[0b990d] | 1 | //
|
---|
| 2 | // tetra.cc
|
---|
| 3 | //
|
---|
| 4 | // Copyright (C) 1996 Limit Point Systems, Inc.
|
---|
| 5 | //
|
---|
| 6 | // Author: Edward Seidl <seidl@janed.com>
|
---|
| 7 | // Maintainer: LPS
|
---|
| 8 | //
|
---|
| 9 | // This file is part of the SC Toolkit.
|
---|
| 10 | //
|
---|
| 11 | // The SC Toolkit is free software; you can redistribute it and/or modify
|
---|
| 12 | // it under the terms of the GNU Library General Public License as published by
|
---|
| 13 | // the Free Software Foundation; either version 2, or (at your option)
|
---|
| 14 | // any later version.
|
---|
| 15 | //
|
---|
| 16 | // The SC Toolkit is distributed in the hope that it will be useful,
|
---|
| 17 | // but WITHOUT ANY WARRANTY; without even the implied warranty of
|
---|
| 18 | // MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
|
---|
| 19 | // GNU Library General Public License for more details.
|
---|
| 20 | //
|
---|
| 21 | // You should have received a copy of the GNU Library General Public License
|
---|
| 22 | // along with the SC Toolkit; see the file COPYING.LIB. If not, write to
|
---|
| 23 | // the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA.
|
---|
| 24 | //
|
---|
| 25 | // The U.S. Government is granted a limited license as per AL 91-7.
|
---|
| 26 | //
|
---|
| 27 |
|
---|
| 28 | #include <util/misc/math.h>
|
---|
| 29 | #include <string.h>
|
---|
| 30 |
|
---|
| 31 | #include <math/symmetry/pointgrp.h>
|
---|
| 32 |
|
---|
| 33 | using namespace sc;
|
---|
| 34 |
|
---|
| 35 | // these are the operations which make up T
|
---|
| 36 | static void
|
---|
| 37 | t_ops(SymmetryOperation *symop)
|
---|
| 38 | {
|
---|
| 39 | // identity
|
---|
| 40 | symop[0].E();
|
---|
| 41 |
|
---|
| 42 | // C2(x)
|
---|
| 43 | symop[9].c2_x();
|
---|
| 44 |
|
---|
| 45 | // C2(y)
|
---|
| 46 | symop[10].c2_y();
|
---|
| 47 |
|
---|
| 48 | // C2(z)
|
---|
| 49 | symop[11].rotation((double)M_PI);
|
---|
| 50 |
|
---|
| 51 | // a = ( 1, 1, 1)
|
---|
| 52 | // b = (-1,-1, 1)
|
---|
| 53 | // c = ( 1,-1,-1)
|
---|
| 54 | // d = (-1, 1,-1)
|
---|
| 55 | // C3 (a)
|
---|
| 56 | symop[1][0][2] = 1.0;
|
---|
| 57 | symop[1][1][0] = 1.0;
|
---|
| 58 | symop[1][2][1] = 1.0;
|
---|
| 59 |
|
---|
| 60 | // C3 (b)
|
---|
| 61 | symop[2] = symop[1].transform(symop[11]);
|
---|
| 62 |
|
---|
| 63 | // C3 (c)
|
---|
| 64 | symop[3] = symop[1].transform(symop[9]);
|
---|
| 65 |
|
---|
| 66 | // C3 (d)
|
---|
| 67 | symop[4] = symop[1].transform(symop[10]);
|
---|
| 68 |
|
---|
| 69 | // C3^2 (a)
|
---|
| 70 | symop[5][0][1] = 1.0;
|
---|
| 71 | symop[5][1][2] = 1.0;
|
---|
| 72 | symop[5][2][0] = 1.0;
|
---|
| 73 |
|
---|
| 74 | // C3^2 (b)
|
---|
| 75 | symop[6] = symop[5].transform(symop[11]);
|
---|
| 76 |
|
---|
| 77 | // C3^2 (c)
|
---|
| 78 | symop[7] = symop[5].transform(symop[9]);
|
---|
| 79 |
|
---|
| 80 | // C3^2 (d)
|
---|
| 81 | symop[8] = symop[5].transform(symop[10]);
|
---|
| 82 | }
|
---|
| 83 |
|
---|
| 84 | // this gives us the operations in Td which aren't in T.
|
---|
| 85 | static void
|
---|
| 86 | td_ops(SymmetryOperation *symop)
|
---|
| 87 | {
|
---|
| 88 | // S4 (x)
|
---|
| 89 | symop[0][0][0] = -1.0;
|
---|
| 90 | symop[0][1][2] = -1.0;
|
---|
| 91 | symop[0][2][1] = 1.0;
|
---|
| 92 |
|
---|
| 93 | // S4^3 (x)
|
---|
| 94 | symop[1][0][0] = -1.0;
|
---|
| 95 | symop[1][1][2] = 1.0;
|
---|
| 96 | symop[1][2][1] = -1.0;
|
---|
| 97 |
|
---|
| 98 | // S4 (y)
|
---|
| 99 | symop[2][0][2] = 1.0;
|
---|
| 100 | symop[2][1][1] = -1.0;
|
---|
| 101 | symop[2][2][0] = -1.0;
|
---|
| 102 |
|
---|
| 103 | // S4^3 (y)
|
---|
| 104 | symop[3][0][2] = -1.0;
|
---|
| 105 | symop[3][1][1] = -1.0;
|
---|
| 106 | symop[3][2][0] = 1.0;
|
---|
| 107 |
|
---|
| 108 | // S4 (z)
|
---|
| 109 | symop[4][0][1] = -1.0;
|
---|
| 110 | symop[4][1][0] = 1.0;
|
---|
| 111 | symop[4][2][2] = -1.0;
|
---|
| 112 |
|
---|
| 113 | // S4^3 (z)
|
---|
| 114 | symop[5][0][1] = 1.0;
|
---|
| 115 | symop[5][1][0] = -1.0;
|
---|
| 116 | symop[5][2][2] = -1.0;
|
---|
| 117 |
|
---|
| 118 | // a = ( 1, 1, 1)
|
---|
| 119 | // b = (-1,-1, 1)
|
---|
| 120 | // c = ( 1,-1,-1)
|
---|
| 121 | // d = (-1, 1,-1)
|
---|
| 122 | // sigma (ac)
|
---|
| 123 | symop[6][0][0] = 1.0;
|
---|
| 124 | symop[6][1][2] = 1.0;
|
---|
| 125 | symop[6][2][1] = 1.0;
|
---|
| 126 |
|
---|
| 127 | // sigma (bd)
|
---|
| 128 | symop[7][0][0] = 1.0;
|
---|
| 129 | symop[7][1][2] = -1.0;
|
---|
| 130 | symop[7][2][1] = -1.0;
|
---|
| 131 |
|
---|
| 132 | // sigma (ad)
|
---|
| 133 | symop[8][0][2] = 1.0;
|
---|
| 134 | symop[8][1][1] = 1.0;
|
---|
| 135 | symop[8][2][0] = 1.0;
|
---|
| 136 |
|
---|
| 137 | // sigma (bc)
|
---|
| 138 | symop[9][0][2] = -1.0;
|
---|
| 139 | symop[9][1][1] = 1.0;
|
---|
| 140 | symop[9][2][0] = -1.0;
|
---|
| 141 |
|
---|
| 142 | // sigma (ab)
|
---|
| 143 | symop[10][0][1] = 1.0;
|
---|
| 144 | symop[10][1][0] = 1.0;
|
---|
| 145 | symop[10][2][2] = 1.0;
|
---|
| 146 |
|
---|
| 147 | // sigma (dc)
|
---|
| 148 | symop[11][0][1] = -1.0;
|
---|
| 149 | symop[11][1][0] = -1.0;
|
---|
| 150 | symop[11][2][2] = 1.0;
|
---|
| 151 | }
|
---|
| 152 |
|
---|
| 153 | ////////////////////////////////////////////////////////////////////////////
|
---|
| 154 |
|
---|
| 155 | void
|
---|
| 156 | CharacterTable::t()
|
---|
| 157 | {
|
---|
| 158 | // t_ops gives us all the symmetry operations we need
|
---|
| 159 | t_ops(symop);
|
---|
| 160 |
|
---|
| 161 | int i;
|
---|
| 162 |
|
---|
| 163 | gamma_[0].init(g,1,"A");
|
---|
| 164 | for (i=0; i < g; i++)
|
---|
| 165 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
| 166 |
|
---|
| 167 | IrreducibleRepresentation& ire = gamma_[1];
|
---|
| 168 | ire.init(g,2,"E");
|
---|
| 169 | ire.complex_=1;
|
---|
| 170 |
|
---|
| 171 | IrreducibleRepresentation& irt = gamma_[2];
|
---|
| 172 | irt.init(g,3,"T");
|
---|
| 173 | irt.nrot_ = 1;
|
---|
| 174 | irt.ntrans_ = 1;
|
---|
| 175 |
|
---|
| 176 | // the symmetry operation matrices give us a basis for irrep T
|
---|
| 177 | for (i=0; i < g; i++)
|
---|
| 178 | irt.rep[i] = symop[i];
|
---|
| 179 |
|
---|
| 180 | // identity
|
---|
| 181 | ire.rep[0].E();
|
---|
| 182 |
|
---|
| 183 | // 4 C3's
|
---|
| 184 | ire.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
| 185 | ire.rep[2] = ire.rep[1];
|
---|
| 186 | ire.rep[3] = ire.rep[1];
|
---|
| 187 | ire.rep[4] = ire.rep[1];
|
---|
| 188 |
|
---|
| 189 | ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
|
---|
| 190 | ire.rep[6] = ire.rep[5];
|
---|
| 191 | ire.rep[7] = ire.rep[5];
|
---|
| 192 | ire.rep[8] = ire.rep[5];
|
---|
| 193 |
|
---|
| 194 | // 3 C2's
|
---|
| 195 | ire.rep[9].unit();
|
---|
| 196 | ire.rep[10].unit();
|
---|
| 197 | ire.rep[11].unit();
|
---|
| 198 |
|
---|
| 199 | }
|
---|
| 200 |
|
---|
| 201 | void
|
---|
| 202 | CharacterTable::th()
|
---|
| 203 | {
|
---|
| 204 | int i,j;
|
---|
| 205 |
|
---|
| 206 | SymmetryOperation so;
|
---|
| 207 | so.i();
|
---|
| 208 |
|
---|
| 209 | t_ops(symop);
|
---|
| 210 | for (i=0; i < 12; i++)
|
---|
| 211 | symop[i+12] = symop[i].operate(so);
|
---|
| 212 |
|
---|
| 213 | gamma_[0].init(g,1,"Ag");
|
---|
| 214 | gamma_[1].init(g,1,"Au");
|
---|
| 215 |
|
---|
| 216 | for (i=0; i < 12; i++) {
|
---|
| 217 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
| 218 | gamma_[1].rep[i][0][0] = 1.0;
|
---|
| 219 |
|
---|
| 220 | gamma_[0].rep[i+12][0][0] = 1.0;
|
---|
| 221 | gamma_[1].rep[i+12][0][0] = -1.0;
|
---|
| 222 | }
|
---|
| 223 |
|
---|
| 224 | IrreducibleRepresentation& ireg = gamma_[2];
|
---|
| 225 | IrreducibleRepresentation& ireu = gamma_[3];
|
---|
| 226 |
|
---|
| 227 | IrreducibleRepresentation& irtg = gamma_[4];
|
---|
| 228 | IrreducibleRepresentation& irtu = gamma_[5];
|
---|
| 229 |
|
---|
| 230 | ireg.init(g,2,"Eg");
|
---|
| 231 | ireu.init(g,2,"Eu");
|
---|
| 232 | ireg.complex_=1;
|
---|
| 233 | ireu.complex_=1;
|
---|
| 234 |
|
---|
| 235 | irtg.init(g,3,"Tg");
|
---|
| 236 | irtu.init(g,3,"Tu");
|
---|
| 237 | irtg.nrot_=1;
|
---|
| 238 | irtu.ntrans_=1;
|
---|
| 239 |
|
---|
| 240 | // the symmetry operation matrices form a basis for Tu. Tg(g)=Tu(g) for
|
---|
| 241 | // the proper rotations, and = -Tu(g) for the improper ones
|
---|
| 242 | for (i=0; i < 12; i++) {
|
---|
| 243 | irtg.rep[i] = symop[i];
|
---|
| 244 | irtu.rep[i] = symop[i];
|
---|
| 245 |
|
---|
| 246 | irtg.rep[i+12] = symop[i];
|
---|
| 247 | irtu.rep[i+12] = symop[i+12];
|
---|
| 248 | }
|
---|
| 249 |
|
---|
| 250 | // identity
|
---|
| 251 | ireg.rep[0].E();
|
---|
| 252 |
|
---|
| 253 | // 4 C3's
|
---|
| 254 | ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
| 255 | ireg.rep[2] = ireg.rep[1];
|
---|
| 256 | ireg.rep[3] = ireg.rep[1];
|
---|
| 257 | ireg.rep[4] = ireg.rep[1];
|
---|
| 258 |
|
---|
| 259 | // 4 C3^2's
|
---|
| 260 | ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
|
---|
| 261 | ireg.rep[6] = ireg.rep[5];
|
---|
| 262 | ireg.rep[7] = ireg.rep[5];
|
---|
| 263 | ireg.rep[8] = ireg.rep[5];
|
---|
| 264 |
|
---|
| 265 | // 3 C2's
|
---|
| 266 | ireg.rep[9].unit();
|
---|
| 267 | ireg.rep[10].unit();
|
---|
| 268 | ireg.rep[11].unit();
|
---|
| 269 |
|
---|
| 270 | SymRep sr(2);
|
---|
| 271 | sr.i();
|
---|
| 272 |
|
---|
| 273 | for (j=0; j < 12; j++) {
|
---|
| 274 | ireu.rep[j] = ireg.rep[j];
|
---|
| 275 | ireg.rep[j+12] = ireg.rep[j];
|
---|
| 276 | ireu.rep[j+12] = ireg.rep[j].operate(sr);
|
---|
| 277 | }
|
---|
| 278 | }
|
---|
| 279 |
|
---|
| 280 | void
|
---|
| 281 | CharacterTable::td()
|
---|
| 282 | {
|
---|
| 283 | // first get the T operations, then the Td operations
|
---|
| 284 | t_ops(symop);
|
---|
| 285 | td_ops(&symop[12]);
|
---|
| 286 |
|
---|
| 287 | int i;
|
---|
| 288 |
|
---|
| 289 | gamma_[0].init(g,1,"A1");
|
---|
| 290 | gamma_[1].init(g,1,"A2");
|
---|
| 291 |
|
---|
| 292 | for (i=0; i < 12; i++) {
|
---|
| 293 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
| 294 | gamma_[1].rep[i][0][0] = 1.0;
|
---|
| 295 |
|
---|
| 296 | gamma_[0].rep[i+12][0][0] = 1.0;
|
---|
| 297 | gamma_[1].rep[i+12][0][0] = -1.0;
|
---|
| 298 | }
|
---|
| 299 |
|
---|
| 300 | IrreducibleRepresentation& ire = gamma_[2];
|
---|
| 301 | ire.init(g,2,"E");
|
---|
| 302 |
|
---|
| 303 | IrreducibleRepresentation& irt1 = gamma_[3];
|
---|
| 304 | IrreducibleRepresentation& irt2 = gamma_[4];
|
---|
| 305 |
|
---|
| 306 | irt1.init(g,3,"T1");
|
---|
| 307 | irt2.init(g,3,"T2");
|
---|
| 308 | irt1.nrot_ = 1;
|
---|
| 309 | irt2.ntrans_ = 1;
|
---|
| 310 |
|
---|
| 311 | // the symmetry operation matrices form a basis for T2. T1(g)=T2(g) for
|
---|
| 312 | // the proper rotations, and = -T2(g) for the improper ones
|
---|
| 313 | SymmetryOperation so;
|
---|
| 314 | so.i();
|
---|
| 315 |
|
---|
| 316 | for (i=0; i < 12; i++) {
|
---|
| 317 | irt1.rep[i] = symop[i];
|
---|
| 318 | irt2.rep[i] = symop[i];
|
---|
| 319 | irt1.rep[i+12] = symop[i+12].operate(so);
|
---|
| 320 | irt2.rep[i+12] = symop[i+12];
|
---|
| 321 | }
|
---|
| 322 |
|
---|
| 323 | // identity
|
---|
| 324 | ire.rep[0].E();
|
---|
| 325 |
|
---|
| 326 | // 4 C3's
|
---|
| 327 | ire.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
| 328 | ire.rep[2] = ire.rep[1];
|
---|
| 329 | ire.rep[3] = ire.rep[1];
|
---|
| 330 | ire.rep[4] = ire.rep[1];
|
---|
| 331 |
|
---|
| 332 | // 4 C3^2's
|
---|
| 333 | ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
|
---|
| 334 | ire.rep[6] = ire.rep[5];
|
---|
| 335 | ire.rep[7] = ire.rep[5];
|
---|
| 336 | ire.rep[8] = ire.rep[5];
|
---|
| 337 |
|
---|
| 338 | // 3 C2's
|
---|
| 339 | ire.rep[9].unit();
|
---|
| 340 | ire.rep[10].unit();
|
---|
| 341 | ire.rep[11].unit();
|
---|
| 342 |
|
---|
| 343 | // 6 S4's
|
---|
| 344 | ire.rep[12].c2_x();
|
---|
| 345 | ire.rep[13].c2_x();
|
---|
| 346 |
|
---|
| 347 | ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
|
---|
| 348 | ire.rep[15] = ire.rep[14];
|
---|
| 349 |
|
---|
| 350 | ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
|
---|
| 351 | ire.rep[17] = ire.rep[16];
|
---|
| 352 |
|
---|
| 353 | for (i=18; i < 24; i++)
|
---|
| 354 | ire.rep[i] = ire.rep[i-6];
|
---|
| 355 | }
|
---|
| 356 |
|
---|
| 357 | void
|
---|
| 358 | CharacterTable::o()
|
---|
| 359 | {
|
---|
| 360 | int i;
|
---|
| 361 |
|
---|
| 362 | // first get the T operations, then the O operations
|
---|
| 363 | t_ops(symop);
|
---|
| 364 | td_ops(&symop[12]);
|
---|
| 365 |
|
---|
| 366 | SymmetryOperation so;
|
---|
| 367 | so.i();
|
---|
| 368 |
|
---|
| 369 | for (i=12; i < 24; i++)
|
---|
| 370 | symop[i] = symop[i].operate(so);
|
---|
| 371 |
|
---|
| 372 | gamma_[0].init(g,1,"A1");
|
---|
| 373 | gamma_[1].init(g,1,"A2");
|
---|
| 374 |
|
---|
| 375 | for (i=0; i < 12; i++) {
|
---|
| 376 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
| 377 | gamma_[1].rep[i][0][0] = 1.0;
|
---|
| 378 |
|
---|
| 379 | gamma_[0].rep[i+12][0][0] = 1.0;
|
---|
| 380 | gamma_[1].rep[i+12][0][0] = -1.0;
|
---|
| 381 | }
|
---|
| 382 |
|
---|
| 383 | IrreducibleRepresentation& ire = gamma_[2];
|
---|
| 384 | ire.init(g,2,"E");
|
---|
| 385 |
|
---|
| 386 | IrreducibleRepresentation& irt1 = gamma_[3];
|
---|
| 387 | IrreducibleRepresentation& irt2 = gamma_[4];
|
---|
| 388 |
|
---|
| 389 | irt1.init(g,3,"T1");
|
---|
| 390 | irt2.init(g,3,"T2");
|
---|
| 391 | irt1.nrot_ = 1;
|
---|
| 392 | irt1.ntrans_ = 1;
|
---|
| 393 |
|
---|
| 394 | // the symmetry operation matrices form a basis for T1. T2(g)=T1(g) for
|
---|
| 395 | // the proper rotations, and = -T1(g) for the improper ones
|
---|
| 396 |
|
---|
| 397 | for (i=0; i < 12; i++) {
|
---|
| 398 | irt1.rep[i] = symop[i];
|
---|
| 399 | irt2.rep[i] = symop[i];
|
---|
| 400 | irt1.rep[i+12] = symop[i+12];
|
---|
| 401 | irt2.rep[i+12] = symop[i+12].operate(so);
|
---|
| 402 | }
|
---|
| 403 |
|
---|
| 404 | // identity
|
---|
| 405 | ire.rep[0].E();
|
---|
| 406 |
|
---|
| 407 | // 4 C3's
|
---|
| 408 | ire.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
| 409 | ire.rep[2] = ire.rep[1];
|
---|
| 410 | ire.rep[3] = ire.rep[1];
|
---|
| 411 | ire.rep[4] = ire.rep[1];
|
---|
| 412 |
|
---|
| 413 | // 4 C3^2's
|
---|
| 414 | ire.rep[5] = ire.rep[1].operate(ire.rep[1]);
|
---|
| 415 | ire.rep[6] = ire.rep[5];
|
---|
| 416 | ire.rep[7] = ire.rep[5];
|
---|
| 417 | ire.rep[8] = ire.rep[5];
|
---|
| 418 |
|
---|
| 419 | // 3 C2's
|
---|
| 420 | ire.rep[9].unit();
|
---|
| 421 | ire.rep[10].unit();
|
---|
| 422 | ire.rep[11].unit();
|
---|
| 423 |
|
---|
| 424 | // 6 C4's
|
---|
| 425 | ire.rep[12].c2_x();
|
---|
| 426 | ire.rep[13].c2_x();
|
---|
| 427 |
|
---|
| 428 | ire.rep[14] = ire.rep[12].operate(ire.rep[1]);
|
---|
| 429 | ire.rep[15] = ire.rep[14];
|
---|
| 430 |
|
---|
| 431 | ire.rep[16] = ire.rep[14].operate(ire.rep[1]);
|
---|
| 432 | ire.rep[17] = ire.rep[16];
|
---|
| 433 |
|
---|
| 434 | // 6 C2's
|
---|
| 435 | for (i=18; i < 24; i++)
|
---|
| 436 | ire.rep[i] = ire.rep[i-6];
|
---|
| 437 | }
|
---|
| 438 |
|
---|
| 439 | void CharacterTable::oh()
|
---|
| 440 | {
|
---|
| 441 | int i,j;
|
---|
| 442 |
|
---|
| 443 | SymmetryOperation so;
|
---|
| 444 | so.i();
|
---|
| 445 |
|
---|
| 446 | // first get the T operations, then the O operations, then the Th
|
---|
| 447 | // operations, then the Td operations
|
---|
| 448 | t_ops(symop);
|
---|
| 449 | td_ops(&symop[36]);
|
---|
| 450 |
|
---|
| 451 | for (i=0; i < 12; i++) {
|
---|
| 452 | symop[i+24] = symop[i].operate(so);
|
---|
| 453 | symop[i+12] = symop[i+36].operate(so);
|
---|
| 454 | }
|
---|
| 455 |
|
---|
| 456 | gamma_[0].init(g,1,"A1g");
|
---|
| 457 | gamma_[1].init(g,1,"A2g");
|
---|
| 458 | gamma_[5].init(g,1,"A1u");
|
---|
| 459 | gamma_[6].init(g,1,"A2u");
|
---|
| 460 |
|
---|
| 461 | for (i=0; i < 12; i++) {
|
---|
| 462 | gamma_[0].rep[i][0][0] = 1.0;
|
---|
| 463 | gamma_[1].rep[i][0][0] = 1.0;
|
---|
| 464 | gamma_[5].rep[i][0][0] = 1.0;
|
---|
| 465 | gamma_[6].rep[i][0][0] = 1.0;
|
---|
| 466 |
|
---|
| 467 | gamma_[0].rep[i+12][0][0] = 1.0;
|
---|
| 468 | gamma_[1].rep[i+12][0][0] = -1.0;
|
---|
| 469 | gamma_[5].rep[i+12][0][0] = 1.0;
|
---|
| 470 | gamma_[6].rep[i+12][0][0] = -1.0;
|
---|
| 471 |
|
---|
| 472 | gamma_[0].rep[i+24][0][0] = 1.0;
|
---|
| 473 | gamma_[1].rep[i+24][0][0] = 1.0;
|
---|
| 474 | gamma_[5].rep[i+24][0][0] = -1.0;
|
---|
| 475 | gamma_[6].rep[i+24][0][0] = -1.0;
|
---|
| 476 |
|
---|
| 477 | gamma_[0].rep[i+36][0][0] = 1.0;
|
---|
| 478 | gamma_[1].rep[i+36][0][0] = -1.0;
|
---|
| 479 | gamma_[5].rep[i+36][0][0] = -1.0;
|
---|
| 480 | gamma_[6].rep[i+36][0][0] = 1.0;
|
---|
| 481 | }
|
---|
| 482 |
|
---|
| 483 | // the symmetry operation matrices form a basis for T1u. T2u(g)=T1u(g) for
|
---|
| 484 | // the proper rotations, and = -T1(g) for the improper ones.
|
---|
| 485 | // T1g(g)=T1u(g) for the O part, and = -T1u(g) for the ixO part.
|
---|
| 486 | // T2g(g)=T1g(g) for proper rotations and =-T1g(g) for improper
|
---|
| 487 |
|
---|
| 488 | gamma_[3].init(g,3,"T1g");
|
---|
| 489 | gamma_[4].init(g,3,"T2g");
|
---|
| 490 | gamma_[8].init(g,3,"T1u");
|
---|
| 491 | gamma_[9].init(g,3,"T2u");
|
---|
| 492 |
|
---|
| 493 | gamma_[3].nrot_=1;
|
---|
| 494 | gamma_[8].ntrans_=1;
|
---|
| 495 |
|
---|
| 496 | for (i=0; i < 12; i++) {
|
---|
| 497 | gamma_[3].rep[i] = symop[i];
|
---|
| 498 | gamma_[4].rep[i] = symop[i];
|
---|
| 499 | gamma_[8].rep[i] = symop[i];
|
---|
| 500 | gamma_[9].rep[i] = symop[i];
|
---|
| 501 |
|
---|
| 502 | gamma_[3].rep[i+12] = symop[i+12];
|
---|
| 503 | gamma_[4].rep[i+12] = symop[i+12].operate(so);
|
---|
| 504 | gamma_[8].rep[i+12] = symop[i+12];
|
---|
| 505 | gamma_[9].rep[i+12] = symop[i+12].operate(so);
|
---|
| 506 |
|
---|
| 507 | gamma_[3].rep[i+24] = symop[i+24].operate(so);
|
---|
| 508 | gamma_[4].rep[i+24] = symop[i+24].operate(so);
|
---|
| 509 | gamma_[8].rep[i+24] = symop[i+24];
|
---|
| 510 | gamma_[9].rep[i+24] = symop[i+24];
|
---|
| 511 |
|
---|
| 512 | gamma_[3].rep[i+36] = symop[i+36].operate(so);
|
---|
| 513 | gamma_[4].rep[i+36] = symop[i+36];
|
---|
| 514 | gamma_[8].rep[i+36] = symop[i+36];
|
---|
| 515 | gamma_[9].rep[i+36] = symop[i+36].operate(so);
|
---|
| 516 | }
|
---|
| 517 |
|
---|
| 518 | IrreducibleRepresentation& ireg = gamma_[2];
|
---|
| 519 | IrreducibleRepresentation& ireu = gamma_[7];
|
---|
| 520 |
|
---|
| 521 | ireg.init(g,2,"Eg");
|
---|
| 522 | ireu.init(g,2,"Eu");
|
---|
| 523 |
|
---|
| 524 | // identity
|
---|
| 525 | ireg.rep[0].E();
|
---|
| 526 |
|
---|
| 527 | // 4 C3's
|
---|
| 528 | ireg.rep[1].rotation(2.0*(double)M_PI/3.0);
|
---|
| 529 | ireg.rep[2] = ireg.rep[1];
|
---|
| 530 | ireg.rep[3] = ireg.rep[1];
|
---|
| 531 | ireg.rep[4] = ireg.rep[1];
|
---|
| 532 |
|
---|
| 533 | // 4 C3^2's
|
---|
| 534 | ireg.rep[5] = ireg.rep[1].operate(ireg.rep[1]);
|
---|
| 535 | ireg.rep[6] = ireg.rep[5];
|
---|
| 536 | ireg.rep[7] = ireg.rep[5];
|
---|
| 537 | ireg.rep[8] = ireg.rep[5];
|
---|
| 538 |
|
---|
| 539 | // 3 C2's
|
---|
| 540 | ireg.rep[9].unit();
|
---|
| 541 | ireg.rep[10].unit();
|
---|
| 542 | ireg.rep[11].unit();
|
---|
| 543 |
|
---|
| 544 | // 6 C4's
|
---|
| 545 | ireg.rep[12].c2_x();
|
---|
| 546 | ireg.rep[13].c2_x();
|
---|
| 547 |
|
---|
| 548 | ireg.rep[14] = ireg.rep[12].operate(ireg.rep[1]);
|
---|
| 549 | ireg.rep[15] = ireg.rep[14];
|
---|
| 550 |
|
---|
| 551 | ireg.rep[16] = ireg.rep[14].operate(ireg.rep[1]);
|
---|
| 552 | ireg.rep[17] = ireg.rep[16];
|
---|
| 553 |
|
---|
| 554 | // 6 C2's
|
---|
| 555 | for (i=18; i < 24; i++)
|
---|
| 556 | ireg.rep[i] = ireg.rep[i-6];
|
---|
| 557 |
|
---|
| 558 | SymRep sr(2);
|
---|
| 559 | sr.i();
|
---|
| 560 |
|
---|
| 561 | for (j=0; j < 24; j++) {
|
---|
| 562 | ireu.rep[j] = ireg.rep[j];
|
---|
| 563 | ireg.rep[j+24] = ireg.rep[j];
|
---|
| 564 | ireu.rep[j+24] = ireg.rep[j].operate(sr);
|
---|
| 565 | }
|
---|
| 566 | }
|
---|
| 567 |
|
---|
| 568 | /////////////////////////////////////////////////////////////////////////////
|
---|
| 569 |
|
---|
| 570 | // Local Variables:
|
---|
| 571 | // mode: c++
|
---|
| 572 | // c-file-style: "ETS"
|
---|
| 573 | // End:
|
---|