| [0b990d] | 1 | // | 
|---|
|  | 2 | // tetra.cc | 
|---|
|  | 3 | // | 
|---|
|  | 4 | // Copyright (C) 1996 Limit Point Systems, Inc. | 
|---|
|  | 5 | // | 
|---|
|  | 6 | // Author: Edward Seidl <seidl@janed.com> | 
|---|
|  | 7 | // Maintainer: LPS | 
|---|
|  | 8 | // | 
|---|
|  | 9 | // This file is part of the SC Toolkit. | 
|---|
|  | 10 | // | 
|---|
|  | 11 | // The SC Toolkit is free software; you can redistribute it and/or modify | 
|---|
|  | 12 | // it under the terms of the GNU Library General Public License as published by | 
|---|
|  | 13 | // the Free Software Foundation; either version 2, or (at your option) | 
|---|
|  | 14 | // any later version. | 
|---|
|  | 15 | // | 
|---|
|  | 16 | // The SC Toolkit is distributed in the hope that it will be useful, | 
|---|
|  | 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of | 
|---|
|  | 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the | 
|---|
|  | 19 | // GNU Library General Public License for more details. | 
|---|
|  | 20 | // | 
|---|
|  | 21 | // You should have received a copy of the GNU Library General Public License | 
|---|
|  | 22 | // along with the SC Toolkit; see the file COPYING.LIB.  If not, write to | 
|---|
|  | 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. | 
|---|
|  | 24 | // | 
|---|
|  | 25 | // The U.S. Government is granted a limited license as per AL 91-7. | 
|---|
|  | 26 | // | 
|---|
|  | 27 |  | 
|---|
|  | 28 | #include <util/misc/math.h> | 
|---|
|  | 29 | #include <string.h> | 
|---|
|  | 30 |  | 
|---|
|  | 31 | #include <math/symmetry/pointgrp.h> | 
|---|
|  | 32 |  | 
|---|
|  | 33 | using namespace sc; | 
|---|
|  | 34 |  | 
|---|
|  | 35 | // these are the operations which make up T | 
|---|
|  | 36 | static void | 
|---|
|  | 37 | t_ops(SymmetryOperation *symop) | 
|---|
|  | 38 | { | 
|---|
|  | 39 | // identity | 
|---|
|  | 40 | symop[0].E(); | 
|---|
|  | 41 |  | 
|---|
|  | 42 | // C2(x) | 
|---|
|  | 43 | symop[9].c2_x(); | 
|---|
|  | 44 |  | 
|---|
|  | 45 | // C2(y) | 
|---|
|  | 46 | symop[10].c2_y(); | 
|---|
|  | 47 |  | 
|---|
|  | 48 | // C2(z) | 
|---|
|  | 49 | symop[11].rotation((double)M_PI); | 
|---|
|  | 50 |  | 
|---|
|  | 51 | // a = ( 1, 1, 1) | 
|---|
|  | 52 | // b = (-1,-1, 1) | 
|---|
|  | 53 | // c = ( 1,-1,-1) | 
|---|
|  | 54 | // d = (-1, 1,-1) | 
|---|
|  | 55 | // C3 (a) | 
|---|
|  | 56 | symop[1][0][2] =  1.0; | 
|---|
|  | 57 | symop[1][1][0] =  1.0; | 
|---|
|  | 58 | symop[1][2][1] =  1.0; | 
|---|
|  | 59 |  | 
|---|
|  | 60 | // C3 (b) | 
|---|
|  | 61 | symop[2] = symop[1].transform(symop[11]); | 
|---|
|  | 62 |  | 
|---|
|  | 63 | // C3 (c) | 
|---|
|  | 64 | symop[3] = symop[1].transform(symop[9]); | 
|---|
|  | 65 |  | 
|---|
|  | 66 | // C3 (d) | 
|---|
|  | 67 | symop[4] = symop[1].transform(symop[10]); | 
|---|
|  | 68 |  | 
|---|
|  | 69 | // C3^2 (a) | 
|---|
|  | 70 | symop[5][0][1] =  1.0; | 
|---|
|  | 71 | symop[5][1][2] =  1.0; | 
|---|
|  | 72 | symop[5][2][0] =  1.0; | 
|---|
|  | 73 |  | 
|---|
|  | 74 | // C3^2 (b) | 
|---|
|  | 75 | symop[6] = symop[5].transform(symop[11]); | 
|---|
|  | 76 |  | 
|---|
|  | 77 | // C3^2 (c) | 
|---|
|  | 78 | symop[7] = symop[5].transform(symop[9]); | 
|---|
|  | 79 |  | 
|---|
|  | 80 | // C3^2 (d) | 
|---|
|  | 81 | symop[8] = symop[5].transform(symop[10]); | 
|---|
|  | 82 | } | 
|---|
|  | 83 |  | 
|---|
|  | 84 | // this gives us the operations in Td which aren't in T. | 
|---|
|  | 85 | static void | 
|---|
|  | 86 | td_ops(SymmetryOperation *symop) | 
|---|
|  | 87 | { | 
|---|
|  | 88 | // S4 (x) | 
|---|
|  | 89 | symop[0][0][0] = -1.0; | 
|---|
|  | 90 | symop[0][1][2] = -1.0; | 
|---|
|  | 91 | symop[0][2][1] =  1.0; | 
|---|
|  | 92 |  | 
|---|
|  | 93 | // S4^3 (x) | 
|---|
|  | 94 | symop[1][0][0] = -1.0; | 
|---|
|  | 95 | symop[1][1][2] =  1.0; | 
|---|
|  | 96 | symop[1][2][1] = -1.0; | 
|---|
|  | 97 |  | 
|---|
|  | 98 | // S4 (y) | 
|---|
|  | 99 | symop[2][0][2] =  1.0; | 
|---|
|  | 100 | symop[2][1][1] = -1.0; | 
|---|
|  | 101 | symop[2][2][0] = -1.0; | 
|---|
|  | 102 |  | 
|---|
|  | 103 | // S4^3 (y) | 
|---|
|  | 104 | symop[3][0][2] = -1.0; | 
|---|
|  | 105 | symop[3][1][1] = -1.0; | 
|---|
|  | 106 | symop[3][2][0] =  1.0; | 
|---|
|  | 107 |  | 
|---|
|  | 108 | // S4 (z) | 
|---|
|  | 109 | symop[4][0][1] = -1.0; | 
|---|
|  | 110 | symop[4][1][0] =  1.0; | 
|---|
|  | 111 | symop[4][2][2] = -1.0; | 
|---|
|  | 112 |  | 
|---|
|  | 113 | // S4^3 (z) | 
|---|
|  | 114 | symop[5][0][1] =  1.0; | 
|---|
|  | 115 | symop[5][1][0] = -1.0; | 
|---|
|  | 116 | symop[5][2][2] = -1.0; | 
|---|
|  | 117 |  | 
|---|
|  | 118 | // a = ( 1, 1, 1) | 
|---|
|  | 119 | // b = (-1,-1, 1) | 
|---|
|  | 120 | // c = ( 1,-1,-1) | 
|---|
|  | 121 | // d = (-1, 1,-1) | 
|---|
|  | 122 | // sigma (ac) | 
|---|
|  | 123 | symop[6][0][0] =  1.0; | 
|---|
|  | 124 | symop[6][1][2] =  1.0; | 
|---|
|  | 125 | symop[6][2][1] =  1.0; | 
|---|
|  | 126 |  | 
|---|
|  | 127 | // sigma (bd) | 
|---|
|  | 128 | symop[7][0][0] =  1.0; | 
|---|
|  | 129 | symop[7][1][2] = -1.0; | 
|---|
|  | 130 | symop[7][2][1] = -1.0; | 
|---|
|  | 131 |  | 
|---|
|  | 132 | // sigma (ad) | 
|---|
|  | 133 | symop[8][0][2] =  1.0; | 
|---|
|  | 134 | symop[8][1][1] =  1.0; | 
|---|
|  | 135 | symop[8][2][0] =  1.0; | 
|---|
|  | 136 |  | 
|---|
|  | 137 | // sigma (bc) | 
|---|
|  | 138 | symop[9][0][2] = -1.0; | 
|---|
|  | 139 | symop[9][1][1] =  1.0; | 
|---|
|  | 140 | symop[9][2][0] = -1.0; | 
|---|
|  | 141 |  | 
|---|
|  | 142 | // sigma (ab) | 
|---|
|  | 143 | symop[10][0][1] =  1.0; | 
|---|
|  | 144 | symop[10][1][0] =  1.0; | 
|---|
|  | 145 | symop[10][2][2] =  1.0; | 
|---|
|  | 146 |  | 
|---|
|  | 147 | // sigma (dc) | 
|---|
|  | 148 | symop[11][0][1] = -1.0; | 
|---|
|  | 149 | symop[11][1][0] = -1.0; | 
|---|
|  | 150 | symop[11][2][2] =  1.0; | 
|---|
|  | 151 | } | 
|---|
|  | 152 |  | 
|---|
|  | 153 | //////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 154 |  | 
|---|
|  | 155 | void | 
|---|
|  | 156 | CharacterTable::t() | 
|---|
|  | 157 | { | 
|---|
|  | 158 | // t_ops gives us all the symmetry operations we need | 
|---|
|  | 159 | t_ops(symop); | 
|---|
|  | 160 |  | 
|---|
|  | 161 | int i; | 
|---|
|  | 162 |  | 
|---|
|  | 163 | gamma_[0].init(g,1,"A"); | 
|---|
|  | 164 | for (i=0; i < g; i++) | 
|---|
|  | 165 | gamma_[0].rep[i][0][0] = 1.0; | 
|---|
|  | 166 |  | 
|---|
|  | 167 | IrreducibleRepresentation& ire = gamma_[1]; | 
|---|
|  | 168 | ire.init(g,2,"E"); | 
|---|
|  | 169 | ire.complex_=1; | 
|---|
|  | 170 |  | 
|---|
|  | 171 | IrreducibleRepresentation& irt = gamma_[2]; | 
|---|
|  | 172 | irt.init(g,3,"T"); | 
|---|
|  | 173 | irt.nrot_ = 1; | 
|---|
|  | 174 | irt.ntrans_ = 1; | 
|---|
|  | 175 |  | 
|---|
|  | 176 | // the symmetry operation matrices give us a basis for irrep T | 
|---|
|  | 177 | for (i=0; i < g; i++) | 
|---|
|  | 178 | irt.rep[i] = symop[i]; | 
|---|
|  | 179 |  | 
|---|
|  | 180 | // identity | 
|---|
|  | 181 | ire.rep[0].E(); | 
|---|
|  | 182 |  | 
|---|
|  | 183 | // 4 C3's | 
|---|
|  | 184 | ire.rep[1].rotation(2.0*(double)M_PI/3.0); | 
|---|
|  | 185 | ire.rep[2] = ire.rep[1]; | 
|---|
|  | 186 | ire.rep[3] = ire.rep[1]; | 
|---|
|  | 187 | ire.rep[4] = ire.rep[1]; | 
|---|
|  | 188 |  | 
|---|
|  | 189 | ire.rep[5] = ire.rep[1].operate(ire.rep[1]); | 
|---|
|  | 190 | ire.rep[6] = ire.rep[5]; | 
|---|
|  | 191 | ire.rep[7] = ire.rep[5]; | 
|---|
|  | 192 | ire.rep[8] = ire.rep[5]; | 
|---|
|  | 193 |  | 
|---|
|  | 194 | // 3 C2's | 
|---|
|  | 195 | ire.rep[9].unit(); | 
|---|
|  | 196 | ire.rep[10].unit(); | 
|---|
|  | 197 | ire.rep[11].unit(); | 
|---|
|  | 198 |  | 
|---|
|  | 199 | } | 
|---|
|  | 200 |  | 
|---|
|  | 201 | void | 
|---|
|  | 202 | CharacterTable::th() | 
|---|
|  | 203 | { | 
|---|
|  | 204 | int i,j; | 
|---|
|  | 205 |  | 
|---|
|  | 206 | SymmetryOperation so; | 
|---|
|  | 207 | so.i(); | 
|---|
|  | 208 |  | 
|---|
|  | 209 | t_ops(symop); | 
|---|
|  | 210 | for (i=0; i < 12; i++) | 
|---|
|  | 211 | symop[i+12] = symop[i].operate(so); | 
|---|
|  | 212 |  | 
|---|
|  | 213 | gamma_[0].init(g,1,"Ag"); | 
|---|
|  | 214 | gamma_[1].init(g,1,"Au"); | 
|---|
|  | 215 |  | 
|---|
|  | 216 | for (i=0; i < 12; i++) { | 
|---|
|  | 217 | gamma_[0].rep[i][0][0] = 1.0; | 
|---|
|  | 218 | gamma_[1].rep[i][0][0] = 1.0; | 
|---|
|  | 219 |  | 
|---|
|  | 220 | gamma_[0].rep[i+12][0][0] =  1.0; | 
|---|
|  | 221 | gamma_[1].rep[i+12][0][0] = -1.0; | 
|---|
|  | 222 | } | 
|---|
|  | 223 |  | 
|---|
|  | 224 | IrreducibleRepresentation& ireg = gamma_[2]; | 
|---|
|  | 225 | IrreducibleRepresentation& ireu = gamma_[3]; | 
|---|
|  | 226 |  | 
|---|
|  | 227 | IrreducibleRepresentation& irtg = gamma_[4]; | 
|---|
|  | 228 | IrreducibleRepresentation& irtu = gamma_[5]; | 
|---|
|  | 229 |  | 
|---|
|  | 230 | ireg.init(g,2,"Eg"); | 
|---|
|  | 231 | ireu.init(g,2,"Eu"); | 
|---|
|  | 232 | ireg.complex_=1; | 
|---|
|  | 233 | ireu.complex_=1; | 
|---|
|  | 234 |  | 
|---|
|  | 235 | irtg.init(g,3,"Tg"); | 
|---|
|  | 236 | irtu.init(g,3,"Tu"); | 
|---|
|  | 237 | irtg.nrot_=1; | 
|---|
|  | 238 | irtu.ntrans_=1; | 
|---|
|  | 239 |  | 
|---|
|  | 240 | // the symmetry operation matrices form a basis for Tu.  Tg(g)=Tu(g) for | 
|---|
|  | 241 | // the proper rotations, and = -Tu(g) for the improper ones | 
|---|
|  | 242 | for (i=0; i < 12; i++) { | 
|---|
|  | 243 | irtg.rep[i] = symop[i]; | 
|---|
|  | 244 | irtu.rep[i] = symop[i]; | 
|---|
|  | 245 |  | 
|---|
|  | 246 | irtg.rep[i+12] = symop[i]; | 
|---|
|  | 247 | irtu.rep[i+12] = symop[i+12]; | 
|---|
|  | 248 | } | 
|---|
|  | 249 |  | 
|---|
|  | 250 | // identity | 
|---|
|  | 251 | ireg.rep[0].E(); | 
|---|
|  | 252 |  | 
|---|
|  | 253 | // 4 C3's | 
|---|
|  | 254 | ireg.rep[1].rotation(2.0*(double)M_PI/3.0); | 
|---|
|  | 255 | ireg.rep[2] = ireg.rep[1]; | 
|---|
|  | 256 | ireg.rep[3] = ireg.rep[1]; | 
|---|
|  | 257 | ireg.rep[4] = ireg.rep[1]; | 
|---|
|  | 258 |  | 
|---|
|  | 259 | // 4 C3^2's | 
|---|
|  | 260 | ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]); | 
|---|
|  | 261 | ireg.rep[6] = ireg.rep[5]; | 
|---|
|  | 262 | ireg.rep[7] = ireg.rep[5]; | 
|---|
|  | 263 | ireg.rep[8] = ireg.rep[5]; | 
|---|
|  | 264 |  | 
|---|
|  | 265 | // 3 C2's | 
|---|
|  | 266 | ireg.rep[9].unit(); | 
|---|
|  | 267 | ireg.rep[10].unit(); | 
|---|
|  | 268 | ireg.rep[11].unit(); | 
|---|
|  | 269 |  | 
|---|
|  | 270 | SymRep sr(2); | 
|---|
|  | 271 | sr.i(); | 
|---|
|  | 272 |  | 
|---|
|  | 273 | for (j=0; j < 12; j++) { | 
|---|
|  | 274 | ireu.rep[j] = ireg.rep[j]; | 
|---|
|  | 275 | ireg.rep[j+12] = ireg.rep[j]; | 
|---|
|  | 276 | ireu.rep[j+12] = ireg.rep[j].operate(sr); | 
|---|
|  | 277 | } | 
|---|
|  | 278 | } | 
|---|
|  | 279 |  | 
|---|
|  | 280 | void | 
|---|
|  | 281 | CharacterTable::td() | 
|---|
|  | 282 | { | 
|---|
|  | 283 | // first get the T operations, then the Td operations | 
|---|
|  | 284 | t_ops(symop); | 
|---|
|  | 285 | td_ops(&symop[12]); | 
|---|
|  | 286 |  | 
|---|
|  | 287 | int i; | 
|---|
|  | 288 |  | 
|---|
|  | 289 | gamma_[0].init(g,1,"A1"); | 
|---|
|  | 290 | gamma_[1].init(g,1,"A2"); | 
|---|
|  | 291 |  | 
|---|
|  | 292 | for (i=0; i < 12; i++) { | 
|---|
|  | 293 | gamma_[0].rep[i][0][0] = 1.0; | 
|---|
|  | 294 | gamma_[1].rep[i][0][0] = 1.0; | 
|---|
|  | 295 |  | 
|---|
|  | 296 | gamma_[0].rep[i+12][0][0] =  1.0; | 
|---|
|  | 297 | gamma_[1].rep[i+12][0][0] = -1.0; | 
|---|
|  | 298 | } | 
|---|
|  | 299 |  | 
|---|
|  | 300 | IrreducibleRepresentation& ire = gamma_[2]; | 
|---|
|  | 301 | ire.init(g,2,"E"); | 
|---|
|  | 302 |  | 
|---|
|  | 303 | IrreducibleRepresentation& irt1 = gamma_[3]; | 
|---|
|  | 304 | IrreducibleRepresentation& irt2 = gamma_[4]; | 
|---|
|  | 305 |  | 
|---|
|  | 306 | irt1.init(g,3,"T1"); | 
|---|
|  | 307 | irt2.init(g,3,"T2"); | 
|---|
|  | 308 | irt1.nrot_ = 1; | 
|---|
|  | 309 | irt2.ntrans_ = 1; | 
|---|
|  | 310 |  | 
|---|
|  | 311 | // the symmetry operation matrices form a basis for T2.  T1(g)=T2(g) for | 
|---|
|  | 312 | // the proper rotations, and = -T2(g) for the improper ones | 
|---|
|  | 313 | SymmetryOperation so; | 
|---|
|  | 314 | so.i(); | 
|---|
|  | 315 |  | 
|---|
|  | 316 | for (i=0; i < 12; i++) { | 
|---|
|  | 317 | irt1.rep[i] = symop[i]; | 
|---|
|  | 318 | irt2.rep[i] = symop[i]; | 
|---|
|  | 319 | irt1.rep[i+12] = symop[i+12].operate(so); | 
|---|
|  | 320 | irt2.rep[i+12] = symop[i+12]; | 
|---|
|  | 321 | } | 
|---|
|  | 322 |  | 
|---|
|  | 323 | // identity | 
|---|
|  | 324 | ire.rep[0].E(); | 
|---|
|  | 325 |  | 
|---|
|  | 326 | // 4 C3's | 
|---|
|  | 327 | ire.rep[1].rotation(2.0*(double)M_PI/3.0); | 
|---|
|  | 328 | ire.rep[2] = ire.rep[1]; | 
|---|
|  | 329 | ire.rep[3] = ire.rep[1]; | 
|---|
|  | 330 | ire.rep[4] = ire.rep[1]; | 
|---|
|  | 331 |  | 
|---|
|  | 332 | // 4 C3^2's | 
|---|
|  | 333 | ire.rep[5] = ire.rep[1].operate(ire.rep[1]); | 
|---|
|  | 334 | ire.rep[6] = ire.rep[5]; | 
|---|
|  | 335 | ire.rep[7] = ire.rep[5]; | 
|---|
|  | 336 | ire.rep[8] = ire.rep[5]; | 
|---|
|  | 337 |  | 
|---|
|  | 338 | // 3 C2's | 
|---|
|  | 339 | ire.rep[9].unit(); | 
|---|
|  | 340 | ire.rep[10].unit(); | 
|---|
|  | 341 | ire.rep[11].unit(); | 
|---|
|  | 342 |  | 
|---|
|  | 343 | // 6 S4's | 
|---|
|  | 344 | ire.rep[12].c2_x(); | 
|---|
|  | 345 | ire.rep[13].c2_x(); | 
|---|
|  | 346 |  | 
|---|
|  | 347 | ire.rep[14] = ire.rep[12].operate(ire.rep[1]); | 
|---|
|  | 348 | ire.rep[15] = ire.rep[14]; | 
|---|
|  | 349 |  | 
|---|
|  | 350 | ire.rep[16] = ire.rep[14].operate(ire.rep[1]); | 
|---|
|  | 351 | ire.rep[17] = ire.rep[16]; | 
|---|
|  | 352 |  | 
|---|
|  | 353 | for (i=18; i < 24; i++) | 
|---|
|  | 354 | ire.rep[i] = ire.rep[i-6]; | 
|---|
|  | 355 | } | 
|---|
|  | 356 |  | 
|---|
|  | 357 | void | 
|---|
|  | 358 | CharacterTable::o() | 
|---|
|  | 359 | { | 
|---|
|  | 360 | int i; | 
|---|
|  | 361 |  | 
|---|
|  | 362 | // first get the T operations, then the O operations | 
|---|
|  | 363 | t_ops(symop); | 
|---|
|  | 364 | td_ops(&symop[12]); | 
|---|
|  | 365 |  | 
|---|
|  | 366 | SymmetryOperation so; | 
|---|
|  | 367 | so.i(); | 
|---|
|  | 368 |  | 
|---|
|  | 369 | for (i=12; i < 24; i++) | 
|---|
|  | 370 | symop[i] = symop[i].operate(so); | 
|---|
|  | 371 |  | 
|---|
|  | 372 | gamma_[0].init(g,1,"A1"); | 
|---|
|  | 373 | gamma_[1].init(g,1,"A2"); | 
|---|
|  | 374 |  | 
|---|
|  | 375 | for (i=0; i < 12; i++) { | 
|---|
|  | 376 | gamma_[0].rep[i][0][0] = 1.0; | 
|---|
|  | 377 | gamma_[1].rep[i][0][0] = 1.0; | 
|---|
|  | 378 |  | 
|---|
|  | 379 | gamma_[0].rep[i+12][0][0] =  1.0; | 
|---|
|  | 380 | gamma_[1].rep[i+12][0][0] = -1.0; | 
|---|
|  | 381 | } | 
|---|
|  | 382 |  | 
|---|
|  | 383 | IrreducibleRepresentation& ire = gamma_[2]; | 
|---|
|  | 384 | ire.init(g,2,"E"); | 
|---|
|  | 385 |  | 
|---|
|  | 386 | IrreducibleRepresentation& irt1 = gamma_[3]; | 
|---|
|  | 387 | IrreducibleRepresentation& irt2 = gamma_[4]; | 
|---|
|  | 388 |  | 
|---|
|  | 389 | irt1.init(g,3,"T1"); | 
|---|
|  | 390 | irt2.init(g,3,"T2"); | 
|---|
|  | 391 | irt1.nrot_ = 1; | 
|---|
|  | 392 | irt1.ntrans_ = 1; | 
|---|
|  | 393 |  | 
|---|
|  | 394 | // the symmetry operation matrices form a basis for T1.  T2(g)=T1(g) for | 
|---|
|  | 395 | // the proper rotations, and = -T1(g) for the improper ones | 
|---|
|  | 396 |  | 
|---|
|  | 397 | for (i=0; i < 12; i++) { | 
|---|
|  | 398 | irt1.rep[i] = symop[i]; | 
|---|
|  | 399 | irt2.rep[i] = symop[i]; | 
|---|
|  | 400 | irt1.rep[i+12] = symop[i+12]; | 
|---|
|  | 401 | irt2.rep[i+12] = symop[i+12].operate(so); | 
|---|
|  | 402 | } | 
|---|
|  | 403 |  | 
|---|
|  | 404 | // identity | 
|---|
|  | 405 | ire.rep[0].E(); | 
|---|
|  | 406 |  | 
|---|
|  | 407 | // 4 C3's | 
|---|
|  | 408 | ire.rep[1].rotation(2.0*(double)M_PI/3.0); | 
|---|
|  | 409 | ire.rep[2] = ire.rep[1]; | 
|---|
|  | 410 | ire.rep[3] = ire.rep[1]; | 
|---|
|  | 411 | ire.rep[4] = ire.rep[1]; | 
|---|
|  | 412 |  | 
|---|
|  | 413 | // 4 C3^2's | 
|---|
|  | 414 | ire.rep[5] = ire.rep[1].operate(ire.rep[1]); | 
|---|
|  | 415 | ire.rep[6] = ire.rep[5]; | 
|---|
|  | 416 | ire.rep[7] = ire.rep[5]; | 
|---|
|  | 417 | ire.rep[8] = ire.rep[5]; | 
|---|
|  | 418 |  | 
|---|
|  | 419 | // 3 C2's | 
|---|
|  | 420 | ire.rep[9].unit(); | 
|---|
|  | 421 | ire.rep[10].unit(); | 
|---|
|  | 422 | ire.rep[11].unit(); | 
|---|
|  | 423 |  | 
|---|
|  | 424 | // 6 C4's | 
|---|
|  | 425 | ire.rep[12].c2_x(); | 
|---|
|  | 426 | ire.rep[13].c2_x(); | 
|---|
|  | 427 |  | 
|---|
|  | 428 | ire.rep[14] = ire.rep[12].operate(ire.rep[1]); | 
|---|
|  | 429 | ire.rep[15] = ire.rep[14]; | 
|---|
|  | 430 |  | 
|---|
|  | 431 | ire.rep[16] = ire.rep[14].operate(ire.rep[1]); | 
|---|
|  | 432 | ire.rep[17] = ire.rep[16]; | 
|---|
|  | 433 |  | 
|---|
|  | 434 | // 6 C2's | 
|---|
|  | 435 | for (i=18; i < 24; i++) | 
|---|
|  | 436 | ire.rep[i] = ire.rep[i-6]; | 
|---|
|  | 437 | } | 
|---|
|  | 438 |  | 
|---|
|  | 439 | void CharacterTable::oh() | 
|---|
|  | 440 | { | 
|---|
|  | 441 | int i,j; | 
|---|
|  | 442 |  | 
|---|
|  | 443 | SymmetryOperation so; | 
|---|
|  | 444 | so.i(); | 
|---|
|  | 445 |  | 
|---|
|  | 446 | // first get the T operations, then the O operations, then the Th | 
|---|
|  | 447 | // operations, then the Td operations | 
|---|
|  | 448 | t_ops(symop); | 
|---|
|  | 449 | td_ops(&symop[36]); | 
|---|
|  | 450 |  | 
|---|
|  | 451 | for (i=0; i < 12; i++) { | 
|---|
|  | 452 | symop[i+24] = symop[i].operate(so); | 
|---|
|  | 453 | symop[i+12] = symop[i+36].operate(so); | 
|---|
|  | 454 | } | 
|---|
|  | 455 |  | 
|---|
|  | 456 | gamma_[0].init(g,1,"A1g"); | 
|---|
|  | 457 | gamma_[1].init(g,1,"A2g"); | 
|---|
|  | 458 | gamma_[5].init(g,1,"A1u"); | 
|---|
|  | 459 | gamma_[6].init(g,1,"A2u"); | 
|---|
|  | 460 |  | 
|---|
|  | 461 | for (i=0; i < 12; i++) { | 
|---|
|  | 462 | gamma_[0].rep[i][0][0] = 1.0; | 
|---|
|  | 463 | gamma_[1].rep[i][0][0] = 1.0; | 
|---|
|  | 464 | gamma_[5].rep[i][0][0] = 1.0; | 
|---|
|  | 465 | gamma_[6].rep[i][0][0] = 1.0; | 
|---|
|  | 466 |  | 
|---|
|  | 467 | gamma_[0].rep[i+12][0][0] =  1.0; | 
|---|
|  | 468 | gamma_[1].rep[i+12][0][0] = -1.0; | 
|---|
|  | 469 | gamma_[5].rep[i+12][0][0] =  1.0; | 
|---|
|  | 470 | gamma_[6].rep[i+12][0][0] = -1.0; | 
|---|
|  | 471 |  | 
|---|
|  | 472 | gamma_[0].rep[i+24][0][0] =  1.0; | 
|---|
|  | 473 | gamma_[1].rep[i+24][0][0] =  1.0; | 
|---|
|  | 474 | gamma_[5].rep[i+24][0][0] = -1.0; | 
|---|
|  | 475 | gamma_[6].rep[i+24][0][0] = -1.0; | 
|---|
|  | 476 |  | 
|---|
|  | 477 | gamma_[0].rep[i+36][0][0] =  1.0; | 
|---|
|  | 478 | gamma_[1].rep[i+36][0][0] = -1.0; | 
|---|
|  | 479 | gamma_[5].rep[i+36][0][0] = -1.0; | 
|---|
|  | 480 | gamma_[6].rep[i+36][0][0] =  1.0; | 
|---|
|  | 481 | } | 
|---|
|  | 482 |  | 
|---|
|  | 483 | // the symmetry operation matrices form a basis for T1u.  T2u(g)=T1u(g) for | 
|---|
|  | 484 | // the proper rotations, and = -T1(g) for the improper ones. | 
|---|
|  | 485 | // T1g(g)=T1u(g) for the O part, and = -T1u(g) for the ixO part. | 
|---|
|  | 486 | // T2g(g)=T1g(g) for proper rotations and =-T1g(g) for improper | 
|---|
|  | 487 |  | 
|---|
|  | 488 | gamma_[3].init(g,3,"T1g"); | 
|---|
|  | 489 | gamma_[4].init(g,3,"T2g"); | 
|---|
|  | 490 | gamma_[8].init(g,3,"T1u"); | 
|---|
|  | 491 | gamma_[9].init(g,3,"T2u"); | 
|---|
|  | 492 |  | 
|---|
|  | 493 | gamma_[3].nrot_=1; | 
|---|
|  | 494 | gamma_[8].ntrans_=1; | 
|---|
|  | 495 |  | 
|---|
|  | 496 | for (i=0; i < 12; i++) { | 
|---|
|  | 497 | gamma_[3].rep[i] = symop[i]; | 
|---|
|  | 498 | gamma_[4].rep[i] = symop[i]; | 
|---|
|  | 499 | gamma_[8].rep[i] = symop[i]; | 
|---|
|  | 500 | gamma_[9].rep[i] = symop[i]; | 
|---|
|  | 501 |  | 
|---|
|  | 502 | gamma_[3].rep[i+12] = symop[i+12]; | 
|---|
|  | 503 | gamma_[4].rep[i+12] = symop[i+12].operate(so); | 
|---|
|  | 504 | gamma_[8].rep[i+12] = symop[i+12]; | 
|---|
|  | 505 | gamma_[9].rep[i+12] = symop[i+12].operate(so); | 
|---|
|  | 506 |  | 
|---|
|  | 507 | gamma_[3].rep[i+24] = symop[i+24].operate(so); | 
|---|
|  | 508 | gamma_[4].rep[i+24] = symop[i+24].operate(so); | 
|---|
|  | 509 | gamma_[8].rep[i+24] = symop[i+24]; | 
|---|
|  | 510 | gamma_[9].rep[i+24] = symop[i+24]; | 
|---|
|  | 511 |  | 
|---|
|  | 512 | gamma_[3].rep[i+36] = symop[i+36].operate(so); | 
|---|
|  | 513 | gamma_[4].rep[i+36] = symop[i+36]; | 
|---|
|  | 514 | gamma_[8].rep[i+36] = symop[i+36]; | 
|---|
|  | 515 | gamma_[9].rep[i+36] = symop[i+36].operate(so); | 
|---|
|  | 516 | } | 
|---|
|  | 517 |  | 
|---|
|  | 518 | IrreducibleRepresentation& ireg = gamma_[2]; | 
|---|
|  | 519 | IrreducibleRepresentation& ireu = gamma_[7]; | 
|---|
|  | 520 |  | 
|---|
|  | 521 | ireg.init(g,2,"Eg"); | 
|---|
|  | 522 | ireu.init(g,2,"Eu"); | 
|---|
|  | 523 |  | 
|---|
|  | 524 | // identity | 
|---|
|  | 525 | ireg.rep[0].E(); | 
|---|
|  | 526 |  | 
|---|
|  | 527 | // 4 C3's | 
|---|
|  | 528 | ireg.rep[1].rotation(2.0*(double)M_PI/3.0); | 
|---|
|  | 529 | ireg.rep[2] = ireg.rep[1]; | 
|---|
|  | 530 | ireg.rep[3] = ireg.rep[1]; | 
|---|
|  | 531 | ireg.rep[4] = ireg.rep[1]; | 
|---|
|  | 532 |  | 
|---|
|  | 533 | // 4 C3^2's | 
|---|
|  | 534 | ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]); | 
|---|
|  | 535 | ireg.rep[6] = ireg.rep[5]; | 
|---|
|  | 536 | ireg.rep[7] = ireg.rep[5]; | 
|---|
|  | 537 | ireg.rep[8] = ireg.rep[5]; | 
|---|
|  | 538 |  | 
|---|
|  | 539 | // 3 C2's | 
|---|
|  | 540 | ireg.rep[9].unit(); | 
|---|
|  | 541 | ireg.rep[10].unit(); | 
|---|
|  | 542 | ireg.rep[11].unit(); | 
|---|
|  | 543 |  | 
|---|
|  | 544 | // 6 C4's | 
|---|
|  | 545 | ireg.rep[12].c2_x(); | 
|---|
|  | 546 | ireg.rep[13].c2_x(); | 
|---|
|  | 547 |  | 
|---|
|  | 548 | ireg.rep[14] = ireg.rep[12].operate(ireg.rep[1]); | 
|---|
|  | 549 | ireg.rep[15] = ireg.rep[14]; | 
|---|
|  | 550 |  | 
|---|
|  | 551 | ireg.rep[16] = ireg.rep[14].operate(ireg.rep[1]); | 
|---|
|  | 552 | ireg.rep[17] = ireg.rep[16]; | 
|---|
|  | 553 |  | 
|---|
|  | 554 | // 6 C2's | 
|---|
|  | 555 | for (i=18; i < 24; i++) | 
|---|
|  | 556 | ireg.rep[i] = ireg.rep[i-6]; | 
|---|
|  | 557 |  | 
|---|
|  | 558 | SymRep sr(2); | 
|---|
|  | 559 | sr.i(); | 
|---|
|  | 560 |  | 
|---|
|  | 561 | for (j=0; j < 24; j++) { | 
|---|
|  | 562 | ireu.rep[j] = ireg.rep[j]; | 
|---|
|  | 563 | ireg.rep[j+24] = ireg.rep[j]; | 
|---|
|  | 564 | ireu.rep[j+24] = ireg.rep[j].operate(sr); | 
|---|
|  | 565 | } | 
|---|
|  | 566 | } | 
|---|
|  | 567 |  | 
|---|
|  | 568 | ///////////////////////////////////////////////////////////////////////////// | 
|---|
|  | 569 |  | 
|---|
|  | 570 | // Local Variables: | 
|---|
|  | 571 | // mode: c++ | 
|---|
|  | 572 | // c-file-style: "ETS" | 
|---|
|  | 573 | // End: | 
|---|