
|---|
| 394 |   // the symmetry operation matrices form a basis for T1.  T2(g)=T1(g) for
 | 
|---|
| 395 |   // the proper rotations, and = -T1(g) for the improper ones
 | 
|---|
| 396 |   
 | 
|---|
| 397 |   for (i=0; i < 12; i++) {
 | 
|---|
| 398 |     irt1.rep[i] = symop[i];
 | 
|---|
| 399 |     irt2.rep[i] = symop[i];
 | 
|---|
| 400 |     irt1.rep[i+12] = symop[i+12];
 | 
|---|
| 401 |     irt2.rep[i+12] = symop[i+12].operate(so);
 | 
|---|
| 402 |   }
 | 
|---|
| 403 |   
 | 
|---|
| 404 |   // identity
 | 
|---|
| 405 |   ire.rep[0].E();
 | 
|---|
| 406 | 
 | 
|---|
| 407 |   // 4 C3's
 | 
|---|
| 408 |   ire.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
| 409 |   ire.rep[2] = ire.rep[1];
 | 
|---|
| 410 |   ire.rep[3] = ire.rep[1];
 | 
|---|
| 411 |   ire.rep[4] = ire.rep[1];
 | 
|---|
| 412 | 
 | 
|---|
| 413 |   // 4 C3^2's
 | 
|---|
| 414 |   ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
 | 
|---|
| 415 |   ire.rep[6] = ire.rep[5];
 | 
|---|
| 416 |   ire.rep[7] = ire.rep[5];
 | 
|---|
| 417 |   ire.rep[8] = ire.rep[5];
 | 
|---|
| 418 | 
 | 
|---|
| 419 |   // 3 C2's
 | 
|---|
| 420 |   ire.rep[9].unit();
 | 
|---|
| 421 |   ire.rep[10].unit();
 | 
|---|
| 422 |   ire.rep[11].unit();
 | 
|---|
| 423 | 
 | 
|---|
| 424 |   // 6 C4's
 | 
|---|
| 425 |   ire.rep[12].c2_x();
 | 
|---|
| 426 |   ire.rep[13].c2_x();
 | 
|---|
| 427 | 
 | 
|---|
| 428 |   ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
 | 
|---|
| 429 |   ire.rep[15] = ire.rep[14];
 | 
|---|
| 430 |   
 | 
|---|
| 431 |   ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
 | 
|---|
| 432 |   ire.rep[17] = ire.rep[16];
 | 
|---|
| 433 | 
 | 
|---|
| 434 |   // 6 C2's
 | 
|---|
| 435 |   for (i=18; i < 24; i++)
 | 
|---|
| 436 |     ire.rep[i] = ire.rep[i-6];
 | 
|---|
| 437 | }
 | 
|---|
| 438 | 
 | 
|---|
| 439 | void CharacterTable::oh()
 | 
|---|
| 440 | {
 | 
|---|
| 441 |   int i,j;
 | 
|---|
| 442 |   
 | 
|---|
| 443 |   SymmetryOperation so;
 | 
|---|
| 444 |   so.i();
 | 
|---|
| 445 |   
 | 
|---|
| 446 |   // first get the T operations, then the O operations, then the Th
 | 
|---|
| 447 |   // operations, then the Td operations
 | 
|---|
| 448 |   t_ops(symop);
 | 
|---|
| 449 |   td_ops(&symop[36]);
 | 
|---|
| 450 | 
 | 
|---|
| 451 |   for (i=0; i < 12; i++) {
 | 
|---|
| 452 |     symop[i+24] = symop[i].operate(so);
 | 
|---|
| 453 |     symop[i+12] = symop[i+36].operate(so);
 | 
|---|
| 454 |   }
 | 
|---|
| 455 |   
 | 
|---|
| 456 |   gamma_[0].init(g,1,"A1g");
 | 
|---|
| 457 |   gamma_[1].init(g,1,"A2g");
 | 
|---|
| 458 |   gamma_[5].init(g,1,"A1u");
 | 
|---|
| 459 |   gamma_[6].init(g,1,"A2u");
 | 
|---|
| 460 | 
 | 
|---|
| 461 |   for (i=0; i < 12; i++) {
 | 
|---|
| 462 |     gamma_[0].rep[i][0][0] = 1.0;
 | 
|---|
| 463 |     gamma_[1].rep[i][0][0] = 1.0;
 | 
|---|
| 464 |     gamma_[5].rep[i][0][0] = 1.0;
 | 
|---|
| 465 |     gamma_[6].rep[i][0][0] = 1.0;
 | 
|---|
| 466 | 
 | 
|---|
| 467 |     gamma_[0].rep[i+12][0][0] =  1.0;
 | 
|---|
| 468 |     gamma_[1].rep[i+12][0][0] = -1.0;
 | 
|---|
| 469 |     gamma_[5].rep[i+12][0][0] =  1.0;
 | 
|---|
| 470 |     gamma_[6].rep[i+12][0][0] = -1.0;
 | 
|---|
| 471 | 
 | 
|---|
| 472 |     gamma_[0].rep[i+24][0][0] =  1.0;
 | 
|---|
| 473 |     gamma_[1].rep[i+24][0][0] =  1.0;
 | 
|---|
| 474 |     gamma_[5].rep[i+24][0][0] = -1.0;
 | 
|---|
| 475 |     gamma_[6].rep[i+24][0][0] = -1.0;
 | 
|---|
| 476 | 
 | 
|---|
| 477 |     gamma_[0].rep[i+36][0][0] =  1.0;
 | 
|---|
| 478 |     gamma_[1].rep[i+36][0][0] = -1.0;
 | 
|---|
| 479 |     gamma_[5].rep[i+36][0][0] = -1.0;
 | 
|---|
| 480 |     gamma_[6].rep[i+36][0][0] =  1.0;
 | 
|---|
| 481 |   }
 | 
|---|
| 482 | 
 | 
|---|
| 483 |   // the symmetry operation matrices form a basis for T1u.  T2u(g)=T1u(g) for
 | 
|---|
| 484 |   // the proper rotations, and = -T1(g) for the improper ones.
 | 
|---|
| 485 |   // T1g(g)=T1u(g) for the O part, and = -T1u(g) for the ixO part.
 | 
|---|
| 486 |   // T2g(g)=T1g(g) for proper rotations and =-T1g(g) for improper
 | 
|---|
| 487 | 
 | 
|---|
| 488 |   gamma_[3].init(g,3,"T1g");
 | 
|---|
| 489 |   gamma_[4].init(g,3,"T2g");
 | 
|---|
| 490 |   gamma_[8].init(g,3,"T1u");
 | 
|---|
| 491 |   gamma_[9].init(g,3,"T2u");
 | 
|---|
| 492 | 
 | 
|---|
| 493 |   gamma_[3].nrot_=1;
 | 
|---|
| 494 |   gamma_[8].ntrans_=1;
 | 
|---|
| 495 |   
 | 
|---|
| 496 |   for (i=0; i < 12; i++) {
 | 
|---|
| 497 |     gamma_[3].rep[i] = symop[i];
 | 
|---|
| 498 |     gamma_[4].rep[i] = symop[i];
 | 
|---|
| 499 |     gamma_[8].rep[i] = symop[i];
 | 
|---|
| 500 |     gamma_[9].rep[i] = symop[i];
 | 
|---|
| 501 |     
 | 
|---|
| 502 |     gamma_[3].rep[i+12] = symop[i+12];
 | 
|---|
| 503 |     gamma_[4].rep[i+12] = symop[i+12].operate(so);
 | 
|---|
| 504 |     gamma_[8].rep[i+12] = symop[i+12];
 | 
|---|
| 505 |     gamma_[9].rep[i+12] = symop[i+12].operate(so);
 | 
|---|
| 506 |     
 | 
|---|
| 507 |     gamma_[3].rep[i+24] = symop[i+24].operate(so);
 | 
|---|
| 508 |     gamma_[4].rep[i+24] = symop[i+24].operate(so);
 | 
|---|
| 509 |     gamma_[8].rep[i+24] = symop[i+24];
 | 
|---|
| 510 |     gamma_[9].rep[i+24] = symop[i+24];
 | 
|---|
| 511 |     
 | 
|---|
| 512 |     gamma_[3].rep[i+36] = symop[i+36].operate(so);
 | 
|---|
| 513 |     gamma_[4].rep[i+36] = symop[i+36];
 | 
|---|
| 514 |     gamma_[8].rep[i+36] = symop[i+36];
 | 
|---|
| 515 |     gamma_[9].rep[i+36] = symop[i+36].operate(so);
 | 
|---|
| 516 |   }
 | 
|---|
| 517 | 
 | 
|---|
| 518 |   IrreducibleRepresentation& ireg = gamma_[2];
 | 
|---|
| 519 |   IrreducibleRepresentation& ireu = gamma_[7];
 | 
|---|
| 520 | 
 | 
|---|
| 521 |   ireg.init(g,2,"Eg");
 | 
|---|
| 522 |   ireu.init(g,2,"Eu");
 | 
|---|
| 523 |     
 | 
|---|
| 524 |   // identity
 | 
|---|
| 525 |   ireg.rep[0].E();
 | 
|---|
| 526 |   
 | 
|---|
| 527 |   // 4 C3's
 | 
|---|
| 528 |   ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
 | 
|---|
| 529 |   ireg.rep[2] = ireg.rep[1];
 | 
|---|
| 530 |   ireg.rep[3] = ireg.rep[1];
 | 
|---|
| 531 |   ireg.rep[4] = ireg.rep[1];
 | 
|---|
| 532 | 
 | 
|---|
| 533 |   // 4 C3^2's
 | 
|---|
| 534 |   ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
 | 
|---|
| 535 |   ireg.rep[6] = ireg.rep[5];
 | 
|---|
| 536 |   ireg.rep[7] = ireg.rep[5];
 | 
|---|
| 537 |   ireg.rep[8] = ireg.rep[5];
 | 
|---|
| 538 | 
 | 
|---|
| 539 |   // 3 C2's
 | 
|---|
| 540 |   ireg.rep[9].unit();
 | 
|---|
| 541 |   ireg.rep[10].unit();
 | 
|---|
| 542 |   ireg.rep[11].unit();
 | 
|---|
| 543 | 
 | 
|---|
| 544 |   // 6 C4's
 | 
|---|
| 545 |   ireg.rep[12].c2_x();
 | 
|---|
| 546 |   ireg.rep[13].c2_x();
 | 
|---|
| 547 | 
 | 
|---|
| 548 |   ireg.rep[14] = ireg.rep[12].operate(ireg.rep[1]);
 | 
|---|
| 549 |   ireg.rep[15] = ireg.rep[14];
 | 
|---|
| 550 |   
 | 
|---|
| 551 |   ireg.rep[16] = ireg.rep[14].operate(ireg.rep[1]);
 | 
|---|
| 552 |   ireg.rep[17] = ireg.rep[16];
 | 
|---|
| 553 | 
 | 
|---|
| 554 |   // 6 C2's
 | 
|---|
| 555 |   for (i=18; i < 24; i++)
 | 
|---|
| 556 |     ireg.rep[i] = ireg.rep[i-6];
 | 
|---|
| 557 | 
 | 
|---|
| 558 |   SymRep sr(2);
 | 
|---|
| 559 |   sr.i();
 | 
|---|
| 560 |   
 | 
|---|
| 561 |   for (j=0; j < 24; j++) {
 | 
|---|
| 562 |     ireu.rep[j] = ireg.rep[j];
 | 
|---|
| 563 |     ireg.rep[j+24] = ireg.rep[j];
 | 
|---|
| 564 |     ireu.rep[j+24] = ireg.rep[j].operate(sr);
 | 
|---|
| 565 |   }
 | 
|---|
| 566 | }
 | 
|---|
| 567 | 
 | 
|---|
| 568 | /////////////////////////////////////////////////////////////////////////////
 | 
|---|
| 569 | 
 | 
|---|
| 570 | // Local Variables:
 | 
|---|
| 571 | // mode: c++
 | 
|---|
| 572 | // c-file-style: "ETS"
 | 
|---|
| 573 | // End:
 | 
|---|